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Chapter5
Appling Transformations in

Combination

In Chapter 3 we have discussed a compile-time approach for evaluating the process

splitting transformation [51, 78, 79], and in Chapter 4 an approach for evaluating the

process merging transformation [53]. These two parameterized transformations play

a vital role in meeting the performance/resource constraints. The splitting transfor-

mation is parameterized in the sense that a given process can be split up in many

different ways, and the designer must choose a specific splitting factor (i.e., the num-

ber of created copies). For the merging transformation, it is obvious that the designer

must decide which processes to merge. The problem is that, for both transformations,

the designer must select a particular process(es) to apply the transformations on in

order to achieve good results. This is not a straightforward task as we explain in Sec-

tion 5.2.2. In addition to this, both transformations can be applied one after the other

and in a different order with different parameters which may, or may not, give better

results than applying one transformation only. Therefore, in this chapter we

• investigate whether applying the two transformations in combination can give

better performance results than applying only one,

• propose a solution approach that solves the very difficult problem of determin-

ing the best order of applying the transformations and the best transformation

parameters,

• relieve the designer from the difficult task of selecting processes on which the

applied transformations have the largest positive performance impact, and

• present a solution approach that exploits available data-level parallelism in

cyclic PPNs and/or PPNs with stateful processes.
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Figure 5.1: Deriving and Transforming Process Networks

In this Chapter, we apply the different transformations in combination on the initial

PPN shown in Figure 5.1. Arrow II is an example of applying the process split-

ting transformation on process P1 . The transformed network has two processes P1

executing the same function such that the data tokens are delivered twice faster to

the consumer process P2 . Recall from Chapter 3, that we refer to the two processes

P1 as process partitions of P1 . Arrow III is an example of transforming the ini-

tial PPN by applying the merging transformation on processes P2 and P3 to create

compound process P23 . The problem how to apply each transformation has been

discussed in the previous chapters. However, still a remaining challenge is to devise

a holistic approach to help the designer in transforming and mapping PPNs onto the

available processing elements of the provided target platform to achieve even bet-

ter performance results using the two transformations in combination. In the next

section, we first investigate the effects on the performance results of applying both

transformations in combination. Next, we propose a solution how to order them, and

finally we present two case-studies.
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5.1 Impact of the Transformation on Performance Results

We investigate whether applying both the process splitting and merging transforma-

tions in combination gives better performance results than applying only one transfor-

mation. Consider the initial and transformed PPNs in Figure 5.1. Each process Pi is

annotated with the time T iter
Pi

that is required to execute one process iteration, which

includes the time for executing the process function and also the FIFO communica-

tion costs, see Definition 3.9. For example, a process iteration of P1 is completed in

10 time units, i.e., T iter
P1 = 10, while P2 is a computationally less intensive process

as one process iterations is completed in only 6 time units, i.e., T iter
P2 = 6. Process

P1 determines therefore the system throughput of the initial PPN. The throughput is

denoted by τout and we define it as the number of tokens produced by the network per

time unit (see Definition 18 in Section 4.2). Since P1 is the most computationally in-

tensive process that fires each 10 time units, the throughput and number of produced

tokens is 1
10 tokens per time unit. Now we show and discuss many different examples

in this section to illustrate how difficult it is for a designer to apply transformation,

even for such a simple initial PPN as shown in Figure 5.1.

5.1.1 Transforming a PPN to Create More Processes

If we want to increase the performance results for a given PPN, the number of pro-

cesses can be increased using the process splitting transformation to benefit from

more parallelism. In this subsection we, therefore, show two different PPNs con-

sisting of 4 processes that are derived from the same initial PPN consisting of 3

processes. The first transformed PPN is derived from the initial PPN in Figure 5.1

using only the process splitting transformation, and the second is derived from the

initial PPN using both the process splitting and merging transformation.

Transformed PPN1 (only splitting)

We split up process P1 two times as shown in Figure 5.1. Then there are 2 processes

that generate data in parallel for consumer process P2 . As a result, process P2

receives its input data twice as fast. Therefore, we say that process P2 receives its

data with an aggregated throughput of 1
10+

1
10 = 1

5 . We know that the slowest process

in a network determines the system throughput and to check this, we compare the

incoming throughput of a process with the time it takes to fire that process function.

While P2 receives its input data with a throughput of 1
5 tokens per time unit, it

can only produce tokens with a throughput of 1
6 (T iter

P2 = 6). This means that the

input tokens arrive faster than P2 can process them. To calculate the overall system

throughput, we therefore propagate the throughput τ = 1
6 of P2 to sink process P3

and compare what is slower: the arrival of the input data, or the firing of process P3 .



88 Appling Transformations in Combination

We see that P3 can process data much faster than it actually receives since T iter
P3 = 1,

but still it produces tokens with a throughput of 1
6 caused by the slowest process P2 .

The overall system throughput is therefore τout =
1
6 and is determined by P2 . Thus,

we have derived a PPN that gives a throughput τout =
1
6 that is much better than the

initial throughput τout =
1
10 .

Now we investigate whether we can derive another network with 4 processes, using

both the process splitting and merging transformations in combination, that gives

even better performance results than our previous example.

Transformed PPN2 (splitting+merging)

We apply first the process splitting transformation on processes P1 , P2 , and P3

from the initial PPN in Figure 5.1 to derive the transformed PPN shown in Fig-

ure 5.2 A). Two independent data paths are created each consisting of 3 processes.
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Figure 5.2: Transformed PPN2: Splitting and Merging to Create 4 Processes

In each data path, process P1 is the bottleneck process such that tokens are deliv-

ered with a throughput of 1
10 . Since there are two data paths, we say that the overall

system throughput of the transformed PPN in Figure 5.2 A) is τout =
1
5 . When we

merge P2 with P3 , process P1 remains the bottleneck and the throughput is un-

affected as shown in Figure 5.2 B). Thus, we have derived a PPN with 4 processes

that gives better performance results compared to the previous example Transformed

PPN1 (only splitting) shown in Figure 5.1. That is, applying both transformations

in combination achieves a throughput of τout =
1
5 , while applying only the process

splitting transformation gives a throughput τout =
1
6 . In fact, to create a PPN with

n processes from the initial PPN in Figure 5.1, the best performance results that can

be achieved by using the process splitting transformation only, will never be better

than the best performance results that can be achieved by applying both transforma-

tions in combination. Therefore, this example shows that both transformations must

be used in combination to achieve better performance results.
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5.1.2 Transforming a PPN to Reduce the Number of Processes

A designer sometimes needs to reduce the number of processes for a given PPN in

order to meet resource constraints. Another reason to merge processes, is that in some

cases the same performance can be achieved using less processes. In this subsection,

our objective is to derive a PPN consisting of 2 processes when this is required for

one of the two reasons mentioned above. We start with the initial PPN in Figure 5.1

that has 3 processes and investigate again whether the combination of applying the

transformations is important when the number of processes in the network must be

reduced.

Transformed PPN3 (only merging)

A transformed PPN with 2 processes is shown in the bottom right part of Figure 5.1,

which is obtained by applying only the process merging transformation. The result-

ing network has the same throughput as the initial PPN, but uses one process less. By

merging 2 light-weight processes P2 and P3 , process P1 remains the most compu-

tationally intensive process. As a result, the system throughput remains the same as

in the initial network, i.e., τout =
1
10 .

Transformed PPN4 (splitting+merging)

An alternative using both the process splitting and merging transformations is shown

in Figure 5.3.
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Figure 5.3: Transformed PPN4: Creating 2 Load-Balanced Tasks

All processes are first split up two times as shown in Figure 5.3 A). Then, two com-

pound processes are created by merging a process partition of each process into a

compound process P123 as shown in Figure 5.3 B). The time for one process itera-

tion of the compound process is T iter
P123 = T iter

P1 + T iter
P2 + T iter

P3 = 17 time units, be-

cause all process functions are executed sequentially. This means that the compound
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process delivers tokens with a throughput of τP123 = 1
17 . Since we have 2 compound

processes, the resulting overall throughput is τout = 1
8.5 , which is better than the

throughput τout =
1
10 of our previous example Transformed PPN3 (only merging)

shown in Figure 5.1. This is another example which shows that both transformations

should be applied in combination to obtain better performance results, which cannot

be obtained by only one transformation (i.e., the merging transformation in this case).

5.1.3 The Optimization Pitfall: Performance Degradation

We have shown that there is great potential in using both transformations in combi-

nation, but a designer should be very careful how the transformations are applied,

otherwise performance degradation may be encountered. We illustrate this with two

examples using both the process splitting and merging transformations. First we

show an example for a PPN with 4 process and then for a PPN with 2 processes.

Transformed PPN5 (splitting+merging)

We start with the initial PPN in Figure 5.1, which consists of 3 processes, and split

up both processes P1 and P2 to obtain the PPN shown in Figure 5.4 A).
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The network has a throughput of 1
5 using 5 processes, while our objective is to use 4

processes. Therefore, we merge two light-weight processes P2 and P3 . The created

compound process P23 has a process iteration time T iter
P23 = 7 time units and is

the bottleneck process of the network. The overall system throughput is, therefore,

determined byP23 and is τout = 1
7 . In this way, we have derived another PPNwith 4

processes that performs better than the initial process network (τout =
1
10 ). However,

the throughput τout =
1
7 is worse than the throughput achieved by applying only the

splitting transformation, i.e., transformed PPN1 (only splitting) in Figure 5.1 with a

throughput of τout =
1
6 and subsequently also worse than Transformed PPN2 shown

in Figure 5.2 B) that has a throughput τout =
1
5 .
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Transformed PPN6 (splitting+merging)

We have shown two examples to transform the initial PPN in Figure 5.1 into a PPN

with 2 processes in Transformed PPN3 and Transformed PPN4 . Both give good

performance results, but now we give an example of a PPN that performs worse. An-

other possibility to create a PPN with 2 process is to first split up the computationally

most intensive process P1 as shown in Figure 5.5 A). Then, two compound processes
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Figure 5.5: Transformed PPN6: Splitting and Merging to Create 2 Processes

are created, one by merging process P1 with P3 , and the other one by merging pro-

cess P1 and P2 . We see that a topological cycle is introduced by merging processes

in this way and we find that the system throughput is τout =
1
16 tokens per time unit.

This result is worse than Transformed PPN3 and Transformed PPN4 that have a

throughput of τout =
1
10 and τout =

1
8.5 , respectively.

In this section, we have shown that it is necessary to apply both the process splitting

and merging transformations in combination to achieve better performance results

that cannot be achieved by applying only one transformation in isolation. On the

other hand, performance degradation may be encountered if the transformations are

not applied properly. So the question is how a designer should apply the transfor-

mations properly, i.e., choosing the best possible order of transformations and their

parameters. In the next section, we show our solution approach that addresses these

issues.

5.2 Compile-Time Solution for Transformation Ordering

Before introducing our solution in a more formal way, we show how our approach

intuitively works for the examples discussed in Section 5.1. We have already shown

3 different PPNs consisting of 4 processes that were derived from the same initial

PPN. The first transformed PPN is obtained by using only the splitting transforma-

tion as shown in Figure 5.1. In two other examples, shown in Figure 5.2 B) and
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Figure 5.4 B), different networks were obtained by consecutively using the process

splitting and merging transformations. Our solution approach, however, gives a dif-

ferent solution and also gives better performance results as we show with the exam-

ples in Figure 5.6.
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In our simple, elegant but yet very effective solution approach, we first split up all

processes with a splitting factor that is specified by the designer. This splitting fac-

tor can, for example, be the number of available processing elements of the target

platform, or simply the number of tasks the designer wants to create. Since in our

examples the goal is to transform and create a PPN with 4 processes, we split up all

processes 4 times as shown in Figure 5.6 A). In this way, we create a PPN consisting

of 12 processes. Next, we merge back process partitions into compound processes

such that they contain one process partition of each process. Figure 5.6 B) shows

these compound processes P123 . Note that the self-edges for two compound pro-

cesses have been omitted for the sake of clarity. The time to execute one process

iteration of the compound processes is 17 time units, which is obtained by sum-

ming the process iteration time of the individual processes. Thus, we know that each

compound process produces 1
17 tokens per time unit. Since there are 4 compound

processes, the overall system throughput τout = 4
17 = 1

4.25 , which is better than

all other transformed PPNs with 4 processes shown in Figure 5.1, Figure 5.2 B), and

Figure 5.4 B).

The initial PPN in Figure 5.1 is transformed in a similar way if the number of

processes needs to be reduced. We have already shown 2 examples and our solution is

already given in Figure 5.3; all processes are first split up 2 times, and then compound

processes are created by merging different process partitions such that the resulting

transformed network consists of 2 processes.
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5.2.1 Creating Load-Balanced Tasks

While we illustrated our solution approach with examples in the previous section, a

more formal description of our solution approach is given with the pseudo-code in

Algorithm 2. We create a number of tasks from an initial PPN based on the combina-

tion of two transformations: i) the processes are split-up first, and ii) load-balanced

tasks are created by using the process merging transformation.

Algorithm 2 : Task Creation Pseudo-code

Require: A Polyhedral Process Network PPN with n processes,

Require: A process splitting factor u.

for all Pi ∈ PPN do

{Pi1, Pi2, .., Piu} = split(Pi, u)
end for

for i = 1 to u do

PCi = merge({P1i, P2i, .., Pni})
end for

return all compound processes PCi

Algorithm 2 uses two functions: split and merge. For the former, we refer

to Chapter 3 in which it is shown that a process can be split up in many different

ways and how to select the best splitting. We use the approach in Chapter 3 to se-

lect and perform the processes splitting. For the process merging transformation, we

rely on the approach described in Chapter 4. We add to this approach a procedure to

cluster producer-consumer pairs of processes. By clustering producer-consumer pro-

cesses, communication between these processes stays within one compound process

after merging. Thus, it tries to avoid communication and synchronization of differ-

ent compound processes. An example of this is given in Figure 5.6. One process

partition of P1 has only one channel to P2 , which in turn has only one channel to

P3 . Merging processes in this sequence results in compound processes that do not

have any communication channels among them. It is not always possible to obtain

completely independent compound processes. If one producer process has multiple

channels to consumer processes, as shown in Figure 5.7 A), one particular consumer

has to be selected and merged with the producer.

If we start with the first partition of P1 , i.e., grey process P1 in Figure 5.7 A), then

we see that it has two outgoing channels to two process partitions of P2 . Regardless

which partition of P2 is chosen for merging, the resulting compound processes will

have channels for data communication between them as shown in Figure 5.7 B).

In our approach, we simply consider the first outgoing channel and corresponding

consumer process, and merge it with the producer. We mark this consumer as being

merged already, to avoid that it will be selected again.
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5.2.2 Selecting Processes for Transformations

Our solution approach in Section 5.2.1 solves another problem indicated in the intro-

duction of this chapter, i.e., how to select processes to be transformed on which the

transformations have the largest positive performance impact. For the process split-

ting, it is important to find the bottleneck process of the network, because splitting

is the most beneficial when applied on the bottleneck process. For process merging,

it is important to avoid merging the bottleneck process, i.e., not introducing an even

larger bottleneck process. In general, however, it is not possible at all to determine

a single bottleneck process. The reason is that, in PPNs, different data paths can

transfer a different number of tokens. As a result, different processes can determine

the overall system throughput at different stages during the execution of the network,

which we illustrate with the example shown in Figure 5.8.

The network has two datapaths DP1 = (P1 ,P2 ,P3 ,P6 ) and DP2 = (P1 ,P4 ,

P5 ,P6 ) that transfer a different number of tokens. This is the result of the commu-

nication patterns [1100000] and [0011111] at which process P1 writes to its

outgoing FIFO channels. A ”1” in these patterns indicates that data is read/written

and a ”0” that no data is read/written. So, the FIFO channel connecting P1 and

P2 , for example, is written the first two firings of P1 , but not in the remaining 5

firings. As a consequence of these patterns, more tokens are communicated through

the second datapath DP2 . At the bottom of Figure 5.8, the different time lines of the

processes are shown. Each block corresponds to a firing of that process producing

data, and the arrow indicates the dependent consumer process. In this way, a full

simulation of the process network is shown. We observe that, despite process P2 ’s

largest process iteration time T iter
P2 = 10 time units, process P4 with T iter

P4 = 6 is

determining the throughput most of the time. This illustrates that, in general, due

to the varying and possibly complicated communication patterns, it is not possible

to decide which process to split up for a more balanced network. Our solution ap-

proach in Section 5.2.1, solves this problem as the transformations are applied on all
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processes and, therefore, it is not necessary to select particular processes.

5.3 Exploiting Data-Level Parallelism

The idea of our approach presented in Section 5.2 is to create load-balanced tasks that

exploit data-level parallelism as much as possible. In this section, we want to show

that our simple solution always results in performance gains when there is data-level

parallelism to be exploited. The degree of data-level parallelism that can be exploited

is determined by:

1. Processes with self-edges in a PPN. Similar to the definition used in [31], we

refer to data-level parallelism when processes do not dependent on previous

firings of itself. Obviously, when there is no self-edge, the process is stateless

and an arbitrary number of independent process partitions can be created that

run in parallel. When a process has a self-edge, however, it produces data for

itself and there exists a dependency between different firings of that process.

Then, we refer to such a process as stateful.

2. Cycles in a PPN. A cycle can be responsible for sequential execution of the

processes involved in the cycle. If this is the case, we call it a true cycle.
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Despite stateful processes and topological cycles, PPNs may still reveal some data-

level parallelism which is exploited by our solution approach. This means that our

solution approach gives better performance results when there is data parallelism to

be exploited, and the same performance as the initial PPN if there is nothing to be

exploited. In addition to cycles and stateful process, the workload balancing of the

initial PPN is another important factor that determines whether performance gains

are possible. We therefore first discuss this workload balancing before we elaborate

how to exploit more data-level parallelism for stateful processes and cyclic PPNs.
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Balanced PPNs

Let us consider the PPN shown in Figure 5.9 and its two processes P1 and P2 .

• The PPN and its processes P1 and P2 shown in Figure 5.9 are balanced, be-

cause T iter
P1 = T iter

P2 = t time units. The throughput of the PPN is therefore

τout =
1
t
. If we apply splitting and merging, as illustrated with the arrows in

Figure 5.9, then a compound process has a throughput of τ = 1
2t . Since there

are two compound processes the overall throughput is τ ′out = 2 · 1
2t = 1

t
.

Thus, we see that the new throughput τ ′out is the same as the throughput of the

initial PPN, that is, τ ′out = τout.

Now let us consider the other case:

• Suppose that the PPN in Figure 5.9 and its processes P1 and P2 are imbal-

anced, then we have T iter
P1 = t and T iter

P2 = t + x, where x > 0. The

throughput of the initial PPN is τout = 1
t+x

. Then, we apply our solution

approach and create 2 independent streams. Each compound process has a

throughput of τ = 1
T iter
P1

+T iter
P2

= 1
2t+x

. Since we have 2 parallel streams, the

throughput is τ ′out = 2
2t+x

. If we want to know when splitting and merging

is worse compared to the initial PPN, then we have: 2
2t+x

< 1
t+x

. From this

inequality it follows that x < 0, which contradicts with the assumption that the
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network is imbalanced, i.e., x > 0. Thus, the new throughput is the same or

better than the initial PPN, i.e., τ ′out ≥ τout.

We have shown that τ ′out = τout when the initial network is already balanced and

τ ′out ≥ τout when this is not the case. In other words, applying our approach results

in performance gains when there is something to be gained by load balancing. Next,

we discuss how our approach exploits data-level parallelism for PPNs with cycles

and/or stateful processes.

5.3.1 Stateful Processes

When a stateful process is split up, then the different process partitions must com-

municate data as a result of a dependency between different process iterations. The

question whether partitions of a split up process have overlapping executions or not

depends on the distance, in terms of a number of process firings, between data pro-

duction and consumption. If data is produced by a process for the next firing of the

same process (i.e., the distance is 1), then there is no data-level parallelism to be

exploited and splitting such a process results in sequential execution of the process

partitions. However, when the distance is larger than 1, then some copies of that pro-

cess have some data parallelism that can be exploited by the process splitting trans-

formation. If, for example, the distance between data production and consumption is

5, then 5 process firings can be done in parallel before communication and synchro-

nization is required again. Applying our solution approach, splits up all processes

first. As a result, the same functions are executed by several process partitions. The

necessary FIFO communication channels are automatically derived in case the split

up processes are stateful. In this way, the different process partitions overlap their

firings when this is allowed by the self-dependences, i.e., the dependence distance is

larger than 1, and synchronize their firings when necessary.

5.3.2 Cycles

For transforming processes that form a topological cycle, it is important to realize that

the process splitting and merging transformations do not re-time any of the process

firings. This means that the process firings are not re-scheduled, but only assigned to

different process partitions. Therefore, a cycle present in the initial PPN, will not be

removed by our approach and the transformed PPN will have a cycle as well. The be-

havior of the cycle is the most important factor that determines whether performance

improvements are possible or not and we illustrate this with 3 different examples in

Figure 5.10. There are 2 extremes: the first is a true cycle for which nothing can

be gained, and the second is a doubling of the throughput by creating 2 independent

streams. A third example shows a network that gives performance results between
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Figure 5.10: Throughput Possibilities after Splitting a Cycle 2 Times

the two extremes. For the three examples in Figure 5.10, we discuss how: i) the ini-

tial load balancing, and ii) the inter-process dependencies after splitting play a role

on the performance results.

Extreme I (same throughput): We already mentioned that for true cycles all pro-

cesses involved in such a cycle execute sequentially. That is, data is typically read

once from outside the cycle and then data is produced/consumed for/from processes

belonging to that cycle. For the initial PPN in Figure 5.10, this can mean that P1

reads from its input channel once, and then produces/consumes from the 2 channels

to/from P2 . If P1 injects a data token in the cycle in one firing and reads a token

from the feedback channel in the next firing, then processes P1 and P2 execute in a

pure sequential way. It is clear that for this type of cycles, performance gains are not

possible. Applying our solution approach on a true cycle, as shown with Case I

in Figure 5.10, gives the same performance results as the initial PPN. The reason is

that after splitting, the cycle is present as a path connecting P1 ,P2 ,P1 ,P2 ,P1 , and

after merging this sequential firing sequence is not changed as the dependencies and

sequential execution do not allow any overlapping executions.

Extreme II (doubled throughput): Another extreme is a transformed network with

independent data paths. The initial PPN from which this transformed PPN is derived,



5.4 Case-Studies 99

is topologically the same as the initial PPN in Case I, but the behavior is different,

i.e., it is not a true cycle because P1 injects first, for example, at least 2 tokens before

reading data from the cycle. Thus, depending on the behavior of the cycle, split-

ting processes can result in different paths where the cycle connects only processes

in the same path. In other words, independent streams can be created as illustrated

with Case III in Figure 5.10. This can easily happen when we split processes, for

example, 2 times such that the even executions of that process are assigned to one

process partition, and the odd executions to another partition. If the cycle and thus

the dependent producer and consumer executions are from even to even executions

and from odd to odd executions, then the communication remains local to one data

path as shown in Case III of Figure 5.10. This is an example of a cyclic PPN that

has the potential to scale linearly with the number of created streams. Having a trans-

formed PPN with independent data paths, however, does not automatically mean that

performance gains are possible. Besides the dependencies as we have just discussed,

the workload balancing of the initial PPN is another important factor. For our exam-

ple with the 2 independent data paths, it can still happen that the same throughput as

the initial network is achieved, i.e., τ ′out = τout, when the initial network is already

perfectly balanced. That is, for a network that is already balanced, there is nothing to

be gained with load-balancing. On the other hand, when the two processes are highly

imbalanced, then a doubling of the throughput can be approached.

Between the 2 Extremes: The last case to be discussed from Figure 5.10, is Case II

that gives performance results between the two extremes as discussed above. After

splitting and merging, the compound processes are connected with one communica-

tion channel. Depending on how many times synchronization and data communi-

cation occurs between the compound processes, the performance results can be the

same as for a true cycle (i.e., sequential execution), or the performance results can

approach a doubling of the throughput if synchronization does not play a role as, for

example, data is communicated only once.

5.4 Case-Studies

To illustrate that our approach works for PPNs with stateful processes and cycles,

we consider 2 different algorithms and implement their initial PPN and transformed

PPNs onto the ESPAM platform prototyped on a Xilinx FPGA [60], [61]. We mea-

sure the performance results to check that indeed the maximum performance gains

are obtained allowed by inter-process dependencies. First, we focus on the QR algo-

rithm, which is a matrix decomposition algorithm that is interesting as the compute

processes have self-edges (stateful processes) and, in addition to this, the PPN is

cyclic. Second, we consider a simple pipeline of processes and we show that our ap-
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proach is as good as the initial network if the network is already perfectly balanced.

5.4.1 QR Decomposition: a PPN with Stateful Processes and Cycles

A QR decomposition of a square matrix A is a decomposition of A as A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. Our imple-

mentation and corresponding PPN is shown in Figure 5.11 A). It consists of 2 source

processes, 1 sink process, and 2 compute processes denoted by V and R. This net-

work is highly imbalanced as process R fires more times and is also computationally

more intensive than V . Applying the process splitting transformations on processes

V and R gives as a result the network shown in Figure 5.11 B). We apply our solu-

tion approach and merge process partitions of V with R (and not V with V ) to create

compound processes V R1 and V R2. We do this by considering first one partition of

V in the network and see that it has outgoing FIFO channels to another partition of

V and to one partition of R. These two process partitions are merged and in a similar

way the second compound process is created. The final result and transformed PPN is

shown in Figure 5.11 C). In all our experiments, we assume that source and sink pro-

cesses cannot be transformed. The reason is that, for example, these processes read

and write data from/to a memory location, which can only be done by one process

sequentially and, thus, not by multiple processes in parallel.

R
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SinkSource 2
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Figure 5.11: A) Intial PPN for QR Decomposition Algorithm, B) PPN with split up

processes V and R, and C) load-balanced PPN with compound processes.

The resulting network is perfectly balanced. To implement the network, we apply

a one-to-one mapping of processes to processors and thus 5 processors are used in

total. To be more specific, the processes are executed as software routines on soft-

core MicroBlaze processors, which are point-to-point connected. Figure 5.12 shows

the corresponding measured performance results on the ESPAM platform [60], [61],
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prototyped on a Xilinx FPGA. The source and sink processes both finish one process

iteration in only 1 time unit, while the compute processes V and R are the computa-

tionally intensive processes which need respectively 100 and 450 time units for one

process iteration.
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Figure 5.12: Measured Performance Results of QR on the ESPAM Platform

The first bar serves as our reference point and it corresponds to the performance

results of the initial PPN shown in Figure 5.11 A). The QR network needs around

6 million cycles to finish its execution and uses 5 processors. For the same num-

ber of processors, our transformation approach gives much better performance re-

sults as shown by the second bar; the compute processes are split-up 2 times and

different partitions are merged, which is denoted by split2+merge and shown in Fig-

ure 5.11 C). When we apply our approach and create 3 compound processes, denoted

by split3+merge, then we even further improve performance results using 6 proces-

sors as shown by the third bar. Next, we compare the results of applying only the

process splitting transformation, denoted by split2 and shown in Figure 5.11 B), with

our approach of splitting processes 4 times and merging different process partitions

into compound processes, denoted by split4+merge. Both experiments use 7 proces-

sors and the 4th and 5th bars show the corresponding performance results. It can be

seen that creating balanced partitions gives better performance results than applying

only the splitting transformation. Note that the initial PPN with 5 processors executes

mostly in a sequential way, i.e., no data-level parallelism is exploited. By applying

our approach, i.e., splitting the compute processes 2, 3, and 4 times, we exploit data

level parallelism and achieve speed ups of 1.7, 2.3, and 3, respectively.

The QR algorithm is an example of Case II in Figure 5.10. The self-edges in

Figure 5.11 A) are annotated with their minimum buffer size capacity as computed

by the pn compiler [95]. Process V , for example, has a self-channel that should
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have a capacity of at least 16 tokens to avoid a deadlock. This means that 16 tokens

are produced and buffered before they are finally consumed by the same process: 16

firings of that processes could be done in parallel before data communication and

synchronization are required again. We showed results for splitting up the stateful

processes 2, 3, and 4 times in the experiments. After applying our approach, we see

in Figure 5.11 C) that the self-channels appear as the channels connecting the com-

pound processes. These observations make clear that the cycles are not true cycles

as we have discussed in the previous section and that there is data-level parallelism

to be exploited by applying our solution approach. This is, indeed, confirmed by the

measured performance results. Our approach almost scales linearly by increasing the

number of compound processes (2nd, 3rd, and 5th bars in Figure 5.12) compared to

the initial PPN, indicating that we exploit all available data-level parallelism.

5.4.2 Transforming Perfectly Balanced PPNs

We have shown that stateful processes and cycles in PPNs restrict data-level paral-

lelism and thus influence performance results. In this section we show that the pro-

cess workload, and thus the process iteration time T iter
Pi

, is another aspect that should

be taken into account. To illustrate this, we consider a simple PPN consisting of a

pipeline of 4 processes. The goal of this experiment is to verify that our approach,

compared to applying only the process splitting transformation, does not give worse

performance results for PPNs that are already balanced. To check this, we generate

the following 4 PPNs as also shown in Figure 5.13: i) the initial PPN, ii) a PPN with

process P2 split up 2 times, iii) a PPN with processes P2 and P3 split up 2 times

and different partitions merged, and iv), a PPN with processes P2 and P3 split up 3

times and different partitions merged.

For each process network, we vary the workload of process P3 and assign 4 dif-

ferent values. As a result, the process iteration time T iter
P3 is 1, 50, 75, and 100 time

units. This means that process P2 is the bottleneck when T iter
P3 is 1, 50, and 75 time

units. By increasing it to 100, both P2 and P3 are equally computationally inten-

sive. Recall that we do not transform source and sink processes P1 and P4 in our

experiments. We therefore say that the network is imbalanced when T iter
P3 is 1, 50, or

75 time units, and balanced when we choose T iter
P3 to be 100. We expect that:

• The more balanced the network becomes by increasing the workload of P3 ,

the less is gained by splitting only process P2 two times (network II in Fig-

ure 5.13);

• Our transformation approach (network III in Figure 5.13) gives better perfor-

mance results when the network is imbalanced;
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Figure 5.13: Splitting vs. ”Splitting+Merging” with Different Workloads

• Our approach can even achieve better results by creating more than 2 com-

pound processes (network IV in Figure 5.13), while this is not possible using

the same number of processors and thereby applying only the process splitting

transformation.

We make 2 comparisons and measure the performance results on the ESPAM plat-

form of PPNs with an equal number of processes, i.e., PPNs with 4 processes and

PPNs with 5 processes. First, we compare the initial PPN (i.e., network I in Fig-

ure 5.13) with the network on which process splitting and merging has been applied

(i.e., network III in Figure 5.13). Second, we compare network II with network

IV from Figure 5.13.

Figure 5.14 shows the measured performance results for the 2 different PPNs with

4 processes. The x-axis shows the different T iter
P3 configurations when the workload

of process P3 is increased, and the y-axis the corresponding cycles counts. Because

we map the processes one-to-one onto processors, there are 4 processors used in this

experiment. For each workload configuration, the first bar corresponds to process

network I in Figure 5.13 and the second bar to process network III. The initial

PPN gives the same performance results for all different workload configurations

as the overall throughput is τout = 1
100 determined by process P2 . Our approach

gives better results for unbalanced networks. However, as the workload of process

P3 is increased, the network becomes more balanced and less can be gained by

transformations targeting the same number of processors. Figure 5.14 shows that
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Figure 5.14: Initial PPN (PPN I) vs. Split2x + Merging (PPN III)

the difference between the initial PPN and the transformed PPN becomes smaller.

The last 2 bars show the results for the PPNs where the initial network is already

balanced, i.e., T iter
P3 = 100. It can be seen that our approach is slightly worse than the

initial PPN, although the difference is not significant as it is only 2% off. The reason

is that the transformations introduce a small overhead in the compound processes,

which consist of additional control to execute the different functions. In the ideal

case when there is no overhead, the throughput of one compound process is 1
200

and thus the aggregated throughput of both compound processes is 1
100 , which is the

same as the initial PPN. Due to the additional control, however, the process iteration

time is not T iter
P23 = 200, but a little bit higher which finally results in the minor and

not significant performance degradation. The ratio of the workload and the control

overhead is important for the actual overhead and performance degradation. In our

experiments, the workload of the compound processes is 200 assembly instructions.

In most applications however, the process workload will be much larger such that the

overhead subsequently will have less impact on the performance results and will be

negligible (i.e., less than 2%).

Figure 5.15 shows the comparison between PPNs with 5 processes. That is, we

compare our solution approach that splits up all processes 3 times and merges back

different partitions, with applying only the process splitting transformation. For each

workload configuration, the first bar corresponds to network II in Figure 5.13, and

the second bar to network IV. The bold horizontal line in Figure 5.15 is the reference

corresponding to the performance results of the initial PPN.

We see that applying only process splitting for process P2 is less beneficial as the
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Figure 5.15: ”Splitting 2x” (PPN II) vs. ”Splitting 3x + Merging” (PPN IV)

network becomes more balanced as illustrated with the 1st, 3th, 5th, and 7th bars.

When the network is balanced, i.e., the 7th bar, the performance results are a bit worse

than the initial PPN due to some additional control introduced by the transformations

as discussed before. For splitting and merging the processes 3 times, however, we see

that better performance results are obtained as illustrated with the 2nd, 4th, 6th, and

8th bars in Figure 5.15. The reason is that 3 balanced compound processes execute

as 3 independent streams in parallel. Each compound process delivers tokens with a

throughput of 1
200 (when the time for one process iteration of processes P2 and P3

is 100 time units). The overall system throughput is therefore τout =
3

200 ≈
1
67 . If

only P2 is split up, then the overall system throughput will be determined by P3 and

remains τout =
1

100 . We see that our approach gives better performance results for all

workload configurations. By increasing the workload and thus also T iter
P3 , the cycle

count goes up, but not as steep compared to applying only the process splitting. In

addition, our approach would also scale for more than 5 processors, as an arbitrary

number of independent streams can be created.

5.5 Discussion and Summary

We have shown that better performance results are obtained when both the process

splitting and merging transformations are applied in combination, as opposed to ap-

plying only one of these transformations. Furthermore, we have shown that it is very

difficult to identify a single bottleneck process in a PPN, since there can be many dif-

ferent bottleneck processes during the execution of a PPN. Our approach solves the

problem of selecting a process on which the transformations have the largest impact,
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as first all processes are split up and then perfectly load-balanced compound pro-

cesses are created using the process merging transformation. Furthermore, we have

shown that our approach also works for process networks with cycles and stateful

processes. If in the initial PPN there is data-level parallelism to be exploited, then

our approach gives better performance results compared to the initial PPN by ex-

ploiting this parallelism to the maximum. The same performance results are obtained

when no data-level parallelism is available in the initial PPN.

After applying our solution approach a designer may end up with a transformed PPN

which performance is the same as the initial PPN. As already explained, the reason

can be that the initial PPN is already perfectly balanced, or cycles can be present in

the PPN that restrict the data-level parallelism. If we focus on cyclic PPNs, then we

know that performance gains are not possible when processes involved in a true cycle

are split up. This makes it clear that it is desired to indicate to the designer when a

PPN contains a true cycle. Therefore, we sketch an approach how true cycles can be

detected, i.e.,

• we investigate if the number of input tokens that the processes read from out-

side the cycle can serve as a metric to detect true cycles.

We consider the two example PPNs shown in Figure 5.16, which are different in the

number of tokens read from outside the cycle.
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Figure 5.16: Different Behavior of a Cycle

The cyclic PPNs are topologically the same, but the behavior of the cycles are dif-

ferent. That is, processes P1 and P2 both have 100 process iterations, but the cyclic

PPNs are different in the total number of input tokens read from processes that are

involved in the cycle. In Figure 5.16 A), process P1 reads data only once from a
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process that is not part of the cycle (i.e., the process writing to FIFO channel F1 ),

and 99 times from FIFO channel F2 that is written by P2 , i.e., a process involved

in the cycle. These channels are therefore, respectively, annotated with the fractions
1

100 and 99
100 . The behavior of process P1 is the following: it injects one token in the

cycle in one iteration, and in a next iteration it needs to read a token from the cycle

first, before it can inject one token again. This leads to sequential execution of both

processes, as illustrated with the time lines of P1 and P2 in Figure 5.16 A). From

this example, we learn that a cycle is a true cycle when the processes read the input

data only once from outside the cycle and then always read/write from/to the cycle.

The other extreme is shown in Figure 5.16 B), where all the input data is read

from outside the cycle, except only one input token. Thus, topologically the PPN in

Figure 5.16 B) is the same as in A), but the behavior of the cycle is different. That is,

process P1 reads 99 tokens from FIFO F1 that is not part of the cycle, and only once

from FIFO F2 that is part of the cycle. This makes both processes P1 and P2 from

that point of view independent, i.e, the cycle does not sequentialize the executions of

P1 and P2 , which results in overlapping execution of both processes as illustrated

with the time lines in Figure 5.16 B). This example shows that the cycle is not a true

cycle, because all the input data (except one token) is read from outside the cycle.

From the two extreme cases presented in Figure 5.16, we learn that the number of

input tokens that the processes read from outside the cycle, can serve as a metric to

detect the behavior of a cycle, i.e., whether it is a true cycle. If only one token is

read from outside and all the others are read/written from/to the cycle, then the cycle

is a true cycle. A true cycle should be easy to detect at compile-time with similar

techniques presented in the previous chapters, i.e., polyhedral analysis and count-

ing integer points in polyhedral descriptions of input/output port domains. Thus, a

designer can be informed when a cyclic PPN contains a true cycle for which perfor-

mance gains are not possible. Besides the information on the behavior of the cycles,

a designer may also be interested in how much parallelism there is, in case there is

something to be gained. Therefore, we investigate whether the number of input to-

kens that are read from outside a cycle, is also an indication how much the processes

inside the cycle can overlap their executions.

Let us consider an example where a process reads half of its input tokens from

outside the cycle, and the other half from inside the cycle. A cyclic PPN with this

behavior is shown in Figure 5.17 A). Similar to the example in Figure 5.16, the pro-

cesses have 100 iterations, but now process P1 reads in total 50 tokens from input

port IP1 , i.e., from outside the cycle, and it reads in total 50 tokens from input port

IP2 , i.e., from a process that is part of the cycle. The FIFO channels are therefore

annotated with the fractions 50
100 . With this example, we want to indicate that i) the

communication pattern’s influence on the behavior of cycles, and ii) that these com-

munication patterns are important for all processes involved in the cycle.
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Three different communication patterns are shown in Figure 5.17 B), which clas-

sifies how process P1 can read its input data from two input ports IP1 and IP2 .

Example 1) shows the time line of process P1 that has 100 process iterations. Pro-

cess P1 needs one input token from either one of its two input ports per process

iteration. It reads consecutively 50 tokens from input port IP1 in the first 50 itera-

tions. Then, 50 tokens from IP2 are consecutively read in the remaining 50 process

iterations. A different pattern is shown with example 2). In one process iteration,

one token is read from input port IP1 , and in the next iteration one token is read from

IP2 , which is repeated 50 times. Thus, the tokens are read one by one from different

input ports. Example 3) does not read all tokens consecutively from one port as in

example 1), it also does not read only 1 token as in example 2), but a number of

tokens between these extremes.

Figure 5.18 shows the overlap of the two processes involved in the cycle that read/write

data with the different communication patterns as we have identified above, i.e., it

shows the time lines of processes P1 and P2 . We experiment with different commu-

nication patterns selected from Figure 5.17 B) and want to show that there is overlap

to some extent in all the examples. Each block in the time lines corresponds to one

process iteration, i.e., the yellow, blue, white, and red boxes. The executions of P1

are annotated with the input ports from where P1 reads its input data (i.e., IP1 or

IP2 ). And the executions of P2 are annotated with the output ports where P2 writes

its output data to (i.e., output port OP2 or OP3 ). The arrows denote dependencies,

i.e., how data is communicated, and thus a simulation of the cyclic PPN is shown.

There are many combinations of different communication patterns possible for the

processes involved in the cycle, because a process does not only have 3 options to

read/write in a particular pattern, but these patterns can also be ordered differently

inside each process (see process P2 in Figure 5.18 A and B). Figure 5.18 shows

some representative examples of a cycle with different communication patterns and

it also illustrates that the overlap in process executions for some examples is minimal

(e.g., in Figure 5.18 C), while the overlap for some other examples is substantial (e.g.,
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Figure 5.18: Behavior of a Cycle with Different Read/Write Patterns
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in Figure 5.18 A), D) and E)). Note that the number of input data that is read from

outside the cycle is the same for all examples, i.e., 50 tokens, while the behavior

of the cycles are very different. Therefore, we conclude that the number of input

tokens read from outside the cycle cannot serve as a metric how much the processes

overlap and thus how much can be gained with applying our solution approach. More

sophisticated analysis is required, which is therefore left for future research.

Recall that our approach first splits up all processes in a PPN before process in-

stances are merged back (see Algorithm 2). Our final remark is about the order in

which the process splitting transformation is applied consecutively on all processes.

That is, we did not investigate whether applying the splitting transformation in a dif-

ferent order has an effect on, for example, the number of FIFO channels and/or the

final performance results of the transformed PPN. This is left for future research.


