
Transformations for polyhedral process networks
Meijer, S.

Citation
Meijer, S. (2010, December 8). Transformations for polyhedral process networks. Retrieved
from https://hdl.handle.net/1887/16221
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16221
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16221


Chapter7
Conclusions

In this dissertation, we addressed the problem of how to transform a Polyhedral Pro-

cess Network (PPN) in order to meet performance/resource constraints. Transfor-

mations are crucial because deriving PPNs from a sequential program specifications

without performing any transformations does not guarantee that the resource and/or

performance constraints are met. The reason is that the pn compiler creates one pro-

cess in the parallel application specification (PPN) for each program statement in the

sequential program. As a result, the derived PPN and its processes can be highly im-

balanced as some program statements can be much more computationally intensive

than others. Therefore, compile-time analysis of PPNs and transformations should

assist the designer in transforming the PPN when some design constraints are not

met.

The research work presented in this dissertation mainly focused on how the process

splitting and merging transformations should be applied to achieve the best possi-

ble performance results. The process splitting transformation creates more processes

in a given PPN to exploit more data-level parallelism in the application. The pro-

cess merging transformation is used to reduce the number of processes in a PPN.

Before our work presented in this dissertation, i.e., our compile-time approaches to

evaluate the process splitting and merging transformations, the problem was that the

transformations were defined but it was the designer’s responsibility to apply them.

We have shown in this dissertation that it is not trivial for a designer to apply these

transformations. The reason is that there are many possibilities to apply a particular

transformation and many factors influence the final performance results. As a conse-

quence, there can be great differences in the achieved performance results, and they

also can easily get worse than the results of the initial PPN if the transformations are

not applied carefully. To assist the designer in transforming a PPN, we have defined

metrics that are important for the final performance results. Furthermore, we pre-



126 Conclusions

sented compile-time approaches to evaluate these metrics, such that the designer can

select the best possible alternative. For the process splitting transformation discussed

in Chapter 3, the analysis is performed locally on the process, while a throughput

model for PPNs has been introduced for evaluating the process merging transforma-

tion in Chapter 4. Based on the results of the work presented in Chapters 3 and 4, we

draw the following conclusion.

• Conclusion I: by defining all major factors that are important for the process

splitting/merging transformation, and by taking into account the target platform

characteristics, we can, at compile-time, evaluate and correctly predict how the

process splitting/merging transformation should be applied to obtain the best

performance results.

Compile-time hints to transform PPNs in a particular way were missing in the Daedalus

tool-flow, as it could only explore different platform and mapping specifications.

Thus, the research work presented in this dissertation addresses one very important

aspect of the Y-chart approach, i.e., to evaluate and change the application specifica-

tion after performance analysis. With our compile-time approaches, we can evaluate

the process splitting and merging transformations, such that the best option to apply a

transformation can be selected. Changing the application specification was identified

in Chapter 1 as an important step in order to obtain a desired design point.

Besides approaches to help the designer in evaluating and applying the process split-

ting and merging transformations in isolation, we have also devised a holistic ap-

proach in Chapter 5 that combines both transformations. This solved the problem of

ordering the process splitting and merging transformations, which is a difficult prob-

lem as there are many alternatives to apply the transformations one after the other

and with different parameters. Furthermore, we solved the problem of selecting the

processes on which a transformation should be applied.

• Conclusion II: by first splitting up all processes and by subsequently merg-

ing the different process instances into load-balanced compound processes, we

solved the problem of ordering the different transformations and also on which

process a particular transformation should be applied to obtain the largest pos-

itive performance impact.

There are two perspectives to look at our approach to combine the process splitting

and merging transformations. The first one is presented in Chapter 5, i.e., to consider

the combination of transformations as an optimization after the initial PPN has been

derived. The second perspective is to look at this as an approach to derive PPNs

in a different way than currently implemented in the pn compiler. That is, instead

of creating one process for each program statement in the sequential application, a

number of compound processes are created that contain a number of executions of



127

all program statements. Then, the designer will not be confronted with the initial

PPN, but only with the transformed and load-balanced PPN. However, we did not

emphasize on this perspective in this dissertation as this requires more research on the

number of compound processes to be generated. Choosing the number of processes

could be the responsibility of either the designer or the compiler, but the latter is

clearly the preferred option as it may not be straightforward for the designer to decide

when saturation of the performance occurs. For example, cycles in a PPN may, or

may not lead, to sequential execution of the processes involved in the cycle. When the

processes in a cycle execute sequentially, then we refer to it as a true cycle. Splitting

the processes involved in true cycles would only introduce more processes and not

improve the performance, because the processes already execute sequentially as we

have also explained in Chapter 5. On the other hand, when the process executions

in a cycle overlap, then the splitting transformation can result in performance gains.

However, how much can be gained depends on the behavior of that cycle.

• Conclusion III: with our holistic approach that combines the splitting and

merging transformations, we exploit all available data-level parallelism to the

maximum such that our approach gives the best performance results using the

two considered transformations when there is something to be gained, and the

same performance results as the initial PPN when there is nothing to be gained.

In order to know how much can be gained by splitting processes, the behavior of the

(self)-cycles that restrict the data-level parallelism in a certain way must be investi-

gated. We sketched an approach how to detect true cycles, but left the question how

many times a process should be split-up for future research.

In Chapter 6, we have presented two approaches to execute PPNs on commercial

off-the-shelf (COTS), programmable MPSoC platforms, i.e., the Intel IXP network

processor and the Cell platform. While the IXP has hardware support for FIFO com-

munication to some extent, this is completely absent in the Cell platform. Thus, both

the Cell and the IXP platform do not support the operational semantics of the PPN

model of computation as efficiently as the ESPAM platform, which is especially tai-

lored to execute PPNs as efficiently as possible. To make the FIFO communication

more efficient on the Cell, we deployed an approach to transfer multiple data tokens

when only one is requested by a consumer process. Thus, by grouping multiple to-

kens into one package, less FIFO read/write accesses need to be performed during

the execution of a PPN. The execution of PPNs on the Cell and IXP processors en-

abled us to compare the execution times with the ESPAM platform. In Chapter 6, we

showed that the ESPAM platform always gives the lowest cycle count, while the Cell

is better in terms of execution times as a result of its very high clock frequency.

• Conclusion IV: The cycle count for PPNs executed on the ESPAM platform

is always lower compared to the IXP and Cell platforms. It does not provide



128 Conclusions

the fastest execution times since its clock frequency is restricted to 100 Mhz,

only because it is prototyped on an FPGA. With higher clock frequencies (e.g.,

an ASIC implementation, or advances in FPGA technology), the ESPAM plat-

form would not only be the most efficient, but also the best platform to obtain

the lowest execution times.

Thus, the most benefit from executing PPNs onto MPSoC platforms is obtained

when the operational semantics of the PPN model of computation are supported by

the target platform. The IXP processor, for example, runs at 600Mhz which is 6 times

higher than the ESPAM platform. Despite this higher clock frequency, however,

the execution times are worse than for the ESPAM platform. The reason is that

FIFO communication is supported to some extent, but not as efficiently as on the

ESPAM platform. In the Cell platform on the other hand, FIFO communication is

completely implemented in software. This makes the ESPAM platform the most

efficient platform because it is especially tailored to execute PPNs and supports FIFO

communication with hardware components. The Cell’s clock frequency is 30 times

higher than the ESPAM platform, but its performance results are only 10 times better.

The only reason that the ESPAM is restricted to 100 Mhz, is because it is prototyped

on FPGA technology and not in ASIC such as the Cell. If the ESPAM platform is

implemented using ASIC technology, then it would not only be the most efficient,

but also the fastest.

Finally, we remark that it is not beneficial for all applications to be executed as

PPNs on MPSoC platforms. With the experiments in Chapter 6, we showed that

performance results can also get worse compared to the sequential versions of the

applications.

• Conclusion V: for applications with very fine-grain computations, and/or tar-

get platforms with high synchronization and communication costs, the gain of

parallelization can be canceled by the costs for synchronization/communication.

In Chapter 5, we presented an approach to create compound processes by using

the process splitting and merging transformations in combination. In that work, we

assumed that the designer selects the number of compound processes to be created,

which can, for example, be the number of available processors in the target platform.

In our future work, we want to investigate if we can decide at compile-time howmany

compound processes to create before saturation of the system performance occurs.

This optimization could, for example, result in a number of compound processes for

a given PPN that is less than the available processors, which means that the other

processors are available for other applications. Thus, we want to investigate how

the maximum parallelism available in an application can be determined, and how it



129

can be exploited using the minimum number of resources by applying the process

splitting and merging transformations.



130 Conclusions


