

Synthetic methods to glycerol teichoic acids Hogendorf, W.F.J.

Citation

Hogendorf, W. F. J. (2012, November 22). *Synthetic methods to glycerol teichoic acids*. Retrieved from https://hdl.handle.net/1887/20172

Version:	Corrected Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/20172

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/20172</u> holds various files of this Leiden University dissertation.

Author: Hogendorf, Wouter Frederik Johan Title: Synthetic methods to glycerol teichoic acids Issue Date: 2012-11-22

Light Fluorous Synthesis of Glucosylated GTAs

Introduction

The automated solid phase strategy described in **chapter three**, led to the generation of a small library of teichoic acid (TA) fragments. The antigenicity of these molecules was evaluated by means of an opsonophagocytic inhibition assay (OPIA). In this assay the inhibition of killing *Enterococcus faecalis* by rabbit antibodies raised against a biological preparation of native enterococcal LTA by the synthetic antigens was quantified. It was found that two glucosylated TA fragments showed the highest

Figure 1. Glucosylated hexamers 1-4.

inhibitory potency (1 and 2, figure 1) when tested in such an assay (see figures 2 and 3. chapter three).¹ A next step in the immunological evaluation of 1 and 2 comprises the coupling of these molecules to carrier proteins and test the potential of the resulting conjugates as a vaccine against Enterococcus faecalis.²⁻⁴ In order to achieve this, sufficient quantities of 1 and 2 are required which cannot easily be generated using an automated solid phase synthesis approach.

In **chapter four**, a light fluorous⁵⁻¹⁰ approach is described, which allowed the rapid production of multimilligram amounts of TAs. With this method, starting from

the perfluorooctylpropylsulfonyl ethanol linker (F-Pse), it was possible to perform a quick purification of the intermediates using fluorous solid phase extraction (F-SPE) after each elongation cycle. At the end of the synthesis, the fluorous linker is cleaved and the molecules undergo a final hydrogenolysis step, giving multimilligram quantities of the target TAs bearing a terminal phosphomonoester.¹¹

This chapter first discusses the synthesis of TA fragment **3**, a phosphorylated version of hexamer **1**, which is attained using the earlier described light fluorous approach. To enable the light fluorous synthesis of TAs without terminal phosphate an alternative fluorous linker is required. The perfluorooctylpropyl succinyl linker proved suitable for this, as is illustrated by the synthesis of lead TA **2** and TA **4** in which a second glucosyl moiety is incorporated.¹² Finally, the antigenic properties of the prepared TAs (**2**,**3**,**4**) are probed in an OPIA, as described earlier, whereby the influence of a terminal phosphate and a second glucosyl moiety on the immunological activity could be established.

Results and Discussion

As described in **chapter four** perfluorooctylpropylsulfonylethanol (F-Pse) can be used effectively as a phosphate protecting group and concomitantly serve as a fluorous linker in the solution phase synthesis of TA fragments.¹¹ First the synthesis of hexamer **3**, a phosphorylated analogue of TA fragment **1**, was explored, using this

Scheme 1. Assembly of TA-fragment 3.

linker-system. Thus, F-Pse 5^{13} was elongated in a stepwise manner (Scheme 1) with glycerol phosphoramidite 6^{14} in an elongation process, which comprises coupling. oxidation, detritylation and, finally, a F-SPE⁷ purification step. Before the F-SPE purification the crude reaction mixture was partitioned between acetonitrile/water (80/20) and hexane to remove the bulk of TES and DMT-H that are released during the detritylation step in order to simplify the F-SPE purification. Repeating this process four times led to pentamer 7 which was then subjected to an adapted elongation process. Coupling with benzylidene protected glucosylglycerol phosphoramidite $\mathbf{8}^1$ under agency of DCI and standard oxidation was followed by detritylation using the milder PPTS/MeOH cocktail as the 4.6-O-benzylidene moiety is unstable towards DCA/TES.^{14,15} The presence of the lipophilic protected carbohydrate moiety did not influence the F-SPE purification and the target compound was obtained uneventfully in 74% yield. At this stage an aminospacer was introduced to allow the conjugation of the target structure to, for instance, a carrier protein. Condensation of hexamer **9** and phosphoramidite **10** was followed by oxidation and F-SPE to give the fully protected construct **11** in 86% yield. Deprotection of hexamer **11** started by removal of the cyanoethyl (CE) and F-Pse groups by overnight treatment with aqueous ammonia at 40 °C. The semi-protected intermediate was separated from the released fluorous linker (perfluorooctylpropylsulfonylethyl amine) using a Et_2O/H_2O extraction. Subsequently, the benzylidene acetal, benzyl ethers and benzyl carbamate were removed by means of hydrogenolysis (Pd/H_2), leading to the target hexamer 3 in 98% yield.

To attain the light fluorous assembly of TA fragments without a terminal phosphate moiety the next objective was to find a suitable fluorous hydroxyl protecting group. Inspired by contemporary DNA synthesis methods, a succinyl type linker was deemed suitable because of its stability towards phosphoramidite chemistry, oxidation and detritylation conditions.^{16,17} The base lability of a fluorous succinyl linker allows the same deprotection strategy as employed in the synthesis of hexamer **3**. Moreover, attention was paid to the development of a more acid-stable glucosyl glycerol synthon that allows the incorporation of a glucosyl moiety at any stage of the elongation sequence. As described earlier, the benzylidene acetal does not withstand the standard detritylation conditions, necessitating the use of a carefully controlled procedure for the removal of the temporary DMT group. Therefore, the synthesis of the more acid stable tetra-0-benzyl glucosyl synthon **19** was undertaken (Scheme 2). A crucial step en route to synthon **19** is the stereoselective introduction of the α glucosidic linkage. First the use of per-benzylated glucosyl imidate 12a¹⁸ for the construction of this linkage was explored. Condensation of this donor with glycerol acceptor **13** in DCM led to formation of product **14a** with poor selectivity ($\alpha/\beta = 2/1$). The use of ether as co-solvent¹⁹ improved the α/β -ratio (4/1), but the anomeric mixture proved to be inseparable. Next, a glucosyl donor bearing an Fmoc protecting group on the C6 hydroxyl known to favor the formation of the α -product was

Scheme 2. Synthesis of phosphoramidite 19 and F-Pse linked glucosyl glycerol 21.

explored.²⁰⁻²² Coupling 6-*O*-Fmoc glucosyl imidate **12b** with glycerol **13** using Et₂O as a solvent, led to the formation of **14b** in high selectivity ($\alpha/\beta \sim 10/1$). Purification by column chromatography, afforded α -glucoside **14b** in 91% yield (containing < 3% β adduct, based on 1H-NMR analysis). Compound **14b** was then treated with DBU in DCM, and benzylation of the intermediate alcohol **15** led to tetrabenzylglucosyl derivative **16** in 87% yield. In the next step the allyl ether was removed by iridium catalyzed isomerisation, followed by oxidative cleavage of the intermediate enol ether, giving alcohol **17** in 87% yield. Installation of the DMT ether and desilylation led to building block **18**, which was transformed into the phosphoramidite synthon **19** using *N*,*N*-diisopropyl-2-cyanoethylchlorophosphoramidite and Et₃N. Alternatively, **18** was reacted with succinic anhydride and Et₃N in DCM, giving succinyl ester **20** in 96% yield (scheme 2). Coupling of **20** with perfluorooctylpropylamine, using BOP as a condensing agent, was followed by detritylation to give the crude fluorous glucosyl glycerol **21**, which was purified by F-SPE to give the pure target compound in 90% Scheme 3. Light fluorous assembly of 2.

yield. This molecule was elongated in a step-wise with manner glycerol phosphoramidite 6 using a five-fold repetition of the 4elongation process step described above leading to hexamer 26 (scheme 3). The aminohexyl-spacer was then introduced to give the fully hexamer protected 27 Deprotection 25% bv aqueous ammonia (1 hr, RT), was followed bv hydrogenolysis to give 40 mg of target compound 2 (92%).

To broaden the palette of TA and fragments, further explore the effectiveness of the light fluorous chemistry. the synthesis was continued the assembly with of hexamer 4, containing two glucosyl moieties (Scheme Pentamer 4). 25 was coupled to glucosylglycerol phosphoramidite 19.

resulting in bis glucosylated hexamer **28** in 87%. Also this compound was uneventfully purified by F-SPE. After introduction of the spacer, the resulting hexamer **29** was deprotected using the aforementioned conditions, to yield the bis-glucosyl TA fragment **4** in 96% yield.

Hexameric TAs **3** and **4** were compared with TAs **1** and **2** on their ability to bind to rabbit antibodies raised against enterococcal LTA in an OPIA, that was performed as described before.¹⁻⁴ Surprisingly, TA **3** bearing an extra phosphate moiety compared to one of the lead fragments (**1**) showed no inhibitory activity at all, even when administered at a concentration of 400 μ g/ml. This indicates that the terminal phosphate moiety is at least disadvantageous to the immunogenicity of the TA. Compound **4**, which bears a second glucose moiety but lacks the terminal phosphate, showed some inhibitory potency. However, when compared to lead TA **2** the

antibody binding was considerably reduced, indicating that an extra glucosyl moiety has a detrimental effect on antigenicity (see figure 2).

Conclusion

In summary, this chapter describes the development of two complementary fluorous linker systems for the assembly of glucosylated TA fragments. The first linker. perfluorooctylpropylsulfonylethyl, is used as a phosphate protecting allows the group and assembly of TA fragments featuring а terminal phosphate monoester (hexamer 3). The second linker, а perfluorooctylpropyl succinyl system, is used as а hydroxyl protecting functionality and leads to the formation

of TA structures terminating in an alcohol functionality (structures **2** and **4**). Acid stable tetra-*O*-benzyl glucosyl building block **19**, allowing the incorporation of a glucosyl substitution at any position of the TA chain was

Figure 2. Hexamers 3,4 showing dimished inhibitory activity in the OPIA compared to previously made hexamers 1 and 2. The left bar represents killing by the serum without addition of inhibitor. The second bar from the left (LTA) represents the positive control where native LTA is added as the inhibitor. prepared and applied in the assembly of TAs **1** and **2**. The presence of two lipophilic tetrabenzylglucosyl moieties in the fully protected precursor (**29**) of **4** did not have a negative effect on the F-SPE purifications. Fluorous chemistry is an efficient means for the assembly of (glycosylated) TA fragments and allows the construction of pure TA oligomers in multi milligram quantities, sufficient for most initial biochemical studies.

Experimental section

General Procedures and Material: All chemicals (Acros, Fluka, Merck, Schleicher & Schuell, Sigma-Aldrich, Genscript, Fluorous Technologies) were used as received and reactions were carried out dry, under an argon atmosphere, at ambient temperature, unless stated otherwise. Column chromatography was performed on Screening Devices silica gel 60 (0.040-0.063 mm). TLC analysis was conducted on HPTLC aluminium sheets (Merck, silica gel 60, F245). Compounds were visualized by UV absorption (245 nm), by spraying with 20% H₂SO₄ in ethanol or with a solution of (NH₄)₆Mo₇O₂4•4 H₂O 25 g/l and (NH₄)₄Ce(SO₄)4•2 H₂O 10 g/l, in 10% aqueous H_2SO_4 followed by charring at +/- 140 °C. Some unsaturated compounds were visualized by spraving with a solution of $KMnO_4$ (2%) and K_2CO_3 (1%) in water. Optical rotation measurements ($[\alpha]_{D^{20}}$) were performed on a Propol automated polarimeter (Sodium D-line, $\lambda =$ 589 nm) with a concentration of 10 mg/ml (c = 1), unless stated otherwise. Infrared spectra were recorded on a Shimadzu FT-IR 8300. ³¹P, ¹H, and ¹³C NMR spectra were recorded with a Bruker AV 400 (161.7, 400 and 125 MHz respectively) or a Bruker DMX 600 (600 and 150 MHz respectively). NMR spectra were recorded in $CDCl_3$ with chemical shift (δ) relative to tetramethylsilane, unless stated otherwise. When D₂O was used, ¹H-NMR spectra were recorded with chemical shift relative (δ) to HDO (4.755 ppm), ³¹P spectra were measured with chemical shift relative to 85% H₃PO₄ (external standard) and ¹³C-NMR spectra were recorded with chemical shift relative to TMS (external standard). High resolution mass spectra (HRMS) were recorded by direct injection (2 μ l of a 2 μ M solution in water/acetonitrile; 50/50; v/v and either 0.1% formic acid or 10mM ammonium formate for the oligomers) on a mass spectrometer (Thermo Finnigan LTQ Orbitrap) equipped with an electrospray ion source in positive mode (source voltage 3.5 kV, sheath gas flow 10, capillary temperature 275 °C) with resolution R =60000 at m/z 400 (mass range m/z = 150-2000) and dioctylphthalate (m/z = 391.28428) as a lock mass. The high resolution mass spectrometer was calibrated prior to measurements with a calibration mixture (Thermo Finnigan).

General procedure for phosphoramidite coupling, oxidation, detritylation and FSPE on a typical scale (0.1-0.25 mmol): Starting alcohol was dissolved in ACN (0.1M). DCI (0.25M solution in CH₃CN, 2 eq compared to phosphoramidite) was added, together with freshly activated MS3Å and the mixture was stirred under argon for 15 minutes. Phosphoramidite (0.175M in ACN, 1.3 - 4.0 eq) was added and the reaction was stirred until TLC analysis revealed full conversion of the starting material into a higher running spot (~1 hr). Added were, respectively, H₂O (~1 ml) and I₂ (0.2 M in THF/pyr 4/1), and the mixture was stirred for an additional 5 min. The mixture was diluted with EtOAc (~50 ml) and washed with, respectively, sat. aq. Na₂S₂O₃ (~20 ml), 0.5 M KHSO₄ (~20 ml) and a 1/1 mixture of sat. aq. NaHCO₃ and brine (~20 ml). The organic layer was dried over Na₂SO₄ (s) and concentrated under reduced pressure. The residue was coevaporated once with toluene (10 ml) before it was redissolved in DCM. Triethylsilane and dichloroacetic acid were added and the mixture was stirred until the bright orange color fully dissapeared (~30 min). DCM (~40 ml) was added and the organic layer was washed with a 1/1 mixture of sat. aq. NaHCO₃ and brine (~20 ml, check if pH >7), before it was dried over Na₂SO₄ and concentrated *in vacuo*. The residue was taken up in 4/1

ACN/H₂O (10 ml) and washed with hexane (50 ml). The hexane layer was extracted twice with 4/1 ACN/H₂O (2 x 10 ml) and the combined ACN/H₂O layers were concentrated under reduced pressure in a 100 ml pear shaped flask. The residue was taken up in 0.5 ml ACN and applied to a small column containing fluoroflashTM fluorous silica (4g) which was preeluted with 1/1 ACN H₂O. The column was eluted with 1/1 ACN/H₂O until all the non-fluorous byproducts (DMT-H, phosphates, DCI) were removed. Subsequently the fluorous product was eluted from the column with, respectively, CH₃CN and acetone.

Global deprotection and purification of oligomers: The fully protected oligomer was treated with a 9/1 mixture of 28% NH₄OH (aq)/1,4-dioxane at a concentration of 5 mg/ml at 40 - 45 oC overnight in a sealed flask or tube in case of of **11**. In the synthesis of oligomers **2** and **4**, the corresponding protected hexamers (27 and 29, respectively) were treated with a 9/1 mixture of 28% NH₄OH (ag)/1.4-dioxane at a concentration of 5 mg/ml at room temperature for 1h. Next, in all cases, the mixture was washed with Et_2O (equal volume) and the ether layer was extracted twice with H₂O. The aqueous layer was concentrated under reduced pressure after which NMR and HRMS analysis confirmed full conversion to the semiprotected intermediate. The intermediate was then treated with Pd (0)/H₂ in a slightly acidic (pH ~ 2.7) mixture of dioxane/water (1/4, containing ~1% AcOH). After stirring for three days the mixture was filtered and concentrated *in vacuo*. The residue was purified by size exclusion chromatography (Sephadex HW40, eluent: 0.15 M NH₄OAc). After repeated lyophilisation, the purified product was eluted through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use). Lyophilization gave the fully deprotected oligomer of which the integrity and purity was confirmed by HRMS and NMR (1H, 13C, 31P) analysis.

Glucosyl-2-O-benzylglycerol phosphate hexamer (9)

Glycerol phosphate pentamer **7** (286 mg, 139 μ mol) and DCI (0.25M solution in CH₃CN, 2.22 ml, 556 μ mol) were dissolved in CH₃CN (2.0 ml) together with freshly activated MS3Å and stirred for 15 min under argon. Subsequently, glucosyl-glycerol phosphoramidite **8** (0.1M in CH₃CN, 2.30 ml, 230 μ mol) was added and the mixture

stirred for 30 min at RT. H₂O (1.0 ml) was added after which the oxidation step was performed according to the general procedure. The crude intermediate was redissolved in a 1/1 mixture of DCM and MeOH (40 ml) and treated with PPTS (40 mg, 0.16 mmol) for 8 hrs under gentle stirring. The mixture was diluted with DCM (80 ml) and washed with a 1/1 mixture of sat. aq. NaHCO₃ and brine (50 ml). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo*, after which the crude product was purified with FSPE, according to the general procedure. Glucosylated hexamer 9 (277 mg, 103 µmol, 74%) was obtained as a colorless oil. ³¹P NMR $(161.7 \text{ MHz}): \delta = -1.9, -1.8 (1P), -1.3 (2P), -1.1 - -0.9 (3P); ^{1}\text{H NMR} (400 \text{ MHz}): \delta = 2.09 - 2.35 (m, 10.1 \text{ MHz})$ 4H, F17C8CH2CH2CH2SO2-, F17C8CH2CH2CH2SO2-), 2.47 - 2.77 (m, 13H, 6 x CH2 cyanoethyl, CH2-OH), 3.05 - 3.13 (m, 2H, F17C8CH2CH2CH2CO2-), 3.24 - 3.34 (m, 2H, -OCH2CH2SO2-), 3.51 - 3.72 (m, 5H, H-2, H-4, H-6, CH₂ glycerol), 3.77 - 3.88 (m, 6H, 6 x CH glycerol), 3.98 - 4.34 (m, 37H, H-3, H-5, H-6', 11 x CH₂ glycerol, 6 x CH₂ cyanoethyl), 4.42 - 4.50 (m, 2H, -OCH₂CH₂SO₂-), 4.56 - 4.65 (m, 10H, 5 x CH₂ Bn), 4.70 (d, 1H, J = 11.6 Hz, CH*H* Bn), 4.80 (d, 1H, J = 11.3 Hz, CH*H* Bn), 4.87 (d, 1H, J = 11.6 Hz, CHH Bn), 4.91 (d, 1H, J = 3.7 Hz, H-1), 4.95 (d, 1H, J = 11.3 Hz, CHH Bn), 5.55 (s, 1H, CH benzylidene), 7.25 - 7.40 (m, 38H, H_{arom}), 7.44 - 7.48 (m, 2H, H_{arom}); ¹³C NMR (100 MHz): δ = 13.3 (F₁₇C₈CH₂CH₂CH₂SO₂-), 19.2 - 19.5 (12 x CH₂ cyanoethyl), 29.2 (t, J = 22 Hz, F17C8CH2CH2CH2SO2-), 53.0, 53.1 (F17C8CH2CH2CH2SO2-, -OCH2CH2SO2-), 60.9 (CH2 glycerol), 61.3 (-OCH2CH2SO2-), 62.0 - 62.4 (6 x CH2 cyanoethyl), 62.8 (C-5), 65.4 - 66.0 (10 x CH2 glycerol), 67.2 (CH₂ glycerol), 68.7 (C-6), 72.0 - 72.1 (5 x CH₂ Bn), 74.3 (CH₂ Bn), 75.0 (CH₂ Bn), 75.2 - 75.4 (5 x CH glycerol), 78.6 - 78.8 (C-2, C-3, CH glycerol), 82.0 (C-4), 98.6, 98.9 (C-1), 100.9 (CH benzylidene), 116.6 - 116.7 (6 x C_q cyanoethyl), 125.7 (CH_{arom}), 127.6 - 128.9 (CH_{arom}), 137.1 - 137.4 (7 x C_q Bn), 138.4 (C_q benzylidene); HRMS: $C_{111}H_{127}F_{17}N_6O_{38}P_6S$ + NH₄⁺ requires 2710.6403, found 2710.6393.

Glucosyl-2-O-benzylglycerol phosphate hexamer aminohexyl spacer (11)

Hexamer **9** (272 mg, 101 μ mol) was coupled to spacer phosphoramidite **10** (4 eq), oxidized and purified (FSPE) using the general procedure as described above. Fully protected hexamer **11** (267 mg, 87.2 μ mol, 86%) was

obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.9, -1.8 (1P), -1.3 - -1.0 (6P); ¹H NMR (400 MHz): $\delta = 1.27 - 1.37$ (m, 4H, 2 x CH₂ hexylspacer), 1.42 - 1.51 (m, 2H, CH₂ hexylspacer), 1.60 - 1.68 (m, 2H, CH₂ hexylspacer), 2.09 - 2.34 (m, 4H, F₁₇C₈CH₂CH₂CH₂SO₂-, F₁₇C₈CH₂CH₂CH₂SO₂-), 2.39 - 2.69 (m, 14H, 7 x CH₂ cyanoethyl), 3.05 - 3.17 (m, 4H, F₁₇C₈CH₂CH₂CH₂CO₂-, CH₂-N hexylspacer), 3.24 - 3.33 (m, 2H, -OCH₂CH₂SO₂-), 3.57 - 3.72 (m, 3H, H-2, H-4, H-6), 3.75 - 3.85 (m, 5H, 5 x CH glycerol), 3.94 - 4.33 (m, 44H, H-3, H-5, H-6', CH glycerol, 12 x CH₂ glycerol, 7 x CH₂ cyanoethyl, CH₂-O hexylspacer), 4.43 - 4.50 (m, 4H, -OCH₂CH₂SO₂-, CH₂Bn), 4.53 - 4.64 (m, 10H, 5 x CH₂Bn), 4.71 - 4.77 (m, 2H, CH₂Bn), 4.81, (d, 1H, *J* = 11.6 Hz, CH*H* Bn), 4.92, (d, 1H, *J* = 11.6 Hz, CH*H* Bn), 4.99 - 5.12 (m, 4H, H-1, NH CBz, CH₂ CBz), 5.55 (s, 1H, CH benzylidene), 7.26 - 7.38 (m, 43H, Harom), 7.44 - 7.48 (m, 2H, Harom); ¹³C NMR (100 MHz): δ = 13.3 (F₁₇C₈CH₂CH₂CH₂SO₂-), 19.2 - 19.5 (7 x CH₂ cyanoethyl), 24.8, 25.9 (2 x CH₂ hexylspacer), 29.3 - 29.9 (2 x CH₂ hexylspacer, F₁₇C₈CH₂CH₂CH₂CH₂SO₂-), 40.7 (CH₂-N hexylspacer), 53.0, 53.1 (F17C8CH2CH2CH2CH2SO2-, -OCH2CH2SO2-), 61.3 (-OCH2CH2SO2-), 61.8 - 62.4 (7 x CH₂ cyanoethyl), 62.8 (C-5), 65.3 - 66.0 (11 x CH₂ glycerol), 66.3 (CH₂ CB₂), 68.4 - 68.6 (C-6, CH₂ glycerol), 72.0 - 72.2 (5 x CH₂ Bn), 73.4 - 73.5 (CH₂ Bn), 75.0 (CH₂ Bn), 75.2 - 75.5 (6 x CH glycerol), 78.0 - 78.1 (C-3), 78.9 (C-2), 81.7 - 81.8 (C-4), 97.4 - 97.7 (C-1), 100.8 (CH benzylidene), 116.6 - 116.7 (7 x C_a cyanoethyl), 125.7 (CH_{arom}), 127.5 - 128.9 (CH_{arom}), 136.6 (C_a Bn), 137.1 - 137.3 (6 x Cq Bn), 137.9 (Cq Bn), 138.5 (Cq benzylidene), 156.3 (Cq CBz); HRMS: C₁₂₈H₁₅₀F₁₇N₈O₄₃P₇S + NH₄⁺ requires 3076.7748, found 3076.7789.

Glucosyl-glycerolphosphate hexamer (3)

Protected hexamer **11** (99.5 mg, 32.5 μ mol) was treated with aqueous ammonia as described above. Additionally, the compound was eluted through a small column containing Dowex Na⁺ cation-exchange resin (type: 50WX4-200, stored on 0.5 M NaOH in H₂O, flushed with H₂O and MeOH before use) and,

subsequently, lyophilized, yielding the intermediate semiprotected hexamer (75.2 mg, 32.5 μ mol, 100%) as an amorphous white solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 - 1.1 (6P), 2.9 (1P, phosphomonoester); ¹H NMR (400 MHz, D₂O): δ = 0.95 - 1.24 (m, 6H, 3 x CH₂ hexylspacer), 1.34 - 1.44 (m, 2H, CH₂ hexylspacer), 2.85 - 2.94 (m, 2H, CH₂-N hexylspacer), 3.51 - 4.15 (m, 38H, H-2, H-3, H-4, H-5, H-6, H-6', CH₂-O hexylspacer, 6 x CH glycerol, 12 x CH₂ glycerol), 4.29 - 4.41 (m, 10H, 5 x CH₂ Bn), 4.47 - 4.58 (m, 4H, 2 x CH₂ Bn), 4.89 (s, 2H, CH₂ CBz), 5.29 (d, 1H, *J* = 3.6 Hz, H-1), 5.47 (s, 1H, CH benzylidene), 6.98 - 7.37 (m, 45H, H_{arom}); HRMS: [C₉₄H₁₂₀NO₄₁P₇ + 2H]²⁺ requires 1068.7822, found 1068.7828. A portion of the intermediate (75.1 mg, 32.5 μ mol) was deprotected with Pd (0)/H₂ using the standard

procedure. Monoglucosylated hexamer **3** (45.5 mg, 31.7 μmol, 98%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 (1P), 1.2 - 1.3 (4P), 1.4 (1P), 4.7 (1P, phosphomonoester); ¹H NMR (600 MHz, D₂O): δ = 1.38 - 1.43 (m, 4H, 2 x CH₂ hexylspacer), 1.60 - 1.68 (m, 4H, 2 x CH₂ hexylspacer), 2.97 (t, 2H, *J* = 7.5 Hz, CH₂-N hexylspacer), 3.37 (at, 1H, *J* = 9.6 Hz, H-4), 3.49 (dd, 1H, *J* = 3.8 Hz, 9.9 Hz, H-2), 3.71 - 3.77 (m, 3H, H-3, H-6, CH*H* glycerol), 3.79 - 4.04 (m, 32H, H-5, H-6', 5 x CH glycerol, 11 x CH₂ glycerol, CH*H* glycerol, CH₂-O hexylspacer), 4.06 - 4.09 (m, 1H, CH glycerol), 5.14 (d, 1H, *J* = 3.7 Hz, H-1); ¹³C NMR (150 MHz, D₂O): δ = 25.4, 26.1, 27.6 (3 x CH₂ hexylspacer), 30.4 (d, *J* = 6.8 Hz, CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 61.5 (C-6), 65.2 (d, *J* = 6.0 Hz, CH₂ glycerol), 65.7 (d, *J* = 4.5 Hz, CH₂ glycerol), 66.1 (d, *J* = 5.2 Hz, CH₂ glycerol), 67.1 - 67.3 (8 x CH₂ glycerol, CH₂-O hexylspacer), 67.7 (d, *J* = 5.5 Hz, CH₂ glycerol), 70.5 (t, *J* = 7.7 Hz, 4 x CH glycerol), 70.7 (C-4), 71.3 (t, *J* = 7.3 Hz, CH glycerol), 72.5 (C-2), 72.8 (C-5), 73.9 (C-3), 76.4 (t, *J* = 8.0 Hz, CH glycerol), 98.7 (C-1); HRMS: C₃₀H₆₈NO₃₉P₇ + H⁺ requires 1284.1605, found 1284.1610.

3-O-Allyl-2-O-(2,3,4,6-tetra-O-benzyl- α , β -D-glucopyranosyl)-1-O-(tert-butyldiphenylsilyl)-sn-glycerol (14a)

To a cooled (0 °C) solution of donor **12a** (171 mg, 0.250 mmol) and semiprotected glycerol **13** (111 mg, 0.300 mmol) in a 4/1 mixture of Et₂O/DCM (5.0 ml) was added TMSOTf (2.25 μ l, 12.4 μ mol). After stirring 40 min, Et₃N (3 drops) was added and the mixture diluted

with DCM (10 ml). After washing once with a 1/1 mixture of sat. aq. NaHCO₃ and brine (10 ml), the organic layer was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the residue by silica gel column chromatography (EtOAc/PE) gave pseudodisaccharide **14a** (168 mg, 0.188 mmol, 75%) as an inseparable mixture of anomers (α/β ratio of ~4/1, based on ¹H-NMR analysis. This was ~2/1 when the reaction was performed in pure DCM). For analytical data of the pure α -isomer see the synthesis of compound **16**.

3-0-Allyl-2-0-(2,3,4-tri-0-benzyl-6-0-[9-fluorenylmethyloxycarbonyl]-α-D-glucopyranosyl)-1-0-(*tert*-butyldiphenylsilyl)-*sn*glycerol (14b)

To a cooled (0 °C) solution of donor **12b** (7.51 g, 8.90 mmol) and semiprotected glycerol **13** (3.96 g, 10.7 mmol) in Et₂O (180 ml) was added TfOH (157 μ l, 1.78 mmol). After stirring 25 min, sat. aq.

NaHCO₃ (75 ml) was added and the layers separated. The ether layer was washed once with brine (50 ml) before it was dried (Na₂SO₄) and concentrated *in vacuo*. Purification of the residue by silica gel column chromatography (EtOAc/PE) gave pseudodisaccharide 14b (8.30 g, 8.09 mmol, 91%) as a colourless oil containing a minor amount (< 3%, based on ¹H-NMR analysis) of the β-product. [α]_D²⁰ (CHCl₃): +32.0; IR: 1007, 1072, 1254, 1450, 1748, 2859; ¹H NMR (400 MHz): δ = 1.05 (s, 9H, *t*-Bu TBDPS), 3.58 - 3.63 (m, 3H, H-2, H-4, CH*H* glycerol), 3.69 - 3.80 (m, 3H, CHH glycerol, CH₂ glycerol), 3.94 - 4.14 (m, 6H, H-3, H-5, CH glycerol, CHH FMOc, CH₂ allyl), 4.20 - 4.26 (m, 2H, CH*H* FMOc, CH FMOc), 4.31 - 4.40 (m, 2H, H-6, H-6'), 4.55 (d, 1H, J = 10.8 Hz, CH*H* Bn), 4.69 (d, 1H, *J* = 11.6 Hz, CH*H* Bn), 4.76 - 4.79 (m, 3H, 1 x CH₂ Bn, CH*H* Bn), 4.88 (d, 1H, *J* = 10.8 Hz, CHH Bn), 5.00 (d, 1H, J = 10.8 Hz, CHH Bn), 5.16 (ad, 1H, J = 10.8 Hz, CHH allyl), 5.25 (dd, 1H, J = 1.4 Hz, 17.4 Hz, CHH allyl), 5.32 (d, 1H, J = 3.6 Hz, H-1), 5.87 (ddd, 1H, J = 5.5 Hz, 10.7 Hz, 22.6 Hz, CH allyl), 7.22 - 7.40 (m, 25H, Harom), 7.58 (d, 1H, J = 7.5 Hz, Harom), 7.61 (d, 1H, J = 7.5 Hz, Harom), 7.66 (d, 4H, J = 7.1 Hz, Harom), 7.75 (d, 2H, J = 7.6 Hz, Harom); ¹³C NMR (100 MHz): δ = 19.2 (C_q t-Bu), 26.8 (3 x CH₃ TBDPS), 46.6 (CH FMOc), 63.8 (CH₂ glycerol), 66.2 (CH₂ FMOc), 68.5 (C-5), 69.9 (C-6), 70.6 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.3 (CH₂ Bn), 75.0 (CH₂ Bn), 75.7 (CH₂ Bn), 75.8 (CH glycerol), 77.1 (C-4), 79.5 (C-2), 81.7 (C-3), 95.7 (C-1), 116.9 (CH₂ allyl), 125.1, 125.2 (CH_{arom}), 127.1 - 128.6 (CH_{arom}), 129.7 (CH_{arom}), 133.1, 133.2 (C_g phenyl), 134.6 (CH

allyl), 135.5 (CH_{arom}), 138.1, 138.2, 138.7, 138.8 (3 x C_q Bn), 141.2, 141.2 (2 x C_q FMOc), 143.2, 143.4 (2 x C_q FMOc), 155.0 (C=0 FMOc); HRMS: $C_{64}H_{68}O_{10}Si + NH_{4^+}$ requires 1042.4920, found 1042.4933.

3-0-Allyl-2-0-(2,3,4-tri-0-benzyl-α-D-glucopyranosyl)-1-0-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (15)

To a solution of compound **14b** (3.40 g, 3.32 mmol) in DCM (65 ml) was added DBU (165 μ l, 1.10 mmol). After stirring for 15 min the solvent was removed under reduced pressure and the residue purified by silica gel column chromatography (EtOAc/PE) giving

alcohol **15** (2.50 g, 3.11 mmol, 94%) as a colourless oil. $[\alpha]_{D^{20}}$ (CHCl₃): +33.6; IR: 737, 1026, 1072, 1454, 2928; ¹H NMR (400 MHz): δ = 1.03 (s, 9H, *t*-Bu TBDPS), 3.48 - 3.80 (m, 9H, H-2, H-4, H-5, H-6, H-6', 2 x CH₂ glycerol), 3.97 - 4.04 (m, 4H, H-3, CH glycerol, CH₂ allyl), 4.61 (d, 1H, *J* = 10.8 Hz, CH*H* Bn), 4.68 (d, 1H, *J* = 12.0 Hz, CH*H* Bn), 4.76 (d, 1H, *J* = 12.0 Hz, CH*H* Bn), 4.68 (d, 1H, *J* = 11.2 Hz, CH*H* Bn), 4.97 (d, 1H, *J* = 10.8 Hz, CH*H* Bn), 4.86 (d, 1H, *J* = 11.2 Hz, CH*H* Bn), 4.97 (d, 1H, *J* = 10.8 Hz, CH*H* Bn), 5.16 (dd, 1H, *J* = 1.6 Hz, 10.4 Hz, CH*H* allyl), 5.24 - 5.28 (m, 2H, H-1, CH*H* allyl), 5.88 (ddd, 1H, *J* = 5.5 Hz, 10.7 Hz, 22.6 Hz, CH allyl), 7.24 - 7.42 (m, 21H, H_{arom}), 7.64 - 7.67 (m, 4H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.1 (C_q *t*-Bu), 26.8 (3 x CH₃ TBDPS), 61.4 (C-6), 63.8 (CH₂ glycerol), 70.7 (C-5), 70.9 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.3 (CH₂ Bn), 74.9 (CH₂ Bn), 75.6 (CH₂ Bn), 76.0 (CH glycerol), 77.1 (C-4), 79.6 (C-2), 81.6 (C-3), 96.0 (C-1), 116.9 (CH₂ allyl), 127.5 - 128.4 (CH_{arom}), 129.7 (CH_{arom}), 133.1, 133.2 (C_q phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 138.2, 138.3, 138.8 (3 x C_q Bn); HRMS: C₄₉H₅₈O₈Si + Na⁺ requires 825.3793, found 825.3784.

3-*O*-Allyl-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranosyl)-1-*O*-(*tert*-butyldiphenylsilyl)-*sn*-glycerol (16)

A solution of alcohol **15** (2.521 g, 3.14 mmol) together with BnBr (0.94 ml, 7.85 mmol) in DMF (20 ml) was stirred for 5 minutes at 0 $^{\circ}$ C, after which NaH (60% dispersion in mineral oil, 0.314 g, 7.85 mmol) was added. The resulting mixture was stirred for 75 min and allowed

to slowly warm up to RT, before MeOH (5.0 ml) was added. After stirring for 15 min, H_2O (30 ml) was added and the mixture extracted with Et₂O (50 ml). The organic layer was washed twice with H_2O (20 ml) and once with brine (20 ml) before it was dried (Na_2SO_4) and concentrated in vacuo. Purification of the residual oil by silica gel column chromatography (EtOAc/PE) furnished perbenzylglucosyl glycerol derivative 16 (2.429 g, 2.72 mmol, 87%) as a colourless oil. $[\alpha]_{D^{20}}$ (CHCl₃): +31.8; IR: 737, 1026, 1069, 1454, 2928; ¹H NMR (400 MHz): $\delta =$ 1.05 (s, 9H, t-Bu TBDPS), 3.36 (dd, 1H, J = 1.7 Hz, 10.6 Hz, H-6), 3.54 - 3.84 (m, 8H, H-2, H-4, H-5, H-6', 2 x CH₂ glyc), 3.95 - 4.00 (m, 3H, CH₂ allyl, H-3), 4.06 (m, 1H, CH glycerol), 4.36 (d, 1H, I = 12.4 Hz, CH*H* Bn), 4.43 (d, 1H, *J* = 10.8 Hz, CH*H* Bn), 4.55 (d, 1H, *J* = 12.0 Hz, CH*H* Bn), 4.69 (d, 1H, J = 12.0 Hz, CHH Bn), 4.74 - 4.82 (m, 3H, CH₂ Bn, CHH Bn), 4.97 (d, 1H, J = 10.8 Hz, CHH Bn), 5.15 (dd, 1H, J = 1.4 Hz, 10.6 Hz, CHH allyl), 5.24 - 5.29 (m, 2H, CHH allyl, H-1), 5.88 (ddd, 1H, J = 5.5 Hz, 10.7 Hz, 22.7 Hz, CH allyl), 7.08 - 7.11 (m, 2H, Harom), 7.20 - 7.38 (m, 24H, Harom), 7.64 -7.67 (m, 4H, H_{arom}); 13 C NMR (100 MHz): δ = 19.1 (C_q t-Bu), 26.8 (3 x CH₃ TBDPS), 63.8 (CH₂ glycerol), 68.0 (C-6), 70.1 (C-5), 70.5 (CH₂ glycerol), 72.2 (CH₂ allyl), 72.2 (CH₂ Bn), 73.3 (CH₂ Bn), 74.8 (CH₂ Bn), 75.5 (CH₂ Bn), 76.0 (CH glycerol), 77.4 (C-4), 79.5 (C-2), 81.8 (C-3), 96.1 (C-1), 116.7 (CH₂ allyl), 127.4 - 128.2 (CH_{arom}), 129.6 (CH_{arom}), 133.1, 133.3 (Cq phenyl), 134.6 (CH allyl), 135.5 (CH_{arom}), 137.9, 138.3, 138.4, 138.8 (4 x Cq Bn); HRMS: C₅₆H₆₄O₈Si + NH₄⁺ requires 910.4709, found 910.4718.

$2-O-(2,3,4,6-tetra-O-Benzyl-\alpha-D-glucopyranosyl)-1-O-(tert-butyldiphenylsilyl)-sn-glycerol (17)$

A solution of glycoside **16** (2.37 g, 2.65 mmol) in freshly distilled THF (18 ml) was stirred under argon for 30 min. After the addition of Ir(COD)(Ph₂MeP)₂PF₆ (112 mg, 0.133 mmol) the solution was purged with H₂ (g) for ~15s. After stirring under argon for 2 hrs, the mixture

was diluted with THF (20 ml) and sat. aq. NaHCO3 (20 ml). Upon addition of I2 (1.01 g, 3.98 mmol), the mixture was allowed to stir for 1.5 hrs at room temperature. The mixture was then diluted with EtOAc (100 ml) and washed with, respectively, sat. aq. NaS₂O₃ (30 ml) and brine (40 ml). The organic layer was dried over Na₂SO₄ and concentrated *in vacuo*. Column chromatography (EtOAc/PE) afforded **17** (1.97 g, 2.31 mmol, 87%) as a colourless oil. $[\alpha]_{p^{20}}$ (CHCl₃): +21.4; IR: 737, 1026, 1069, 1454, 1724, 2928, 3449; ¹H NMR (400 MHz): δ = 1.05 (s, 9H, t-Bu TBDPS), 3.11 (bs, 1H, CH₂OH), 3.32 (dd, 1H, J = 1.5 Hz, 10.6 Hz, H-6), 3.54 - 3.57 (m, 2H, H-2, H-6'), 3.62 - 3.70 (m, 3H, H-4, 2 x CHH glycerol), 3.77 - 3.86 (m, 4H, H-5, CH glycerol, 2 x CH*H* glycerol), 3.97 (t, 1H, *J* = 9.3 Hz, H-3), 4.33 (d, 1H, *J* = 12.2 Hz, CH*H* Bn), 4.44 (d, 1H, *J* = 10.9 Hz, CHH Bn), 4.52 (d, 1H, J = 12.2 Hz, CHH Bn), 4.66 (d, 1H, J = 11.6 Hz, CHH Bn), 4.77 - 4.85 (m, 3H, CH₂ Bn, CH*H* Bn), 4.90 - 4.93 (m, 2H, H-1, CH*H* Bn), 7.08 - 7.12 (m, 2H, H_{arom}), 7.20 - 7.39 (m, 24H, Harom), 7.62 - 7.64 (m, 4H, Harom); 13 C NMR (100 MHz): δ = 19.0 (Cq t-Bu), 26.7 (3 x CH₃) TBDPS), 62.6 (CH₂ glycerol), 63.7 (CH₂ glycerol), 67.8 (C-6), 70.4 (C-5), 73.3, 73.8, 74.7, 75.5 (4 x CH₂ Bn), 77.4 (C-4), 79.4 (C-2), 80.8 (CH glycerol), 82.0 (C-3), 98.4 (C-1), 127.4 - 128.4 (CH_{arom}), 129.6 (CHarom), 132.9, 133.0 (Cq phenyl), 135.4 (CHarom), 137.4, 137.6, 138.1, 138.5 (Cq Bn); HRMS: C₅₃H₆₀O₈Si + Na⁺ requires 875.3950, found 875.3946.

2-*0*-(2,3,4,6-tetra-*0*-Benzyl-α-D-glucopyranosyl)-3-*0*-(4,4'dimethoxytrityl)-*sn*-glycerol (18)

To a cooled (0 °C) solution of alcohol **17** (1.85 g, 2.17 mmol) and Et₃N (0.45 ml, 3.3 mmol) in DCM (11 ml) was added DMTr-Cl (881 mg, 2.60 mmol). The mixture was stirred for 2.5 hrs before MeOH (1.0 ml) was added. After stirring for an additional 15 minutes the reaction mixture

was diluted with DCM (40 ml) and washed with a 1/1 mixture of sat. aq. NaHCO₃ and brine (30 ml). The aqueous layer was extracted with DCM (2 x 10 ml) and the combined organic layers were dried (Na₂SO₄) and concentrated under reduced pressure. The residual oil was redissolved in THF (15ml) and, subsequently, TBAF (1M solution in THF, 7.8 ml) was added. The mixture was stirred for 3 hrs after which the volatiles were removed in vacuo and the residual oil was purified by silica gel column chromatography (EtOAc/PE/Et₃N) yielding monoalcohol 18 (1.77 g, 1.93 mmol, 89%) as a colourless oil. [a]_D²⁰ (CHCl₃): +40.6; IR: 737, 1030, 1065, 1250, 1508, 1609, 2927, 3487; ¹H NMR (400 MHz): δ = 2.85 (at, 1H, J = 5.0 Hz, CH₂OH), 3.21 (dd, 1H, / = 6.1 Hz, 9.6 Hz, CHH glycerol), 3.35 (dd, 1H, / = 5.5 Hz, 9.6 Hz, CHH glycerol), 3.53 - 3.57 (m, 2H, H-2, H-4), 3.61 - 3.67 (m, 3H, H-6, H-6', CHH glycerol), 3.71 (s, 6H, 2 x OMe), 3.76 -3.82 (m, 1H, CHH glycerol), 3.86 (m, 1H, CH glycerol), 3.96 - 4.04 (m, 2H, H-3, H-5), 4.46 (d, 1H, J = 10.8 Hz, CHH Bn), 4.47 (d, 1H, J = 12.4 Hz, CHH Bn), 4.58 (d, 1H, J = 11.6 Hz, CHH Bn), 4.63 (d, 1H, *J* = 12.0 Hz, CH*H* Bn), 4.80 (d, 1H, *J* = 10.4 Hz, CH*H* Bn), 4.82 (d, 1H, *J* = 10.4 Hz, CH*H* Bn), 4.96 (d, 1H, J = 10.8 Hz, CHH Bn), 4.99 (d, 1H, J = 3.6 Hz, H-1), 6.78 - 6.81 (m, 4H, Harom), 7.11 - 7.13 (m, 2H, H_{arom}), 7.18 - 7.36 (m, 25H, H_{arom}), 7.46 (d, 2H, J = 7.4 Hz, H_{arom}); ¹³C NMR (100 MHz): δ = 55.0 (2 x OMe), 63.4 (CH₂ glycerol), 63.9 (CH₂ glycerol), 68.5 (C-6), 70.5 (C-5), 72.6, 73.4, 75.0, 75.6 (4 x CH₂ Bn), 77.7 (C-4), 79.5 (C-2), 80.0 (CH glycerol), 81.8 (C-3), 86.3 (C₉ DMTr), 96.8 (C-1), 113.0 (CH_{arom}), 126.7 - 129.0 (CH_{arom}), 130.0 (CH_{arom}), 135.8, 137.5, 137.9, 138.0, 138.6, 144.7, 158.4 (4 x Cq Bn, 5 x Cq DMTr); HRMS: C58H60O10 + Na⁺ requires 939.4079, found 939.4090.

1-*O*-([*N*,*N*-diisopropy]]-2-cyanoethyl-phosphoramidite)-2-*O*-(2,3,4,6-tetra-*O*-benzyl-α-D-glucopyranosyl)-3-*O*-(4,4'dimethoxytrityl)-*sn*-glycerol (19)

To a cooled (0 °C) solution of alcohol **18** (801 mg, 0.873 mmol) and Et_3N (0.19 ml, 1.4 mmol) in DCM (6.0 ml) was added 2-cyanoethyl-*N*,*N*-diisopropylchlorophosphoramidite (258 mg, 1.09 mmol). After stirring 30 min, the reaction was quenched by the addition of H₂O (1.0 ml), diluted with DCM (20 ml) and washed

with a 1/1 mixture of sat. aq. NaHCO₃ and brine (20 ml). The aqueous layer was extracted with DCM (2 x 10 ml) and the combined organic layers were dried over Na₂SO₄ and concentrated in vacuo. Purification of the residue by column chromatography (EtOAc/PE/Et₃N) gave phosphoramidite 19 (722 mg, 0.646 mmol, 74%) as a colourless oil. IR: 1030, 1250, 1508, 1605, 2928; ³¹P NMR (161.7 MHz, CD₃CN): δ = 149.0, 149.4 (diastereoisomers); ¹H NMR (400 MHz, CD₃CN, mixture of diastereoisomers): δ = 1.04 - 1.12 (m, 12H, 4 x CH₃ isopropylamino), 2.40 -2.42 (m, 2H, CH₂ cyanoethyl), 3.16 - 3.25 (m, 2H, CH₂ glycerol), 3.44 - 3.55 (m, 4H, H-2, H-4, 2 x CH isopropylamino), 3.60 - 3.88 (m, 13H, H-3, H-6, H-6', 2 x OMe, CH₂ glycerol, CH₂ cyanoethyl), 3.91 - 4.02 (m, 2H, H-5, CH glycerol), 4.48 - 4.61 (m, 5H, CH₂ Bn), 4.72 - 4.80 (m, 2H, C₂ Bn), 4.86 - 4.90 (m, 1H, CHH Bn), 5.15 - 5.18 (m, 1H, H-1), 6.80 (d, 4H, J = 8.9 Hz, Harom), 7.12 - 7.36 (m, 27H, Harom), 7.44 - 7.47 (m, 2H, Harom); ¹³C NMR (100 MHz): δ = 24.9 - 25.1 (4 x CH₃ isopropylamino), 43.7 - 43.8 (2 x CH isopropylamino), 55.8 (2 x OMe), 59.3 - 59.6 (CH₂ glycerol), 64.3 - 64.4 (CH₂ glycerol, CH₂ cyanoethyl), 69.9 (C-6), 71.4 - 71.5 (C-5), 72.8 - 72.9, 73.9, 75.4 -75.5, 76.0 (4 x CH₂ Bn), 77.5 - 77.7 (CH glycerol), 78.8 (C-4), 81.0 (C-2), 82.5 (C-3), 87.2 (C₉ DMTr), 97.1 - 97.3 (C-1), 114.0 (CHarom), 127.7 - 129.3 (CHarom), 131.0 (CHarom), 136.9, 139.5, 139.5, 139.7, 139.8, 140.1, 146.1, 159.6 (4 x Cq Bn, 5 x Cq DMTr, Cq cyanoethyl); HRMS: C₆₇H₇₇N₂O₁₁P + H⁺ requires 1117.5338, found 1117.5337.

2-0-(2,3,4,6-tetra-0-Benzyl-α-D-glucopyranosyl)-3-0-(4,4'dimethoxytrityl)-1-0-succinyl-*sn*-glycerol (20)

To a cooled (0 °C) solution of alcohol **18** (914 mg, 0.997 mmol) and Et₃N (1.52 ml, 11.0 mmol) in DCM (10 ml) was added succinic anhydride (498 mg, 4.98 mmol). After stirring for 1 h the mixture was concentrated under reduced pressure, after which column chromatography (EtOAc/PE/Et₃N) gave succinyl ester **20** (966 mg, 0.963 mmol, 96%) as a pale yellow oil. $[\alpha]p^{20}$ (CHCl₃): +36.6; IR: 1030, 1153, 1246, 1508, 1609, 1713, 1736, 2928; ¹H NMR (400 MHz,

CD₃CN): δ = 2.49 (s, 4H, 2 x CH₂ succinyl), 3.22 - 3.31 (m, 2H, CH₂ glycerol), 3.50 (dd, 1H, *J* = 3.5 Hz, 9.7 Hz, H-2), 3.57 (at, 1H, *J* = 9.5 Hz, H-4), 3.68 - 3.77 (m, 8H, H-6, H-6', 2 x OMe), 3.90 (at, 1H, *J* = 9.3 Hz, H-3), 3.93 - 3.98 (m, 1H, H-5), 4.01 - 4.08 (m, 1H, CH glycerol), 4.23 - 4.32 (m, 2H, CH₂ glycerol), 4.49 - 4.61 (m, 5H, CH*H* Bn, 2 x CH₂ Bn), 4.78 (d, 1H, *J* = 11.1 Hz, CH*H* Bn), 4.83 (d, 1H, *J* = 11.1 Hz, CH*H* Bn), 4.91 (d, 1H, *J* = 11.1 Hz, CH*H* Bn), 5.12 (d, 1H, *J* = 3.5 Hz, H-1), 6.84 (d, 4H, *J* = 8.9 Hz, H_{arom}), 7.16 - 7.39 (m, 27H, H_{arom}), 7.48 (d, 2H, *J* = 7.4 Hz, H_{arom}); ¹³C NMR (100 MHz, CD₃CN): δ = 29.8, 30.3 (2 x CH₂ succinyl), 56.5 (2 x OMe), 64.1 (CH₂ glycerol), 65.9 (CH₂ glycerol), 70.5 (C-6), 72.2 (C-5), 73.7, 74.5, 76.1 (3 x CH₂ Bn), 76.2 (CH glycerol), 76.6 (CH₂ Bn), 79.4 (C-4), 81.5 (C-2), 82.9 (C-3), 87.9 (C_q DMTr), 97.6 (C-1), 114.7 (CH_{arom}), 128.4 - 129.9 (CH_{arom}), 131.6 (CH_{arom}), 137.3, 137.4, 139.9, 140.0, 140.2, 140.7, 146.6, 160.2 (5 x C_q DMTr, 4 x C_q Bn), 173.5, 174.9 (2 x C=0 succinyl) ; HRMS: C₆₂H₆₄O₁₃ + Na⁺ requires 1039.4239, found 1039.4237.

2-*O*-(2,3,4,6-tetra-*O*-Benzyl-α-D-glucopyranosyl)-1-*O*-(*N*-[3-perfluorooctylpropyl]-succinamidyl-*sn*-glycerol (21)

To a solution of compound **20** (351 mg, 0.350 mmol), perfluorooctylpropylamine (119 mg, 0.250 mmol) and *N*,*N*-diisopropylethylamine (0.366 ml, 2.10 mmol) in a 2/1 mixture of DCM/DMF (5.0 ml) was added BOP (310 mg, 0.700 mmol). The mixture was stirred for 1.5 h before it was diluted with EtOAc (100 ml) and, subsequently, washed with sat. aq. NaHCO₃ (2 x 50 ml), H₂O (2 x 50 ml) and brine (50 ml). The organic layer was dried (Na₂SO₄) and concentrated under reduced pressure, after which the residue was taken up in DCM (5.0 ml). After the addition of, respectively, triethylsilane (0.605 ml, 3.75

mmol) and dichloroacetic acid (0.308 ml, 3.75 mmol) the mixture was stirred 30 min and, subsequently, diluted with DCM (40 ml) and washed with a 1/1 mixture of sat. aq. NaHCO₃ and brine (20 ml). The organic layer was dried (Na₂SO₄) and concentrated *in vacuo*, after which the residue was partitioned between 80/20 acetonitrile/water and hexane and purified by FSPE as described in the general procedure. Fluorous compound 21 (263 mg, 0.224 mmol, 90%) was isolated as an amorphous solid. [α]_{D²⁰} (CHCl₃): +23.8; IR: 1026, 1065, 1146, 1200, 1547, 1644, 1736, 2924; ¹H NMR (400 MHz): δ = 1.71 - 1.79 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.99 - 2.13 (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$, 2.38 (t, 2H, I = 6.7 Hz, CH₂ succinyl), 2.63 (t, 2H, I = 6.7 Hz, CH₂ succinyl), 3.24 (dd, 2H, J = 6.8 Hz, 13.3 Hz, F17C8CH2CH2CH2CH2N), 3.54 - 3.75 (m, 6H, H-2, H-4, H-6, H-6', CH2 glycerol), 3.83 - 3.89 (m, 1H, CH glycerol), 3.91 - 3.96 (m, 1H, H-5), 4.00 (at, 1H, J = 9.4 Hz, H-3), 4.13 - 4.16 (m, 2H, CH₂ glycerol), 4.46 - 4.50 (m, 2H, 2 x CHH Bn), 4.59 (d, 1H, J = 12.1 Hz, CHH Bn), 4.67 (d, 1H, J = 11.6 Hz, CHH Bn), 4.80 - 4.90 (m, 4H, H-1, 3 x CHH Bn), 4.95 (d, 1H, J = 11.0 Hz, CHH Bn), 5.85 (t, 1H, J = 5.9 Hz, NH), 7.12 - 7.15 (m, 2H, Harom), 7.24 - 7.37 (m, 18H, Harom); ¹³C NMR (100 MHz): δ = 20.8 (F₁₇C₈CH₂CH₂CH₂CH₂N), 28.3 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂N), 29.3, 30.7 (2 x CH₂ succinyl), 38.5 (F₁₇C₈CH₂CH₂CH₂CH₂N), 61.8 (CH₂ glycerol), 64.1 (CH₂ glycerol), 68.4 (C-6), 70.9 (C-5), 73.5, 74.2, 75.1, 75.6 (4 x CH₂ Bn), 77.7 (C-4), 78.8 (CH glycerol), 79.5 (C-2), 82.1 (C-3), 98.6 (C-1), 127.6 - 128.6 (CH_{arom}), 137.4, 137.7, 138.0, 138.5 (4 x C_g Bn), 171.5, 172.6 (2 x C=O succinyl); HRMS: C₅₂H₅₂F₁₇NO₁₀ + Na⁺ requires 1196.3212, found 1196.3210.

Glucosyl glycerol phosphate dimer (22)

Monomer **21** (133 mg, 113 μ mol) was coupled to glycerol phosphoramidite **6** (1.5 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Dimer **22** (153 mg, 104 μ mol, 92%) was obtained as a colorless oil.

³¹P NMR (161.7 MHz): δ = -0.9, -0.9 (1P); ¹H NMR (400 MHz): δ = 1.70 - 1.78 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.99 - 2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.26 - 2.67 (m, 7H, 2 x CH₂ succinyl, CH₂ cyanoethyl, CH₂OH), 3.22 (dd, 2H, *J* = 6.7 Hz, 13.0 Hz, F₁₇C₈CH₂CH₂CH₂N), 3.54 - 3.60 (m, 1H, H-2), 3.61 - 3.73 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.84 - 3.95 (m, 2H, H-3, H-5), 4.01 - 4.31 (m, 9H, CH glycerol, 3 x CH₂ glycerol, CH₂ cyanoethyl), 4.44 - 4.49 (m, 2H, 2 x CHH Bn), 4.56 - 4.73 (m, 5H, CHH Bn, 2 x CH₂ Bn), 4.78 - 4.83 (m, 2H, 2 x CHH Bn), 4.92 - 4.96 (m, 1H, CHH Bn), 5.01 - 5.03 (m, 1H, H-1), 6.01 - 6.05 (m,1H, NH), 7.12 - 7.14 (m, 2H, H_{arom}), 7.25 - 7.37 (m, 23H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.3 - 19.4 (CH₂ cyanoethyl), 20.7 (F₁₇C₈CH₂CH₂CH₂CH₂N), 28.3 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂CH₂N), 29.4, 30.7 (2 x CH₂ succinyl), 38.5 (F₁₇C₈CH₂CH₂CH₂CH₂N), 60.5 (d, *J* = 5 Hz, CH₂ glycerol), 62.0 (d, *J* = 5 Hz, CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 66.1 - 66.6 (2 x CH₂ glycerol), 68.3 (C-6), 70.9 (C-5), 72.0, 72.0 (CH₂ Bn), 73.1, 73.2 (CH₂ Bn), 73.5 (CH₂ Bn), 73.9 - 74.1 (CH glycerol), 75.1, 75.5 (2 x CH₂ Bn), 77.4 - 77.6 (C-4, CH glycerol), 79.6, 79.7 (C-2),

81.5 (C-3), 96.9, 97.1 (C-1), 116.4, 116.5 (Cq cyanoethyl), 127.6 - 128.5 (CH_{arom}), 137.6 - 137.7, 137.9, 138.6 (5 x Cq Bn), 171.5, 172.3 (2 x C=O succinyl); HRMS: $C_{65}H_{68}F_{17}N_2O_{15}P$ + Na⁺ requires 1493.3978, found 1493.3978.

Glucosyl glycerol phosphate trimer (23)

Dimer **22** (149 mg, 101 μ mol) was coupled to glycerol phosphoramidite **6** (1.5 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Trimer **23** (161 mg, 91.0 μ mol, 90%) was obtained as a colorless oil. ³¹P NMR

(161.7 MHz): $\delta = -1.4, -1.3, -1.3, -1.3$ (1P), -1.0, -0.9 (1P); ¹H NMR (400 MHz): $\delta = 1.69 - 1.77$ (m, 2H, F17C8CH2CH2CH2CH2N), 1.98 - 2.12 (m, 2H, F17C8CH2CH2CH2CH2N), 2.17 - 2.69 (m, 9H, 2 x CH2 succinyl, 2 x CH₂ cyanoethyl, CH₂OH), 3.18 - 3.26 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.55 - 3.60 (m, 1H, H-2), 3.61 - 3.74 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76 - 3.82 (m, 1H, CH glycerol), 3.86 - 3.95 (m, 2H, H-3, H-5), 4.01 - 4.31 (m, 15H, CH glycerol, 5 x CH₂ glycerol, 2 x CH₂ cyanoethyl), 4.44 - 4.49 (m, 2H, 2 x CHH Bn), 4.56 - 4.65 (m, 5H, CHH Bn, 2 x CH₂ Bn), 4.69 - 4.72 (m, 2H, 2 x CHH Bn), 4.77 - 4.83 (m, 2H, 2 x CHH Bn), 4.91 - 4.95 (m, 1H, CHH Bn), 5.01 - 5.04 (m, 1H, H-1), 6.16 - 6.22 (m,1H, NH), 7.12 - 7.15 (m, 2H, Harom), 7.25 - 7.37 (m, 28H, Harom); ¹³C NMR (100 MHz): δ = 19.2 - 19.4 (2 x CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂N), 28.2 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂CH₂N), 29.3, 30.6 (2 x CH₂ succinyl), 38.4 (F₁₇C₈CH₂CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0 - 62.2 (2 x CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 65.5 - 66.7 (4 x CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 72.0 (CH₂ Bn), 72.1, 72.2 (CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 73.4 (CH₂ Bn), 73.8 - 74.1 (CH glycerol), 75.1 (CH₂ Bn), 75.2 - 75.4 (CH glycerol), 75.5 (CH₂ Bn), 77.4 - 77.5 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.9, 97.0 (C-1), 116.5 - 116.6 (2 x C₉ cyanoethyl), 127.5 -128.5 (CHarom), 137.1, 137.7 - 138.0, 138.5 (6 x Cq Bn), 171.5, 172.3 (2 x C=O succinyl); HRMS: C₇₈H₈₄F₁₇N₃O₂₀P₂ + Na⁺ requires 1790.4744, found 1790.4744.

Glucosyl glycerol phosphate tetramer (24)

Trimer **23** (157 mg, 88.7 μ mol) was coupled to glycerol phosphoramidite **6** (1.5 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Tetramer **23** (169 mg, 82.0 μ mol,

92%) was obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - -1.2 (2P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): δ = 1.68 - 1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98 - 2.19 (m, 3H, F₁₇C₈CH₂CH₂CH₂CH₂N, CH₂OH), 2.35 - 2.67 (m, 10H, 2 x CH₂ succinyl, 3 x CH₂ cyanoethyl), 3.18 - 3.25 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂CH₂N), 3.54 - 3.60 (m, 1H, H-2), 3.61 - 3.75 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76 - 3.83 (m, 2H, 2 x CH glycerol), 3.85 - 3.95 (m, 2H, H-3, H-5), 4.01 - 4.30 (m, 21H, CH glycerol, 7 x CH₂ glycerol, 3 x CH₂ cyanoethyl), 4.44 - 4.49 (m, 2H, 2 x CH*H* Bn), 4.56 - 4.66 (m, 7H, CH*H* Bn, 3 x CH₂ Bn), 4.69 - 4.72 (m, 2H, 2 x CH*H* Bn), 4.76 - 4.83 (m, 2H, 2 x CH*H* Bn), 4.91 - 4.95 (m, 1H, CH*H* Bn), 5.01 - 5.04 (m, 1H, H-1), 6.12 - 6.19 (m,1H, NH), 7.10 - 7.15 (m, 2H, H_{arom}), 7.23 - 7.38 (m, 33H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2 - 19.5 (3 x CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂N), 28.2 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂N), 29.3, 30.6 (2 x CH₂ succinyl), 38.4 (F₁₇C₈CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0 - 62.2 (3 x CH₂ cyanoethyl), 63.1 (CH₂ glycerol), 65.5 - 66.6 (6 x CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 72.0 (CH₂ Bn), 72.1 - 72.2 (2 x CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 77.4 - 77.5 (C-4, CH glycerol), 79.6 (C-2), 81.6 (C-3), 96.8, 97.0 (C-1), 116.6 - 116.7 (3 x C_q cyanoethyl), 127.6 - 128.5 (CH_{arom}), 137.2, 137.7 - 138.0,

138.5 (7 x C_q Bn), 171.4, 172.3 (2 x C=0 succinyl); HRMS: $[C_{91}H_{100}F_{17}N_4O_{25}P_3 + 2Na]^{2+}$ requires 1055.2701, found 1055.2705.

Glucosyl glycerol phosphate pentamer (25)

Tetramer **24** (165 mg, 79.9 μ mol) was coupled to glycerol phosphoramidite **6** (1.8 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Pentamer **25** (176 mg,

74.3 μ mol, 93%) was obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - -1.1 (3P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): δ = 1.68 - 1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98 - 2.12 (m, 2H, F17C8CH2CH2CH2N), 2.26 - 2.67 (m, 13H, 2 x CH2 succinyl, 4 x CH2 cyanoethyl, CH2OH), 3.18 -3.26 (m, 2H, F17C8CH2CH2CH2CH2N), 3.54 - 3.60 (m, 1H, H-2), 3.61 - 3.75 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76 - 3.83 (m, 3H, 3 x CH glycerol), 3.86 - 3.95 (m, 2H, H-3, H-5), 4.00 -4.30 (m, 27H, CH glycerol, 9 x CH₂ glycerol, 4 x CH₂ cyanoethyl), 4.43 - 4.49 (m, 2H, 2 x CH*H* Bn), 4.56 - 4.67 (m, 9H, CHH Bn, 4 x CH₂ Bn), 4.69 - 4.71 (m, 2H, 2 x CHH Bn), 4.76 - 4.83 (m, 2H, 2 x CHH Bn), 4.91 - 4.95 (m, 1H, CHH Bn), 5.01 - 5.04 (m, 1H, H-1), 6.14 - 6.20 (m,1H, NH), 7.10 -7.15 (m, 2H, Harom), 7.23 - 7.39 (m, 38H, Harom); 13 C NMR (100 MHz): δ = 19.3 - 19.4 (4 x CH2 cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂CH₂N), 28.2 (t, J = 23 Hz, F₁₇C₈CH₂CH₂CH₂CH₂N), 29.3, 30.6 (2 x CH₂ succinyl), 38.4 (F₁₇C₈CH₂CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0 - 62.2 (4 x CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 65.5 - 66.6 (8 x CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 71.9 (CH₂ Bn), 72.1 -72.2 (3 x CH₂ Bn), 73.0, 73.1 (CH₂ Bn), 73.4 (CH₂ Bn), 73.7 - 74.0 (CH glycerol), 75.1 (CH₂ Bn), 75.1 - 75.4 (3 x CH glycerol), 75.5 (CH₂ Bn), 77.4 - 77.5 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.6 - 116.7 (4 x Cq cyanoethyl), 127.5 - 128.4 (CH_{arom}), 137.2, 137.7 - 138.0, 138.5 (8 x Cq Bn), 171.4, 172.3 (2 x C=O succinyl); HRMS: [C104H116F17N5O30P4 + 2Na]²⁺ requires 1204.3101, found 1204.3100.

Glucosyl glycerol phosphate hexamer (26)

Pentamer **25** (149 mg, 63.1 μ mol) was coupled to glycerol phosphoramidite **6** (2.0 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Hexamer **26** (151 mg, 56.8

μmol, 90%) was obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - -1.1 (4P), -0.9, -0.9, -0.9 (1P); ¹H NMR (400 MHz): δ = 1.68 - 1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98 - 2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 2.31 - 2.67 (m, 15H, 2 x CH₂ succinyl, 5 x CH₂ cyanoethyl, CH₂OH), 3.17 - 3.25 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54 - 3.59 (m, 1H, H-2), 3.61 - 3.74 (m, 6H, H-4, H-6, H-6', CH glycerol, CH₂ glycerol), 3.76 - 3.84 (m, 4H, 4 x CH glycerol), 3.85 - 3.94 (m, 2H, H-3, H-5), 4.00 - 4.31 (m, 33H, CH glycerol, 11 x CH₂ glycerol, 5 x CH₂ cyanoethyl), 4.44 - 4.48 (m, 2H, 2 x CH*H* Bn), 4.57 - 4.66 (m, 11H, CH*H* Bn, 5 x CH₂ Bn), 4.68 - 4.71 (m, 2H, 2 x CH*H* Bn), 4.77 - 4.82 (m, 2H, 2 x CH*H* Bn), 4.90 - 4.95 (m, 1H, CH*H* Bn), 5.01 - 5.04 (m, 1H, H-1), 6.17 - 6.23 (m,1H, NH), 7.11 - 7.14 (m, 2H, H_{arom}), 7.23 - 7.38 (m, 43H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2 - 19.4 (5 x CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂CH₂N), 28.2 (t, *J* = 22 Hz, F₁₇C₈CH₂CH₂CH₂N), 29.3, 30.5 (2 x CH₂ succinyl), 38.4 (F₁₇C₈CH₂CH₂CH₂CH₂N), 60.4, 60.5 (CH₂ glycerol), 62.0 - 62.2 (5 x CH₂ cyanoethyl), 63.1 (CH₂ glycerol), 65.5 - 66.6 (10 x CH₂ glycerol), 68.3 (C-6), 70.8 (C-5), 71.9 (CH₂ Bn), 72.1 - 72.2 (4 x CH₂ Bn), 73.0, 73.0 (CH₂ Bn), 73.4 (CH₂ Bn), 73.8 - 74.0 (CH glycerol), 75.1 (CH₂ Bn), 75.2 - 75.5 (4 x CH glycerol), 75.5 (CH₂ Bn), 77.4 - 77.6 (C-4, CH glycerol), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.6 - 116.8 (5 x C_q cyanoethyl), 127.5 - 128.5 (CH_{arom}), 137.2,

137.7 - 138.0, 138.5 (9 x C_q Bn), 171.4, 172.3 (2 x C=0 succinyl); HRMS: [C₁₁₇H₁₃₂F₁₇N₆O₃₅P₅ + 2Na]²⁺ requires 1352.8484, found 1352.8479.

Glucosyl glycerol phosphate hexamer spacer (27)

Hexamer **26** (145 mg, 54.6 μ mol) was coupled to spacer phosphoramidite **10** (2.5 eq), oxidized and purified (FSPE) using the general procedure as described above. Hexamer **27**

(147 mg, 48.7 μ mol, 89%) was obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - -1.1 (6P); ¹H NMR (400 MHz): δ = 1.25 - 1.40 (m, 4H, 2 x CH₂ hexylspacer), 1.44 - 1.52 (m, 2H, CH₂ hexylspacer), 1.60 - 1.68 (m, 2H, CH₂ hexylspacer), 1.68 - 1.76 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 1.98 -2.12 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 2.35 - 2.67 (m, 16H, 2 x CH₂ succinyl, 6 x CH₂ cyanoethyl), 3.12 -3.25 (m, 4H, CH₂-N hexylspacer, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54 - 3.59 (m, 1H, H-2), 3.61 - 3.68 (m, 2H, H-4, H-6), 3.70 - 3.75 (m, 1H, H-6'), 3.76 - 3.84 (m, 5H, 5 x CH glycerol), 3.85 - 3.94 (m, 2H, H-3, H-5), 4.00 - 4.31 (m, 39H, CH glycerol, 12 x CH₂ glycerol, 6 x CH₂ cyanoethyl, CH₂-O hexylspacer), 4.44 - 4.48 (m, 2H, 2 x CHH Bn), 4.57 - 4.65 (m, 11H, CHH Bn, 5 x CH₂ Bn), 4.68 - 4.71 (m, 2H, 2 x CHH Bn), 4.76 - 4.83 (m, 2H, 2 x CHH Bn), 4.90 - 4.95 (m, 1H, CHH Bn), 5.01 - 5.13 (m, 4H, H-1, CH₂ Cbz, NH Cbz), 6.11 - 6.18 (m,1H, NH), 7.11 - 7.14 (m, 2H, H_{arom}), 7.22 - 7.39 (m, 48H, H_{arom}); ¹³C NMR (100 MHz): δ = 19.2 - 19.5 (6 x CH₂ cyanoethyl), 20.6 (F₁₇C₈CH₂CH₂CH₂N), 24.8 (CH₂ hexylspacer), 25.9 (CH₂ hexylspacer), 28.2 (t, I = 22 Hz, $F_{17}C_8CH_2CH_2CH_2N$), 29.3 (CH₂ succinyl), 29.6 (CH₂ hexylspacer), 29.9 (d, J = 7 Hz, CH₂ hexylspacer), 30.5 (CH₂ succinyl), 38.3 (F₁₇C₈CH₂CH₂CH₂CH₂N), 40.7 (CH₂-N hexylspacer), 61.8 - 62.1 (6 x CH₂ cyanoethyl), 63.0 (CH₂ glycerol), 65.5 - 66.4 (11 x CH₂ glycerol, CH₂ Cbz), 68.3 - 68.4 (C-6, CH₂-O hexylspacer), 70.8 (C-5), 72.1 - 72.2 (6 x CH₂ Bn), 72.9, 73.0 (CH₂ Bn), 73.4 (CH₂ Bn), 73.7 - 74.0 (CH glycerol), 75.0 (CH₂ Bn), 75.3 - 75.5 (5 x CH glycerol), 77.4 (C-4), 79.6 (C-2), 81.5 (C-3), 96.8, 96.9 (C-1), 116.5 -116.7 (6 x Cq cyanoethyl), 127.5 - 128.5 (CHarom), 136.6, 137.2, 137.7 - 138.0, 138.5 (9 x Cq Bn, Cq Cbz), 156.3 (C=O Cbz), 171.3, 172.2 (2 x C=O succinyl); HRMS: [C134H155F17N8O40P6 + 2Na]²⁺ requires 1535.9156, found 1535.9153.

Glucosyl glycerol phosphate hexamer (2)

Protected hexamer **27** (139 mg, 46.3 µmol) was treated with aqueous ammonia as described above. The intermediate hexamer (98.5 mg, 44.1 µmol, 95%) was obtained as an amorphous white solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 - 1.1 (5P), 1.2 (1P); ¹H NMR (400 MHz, D₂O): δ = 0.80 - 1.10 (m, 6H, 3 x

CH₂ hexylspacer), 1.21 - 1.36 (m, 2H, CH₂ hexylspacer), 2.59 - 2.78 (m, 2H, CH₂-N hexylspacer), 3.24 - 4.05 (m, 38H, H-2, H-3, H-4, H-5, H-6, H-6', 12 x CH₂ glycerol, 6 x CH glycerol, CH₂-O hexylspacer), 4.16 - 5.02 (m, 22H, H-1, 9 x CH₂ Bn, CH₂ Cbz, NH Cbz), 6.66 - 7.14 (m, 50H, H_{arom}); HRMS: $[C_{101H_{127}}NO_{38}P_6 + 2NH_4]^{2+}$ requires 1092.3586, found 1092.3590. A portion of the intermediate (34.5 mg, 15.4 µmol) was deprotected with Pd (0)/H₂ using the standard procedure. Glucosylated hexamer **2** (19.7 mg, 15.0 µmol, 97%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D₂O): δ = 1.2 (1P), 1.2 - 1.3 (4P), 1.3 (1P); ¹H NMR (600 MHz, D₂O): δ = 1.39 - 1.44 (m, 4H, 2 x CH₂ hexylspacer), 1.61 - 1.70 (m, 4H, 2 x CH₂ hexylspacer), 2.99 (t, 2H, *J* = 7.5 Hz, CH₂-N hexylspacer), 3.39 (at, 1H, *J* = 9.6 Hz, H-4), 3.52 (dd, 1H, *J* = 3.9 Hz, 9.9 Hz, H-2), 3.71 - 3.76 (m, 4H, H-3, H-6, CH₂ glycerol), 3.80 - 4.05 (m, 32H, H-5, H-6', 6 x CH

glycerol, 11 x CH₂ glycerol, CH₂-O hexylspacer), 4.14 - 4.17 (m, 1H, CH glycerol), 5.15 (d, 1H, J = 3.8 Hz, H-1); ¹³C NMR (150 MHz, D₂O): δ = 25.3, 26.0, 27.5, 30.3 (4 x CH₂ hexylspacer), 40.3 (CH₂-N hexylspacer), 61.4 (C-6), 62.2 (CH₂ glycerol), 65.2 (d, J = 6 Hz, CH₂ glycerol), 66.9 - 67.1 (CH₂-O hexylspacer, 11 x CH₂ glycerol), 70.3 - 70.5 (5 x CH glycerol,C-4), 72.4 (C-2), 72.9 (C-5), 73.8 (C-3), 77.7 (d, J = 8 Hz, CH glycerol), 98.7 (C-1); HRMS: C₃₀H₆₇NO₃₆P₆ + H⁺ requires 1204.1941, found 1204.1948.

bis-Glucosyl glycerol phosphate hexamer (28)

Pentamer **25** (22.5 mg, 9.52 µmol) was coupled to glucosyl-glycerol phosphoramidite **19** (3.0 eq), oxidized, detritylated and purified (FSPE) using the general procedure as described above. Bis-glucosylated hexamer **28** (25.7 mg, 8.31 µmol, 87%) was obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - 1.3 (2P), -1.2 , -1.0 (3P); ¹H NMR (400 MHz): δ

= 1.66 - 1.82 (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 1.97 - 2.12 (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 2.28 - 2.68 (m, 15H, 2 x CH₂ succinyl, 5 x CH₂ cyanoethyl, CH₂OH), 3.17 - 3.28 (m, 2H, $F_{17}C_8CH_2CH_2CH_2N$), 3.51 - 3.98 (m, 19H, 2 x H-2, 2 x H-3, 2 x H-4, 2 x H-5, 2 x H-6, 2 x H-6', 5 x CH glycerol, CH₂ glycerol), 4.00 - 4.31 (m, 33H, CH glycerol, 11 x CH₂ glycerol, 5 x CH₂ cyanoethyl), 4.42 - 4.48 (m, 4H, 4 x CH*H* Bn), 4.56 - 4.64 (m, 10H, 2 x CH*H* Bn, 4 x CH₂ Bn), 4.67 - 4.71 (m, 3H, 3 x CH*H* Bn), 4.76 - 4.84 (m, 5H, 5 x CH*H* Bn), 4.90 - 4.95 (m, 3H, H-1, 2 x CH*H* Bn), 5.01 - 5.03 (m, 1H, H-1), 6.02 - 6.09 (m, 1H, NH), 7.09 - 7.16 (m, 4H, H_{arom}), 7.22 - 7.38 (m, 56H, H_{arom}); HRMS: [C₁₄₄H₁₆₀F₁₇N₆O₄₀P₅ + 2Na]²⁺ requires 1568.9452, found 1568.9454.

bis-Glucosylglycerol phosphate hexamer spacer (29)

Hexamer **28** (24.5 mg, 7.92 µmol) was coupled to spacer phosphoramidite **10** (5 eq), oxidized and purified (FSPE) using the general procedure as described above. Hexamer **29** (24.3 mg, 7.06 µmol, 89%) was

obtained as a colorless oil. ³¹P NMR (161.7 MHz): δ = -1.4 - -1.0 (6P); ¹H NMR (400 MHz): δ = 1.26 - 1.37 (m, 4H, 2 x CH₂ hexylspacer), 1.41 - 1.49 (m, 2H, CH₂ hexylspacer), 1.59 - 1.68 (m, 2H, CH₂ hexylspacer), 1.68 - 1.77 (m, 2H, F₁₇C₈CH₂CH₂CH₂CH₂N), 1.97 - 2.11 (m, 2H, F₁₇C₈CH₂CH₂CH₂N), 2.30 - 2.66 (m, 16H, 2 x CH₂ succinyl, 6 x CH₂ cyanoethyl), 3.10 - 3.25 (m, 4H, CH₂-N hexylspacer, F₁₇C₈CH₂CH₂CH₂CH₂N), 3.54 - 3.94 (m, 18H, 2 x H-2, 2 x H-3, 2 x H-4, 2 x H-5, 2 x H-6, 2 x H-6', 4 x CH glycerol), 4.00 - 4.30 (m, 40H, 2 x CH glycerol, 12 x CH₂ glycerol, 6 x CH₂ cyanoethyl, CH₂-O hexylspacer), 4.40 - 4.48 (m, 4H, 4 x CH*H* Bn), 4.55 - 4.64 (m, 10H, 2 x CH*H* Bn, 4 x CH₂ Bn), 4.68 - 4.71 (m, 4H, 4 x CH*H* Bn), 4.76 - 4.83 (m, 4H, 4 x CH*H* Bn), 4.90 - 4.95 (m, 2H, 2 x CH*H* Bn), 5.01 - 5.13 (m, 5H, 2 x H-1, CH₂ Cb₂, NH Cb₂), 6.04 - 6.11 (m,1H, NH), 7.08 - 7.15 (m, 4H, H_{arom}), 7.22 - 7.38 (m, 61H, H_{arom}); HRMS: [C₁₆₁H₁₈₃F₁₇N₈O₄₅P₆ + 2H]²⁺ requires 1730.0305, found 1730.0312.

bis-Glucosyl glycerol phosphate hexamer (4)

Protected hexamer 29 (22.5 mg, 6.54 µmol) was treated with aqueous ammonia as described above. The intermediate hexamer (17.1 mg, 6.42 µmol, 98%) was obtained as an amorphous white

solid. Analytical data intermediate: ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 - 1.2 (6P); ¹H NMR (400 MHz, D₂O): $\delta = 0.76 - 1.10$ (m, 6H, 3 x CH₂ hexylspacer), 1.21 - 1.34 (m, 2H, CH₂ hexylspacer), 2.55 - 2.76 (m, 2H, CH₂-N hexylspacer), 3.11 - 4.14 (m, 44H, 2 x H-2, 2 x H-3, 2 x H-4, 2 x H-5, 2 x H-6, 2 x H-6', 12 x CH₂ glycerol, 6 x CH glycerol, CH₂-O hexylspacer), 4.15 - 4.84 (m, 28H, 2 x H-1, 12 x CH₂ Bn, CH₂ Cbz), 4.96 - 5.04 (m, 1H, NH Cbz), 6.61 - 7.17 (m, 65H, H_{arom}); HRMS: $[C_{128}H_{155}NO_{43}P_6 + 2NH_4]^{2+}$ requires 1308.4554, found 1308.4563. A portion of the intermediate (15.6 mg, 5.85 μ mol) was deprotected with Pd (0)/H₂ using the standard procedure. Bisglucosylated hexamer 4 (8.43 mg, 5.71μ mol, 98%) was obtained as an amorphous white solid. ³¹P NMR (161.7 MHz, D₂O): δ = 0.9 (1P), 1.2 - 1.3 (5P); ¹H NMR (600 MHz, D₂O): δ = 1.40 - 1.44 (m, 4H, 2 x CH₂ hexylspacer), 1.62 - 1.70 (m, 4H, 2 x CH₂ hexylspacer), 2.99 (t, 2H, J = 7.5 Hz, CH₂-N hexylspacer), 3.36 - 3.41 (m, 2H, 2 x H-4), 3.48 - 3.53 (m, 2H, 2 x H-2), 3.71 - 3.77 (m, 6H, 2 x H-3, 2 x H-6, CH₂ glycerol), 3.80 - 4.05 (m, 33H, 2 x H-5, 2 x H-6', 5 x CH glycerol, 11 x CH₂ glycerol, CH₂-O hexylspacer), 4.07 - 4.10 (m, 1H, CH glycerol), 5.15 (d, 2H, *J* = 3.4 Hz, 2 x H-1); ¹³C NMR (150 MHz, D₂O): δ = 25.5, 26.1, 27.6, 30.5 (4 x CH₂ hexylspacer), 40.4 (CH₂-N hexylspacer), 61.2 (2 x C-6), 61.7 (CH₂ glycerol), 65.3 (d, *J* = 5 Hz, CH₂ glycerol), 66.1 (d, *J* = 5 Hz, CH₂ glycerol), 67.1 - 67.3 (CH₂-O hexylspacer, 10 x CH₂ glycerol), 70.4 - 70.7 (4 x CH glycerol, 2 x C-4), 72.5, 72.5 (2 x C-2), 72.9, 73.0 (2 x C-5), 73.9, 74.0 (2 x C-3), 76.4 (t, *J* = 8 Hz, CH glycerol), 77.8 (d, J = 8 Hz, CH glycerol), 98.7, 98.8 (2 x C-1); HRMS: C₃₆H₇₇NO₄₁P₆ + H⁺ requires 1366.2469, found 1366.2474.

References

- 1. Hogendorf, W.F.J.; Meeuwenoord, N.; Overkleeft, H.S.; Filippov, D.V.; Laverde, D.; Kropec, A.; Huebner, J.; van der Marel, G.A.; Codée, J.D.C. *Chem. Commun.* **2011**, *47*, 8961-8963.
- Theilacker, C.; Kaczynski, Z.; Kropec, A.; Fabretti, F.; Sange, T.; Holst, O.; Huebner, J. Infect. Immun. 2006, 74, 5703–5712.
- 3. Theilacker, C.; Kaczynski, Z.; Kropec, A.; Sava, I.; Ye, L.; Bychowska, A.; Holst, O.; Huebner, J. *Plos One* **2011**, *6*, e17839.
- 4. Theilacker, C.; Kropec, A.; Hammer, F.; Sava, I.; Wobser, D.; Sakinc, T.; Codée, J.D.C.; Hogendorf, W.F.J.; Van der Marel, G.A.; Huebner, J. *J. Infect. Dis.* **2012**, *205*, 1076-1085.
- 5. Gladysz, J.A.; Curran, D.P.; Horváth, I.T., *Handbook of Fluorous Chemistry*; Eds: Wiley-VCH: Weinheim, **2004**.
- 6. Curran, D.P. *Aldrichimica Acta* **2006**, *39*, 3-9.
- 7. Zhang, W.; Curran, D.P. *Tetrahedron* **2006**, *62*, 11837-11865.
- 8. Zhang, W.; Cai, C. Chem. Commun. 2008, 5686-5694.
- 9. Zhang, W. Chem. Rev. **2009**, 109, 749-795.
- 10. Zhang, W. Green. Chem. 2009, 11, 911-920.
- 11. Hogendorf, W.F.J.; Lameijer, L.N.; Beenakker, T.J.M.; Overkleeft, H.S.; Filippov, D.V.; Codée, J.D.C.; Van der Marel, G.A. *Org. Lett.* **2012**, *14*, 848-851.
- 12. Hogendorf, W.F.J.; Kropec, A.; Filippov, D.V.; Overkleeft, H.S.; Huebner, J.; Van der Marel, G.A. *Carbohydr. Res.* **2012**, *356*, 142-151.
- 13. Ali, A.; Van den Berg, R.J.B.H.N.; Overkleeft, H.S.; Filippov, D.V.; Van der Marel, G.A.; Codée, J.D.C. *Tetrahedron Lett.* **2009**, *50*, 2185-2188.
- 14. Hogendorf, W.F.J.; Van den Bos, L.J.; Overkleeft, H.S.; Codée, J.D.C.; van der Marel, G.A. *Bioorg. Med. Chem.* **2010**, *18*, 3668-3678.
- Zheng, W.; DeMattei, J.A.; Wu, J.-P.; Duan, J.J.-W.; Cook, L.R.; Oinuma, H.; Kishi, Y. J. Am. Chem. Soc. 1996, 118, 7946-7968.
- 16. Beaucage, S.L.; Iyer, R.P. *Tetrahedron* **1992**, *48*, 2223-2311.
- 17. Reese, C.B. Org. Biomol. Chem. **2005**, *3*, 3851-3868.
- 18. Schmidt, R.R. Angew. Chem. **1986**, 98, 213-236; Angew. Chem. Int. Ed. **1986**, 25, 215-235.
- 19. Eby, R.; Schuerch, C. *Carbohydr. Res.* **1974**, *34*, 79-90.
- 20. Walvoort, M.T.C.; Lodder, G.; Overkleeft, H.S.; Codée, J.D.C.; Van der Marel, G.A. *J. Org. Chem.* **2010**, 75, 7990-8002.
- 21. Adinolfi, M.; Barone, G.; Iadonisi, A.; Shiattarella, M. *Tetrahedron Lett.* **2002**, *43*, 5573-5577.
- 22. Adinolfi, M.; Iadonisi, A.; Schiattarella, M. *Tetrahedron Lett.* **2003**, *44*, 6479-6482.