
Transformations for polyhedral process networks
Meijer, S.

Citation
Meijer, S. (2010, December 8). Transformations for polyhedral process networks. Retrieved
from https://hdl.handle.net/1887/16221
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16221
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16221


Chapter6
Executing PPNs on Fixed

Programmable MPSoC Platforms

In Chapter 1, we have indicated that the Daedalus tool-flow instantiates a specific

hardware platform, called ESPAM [61] , prototyped on a FPGA to execute PPNs

as efficiently as possible. Recall that we also argued in Chapter 1 that such a spe-

cific hardware platform may not always be available to a designer. Therefore, we

want to investigate how to execute PPNs onto commercial-off-the-shelf (COTS), pro-

grammable MPSoC platforms. In this chapter, we address the issue how to execute

polyhedral process networks onto COTS programmableMPSoC platforms and exper-

iment with 2 different platforms: the Intel IXP network processor [1] and the CELL

BE processor [39]. The Intel IXP is interesting as it has hardware support for FIFO

communication to some extent, i.e., the IXP is highly optimized for streaming data,

albeit in the form of internet packets. This makes the Intel IXP a dedicated stream-

ing processing platform. As a second platform, we chose to experiment with a more

general purpose MPSoC computing platform, i.e., the Cell platform, which lacks any

hardware support for FIFO communication. For both platforms, there is a mismatch

with the PPN model of computation. The mismatch is related to the FIFO read/write

primitives used in the PPN model of computation and the way FIFO communication

is supported by the hardware platform. This mismatch is the most evident in the Cell

processor because it lacks any hardware support for FIFO communication, while the

IXP has FIFO support to a certain extent. Taking this mismatch into account, we want

to investigate in this chapter, how FIFO communication can be realized in the most

efficient way using the provided communication infrastructure of these two COTS

programmable MPSoC platforms.



112 Executing PPNs on Fixed Programmable MPSoC Platforms

6.1 The Programmable Platforms

In this section, we briefly discuss the Cell processor and the Intel IXP processor archi-

tectures, i.e., we discuss the interesting components of both platforms and explain the

mismatch between the processor architectures and the PPN model of computation.

The Cell

The Cell BE platform [39] is a very good representative example of a state-of-the-art

heterogeneous programmable MPSoC platform. A high-level schematic of the Cell

architecture is shown in Figure 6.1. It has a PowerPC host processor (PPE) and a set

of eight computation-specific processors, known as synergistic processing elements

(SPEs). The memory subsystem offers private memories for each SPE processing

elements and a global memory space, to which only the PPE has direct access. Each

SPE has a Memory Flow Controller (MFC) for handling all data transfers. All pro-

cessors and I/O interfaces are connected by the coherent interconnect bus which is a

synchronous communication bus.

EIB

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

Cell BE

P6 P5

P4P3P2

P7

G
lo

b
a
l 
M

e
m

o
ry

P1

PPE

EIB

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

Cell BE

P6 P5

P4P3P2

P7

G
lo

b
a
l 
M

e
m

o
ry

P1

PPE

Figure 6.1: A 7-process PPN mapped onto the Cell BE platform.

The mismatch mentioned earlier is illustrated with the example in Figure 6.1. A

PPN consisting of 7 processes and 7 FIFO channels is mapped onto the Cell BE plat-

form. Processes P1 , P2 and P7 are mapped onto the PPE, and processes P3 to P6

are mapped onto different SPEs. The FIFO communication channels must be mapped

onto the Cell BE communication, synchronization and storage infrastructure. On the

one hand, the semantics of the FIFO communication is very simple: Producer and

Consumer processes in a producer/consumer pair interact asynchronously with the

communication channel to which they are connected. The synchronization between

the Producer and the Consumer is by means of blocking read/write on empty/full

FIFO channels. On the other hand, in the Cell BE platform the processors are con-

nected to a synchronous communication bus and there is no specific HW support for



6.1 The Programmable Platforms 113

blocking FIFO communication. Therefore, the PPN communication model and the

Cell BE communication infrastructure do not match. The FIFO channels have to be

realized by using the private memory of a SPE, and/or the global memory, and the

Cell BE specific synchronization methods which may be costly in terms of commu-

nication latency. The challenge is how to do this in the most efficient way, i.e., to

minimize the communication latency.

The Intel IXP

The IXP Network processor [1] is built to operate in real-time on internet traffic while

being completely programmable. The architecture uses microengines that have hard-

ware multi-threading support and various communication structures to move streams

of data around as efficiently and quickly as possible. We focus on the IXP2400 of

which a schematic is shown in Figure 6.2.

IXP2400

Media Switch 
Fabric 

Interface

RBUF

TBUF

Scratchpad
memory

CAP

Hash unit

DRAM

External Media 
Device(s)

PCI

Intel 
XScale 
Core

Optional hosts 
CPU, PCI 

bus devices

SRAM 
Controller 1

SRAM 
Controller 0

DRAM 
Controller 0

SRAM

ME 1:1ME 1:0

ME 1:3ME 1:2

ME 0:1ME 0:0

ME 0:3ME 0:2

Figure 6.2: IXP2400

The IXP2400 has an Intel XScale Core and eight microengines (ME0.0 - ME1.3)

clustered in two blocks of 4. Other relevant parts are the specialized controllers to

communicate data with off-chip DRAM and SRAM, the scratch path memory, and

the Media and Switch Fabric (MSF) Interface. The MSF interface governs the com-

munication with the Ethernet connection. The IXP2400 can receive and transmit data

on this interface at a speed of 2.5Gbps. The XScale core is a RISC general-purpose

processor similar to the processing units found in other hardware, including other

embedded computers, handhelds and cell phones. The intended use of XScale on the



114 Executing PPNs on Fixed Programmable MPSoC Platforms

network processors is for controlling and supporting processes on the microengines

where needed.

A microengine is a simple RISC-processor that is optimized for fast-path packet

processing tasks. Its instruction set is specifically tuned for processing network data.

It consists of over 50 different instructions including arithmetic and logical operations

that operate at bit, byte, and long-word levels, and can be combined with shift and

rotate operations in a single instruction. Integer multiplication is supported; floating

point operations are not. The microengine has special registers to communicate data

quickly and efficiently with DRAM and SRAM, its neighbors and local memory.

For example, to communicate with neighboring microengines within a cluster, this

microengine can uses special hardware support. Via special registers, it can send

data to a neighbor and receive data from a neighbor. This could be used to implement

FIFO communication, but only for one channel with a very limited buffer capacity.

Furthermore, the microengines have access to hardware rings for accessing circular

buffers located in the scratchpad and SRAM memories. In Figure 6.2, it can be

seen that these buffers are accessed via the bus. Hence, we remark that the IXP has

hardware support for FIFO communication (i.e., the available rings), but it is not as

dedicated as in the ESPAM platform [60, 61] where each processor has a dedicated

communication memory which can be organized as one or more FIFOs.

6.2 Realizing FIFO Communication

In Section 6.1, we have introduced the IXP and Cell processors. Now we show how

we map PPNs onto these platforms. This means that each components of the PPN

must be expressed in terms of the C language, i.e., a source-to-source translation.

These sources can be compiled with the C compiler for the given platform to gener-

ate an executable. We focus on the realization of the FIFO communication, because

it is the most platform dependent implementation that must use the provided com-

munication infrastructure of the target platform as efficiently as possible. Thus, we

indicate the possible mismatch in the PPN model of computation and the target plat-

form. The processes of a PPN are mapped one-to-one onto processing elements. We

do not further elaborate on this. Instead, the reader is referred to [50, 58] for more

details.

FIFO Communication on The Cell

In mapping PPN processes onto processing elements of the Cell BE platform, differ-

ent assignments are possible, i.e., processes can be mapped onto the PPE or onto one

of the SPEs. This results in different types of FIFO communication channels. For

example, in Figure 6.1 processes P1 (producer) and P2 (consumer) are mapped onto



6.2 Realizing FIFO Communication 115

the PPE. Therefore, we say that the FIFO channel connecting them is of PPE-to-PPE

type. If the producer and the consumer is the same process that is mapped onto a SPE

(like process P3 in Figure 6.1), then we refer to that FIFO channel as a SPE-to-self

FIFO channel. Similarly, we identify PPE-to-self, SPEi-to-SPEj , PPE-to-SPE, and

SPE-to-PPE types of FIFO communication channels. It is important to define these

channel types as all of them require different implementations since different compo-

nents of the Cell BE platform are involved. To summarize, we identify the following

classes of FIFO channels, classified by connection type: a) class self (PPE-to-self

and SPE-to-self), b) class intra (PPE-to-PPE), and c) class inter (SPEi-to-SPEj ,

PPE-to-SPE and SPE-to-PPE).

The first two classes of FIFO channels are easy to implement efficiently, as FIFOs

from these classes are realized using just local (for producer and consumer processes)

memories and local synchronization is utilized. In the remainder of this section we

therefore focus on the class inter FIFO channels, which connect the producer and

consumer processes mapped onto two different processing elements. The first issue

to be addressed is where the memory buffer of a FIFO has to reside. The Cell BE

platform provides two memory storages, thus, the buffer can i) reside in global mem-

ory or ii) can be distributed over the local memories of the producer and consumer

processes. The advantage of the former approach is the shared memory that is easily

accessible (in a mutually exclusive way). The disadvantage, however, is a substantial

synchronization overhead. For example, a SPE process with a FIFO channel of type

inter, should not only compete for the memory resource, but also move the data from

the global storage to the local memory prior to computation. The implication of this

is an enormous synchronization overhead and we therefore do not consider this as

an option to implement the FIFO buffers. For the second approach, i.e., when the

memory buffer of a FIFO channel is distributed between local memories, the issue

is how to efficiently implement the FIFO semantics. The issue is that the proces-

sors need to be synchronized to ensure mutually exclusive access to the FIFO buffer.

This processor synchronization is costly and is necessary as the CELL does not pro-

vide hardware support for FIFO communication, i.e., the mismatch between the PPN

model of computation and the target platform as we mentioned earlier.

In our approach to realize FIFO communication on the Cell and to minimize the

number of processor synchronizations, a number of tokens are grouped and send at

once, i.e., token packetizing is used. Packetizing decreases the number of DMA

data transfers and subsequently it also decreases the number of synchronizations.

Determining the packet size is a very important issue, i.e., depending on the process

that initiates the data transfers, deadlocks may occur if the packet size is not chosen

correctly. We have therefore chosen to use a run-time solution that simply transfers

all available generated data. We refer to this solution as the FIFO pull strategy which

we discuss next. The reader is referred to [58] for a discussion on the FIFO push



116 Executing PPNs on Fixed Programmable MPSoC Platforms

strategy and a comparison between the pull and push strategies.

P

Request

Ack 3

CDMA 2

1

Figure 6.3: Pull strategy for class inter FIFO channels.

The FIFO communication between a producer/consumer pair of processes using the

pull strategy, consists of 3 steps as shown in Figure 6.3:

1. Read request (1). The consumer first tries to read from its local buffer. If

it is empty, then it sends a request message to the producer and is blocked on

reading awaiting an acknowledgement message from the producer. The request

message contains the maximum number of tokens the consumer can accept.

2. Data transfer (2). The producer which receives the read request can either

be blocked on writing to its local storage or be busy executing a function. If

it is blocked, it serves other requests immediately. If it is executing then it

immediately serves the request after execution. In either case, the producer

handles the request and transfers all tokens it has available for the consumer as

one packet by means of a DMA transfer.

3. Acknowledgement (3). The producer notifies the consumer after completion of

the data transfer issuing a message containing the total number of tokens which

have been transferred as one packet in the previous step.

Thus, the pull strategy requires two synchronization messages for each DMA data

transfer (step (1) and (3)) and the packetizing of tokens is realized in step (2). For

every read request of a single data token, the producer sends all its available data to

the consumer. Therefore, we refer to this mechanism as dynamic packetizing. The

only way to control the dynamic packetizing is by setting the size of the memory

buffer, i.e., the larger the size, the larger the packet’s size that can be assembled.

FIFO Communication on The Intel IXP

Since the FIFO is such a central element in the IXP, different implementations exist.

We have found that six different FIFO types can be realized on the IXP as shown

in Figure 6.4. The various realizations make a different trade-off between speed,

claimed resources, and size. A short description of the different realizations is given

below:



6.2 Realizing FIFO Communication 117

Scratchpad
memory 64 rings64 rings

Microengine x

SRAM

Local memory

Microengine y

Local memory
Next 

Neighbour

16 rings

1

2

3

4 5 6

Direct Xfer register 

Figure 6.4: FIFO options on the IXP2400

1. Local memory. Each microengine has a fast accessible local memory of 640

longwords (2Kb) that is shared among all threads running on that microengine.

It can be used to implement a very fast FIFO channel between processes mapped

onto the same microengine.

2. Next-neighbor. Each microengine has 128 next-neighbor registers. They can

be used to implement a very fast, dedicated, FIFO channel between processes

mapped onto a limited set of other microengine that are neighbors. The regis-

ters can be used in three modes: an extra set of general purpose registers, one

FIFO channel of 128 longwords, or as 128 separate registers accessible by the

neighboring microengine.

3. Direct Transfer registers. Each microengine has 128 SRAM and 128 DRAM

registers. They can be used to exchange date with any other process on a

microengine. The direct transfer registers use the standard bus and are slower

than the previously explained communication mechanism.

4. Scratchpad rings. There are 16 sets of special ring registers available on the

scratchpad unit. These ring registers provide hardware support to implement

the head and tail pointers of a FIFO channel located on the scratchpad memory.

5. Scratchpad memory. The ring registers can also be implemented in software

directly. These software ring registers implement the head and tail pointers

of a FIFO channel located on the scratchpad memory. This is much slower

mechanism than the hardware ring register support.



118 Executing PPNs on Fixed Programmable MPSoC Platforms

6. SRAM. SRAM rings are hardware supported FIFO channel implementations.

Each SRAM memory channel has a queue descriptor table which can hold 64

values. Since the IXP2400 has two SRAM memory channels, a total of 128

rings are available.

When very fast FIFO channels are needed, the local memory or next-neighbor reg-

isters should be employed. If this is not possible, the hardware support ring registers

and scratchpad memory should be used. If this is not possible, the software sup-

ported rings should be used. Finally, the SRAM supported FIFO channels should

be used. They are the slowest, but can hold the largest amount of data. We imple-

mented a very simple assignment strategy for the processes and FIFO channels of a

PPN. FIFO channels are assigned in a greedy way to the fastest possible location. If

the FIFO buffer is too large for that location, it is assigned to the next fastest FIFO

location.

6.3 Performance Results

We use the techniques presented in Section 6.2 to execute PPNs on the IXP and Cell.

We measure the performance results and compare them with results on the dedicated

ESPAM platform that is designed to execute PPNs as efficiently as possible.

The Cell

In this section we present several experiments of PPNs mapped onto the Cell plat-

form. The goal is to show the impact of tokens packetizing on synchronization over-

head induced in the class inter FIFO channels using the pull strategy. In addition, we

compare the results of two PPNs mapped onto the Cell with the results for the same

PPNs mapped onto the ESPAM platform. The Cell experiments are carried out on

the Playstation 3 platform, where the program code has been compiled with

IBM’s XLC compiler and the libspe2 library.

In the first experiment we map a JPEG encoder application onto the Cell BE plat-

form. The encoder takes a stream of frames with sizes of 512×512 pixels and applies

the JPEG algorithm on these frames. The corresponding PPN consists of 7 processes

and 15 FIFO channels. We map the computationally intensive processes DCT, Q and

VLE on different SPEs, whereas the other processes are mapped onto the PPE. For

this application, buffer sizes of 1 will give a deadlock free network, which means that

we can observe token packetizing only when the buffer sizes are increased. There-

fore, we run the PPN with four different configurations: we use FIFO buffer sizes of

1, 16, 32 and 48 tokens.



6.3 Performance Results 119

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DCT Q VLE DCT Q VLE DCT Q VLE DCT Q VLE

Tasks on SPE

D
is

tr
ib

u
ti

o
n

Compute Stall Comm

FIFOs=1 FIFOs=48FIFOs=16 FIFOs=32

Figure 6.5: Distribution of times the DCT, Q and VLE processes of JPEG encoder

spent in computation, stalling and communication for non-packetized and packetized

versions.

All bars in Figure 6.5 depict the distribution of the time the DCT, Q and VLE tasks

spend in computing, stalling and communicating. Each bar shows how much time

processes spend on real computations and thus also how much time is spent in the

communication overhead. While stalling, a process is awaiting the synchronization

messages from other processes, i.e., showing the synchronization overhead. In the

communicating phase, a process is transferring the actual data. The first 3 bars in

Figure 6.5 correspond to the configuration with all buffer sizes set to one token. The

remaining bars show results of configurations with larger buffer sizes illustrating the

effect of token packetizing. We observe a redistribution between computation and

stalling fractions in all tasks: the stalling parts have been decreased, while the com-

putation parts were increased. Thus, the packetizing decreases the synchronization

overhead. In Figure 6.6, the overall performance of the PPN with different buffer

sizes is shown. We observe that the performance increases when the processors spend

less time in synchronization.

In four more experiments, we want to investigate the benefits of packetizing in ap-

plications with different computation-to-communication ratios. For this purpose, we

mapped JPEG2000, MJPEG, Sobel, and Demosaic applications onto the Cell BE.

The first two application have coarse-grained computation tasks, while the latter two

are communication dominant. For each application, we compare the throughput of

the sequential version running on the PPE and two parallel versions: the first one is

with minimum buffer sizes that guarantee deadlock free network, i.e., without pack-

etizing possible, and the second, with buffer sizes which are larger than the previous

version to allow packetizing. The experiments are depicted in Figure 6.7. Note that

the y-axis is a log scale of the throughput in Mbs (mega bits per second).



120 Executing PPNs on Fixed Programmable MPSoC Platforms

0

2

4

6

8

10

12

FIFO=1 FIFO=16 FIFO=32 FIFO=48

FIFO sizes

T
h

ro
u

g
h

p
u

t 
(M

b
s

))

Figure 6.6: Throughput of JPEG encoder with different FIFO sizes

0,000

0,001

0,010

0,100

1,000

10,000

JPEG2000 (8/6) MJPEG (7/5) Sobel (5/3) Demosaic

(14/6)

T
h

ro
u

g
h

p
u

t 
 M

b
s

 (
lo

g
))

Sequential

Not packetized

Packetized

Figure 6.7: Throughput comparison of sequential, non-packetized and packetized

versions of JPEG2000, MJPEG, Sobel, and Demosaic applications.

For all algorithms, the packetized versions work better than the non-packetized ver-

sion. As the JPEG2000 and MJPEG are characterized by their coarse grain tasks,

the communication overhead is insignificant and we see that the parallel versions are

faster than the sequential version for all, but non-packetized MJPEG algorithms. The

Sobel and the Demosaic kernels have very lightweight tasks. Thus, the introduced

inter-processor communication and overhead are more costly than the computations

themselves. This is the reason the bars in the third and fourth experiments in Fig-

ure 6.7 show a significant slow-down compared to the sequential application. The



6.3 Performance Results 121

conclusion is not to consider parallelization for communication dominant applica-

tions on the Cell BE platform. We, therefore, ignore the Sobel and Demosaic appli-

cations in the comparison of the performance results for applications mapped onto

both the Cell and the ESPAM, i.e., we focus on the JPEG2000 and MJPEG applica-

tions. The measured performance results for the JPEG2000 application on the Cell

and ESPAM are shown in Table 6.1.

Arch. # clock cycles CPU freq. time (sec)

Cell 288 · 106 3.2 Ghz 0.09

ESPAM 60 · 106 100 Mhz 0.6

Table 6.1: Measured Performance Results JPEG2000

We observe that the execution time (i.e., the fourth column) is much smaller on the

Cell than on the ESPAM platform. This result is mainly due to the clock frequency

of the Cell that is a factor of 30 higher than the ESPAM platform. Despite this factor

of 30 in the clock frequency, the execution time is not 30 times better on the Cell,

instead, it is only 7 times better. We observe the same trend for the execution times

of the MJPEG application shown in Table 6.2.

Arch. # clock cycles CPU freq. time (sec)

Cell 1200 · 106 3.2 Ghz 0.375

ESPAM 300 · 106 100 Mhz 3

Table 6.2: Measured Performance Results MJPEG

The execution time of the MJPEG application is roughly 10 times better on the

Cell compared to the ESPAM. Hence, we conclude that the Cell platform is a good

platform to obtain low absolute execution time numbers, but it is not necessarily the

most efficient platform. The reason is that its clock frequency is 30 times higher than

the ESPAM platform (i.e., the Cell is power hungry), but the execution times are not

30 times better. Instead, they are only 10 times better. In other words, the Cell is

faster in terms of execution time, but it is not proportional to its much higher clock

frequency. The reason is that the FIFO primitives are more costly on the Cell than on

the ESPAM platform, i.e., there is more overhead because the Cell communication

infrastructure does not support any FIFO communication with hardware components.

The reason that the ESPAM platform runs at 100 Mhz, is that it is prototyped on

FPGAs. If the ESPAM platform is implemented in ASIC technology as the Cell and

the IXP, then the frequency can be higher. As a result, the ESPAM platform would

become better in terms of performance than the Cell and the IXP running at a lower

frequency, which means that it is also more power efficient.



122 Executing PPNs on Fixed Programmable MPSoC Platforms

The Intel IXP

In the experiments for the IXP processes, we consider the QR matrix decomposition

algorithm. The corresponding PPN consists of 5 nodes and 12 FIFO channels, see

also Figure 5.11. Each process is mapped on a microengine and all FIFO channels are

mapped on hardware assisted scratchpad memory rings, i.e., option 4 in Figure 6.4.

The reason to map all FIFOs using option 4 is that all FIFOs fit in that memory and

that we can actually test the provided hardware support for FIFO communication

of the IXP. Note that despite this hardware support for FIFO communication, there

is a small software interface implementation that takes care of the FIFO read/write

function calls in the read/write phases of the processes. We do not consider the next

neighbor link, i.e., option 1 in Figure 6.4, because only 1 FIFO can be mapped and

the storage space is limited. Furthermore, we chose not to implement the process

functions such that we measure only the FIFO communication in the PPN. Process-

ing a 5x6 version of QR took 40247 cycles on the IXP as shown in the first row of

Table 6.3. Note that this measurement only says something about the FIFO commu-

nication (read and write phase of a process) as no real function is executed.

Arch. # clock cycles CPU freq. time (µs)

IXP 40247 600 Mhz 67

ESPAM: 5 MB 3865 100 Mhz 39

ESPAM: full HW 213 108 Mhz 2

Table 6.3: Measured Performance Results QR

To assess the efficiency of our FIFO implementation on the Intel IXP processor, we

create two ESPAM hardware solutions prototyped on a Xilinx FPGA for the same

QR application and compare the performance numbers. We create a platform with

5 Microblaze microprocessors for each process of the PPN, and connect the proces-

sors with a dedicated crossbar. The other hardware platform that we create does not

use any microprocessors, but all functionality is implemented in hardware, i.e., a full

hardware solution. The measured performance results for these two hardware plat-

forms are respectively shown in row 2 and 3 in Table 6.3. It can be seen that the 5 Mi-

croBlaze microprocessor platform executes the QR application in 3865 cycles, while

the full hardware implementation executes in 213 cycles. If we take into account the

frequencies of the different platforms, i.e., the 3rd column in Table 6.3, then we can

compute the execution times that are shown in the 4rd column. These execution times

allow a comparison of the QR PPN implementation on 3 different platforms. We ob-

serve that the IXP implementation is the slowest, despite the fact that it is running

at the highest frequency. We conclude that the more dedicated the communication

gets, the higher the performance, i.e., there is roughly a factor of 30 between the ex-



6.4 Discussion and Summary 123

tremes: the software solution on the IXP and the ESPAM full hardware solution. In

the IXP we need to share a bus, in the FPGA with MicroBlazes we share a crossbar to

communicate between MicroBlazes, and in the full hardware implementation, only

dedicated FIFO channels are used to communicate between processes. Moreover, in

the IXP there is still some synchronization and control required to handle all FIFO

accesses, while in the hardware platforms the producer/consumer pairs are truly de-

coupled. If we compare the IXP with the 5 MicroBlaze processor ESPAM platform,

then the execution time is almost 2 times worse, while the frequency of the IXP is 6

times higher. Thus, Table 6.3 illustrates the penalty that must be paid for mapping

PPNs onto a platform that does not support the execution of PPN as efficiently as

ESPAM does.

6.4 Discussion and Summary

In this chapter, we showed approaches to execute PPNs on the Cell and IXP plat-

forms, i.e., two commercial-off-the-shelf (COTS), programmable MPSoC platforms.

We compared the measured performance results of PPNs executed on these 2 plat-

forms with the performance results obtained on the ESPAM platform. The Cell, IXP,

and ESPAM platforms can be characterized as follows: the ESPAM is the most ded-

icated regarding the execution of PPNs and is prototyped on a FPGA, the IXP is

dedicated to streaming data, but is not as dedicated in executing PPNs as ESPAM,

and the Cell is the most general purpose compute platform. The platforms run at

different frequencies: the ESPAM platform is prototyped on a FPGA and thus runs

at 100 Mhz, the IXP runs at 600 Mhz, and the Cell at 3.2 Ghz.

In Section 6.3, we have shown experiments of PPNs executed on these 3 different

platforms. Thus, we were able to compare the execution time of the PPNs. From the

experiments in Section 6.3, it becomes clear that the IXP processor is not the best

platform a designer can select if he/she is free to choose any of these 3 platform as

the target platform. Despite the FIFO support in the IXP, the measured execution

times of the PPNs are higher than on the dedicated ESPAM platform, while the IXP’s

clock frequency is 6 times higher than the ESPAM platform. The Cell platform on

the other hand, can be a very good platform candidate. Its very high clock frequency

compensates the lack of the hardware FIFO support and the overhead caused by the

software implemented FIFO communication. However, this overhead makes the Cell

not the most efficient platform. While its frequency is 30 times higher than the ES-

PAM platform, the execution time is only 7 times better. Therefore, we conclude

that the Cell is the best platform to obtain the lowest absolute performance numbers.

However, the Cell is also the most power hungry solution since it runs at 3.2 Ghz.

The frequency of the ESPAM platform can be increased if implemented on the ASIC



124 Executing PPNs on Fixed Programmable MPSoC Platforms

technology like the Cell. Then, the ESPAM platform would not only give the best

absolute performance results, but it would also be more power efficient. In addition,

we remark that PPNs with very light-weight tasks can result in execution times on the

Cell that are worse than the sequential version of the application. Again, the reason

is the expensive software implemented FIFO communication on the Cell platform.

This fact indicates that the designer must carefully take into account the properties

of the PPN and the platform in his decision to choose a particular platform. In any

case, the ESPAM platform is the most efficient one because it is dedicated to execute

PPNs as efficiently as possible.


