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Chapter 1

Pointwise credible sets

1.1 Introduction and main result

We consider estimating the regression function f in the fixed design regression
problem, where we have data

Yi,n = f(xi,n) + εi,n, i ∈ {1, . . . , n}. (1.1)

Here (xi,n) is a known sequence of points in the interval [0, 1], and (εi,n) is a
sequence of unobservable i.i.d. standard normal random variables. We take a
nonparametric Bayesian approach, using a Gaussian process prior W = (Wt :
t ∈ [0, 1]) on f , and are interested in the resulting credible sets. These are
sets of prescribed posterior probability, which in the Bayesian paradigm are
used to quantify the remaining uncertainty of the statistical analysis. We
investigate the coverage of these sets when treating them as confidence sets in
the non-Bayesian setting. Specifically we focus on credible intervals for f(x),
the function f evaluated at a given point x, which can be derived from the
marginal posterior distribution of Wx.
As a prior for f we consider the distribution of a scaled Brownian motion.
Thus we are given a mean-zero Gaussian process W = (Wt : t ∈ [0, 1]) with
covariance function cov(Ws,Wt) = cn(s ∧ t), for given scale factors cn > 0.
We take this process to be independent of the sequence (εi,n). In the Bayesian
setup the observations are distributed according to the model

Yi,n =Wxi,n + εi,n.

Furthermore, the posterior distribution of f(x) is the conditional distribution
of Wx given Y1,n, . . . , Yn,n. In this Gaussian model the posterior distribution



1. Pointwise credible sets

is also Gaussian and hence is characterised by its posterior mean f̂n(x) =
E(Wx|Y1,n, . . . , Yn,n) and posterior variance σ2

n = var(Wx|Y1,n, . . . , Yn,n). The
natural credible interval with level η for f(x) is the central interval

Cη =
(
f̂n(x)− σnζη, f̂n(x) + σnζη

)
,

where ζη is a standard normal quantile such that P (|Z| < ζη) = η for
Z ∼ N (0, 1). The coverage of this interval in the frequentist setting is the
probability Pf (f(x) ∈ Cη), where Pf refers to the distribution of Y1,n, . . . , Yn,n
in the original model (1.1), where a “true” f is given.
This model has been widely studied in the literature. In [Kimeldorf and Wahba,
1970], Kimeldorf and Wahba showed that the posterior mean is the solution to a
penalized smoothing problem. Rates of contraction of the posterior distribution
W | Y⃗n relative to the L2-metric were obtained in [van der Vaart and van
Zanten, 2007], [van der Vaart and van Zanten, 2008] and [van der Vaart and
van Zanten, 2011]. In this chapter we study the marginal posterior distribution
Wx | Y⃗n. The results on posterior mean and variance can be used to obtain
rates of contraction for this marginal posterior. Bayesian credible sets for
the function f in some infinite-dimensional space were considered in [Wahba,
1983], [Cox, 1993], [Leahu, 2011], [Knapik et al., 2011], but only in a heuristic
discussion and simulation study, without proofs, or only for the white noise
model. (Estimation of a smooth functional of f is a different problem, which
may be studied using Bernstein-von Mises theorems.) The present treatment
extends this to pointwise credible sets in the regression model. Scaling factors
cn in the variance were introduced in [van der Vaart and van Zanten, 2007]
with the purpose of adapting the prior to the smoothness of the underlying
regression function. These authors show that the rescaled Brownian motion
with cn = n(1−2α)/(1+2α) is a suitable prior for a true function f of Hölder
smoothness α, where α ∈ (0, 1]. In this chapter, we obtain a similar result in
the marginal setting for α ∈ (0, 2].
The prior W considered here takes the value W0 = 0 at the origin. This
could be remedied by adding an independent normal variable to W , but as we
consider the performance of the posterior distribution at fixed x > 0, this will
be irrelevant in the following.
The present model permits a fairly explicit solution. We will consider the case
where the design points are given by xi,n = i/n+ with n+ = n + 1/2. The
exact formulas cannot easily be extended to a more general choice of design
points. Furthermore, we take the scaling factors equal to cn = nβ+ for some
β ∈ (−1, 1).
Define Cα[0, 1] as the space of Hölder continuous functions with exponent α ∈
(0, 2]. The main result of the chapter is the following theorem.
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1.1. Introduction and main result

Theorem 1.1. Define ξβ := 1−β
2(1+β) . The following holds for the coverage

cfη := Pf
(
f(x) ∈ Cη

)
:

• If α > ξβ, we have cfη → P (|U | < ζη) =: pη > η for all f ∈ Cα[0, 1],
where U ∼ N (0, 1/2).

• If α = ξβ, then for each p ∈ (0, pη] there exists f ∈ Cα[0, 1] such that
cfη → p.

• If α < ξβ, there exists f ∈ Cα[0, 1] such that cfη → 0.

In the first of the three cases the credible interval is a conservative confidence
set (i.e pη > η). Although it is wider than necessary for coverage, its width
shrinks to zero at the same order of magnitude as the frequentist confidence
interval based on the posterior mean, which would use the frequentist standard
deviation of the posterior mean, rather than the standard deviation of the
posterior distribution. This follows from the fact that pη is strictly smaller
than 1. As ξβ ↓ 0 as β ↑ 1, the range of α for which this favourable conclusion
holds can be made arbitrarily large by choice of β. However, we shall see that

σn ≍ n(β−1)/4.

Therefore using a large value of β will also increase the width of the credible
set, even by an order of magnitude.
In the third case the credible interval is too narrow to give positive coverage
for all functions of given Hölder smoothness. The standard deviation of the
posterior distribution is of smaller order than the bias of the posterior mean in
this case. This is due to oversmoothing of the true function by the prior, the
Bayesian way of choosing too large a bandwidth in a smoothing method.
Without scaling (i.e. β = 0) the cut-off between good and bad performance
of the credible sets is at ξ0 = 1/2. This can be viewed as the smoothness of
Brownian motion itself. In this case, functions of smoothness bigger than 1

2
yield credible sets with positive coverage, whereas functions that are rougher
than Brownian motion do not.
Inspection of the proof shows that the assumption f ∈ Cα[0, 1] can be relaxed
to Hölder continuity in an arbitrarily small neighbourhood of x.
In the next section, we gain insight into the posterior mean by analysing its
coefficients as an L2 projection. In the third section, we study the bias and
variance of the posterior mean as a frequentist estimator, as well as the posterior
variance. Combining these results, we arrive at our main theorem. Throughout,
we use A . B to mean A ≤ cB and A ≍ B to mean A . B and B . A.
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1. Pointwise credible sets

1.2 Understanding the posterior mean

In order to be able to analyse credible sets, we will need to know more about the
posterior mean f̂n(x) = E(Wx | Y1,n, . . . , Yn,n). Since conditional expectations
correspond to L2 projections, we may write

E(Wx | Y1,n, . . . , Yn,n) =
n∑
i=1

ani Yi,n = Y⃗ Tn a⃗n,

where the (ani ) are coefficients in R. Our aim in this section is to study the
asymptotic behaviour of these coefficients. We require the following technical
lemma:

Lemma 1.2. Let λ± = 1 + 1
2k ± 1

2
√
k

√
4 + 1

k for k ∈ R. Then λ+λ− = 1

and λ− ↑ 1 and λ+ ↓ 1 as k → ∞. Furthermore, for each γ ∈ R, there exists
Cγ > 0 such that λkγ+ ≥ eCγk

γ−1/2 .

Proof. Since log z ≥ 1
2 (z − 1) for z ∈ [1, 2], we have

kγ logλ+ & kγ
(

1

2k
+

1

2
√
k

√
4 +

1

k

)
& kγ−1/2.

In the following, we will use the rescaled index k = n+/cn = n1−β+ , since this
turns out to be computationally convenient. Note that we have cn = k

β
1−β .

We will study asymptotics of the sequence (ani ) in terms of k.
Let in = max{i : i/n+ < x}, the index i such that xi,n < x is closest to x.
The following theorem shows that coefficients ai, where i is far from in, tend
to zero exponentially fast. Specifically, applying the above lemma, it can be
seen that ani tends to zero exponentially fast if |i− in| ≫

√
k.

Theorem 1.3. We have

2
√
k ani =

{
λ−in+

[
Anλ

i
+ −Bnλ

−i
+

]
for i ≤ in

λin+
[
Ãnλ

−i+1
+ + B̃nλ

−2n+i−1
+

]
for i ≥ in,

where An, Bn, Ãn, B̃n → 1. In particular, ani ≥ 0.

Proof. The coefficients ani satisfy the projection relations

0 =
⟨
Wx − Y⃗ Tn a⃗n, Yi,n

⟩
=
⟨
Wx − Y⃗ Tn a⃗n,Wxi,n

⟩
− ani .
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1.2. Understanding the posterior mean

Expanding this yields

0 = cov(Wx,Wxi,n)−
n∑
j=1

anj cov(Wxj,n ,Wxi,n)− ani

= cn

x ∧ i

n+
−

i∑
j=1

j

n+
anj − i

n+

n∑
j=i+1

ani

− ani .

These equations can be written in matrix form:

cn



1
cn

+ 1
n+

1
n+

1
n+

· · · 1
n+

1
n+

1
cn

+ 2
n+

2
n+

· · · 2
n+

1
n+

2
n+

. . . ...
...

... 1
cn

+ n−1
n+

n−1
n+

1
n+

2
n+

· · · n−1
n+

1
cn

+ n
n+





an1
an2
...

...
ann


= cn



1
n+

...
in
n+

x
...
x


.

(1.2)
Using cn

n+
= 1

k and applying elementary matrix operations, we obtain



1 + 1
k

1
k

1
k · · · 1

k

−1 1 + 1
k

1
k · · · 1

k

0 −1
. . . ...

...
... 1 + 1

k
1
k

0 0 · · · −1 1 + 1
k





an1
an2
...

...
ann


= cn



1
n+

...
1
n+

x− xin,n
0
...
0


,

which can be further simplified to



2 + 1
k −1 0 · · · 0

−1 2 + 1
k −1 · · · 0

0 −1
. . . ...

...
... 2 + 1

k −1

0 0 · · · −1 1 + 1
k





an1
an2
...

...
ann


= cn



0
...
0

xin+1,n − x
x− xin,n

0
...
0


.

For i ∈ {3, . . . , in} and i ∈ {in + 3, . . . , n} we obtain the recurrence relation
ani =

(
2 + 1

k

)
ani−1 − ani−2, (1.3)
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1. Pointwise credible sets

while the middle two rows yield

−anin−1 +
(
2 + 1

k

)
anin − anin+1 = cn(xin+1,n − x), (1.4a)

−anin +
(
2 + 1

k

)
anin+1 − anin+2 = cn(x− xin,n). (1.4b)

The recurrence (1.3) has characteristic polynomial λ2−
(
2+ 1

k

)
λ+1 and hence

we have for i ∈ {1, . . . , in} the general solution

ani = Aλi+ +Bλi−, λ± =
1

2

(
2 +

1

k
±
√

1

k2
+

4

k

)
= 1 +

1

2k
± 1

2
√
k

√
4 +

1

k
.

Using the first row, we have

Aλ+ +Bλ− = an1 ,

Aλ2+ +Bλ2− = an2 =
(
2 + 1

k

)
an1 ,

from which we find

A = an1

1
k + 2− λ−

(λ+ − λ−)λ+
=: an1α, B = an1

λ+ − 2− 1
k

(λ+ − λ−)λ−
=: an1β.

Note that β = −α. Using (1.4a), we find

cn(xin+1,n − x) + anin+1

= −anin−1 +
(
2 + 1

k

)
anin

= Aλin−1
+

((
2 + 1

k

)
λ+ − 1

)
+Bλin−1

−
((
2 + 1

k

)
λ− − 1

)
.

This yields

an1 =
cn(xin+1,n − x) + anin+1

αλin−1
+

((
2 + 1

k

)
λ+ − 1

)
+ βλin−1

−
((
2 + 1

k

)
λ− − 1

)
=:

cn(xin+1,n − x) + anin+1

D
.

(1.5)

For i ∈ {in + 1, . . . , n− 2}, we have

ani =
(
2 + 1

k

)
ani+1 − ani+2.

Writing bni = ann−i+1, we see that for i ∈ {3, . . . , n − in} we again have the
recurrence

bni =
(
2 + 1

k

)
bni−1 − bni−2,

which has the same solution bni = Ãλi+ + B̃λi− for i ∈ {1, . . . , n− in}, where

Ã = bn1

1
k + 1− λ−

(λ+ − λ−)λ+
=: bn1 α̃, B̃ = bn1

λ+ − 1− 1
k

(λ+ − λ−)λ−
=: bn1 β̃.
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1.2. Understanding the posterior mean

We apply (1.4b) to find

bn1 =
cn(x− xin,n) + bnn−in+1

α̃λn−in−1
+

(
(2 + 1

k )λ+ − 1
)
+ β̃λn−in−1

−
(
(2 + 1

k )λ− − 1
)

=:
cn(x− xin,n) + bnn−in+1

D̃
.

Note that bnn−in+1 = anin = an1 (αλ
in
+ + βλin− ). We substitute this in the above

and similarly we substitute anin+1 = bnn−in = bn1 (α̃λ
n−in
+ + β̃λn−in− ) in (1.5).

This yields two linear equations in an1 and bn1 . Solving for bn1 , we obtain

bn1 = cn
D
(
x− xin,n +

xin+1,n−x
D (αλin+ + βλin− )

)
DD̃ − (αλin+ + βλin− )(α̃λn−in+ + β̃λn−in− )

. (1.6)

Our aim is to determine the asymptotic behaviour of bn1 and an1 . Note that
λ± → 1 and λ+ − λ− = 1√

k

√
4 + 1

k ∼ 2√
k
, hence α ∼ 1

2

√
k, β ∼ − 1

2

√
k and

α̃ ∼ β̃ ∼ 1
2 . Furthermore, applying Lemma 1.2, we see that

D ∼ 1
2

√
kλin+ , D̃ ∼ 1

2λ
n−in
+ ,

where we ignore the exponentially small terms involving λ−. Similarly, we have
αλin

+ +βλin
−

D = 1 +O(1/
√
k), since

αλin+ + βλin−
D

− 1 =
αλin+ + βλin− −D

D

=
αλin−1

+

(
λ+ − (2 + 1

k )λ+ + 1
)
+ · · ·

D
∼ − 1√

k
.

Finally, it can be seen that

DD̃−(αλin+ + βλin− )(α̃λn−in+ + β̃λn−in− )

= αα̃λn−2
+

([
(2 + 1

k )λ+ − 1
]2 − λ2+

)
+ · · · ∼ 1

2λ
n
+.

From this we conclude bn1 ∼ 1√
k
λ
−(n−in)
+ . Additionally, we find

an1 =
cn(xin+1,n − x) + bn1 (α̃λ

n−in
+ + β̃λn−in− )

D
∼

1√
k
λ
−(n−in)
+

1
2λ

n−in
+

1
2

√
kλin+

= 1
kλ

−in
+ .

The result follows.
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1. Pointwise credible sets

This theorem gives us insight into the behaviour of the coefficients (ani ). We
can further see that they asymptotically sum to one:

Corollary 1.4. We have 1−
∑n
i=1 a

n
i ∼ λ−in+ .

Proof. By the first row of (1.2), we have

1

k

n∑
i=1

ani =
1

k
− an1 ⇒

n∑
i=1

ani = 1− kan1 .

For the further analysis in the next section, a technical result is useful.

Lemma 1.5. Let

Π(r,m) =

m∑
i=1

λi+(r − i)α

where r ≥ m. Then

λ−1
+

∫ (r−1) logλ+

(r−m) logλ+

e−vvα dv ≤ (logλ+)α+1λ−r+ Π(r,m)

≤ λ+

∫ (r+1) logλ+

0

e−vvα dv.

Proof. Note that λt+(r − t+ 1)α ≥ λi+(r − i)α for t ∈ [i, i+ 1], hence

m∑
i=1

λi+(r − i)α ≤
∫ m+1

1

λt+(r − t+ 1)α dt ≤ λr+1
+

∫ r+1

0

e−u logλ+uα du

= (logλ+)−α−1λr+1
+

∫ (r+1) logλ+

0

e−vvα dv.

Similarly, since λt+(r − t− 1)α ≤ λi+(r − i)α for t ∈ [i− 1, i], we see that

m∑
i=1

λi+(r − i)α ≥ (logλ+)−α−1λr−1
+

∫ (r−1) logλ+

(r−m) logλ+

e−vvα dv.

1.3 Bias and posterior variance

In this section, we will study the bias and variance of the posterior distribution
using Theorem 1.3. In the proofs, we will encounter the coefficients A,B, Ã
and B̃ as seen in the proof of Theorem 1.3, given by A = 1

2
√
k
λ−in+ An, B =

16



1.3. Bias and posterior variance

− 1
2
√
k
λ−in+ Bn, Ã = 1

2
√
k
λ
−(n−in)
+ Ãn and B̃ = 1

2
√
k
λ
−(n−in)
+ B̃n. For the most

part, we will ignore terms involving Bn and B̃n, since they are exponentially
small. Indeed, setting γ = 1

2

(
1

1−β − 1
2

)
, we can apply Lemma 1.2 to see that

all terms involving these quantities are O
(
e−k

γ).
To understand the behaviour of credible sets for this model, we will consider
first the bias µn(f) := Ef̂n(x)− f(x). Note that

Ef̂n(x) =
n∑
i=1

ani f(xi,n).

Applying the above result, we obtain

Corollary 1.6. For f(t) = |x− t|α, we have µn(f) ∼ Γ(α+ 1)k(
1
2−

1
1−β )α.

Proof. Applying Lemma 1.5, we have

µn(f) =

n∑
i=1

ani f(xi,n)

= A

in∑
i=1

λi+(x− xi,n)
α + Ã

n−in∑
i=1

λi+(xn−i+1,n − x)α +O
(
e−k

γ)
= An−α

+

in∑
i=1

λi+(n+x− i)α+Ãn−α+

n−in∑
i=1

λi+
[
n+(1− x)− i+ 1

2

]α
+O

(
e−k

γ)
= An−α

+ Π(n+x, in) + Ãn−α+ Π
(
n+(1− x) + 1

2 , n− in
)
+O

(
e−k

γ)
∼ 1√

k
(logλ+)−α−1n−α+ Γ(α+ 1) ∼ Γ(α+ 1)k(

1
2−

1
1−β )α.

This gives the desired result.

Using this specific result, we see that more generally we have

Corollary 1.7. Let f be Hölder continuous of order α ∈ (0, 2] at x. Then
|µn(f)| . k(

1
2−

1
1−β )α.

Proof. Let δn = k−ϵ and write

µn(f) =
∑

|xi,n−x|>δn

ani f(xi,n) +
∑

|xi,n−x|≤δn

ani f(xi,n)− f(x) =: γn(f) + µ̃n(f).

17



1. Pointwise credible sets

Note that |γn(f)| ≤ ∥f∥
∑

|xi,n−x|>δn a
n
i . By Theorem 1.3, we have ani .

Aλ
n+(x−δn)
+ for i < n+(x−δn) and ani . (Ã+B̃)λ

n+(1−x−δn)
+ for i > n+(x+δn).

Hence ∑
|xi,n−x|>δn

ani . nAλ
n+(x−δn)
+ + n(Ã+ B̃)λ

n+(1−x−δn)
+

. cn
√
kλ

−n+δn
+ = cn

√
kλ−k

1
1−β

−ϵ

+ ,

which is exponentially small if ϵ < 1
1−β − 1

2 by Lemma 1.2. Finally, by Corol-
lary 1.4 we have

∑
|xi,n−x|≤δn a

n
i ≈ 1 −

∑
|xi,n−x|>δn a

n
i ≈ 1 and hence for

α ∈ (0, 1) we have

|µ̃n(f)| =

∣∣∣∣∣ ∑
|xi,n−x|≤δn

ani f(xi,n)− f(x)

∣∣∣∣∣ . ∑
|xi,n−x|≤δn

ani |f(xi,n)− f(x)|

.
∑

|xi,n−x|≤δn

ani |xi,n − x|α ≤
n∑
i=1

ani |xi,n − x|α = µn(gα),

where gα(t) = |t − x|α. The result now follows for α ∈ (0, 1) by applying
Corollary 1.6. For α ∈ [1, 2], we give a refinement of the characterisation of the
coefficients ani . Consider

A

Ã
=
αan1
α̃bn1

=
α
(
cn(xin+1,n − x) + bn1 (α̃λ

n−in
+ + β̃λn−in− )

)
Dα̃bn1

=
αcn(xin+1,n − x)

Dα̃bn1
+
αbn1 (α̃λ

n−in
+ + β̃λn−in− )

Dα̃bn1
.

We have
D = αλin+1

+ + βλin+1
−

since
(
2 + 1

k

)
λ± − 1 = λ2± by the characteristic equation. Hence the second

term is equal to

αα̃λn−in+

(
1 +O

(
e−k

γ))
α̃αλin+1

+

(
1 +O (e−kγ )

) = λn−2in−1
+

(
1 +O

(
e−k

γ))
.

Now consider the first term. We have

αcn(xin+1,n − x)

Dα̃bn1
.

√
k 1
k√

kλin+1
+

1√
k
λ
−(n−in)
+

=
1√
k
λn−2in−1
+ .
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1.3. Bias and posterior variance

We see that
A

Ã
= λn−2in−1

+

(
1 +O

(
1√
k

))
.

Using this, we see that we can bound
n∑
i=1

ani (xi,n − x) = A

in∑
i=1

λi+(xi,n − x) + Ã

n−in∑
i=1

λi+(xn−i+1,n − x) +O
(
e−k

γ)
by a constant times

Ãλn−2in−1
+

(
1 +O

(
1√
k

)) in∑
i=1

λi+(xi,n − x) + Ã

n−in∑
i=1

λi+(xn−i+1,n − x)

. 1√
k

(
in∑
i=1

λi−in−1
+ (xi,n − x) +

n∑
i=in+1

λin−i+1
+ (xi,n − x)

)

+ Ãλn−2in−1
+

1√
k

in∑
i=1

λi+(xi,n − x)

. 1√
k

(
in∑
j=1

λ−j+ (xin−j+1,n − x) +

n−in−1∑
j=0

λ−j+ (xin+j+1,n − x)

)

+ λ−in−1
+

1

k

in∑
i=1

λi+(xi,n − x).

Note that the absolute value of the second term is given by

λ−in−1
+

1

k

1

n+

in∑
i=1

λi+(n+x− i) = λ−in−1
+

1

k

1

n+
Π(n+x, in) .

1

n
.

Now suppose that in ≤ n− in − 1 (the case n− in − 1 ≤ in is similar). Then
the first term is equal to

1√
k

(
2

in∑
j=1

λ−j+

(
in + 1

n+
− x

)
+ (xin+1,n − x) +

n−in−1∑
j=in+1

λ−j+ (xin+j+1,n − x)

)

≍ 1√
k

(
1

n

1− λ−in+

1− λ−1
+

+
1

n
+O

(
e−k

γ))
≍ 1√

k

(√
k

n
+

1

n
+O

(
e−k

γ))
≍ 1

n
.

We conclude that
n∑
i=1

ani (xi,n − x) . 1

n
.
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1. Pointwise credible sets

Since
∑

|xi,n−x|>δn a
n
i is exponentially small, we then also see that∑

|xi,n−x|≤δn a
n
i (xi,n − x) . 1

n . Hence if f ∈ Cα where α = 1 + δ for some
δ ∈ (0, 1), then∣∣∣∣∣∣

∑
|xi,n−x|≤δn

ani
(
f(xi,n)− f(x)

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|xi,n−x|≤δn

ani
(
f ′(ξi)− f ′(x)

)
(xi,n − x) + f ′(x)

∑
|xi,n−x|≤δn

ani (xi,n − x)

∣∣∣∣∣∣
.

∑
|xi,n−x|≤δn

ani |ξi − x|δ|xi,n − x|+ 1

n

≤
∑

|xi,n−x|≤δn

ani |xi,n − x|1+δ + 1

n
. k( 1

2−
1

1−β )(1+δ) +
1

n
.

If β ≤ 0, then this is smaller than k(
1
2−

1
1−β )(1+δ) for all δ ∈ (0, 1). Note that the

result also holds for δ = 0 and δ = 1 (for δ = 1 we can repeat the application
of the mean value theorem above and obtain a second derivative). We see that
the result also follows for α ∈ [1, 2].

In order to derive results on the coverage, we will also need results on the
posterior variance and the variance of the posterior mean.

Lemma 1.8. The variance of the posterior mean

t2n := varf

n∑
i=1

ani Yi,n =
n∑
i=1

(ani )
2

satisfies t2n ∼ 1
4
√
k

.

Proof. We have

t2n = A2
in∑
i=1

λ2i+ + Ã2
n−in∑
i=1

λ2i+ +O
(
e−k

γ)
.

Now considering m = ⌊sn⌋ for some s ∈ (0, 1), we see that

m∑
i=1

λ2i+ =
λ2m+2
+ − λ2+
λ2+ − 1

∼
√
k

2
λ2m+ , (1.7)
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1.3. Bias and posterior variance

since λ2+ = 1+ 1√
k

√
4 + 1

k+O
(
1
k

)
and the other term is negligible by Lemma 1.2.

We conclude that

t2n ∼ 1

4k
λ−2in
+

√
k

2
λ2in+ +

1

4k
λ
−2(n−in)
+

√
k

2
λ
2(n−in)
+ ∼ 1

4
√
k
,

as desired.

The analysis of the posterior variance σ2
n is more involved. Recall that

σ2
n := E

[(
Wx − f̂n(x)

)2 | Y
]
.

Note that Wx − f̂n(x) is L2-orthogonal to Y , since f̂n(x) is the projection of
Wx onto Y . Since all quantities involved have multivariate mean-zero normal
distributions, it follows that Wx − f̂n(x) is independent of Y . We conclude

σ2
n = E

[
Wx − f̂n(x)

]2
= E

[
Wx −

n∑
i=1

ani (Wxi,n + εi,n)

]2

= E
[
Wx −

n∑
i=1

aniWxi,n

]2
+ E

[
n∑
i=1

ani εi,n

]2
= s2n + t2n,

where the last equality defines s2n. To determine the behaviour of s2n, we require
the following result:

Proposition 1.9. Let m ∈ N and s ≥ xm,n such that |s − xm,n| = o(1/
√
k)

and
Λ(s,m) =

m∑
i=1

λi+(Ws −Wxi,n).

Then EΛ(s,m)2 ∼ 1
2

√
kλ2m+ .

Proof. We may write Ws −Wxi,n = (Ws −Wxm,n) +
∑m
j=i+1 Vj , where (Ws −

Wxm,n) and Vj =Wxj,n−Wxj−1,n ∼ N
(
0, 1k

)
are independent random variables.

Then

EΛ(s,m)2 = var
[
(Ws −Wxm,n)

m∑
i=1

λi+

]
+ var

m∑
i=1

λi+

m∑
j=i+1

Vj

= var
m∑
j=1

Vj

j−1∑
i=1

λi+ + o
(√
kλ2m+

)

=
1

k

m∑
j=1

(
j−1∑
i=1

λi+

)2

+ o
(√
kλ2m+

)
,
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1. Pointwise credible sets

where we use that
∑m
i=1 λ

i
+ ∼

√
kλm+ by a similar argument as applied in (1.7).

We have (
j−1∑
i=1

λi+

)2

=

(
λj+ − λ+

λ+ − 1

)2

=
λ2j+ − 2λj+1

+ + λ2+
(λ+ − 1)2

Summing over j, we obtain

EΛ(s,m)2 =
1

k(λ+ − 1)2

(
λ2m+2
+ − λ2+
λ2+ − 1

− 2
λm+2
+ − λ2+
λ+ − 1

)
+ o
(√
kλ2m+

)
=

λ2m+2
+

k(λ+ − 1)2(λ2+ − 1)
+ o
(√
kλ2m+

)
∼ 1

2

√
kλ2m+

as desired.

Note that the condition |s−xm,n| = o(1/
√
k) is certainly satisfied if |s−xm,n| =

O(1/n). We are now able to conclude our analysis of s2n.

Corollary 1.10. We have

s2n = E
(
Wx −

n∑
i=1

aniWxi,n

)2

∼ 1

4
√
k
.

Proof. Note that

s2n = E
(

n∑
i=1

ani (Wx −Wxi,n)

)2

+O
(
e−k

γ)
,

since
∑n
i=1 a

n
i − 1 is exponentially small by Corollary 1.4. Now we use the fact

that Brownian motion has independent increments to write

E
(

n∑
i=1

ani (Wx −Wxi,n)

)2

= E
(

in∑
i=1

ani (Wx −Wxi,n)

)2

+ E
(

n∑
i=in+1

ani (Wx −Wxi,n)

)2

.

Consider the first term: using Proposition 1.9 we obtain

E
(

in∑
i=1

ani (Wx −Wxi,n)

)2

= A2E
(

in∑
i=1

λi+(Wx −Wxi,n)

)2

+O
(
e−k

γ)
= A2EΛ(x, in)2 +O

(
e−k

γ)
∼ 1

8
√
k
.
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1.3. Bias and posterior variance

For the second term, we have

E
(

n∑
i=in+1

ani (Wx −Wxi,n)

)2

= Ã2E
(
n−in∑
i=1

λi+(Wx −Wxn−i+1,n)

)2

+O
(
e−k

γ)
= Ã2E

(
n−in∑
i=1

λi+(W1−x+ 1
2n+

−Wxi,n)

)2

+O
(
e−k

γ)
= Ã2EΛ

(
1− x+ 1

2n+
, n− in)

2 +O
(
e−k

γ)
∼ 1

8
√
k
,

where in the second equality we use the fact that the process
(W1+ 1

2n+

−W1+ 1
2n+

−t)t∈[0,1] is again a Brownian motion on [0, 1]. The result
follows.

Combining the above results, we understand the posterior variance.

Corollary 1.11. The posterior variance σ2
n = s2n + t2n satisfies σ2

n ∼ 1
2
√
k

.

Finally, we arrive at the proof of our main result.

Proof of Theorem 1.1. We have

Pf
(
f(x) ∈ Cη

)
= Pf

(
|f̂n(x)− f(x)| < ζησn

)
= P (|Vn| < ζη),

where Vn ∼ N
(
µn

σn
,
t2n
σ2
n

)
. We have t2n/σ2

n → 1
2 , while by Corollary 1.7 we have

µn
σn
. k( 1

2−
1

1−β )α+
1
4 .

This exponent is negative if α > ξβ , hence in this case we have Vn  N (0, 1/2).
For α = ξβ and f(t) = C|x− t|α, we have µn/σn →

√
2CΓ(α + 1). On the

other hand, if α < ξβ and we choose f such that the bias is at least k(
1
2−

1
1−β )α

(e.g. f(t) = |x− t|α), we have Vn  ∞.

As we noted in the introduction, we see that as β → 1, the range of α for which
we obtain a favourable coverage increases. Furthermore, the rate at which the
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1. Pointwise credible sets

bias tends to zero is also increasing in β. On the other hand, the rate σn at
which the credible set contracts decreases as β grows. More precisely, we have

µn . n−
1
2 (β+1)α, σn ≍ n

1
4 (β−1).

Equating these exponents, we obtain the optimal choice β = 1−2α
1+2α . We see

that for α = 1
2 , the optimal choice is β = 0. As α decreases, larger values

of β (and hence a less smooth prior) are optimal. For α > 1
2 , we should use

negative values of β (and hence a smoother prior). Note however that the
optimal choice of β is not convenient in practice. Indeed, in this case we have
α = ξβ in Theorem 1.1, which does not guarantee a useful coverage. Hence it
is preferable to choose β slightly larger, so that we are in the case α > ξβ .

1.4 Discussion

The results in this chapter concern a Gaussian process prior with a fixed scaling,
given by a parameter β. If the smoothness level α of the true regression function
is known, then β can be chosen to obtain a conservative confidence level of
minimal width. In real-world applications the smoothness level will typically
not be known in advance. Within the Bayesian setting one might again take it
to be distributed according to a prior. Alternatively, one might replace it by
an estimator. In view of results in [Szabó et al., 2013] and [Szabó et al., 2015]
it is to be expected that such an adaptive procedure will destroy coverage for
some functions in the Hölder classes. We will study this problem in more detail
in the following two chapters.
Another possible extension is to consider functions that are smoother than
C2. In this case, we might replace the prior W by an integrated form of
Brownian motion. Here we obtain a system of equations similar to (1.2), but
significantly more complex. In the simplified form for the case of standard
integrated Brownian motion, there are now five rows with non-zero right hand
side, rather than two. The method used in this chapter cannot be applied to
solve this system; other techniques are required.
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