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Chapter4
Process Merging Transformations

Recall from Chapter 3 that the partitioning strategy of the pn compiler may not nec-

essarily result in PPNs that meet the performance/resource requirements. To meet

the performance requirements, a designer can apply the process splitting transforma-

tion as discussed in Chapter 3. In this chapter, we introduce the process merging

transformation that reduces the number of processes in a PPN. The process merging

transformation is not only useful to meet the performance constraints, but also allows

a designer to achieve the same performance using fewer processes in some cases.

We show that many solutions exist to merge different processes in a PPN with great

differences in performance results. Thus, it is not trivial to select the best merging

solution. We address this issue in this chapter by presenting a compile-time solution

to evaluate different merging alternatives.

4.1 Process Merging: Definitions

The process merging transformation reduces the number of processes in a PPN by

sequentializing n processes in a single compound process.

Definition 16 The process merging transformations takes n processesP1 , ..,Pn and

sequentializes them into one compound process P1 ..n .

Definition 17 A compound process is formed by merging n processes and executes

in a sequential way the functions of the processes that are merged.

A compound process has, therefore, the following properties:

• Per iteration of the compound process, process functions of P1 , ..,Pn are exe-

cuted sequentially.



66 Process Merging Transformations

• The process iteration domain sizes of P1 , ..,Pn can be different. Then, the

different process functions are executed sequentially per compound process

iteration for a number of overlapping process iterations. In the remaining com-

pound process iterations, where the process iterations do not overlap, only the

process function(s) is executed of the process that has the largest number of

process iterations.

• If there exists a dependency between the processes, then the pn compiler cal-

culates a safe offset between the process functions in the compound process.

As a result of using the process merging transformation, less processes need to be

mapped on the platform’s processing elements, at the price of possibly having less

processes running in parallel. A designer needs to apply the process merging trans-

formation in case i) the number of processes is larger than the number of processing

elements, or ii) the network is not well balanced and therefore the same overall per-

formance can be achieved using less resources. For both cases, the problem is that

many different options exist to merge two or more processes. The total number of

options to merge different processes for a PPN with n processes is
∑n

i=2

(

n

i

)

. To

give an example for a PPN with 5 processes there are
(

5

2

)

+

(

5

3

)

+

(

5

4

)

+

(

5

5

)

= 26 different options to merge 2, 3, 4, or 5 processes. The challenge is how to find

the best solution from all these options. To solve this problem, an analytical through-

put modeling framework for Polyhedral Process Networks (PPNs) is defined in this

chapter. The throughput model is used to evaluate the throughput of different process

mergings in order to select the best option which gives a system throughput as close

as possible to the initial PPN.

4.2 Challenges of Applying the Process Merging Transfor-

mation

With 3 motivating examples we show that selecting the best merging option is not

a straightforward task as it depends on the inter-play of many factors which may

not be evident at first sight. The first factor to be considered is the workload of a

process. Recall from Chapter 2, that the workload WPi
of a process Pi denotes the

number of time units that are required to execute a function, i.e., the pure computa-

tional workload, excluding the communication. Figure 4.1 shows a PPN consisting

of 6 processes. It is annotated with the process workload and shows the number

of readings/writings from/to each FIFO channel. Process P2 , for example, has a

workload of 10 time units and a single token is read/written from/to a FIFO channel

per process iteration, which is denoted by ”[1 ]” and can be repeated (possibly) in-
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Figure 4.1: Process Workload Influencing the System Throughput

finitely many times. The network has two datapaths DP1 = (P1 ,P2 ,P3 ,P6 ) and

DP2 = (P1 ,P4 ,P5 ,P6 ) that transfer an equal amount of tokens. We observe that

process P2 determines the system throughput, which is illustrated with the time lines

at the bottom of Figure 4.1. The first time line shows the rate τin at which tokens

arrive at the network, i.e., each time unit. The second time line shows the system

throughput of the initial PPN, denoted by τPPNout .

Definition 18 The system throughput, denoted by τout, is defined as the number of

data tokens produced by the network per time unit.

Process P6 needs 13 time units (1+10+1+1) to produce its first token. Then, it pro-

duces a new token each 10 cycles which is dictated by the slowest process P2 . If we

apply the process merging transformation to processes P2 and P3 , then compound

process P23 becomes the most computationally intensive process of the network.

Processes P2 (10 time units) and P3 (1 time unit) are sequentialized and thus it will

take 10+1=11 time units instead of 10 time units for process P6 to produce a new

token, as shown in the time line denoted by τP23
out . We observe that the throughput

of this network is lower than the throughput of the initial PPN. The fourth time line,

denoted by τP45
out , shows the system throughput after merging processes P4 and P5 .

In this case, however, we see that the system throughput is not affected, i.e., it is the

same as the throughput of the initial PPN, because the two merged and sequentialized

processes do not dictate the system throughput. Thus, a designer can safely merge

these processes and achieve the same system throughput as the initial PPN.

With the following example, we show that considering the process workload WPi

only is not enough; a second factor that needs to be taken into account is the rate of

producing tokens. Consider the PPN in Figure 4.2 which is topologically the same as

in the previous example. The only difference is that both datapaths transfer a different
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Figure 4.2: Production Rate Influencing the System Throughput

number of tokens. This is indicated with the patterns [110000] and [001111]

at which process P1 writes to its outgoing FIFO channels. A ”1” in these patterns

indicates that data is read/written and a ”0” that no data is read/written. So, the FIFO

channel connecting P1 and P2 , for example, is written the first two iterations of

P1 , but not in the remaining 4. As a consequence of these patterns, more tokens are

communicated through the second datapath DP2 = (P1 ,P4 ,P5 ,P6 ). Therefore,

we observe that, despite process P2 largest workload of 10 time units, process P4

with a workload of 6 is more dominant. Therefore, merging processes P4 and P5

leads to a lower network throughput compared to merging P2 and P3 , as can be

seen in the time lines τP45out and τP23out in Figure 4.2. We observe a trend which is

completely different from the previous example. According to Figure 4.2, a designer

can safely merge processes P2 and P3 as opposed to P4 and P5 to achieve a system

throughput that is equal to the throughput of the initial PPN.

In the last motivating example, we consider the PPN shown in Figure 4.3. The

processes always read and/or write a single token when they are executed. Therefore,

one could expect that this example is different from the example in Figure 4.2, but

similar to the example in Figure 4.1. We show, however, that neither case applies

and that a third factor needs to be taken into account. In this example, process P1

is the computationally most intensive process with a workload of 53 time units. If a

designer wants to merge processes, a logical choice would be to merge P2 and P3

and not to consider the heavy process P1 .

Processes P2 and P3 both have a workload of 25 time units and thus the compound

process P23 has a summed workload of 50 time units, which is smaller than process

P1 (53 time units). For this reason, we expect performance results that are equally

good as the initial PPN. However, when we measure the performance results of both

the initial PPN and the transformed PPN on the ESPAM platform [61], there is a
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Figure 4.3: Sequentialized FIFO Accesses Influencing the System Throughput

20% degradation in the performance results. Although the workload of compound

process P23 is lower than P1 , the compound process reads sequentially from two

input channels and writes sequentially to two output channels. This makes it the

heaviest process in the network. So, besides sequential execution of the process

workloads, we observe that sequential FIFO reading/writing is another aspect that

should be taken into account.

The 3 examples above show that it is not trivial to merge processes and to achieve

performance results as close as possible to the initial PPN. Therefore, we want to have

a compile-time framework to evaluate the system throughput such that the best possi-

ble merging can be selected. Our compile-time framework is based on the throughput

modeling techniques presented in Section 4.4.

4.3 Restrictions on the Throughput Modeling

A number of restrictions apply on the throughput model as presented in Section 4.4.

First of all, we consider acyclic PPN graphs. Cycles in a PPN are responsible for

sequential execution of some of the processes involved in the cycle. The sequential

execution can vary from a single initial delay, to a delay at each iteration of some

of the processes. For accurate throughput modeling, these cycles must be taken into

account which we do not study in this work. The reason is that throughput modeling

for acyclic networks is already a very difficult task, which is even more challenging

for cyclic networks. There are recent works that started to investigate the performance

analysis of cyclic dataflow graphs [86], but more research is required in that area in

the future.

Secondly, it is important to state that our goal is not to compare different PPNs, but

to compare transformed PPNs derived from a single PPN. Therefore, in the through-

put modeling, we do not take into account the latency of a token, i.e., the time that

elapses between injecting a token in the PPN and the time when that token leaves the

PPN. Thus, we do not calculate the total execution time of PPNs, but only want to

capture the throughput trend instead. The reason is that the framework should be fast,
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and only as accurate as needed to correctly capture the throughput trend for different

process mergings.

Thirdly, the process workload WPi
and the costs for FIFO communication are pa-

rameters in our system throughput modeling. These are constant values that should

be provided by the designer who can obtain them, for example, by executing the

function and FIFO read/write primitives once on the target platform. The reader is

referred to Section 3.6 for a discussion on the modeling of the process workload and

FIFO read/write primitives with constant values. Although our approach is extensible

to heterogeneous MPSoCs, we restrict ourself to MPSoCs with programmable homo-

geneous cores. The reason is that a process function implemented as software cannot

be merged with a process function that is implemented as a hardware IP core. Sim-

ilarly, one cannot merge two processes both implemented as IP cores. This means

that once the process workload of a given process is determined, that this process

workload value is the same for all programmable homogeneous cores in the target

platform.

Finally, we do not study the effect of different buffer sizes. Although buffer sizes

play an important role in the performance results, there are studies [17] showing that

saturation points can be found where performance does not increase for larger buffer

sizes. The pn compiler can find such points and we use buffer sizes that correspond

to these points, i.e., the buffer sizes that give maximum performance.

4.4 Throughput Modeling

We introduce first the solution approach to model the throughput of polyhedral pro-

cess networks with an example. Then, we define all concepts and steps of the through-

put model in detail. Finally, we present the overall algorithm for the throughput

modeling.

4.4.1 Process Throughput and Throughput Propagation

The solution approach for the overall Polyhedral Process Network (PPN) throughput

modeling relies on calculating the throughput τPi
of a process Pi for all processes and

propagation of the lowest process throughput to the sink processes. For a process Pi,

the propagation consists of selecting either the aggregated incoming FIFO throughput

τFaggr
or the isolated process throughput τ isoPi

:

τPi
= min(τFaggr

, τ isoPi
), (4.1)

Before defining formally τFaggr
and τ isoPi

(in Sections 4.4.2 - 4.4.4), we first give an

intuitive example of the solution approach applied on the PPN shown in Figure 4.3
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and explain the meaning of Equation 4.1. First, the workload of each process is taken

into account and let us assume that it takes 10, 20, 10, 10 time units for processes

P1 ,P2 ,P3 ,P4 , respectively, for executing its function. This means that, for ex-

ample, P1 can read and produce a new token every 10 time units if there is input

data. Thus, we define the isolated process throughput to be τ isoP1 = 1
10 tokens per

time units (excluding communication costs for the sake of simplicity). Similarly for

the other processes, we define τ isoP2 = 1
20 , τ

iso
P3 = 1

10 , τ
iso
P4 = 1

10 . However, the re-

quired input data for a process can be delivered with a different throughput, i.e., the

aggregated incoming FIFO throughput τFaggr
. Consequently, the lowest throughput

(τFaggr
or τ isoPi

) determines the actual process throughput τPi
. Therefore, the mini-

mum throughput value is selected as shown in Equation 4.1. This is repeated for all

processes by iteratively applying Equation 4.1 on each process to select the lowest

throughput and to propagate it to the sink processes. First, the PPN graph is topologi-

cally sorted to obtain a linear ordering of processes, e.g., P1 ,P2 ,P3 ,P4 . In step I)
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Figure 4.4: Throughput Propagation Example

of Figure 4.4, process P1 is the first process to be considered. While it receives to-

kens at each time unit (τin = 1), it is ready to execute again after 10 time units due

to the process workload (τ isoP1 = 1
10 ). We see that the actual process throughput is

determined by the process itself (it is the slowest) and Equation 4.1 is used to find

this: τP1 = min(1, 1
10) =

1
10 with which it writes to both its outgoing FIFO channels

F1 and F2 .

If we continue with the second process in step II), we see that P2 receives tokens
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from P1 with a throughput of τP1 = 1
10 . However, P2 is twice slower than P1

which is delivering the data: τP2 = min( 1
10 ,

1
20) = 1

20 . Thus, we know that P2

writes its results to FIFO channel F3 with a throughput of 1
20 .

In step III), we calculate the throughput for process P3 . It receives data from P1

with a throughput of τP1 = 1
10 , and it can process data with a throughput of τ isoP3 =

1
10 . We compare what is slower by calculating τP3 = min( 1

10 ,
1
10) =

1
10 and set this

as the throughput at which P3 writes to FIFO channel F4 .

Finally, we consider process P4 in step IV). Process P4 reads from two FIFO

channels F3 and F4 , which are written by P2 and P3 with different throughputs.

Therefore, the FIFO throughput must be aggregated in order to have a single through-

put value at which data arrives. If we assume that both channels are read per process

iteration of P4 , then the slowest FIFO throughput determines the aggregated FIFO

throughput. For this example, 1
20 is the slowest component and we set τFaggr

= 1
20 .

Applying Equation 4.1 shows that the data is delivered with a lower throughput than

P4 can actually process: τP4 = min( 1
20 ,

1
10) = 1

20 and set this to be the process

throughput. In this way, we have propagated the slowest throughput from P2 to the

sink process P4 , which in the end determines the overall system throughput. In the

next sections we exactly define how the (isolated) process throughput and (aggre-

gated) FIFO throughput can be calculated.

4.4.2 Isolated Throughput of a (Compound) Process

Definition 19 The isolated process throughput of a process Pi, denoted by τ isoPi
, is

the number of tokens produced by Pi per time unit when the input rate of its input

data is∞.

We illustrate the isolated process throughput with the example shown in Figure 4.5.

P
i

τ iso
τ in = 

8

P
i

Pi
.. .. .. ..

, T

8(min
isoτ = iter

Pi

1
)

Figure 4.5: Isolated Process Throughput

We model the input data to arrive infinitely fast, i.e., τin = ∞, such that the time

T iter
Pi

that is required for one process iteration, determines the throughput at which
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tokens are produced by Pi. This means that the isolated process throughput is deter-

mined only by the workload WPi
of a process and the number of FIFO reads/writes

per process iteration provided that no blocking occurs:

τ isoPi
=

1

T iter
Pi

, (4.2)

where T iter
Pi

is the time to execute one process iteration as we have defined in For-

mula 3.9. It is important to note that two factors as identified in the motivating ex-

amples are taken into account in modeling the isolated process throughput: the time

T iter
Pi

for one process iteration includes the process workload WPi
and also the num-

ber of sequential FIFO accesses (i.e., the data transfers).

In a similar way, we must also model the isolated throughput τ isoPm
of a compound

process Pm in order to evaluate the system throughput for a PPN with merged pro-

cesses. Assume that Pm is formed by merging processes Pi and Pj with iteration do-

mainsDPi
andDPj

, respectively. We define the isolated compound process through-

put as τ isoPm
= 1

T iter
Pm

, where

T iter
Pm

=
|DPi
|

|DPj
|
· (T iter

Pi
+ T iter

Pj
) +
|DPj

| − |DPi
|

|DPj
|

· (T iter
Pj

) (4.3)

with |DPi
| ≤ |DPj

|. To model the time T iter
Pm

for executing the compound process,

we take into account the generated schedule of the compound process as produced

by the pn and ESPAM tools [61, 95]. The execution of the process functions are

interleaved as much as possible. This means that per iteration of the compound pro-

cess, all functions are sequentially executed if this is allowed by the inter-process

dependencies. In case of inter-process dependencies, an offset is calculated for the

producer-consumer pair to ensure correct program behavior, and then the function

execution is interleaved again. Therefore, we calculate fractions where the execu-

tion of the functions overlap and multiply it with the process iteration costs of these

functions, i.e., the first term in Equation 4.3. And then we consider for the remaining

iterations the cost of the process with the largest domain size only, i.e., the second

term in Equation 4.3. Note that the coefficients in Equation 4.3 represent these frac-

tions which should sum up to 1. Formula 4.4 below shows how T iter
Pm

is calculated

when n process are merged into a compound process Pm.

T iter
Pm

=
|D1|

|Dn|
· (

n
∑

i=1

T iter
i ) +

n
∑

j=2





|Dj | − |Dj−1|

|Dn|
· (

n
∑

k=j

T iter
k )



 (4.4)
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where the different process iteration domains have been sorted and renumbered ac-

cording to their domain sizes, i.e., D1 ≤ .. ≤ Di−1 ≤ Di ≤ Di+1 ≤ .. ≤ Dn.

4.4.3 FIFO Channel Throughput

The throughput of a FIFO-channel is determined by the throughput of the processes

accessing it. Let us consider the example shown in Figure 4.6. Assume that P1

executes 500 times, i.e., |DP1 | = 500, and each time it writes to F1 and F2 .

P1 P2
W

P2
= 5W 10

P1
=

DP1 = 500

D’P1 = 1000

F1
1010 10 10..

500 tokens

..

500=P2D

F2 ..

Figure 4.6: FIFO Channel Throughput

Process P1 needs 10 time units to produce a token. Consumer process P2 is twice

as fast and needs only 5 time units to consume a token, but still it receives tokens

only each 10 time units due to the slower producer. As a result, P2 blocks on reading

and waits for data, which follows the operational semantics of the PPN model of

computation: a process stalls if it tries to read from an empty FIFO channel and

proceeds only if data is available again. This example shows that, to calculate the

FIFO throughput τfi of a FIFO channel fi, the minimum is taken of the FIFO write

throughput τWr
fi

and the FIFO read throughput τRd
fi

:

τfi = min(τWr
fi

, τRd
fi

), (4.5)

where τWr
fi

= τP1 (see Equation 4.1) and τRd
fi

= τ isoP2 (see Equation 4.2). Let us

consider another example where P1 executes 1000 times, i.e., |D′

P1 | = 1000 as

also shown in Figure 4.6. Assume that in one iteration of P1 data is written to

FIFO channel F1 , and in the next iteration to F2 . This is repeated such that in total

500 tokens are written to both FIFOs F1 and F2 . To compensate for a producer

that does not write data to a FIFO channel at each iteration, we define a coefficient

that divides the total number of tokens transfered over a channel by the iteration

domain size of a producer process Pi. This coefficient denotes an average production

rate, expressed in a number of producer iteration points. Note that this takes into

account the different production rates of processes as also identified in the motivating

example in Figure 4.2. By multiplying this coefficient with the process throughput,

we define FIFO write/read throughput τWr
fi

and τRd
fi

of a FIFO channel fi as shown
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in Equations 4.6 and 4.7. In this way, we model a lower throughput if necessary.

τWr
fi

=
|OP j

Pi
|

|DPi
|
· τPi

(4.6)

τRd
fi

=
|IP j

Pi
|

|DPi
|
· τ isoPi

, (4.7)

For the example, we see that τWr
f1 = 500

1000 ·
1
10 = 1

20 and the FIFO read throughput is

τRd
f1 = 500

500 ·
1
5 = 1

5 . Consequently, the FIFO throughput is τf1 = min( 1
20 ,

1
5) =

1
20

tokens per time unit.

4.4.4 Aggregated FIFO Throughput

The throughput of a process τPi
is either determined by the FIFO throughput from

which it receives its data, i.e., τFaggr
, or by the computational workload of the pro-

cess itself, i.e., τ isoPi
, as shown in Equation 4.1. τ isoPi

is computed with Equation 4.2.

Here we show how to compute τFaggr
, which deals with the problem how to model

the throughput of data in case there are multiple incoming FIFO channels. This is

illustrated with the example in Figure 4.7.

f2
τ

Pi

f1τ fnτ ?, .., How to model 

fnτ

f1τ

Pi

Faggr
τ

:

Figure 4.7: Modeling Multiple Incoming FIFO Channels

Process Pi has n incoming FIFO channels each with its own throughput. We need to

model these different incoming FIFO channel throughputs as one throughput value,

i.e., τFaggr
, because we must determine what is slower: the arrival of the input data

or the process itself. The throughput of the incoming FIFO channels are aggregated

according to the way the process function input arguments are read.

To illustrate the calculation of the aggregated FIFO throughput, let us first consider

Process P in Figure 4.8, which has one input argument value a that is read from

two different input ports IP1 and IP2 . Thus, two tokens are delivered, but only one

is read for each iteration of the consumer process. The other token will be read in

another iteration. To model the throughput at which data arrives, the sum is taken of

the FIFO throughput F1 and F2 , i.e., τFaggr
= τf1 + τf2 . Effectively, this means that
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Figure 4.8: Process Structure (left) and FIFO Throughput Aggregation (right)

the aggregated incoming FIFO throughput becomes higher, which corresponds to the

behavior that one token is needed but two are delivered. Note that any imbalance in

the number of tokens transfered over each FIFO channel has already been taken into

account in the FIFO read/write throughput as defined in Equation 4.6 and 4.7.

Process P ′ in Figure 4.8 is the second example, which reads its two input arguments

values a and b from FIFOs F1 and F2 . Thus, both FIFOs are read per process

iteration of P ′. If one FIFO throughput is fast and the other one is slower, then the

slowest FIFO throughput determines the aggregated FIFO throughput. Therefore, we

select the minimum throughput in this case, i.e., τFaggr
= min(τf1 , τf2).

Finally, the general case is illustrated with process P ′′ in Figure 4.8, i.e., it com-

bines the previous two examples. Process P ′′ has multiple function input arguments

and multiple incoming FIFO channels per input argument. To calculate the aggre-

gated FIFO throughput, the throughput is summed of all the FIFO channels that are

connected to one function input argument (the first example). Next, the minimum

throughput, i.e., the slowest throughput, is taken of all the throughputs for the dif-

ferent function input arguments (the second example). Thus, the aggregated FIFO

throughput τFaggr
for P ′′ is calculated as follows:

τFaggr
= min(τf1 + ..+ τfn , τ

′

f1
+ ..+ τ ′fm).

The general formula to calculate the aggregated FIFO throughput τFaggr
is given

below:

τFaggr
= min(

n
∑

i=1

τfi , ...,
m
∑

j=1

τfj ) (4.8)
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where each sum corresponds to the sum of the throughputs of a number of FIFO chan-

nels connected to one process function input argument. Thus, the first term sums the

throughput τfi of n different FIFO channels connected to one process function input

argument, and the last term sums the throughput τfj of m different FIFO channels

connected to another process function input argument. Finally, the minimum is taken

to determine the slowest FIFO throughput.

4.4.5 System Throughput Calculation Algorithm

Up to now, we have formally defined all the components that allow the throughput

calculation and propagation to be done in a systematic and automated way. The

pseudo code of the throughput calculation and propagation algorithm is shown in

Algorithm 1.

Algorithm 1 : PPN Throughput Estimation Pseudo-code

Require: PPN : a Polyhedral Process Network

Require: WPi
: the computational workload of all processes.

Require: CRd,Wr
intra,inter: the costs for the FIFO read/write primitives.

list ← Create topological ordering for PPN

for all process Pi ∈ list do

1) Calculate τ isoPi
= set isolated throughput(Pi,WPi

, CRd,Wr
intra,inter)

2) Set τRd
fj

for all incoming FIFOs fj of Pi.

3) Set τfj for all incoming FIFOs fj of Pi.

4) Calculate τFaggr
= calc fifo aggr(τfj , .., τfn)

5) Set τPi
= min(τ isoPi

, τFaggr
)

6) Set τWr
fj

for all outgoing FIFO fj of Pi.

end for

return τPPNout = τP|list|

This algorithm was introduced informally with the example in Section 4.4.1. Here

we give the formal solution by applying Algorithm 1 on this example. All steps of

Algorithm 1 are shown in Figure 4.9. The example PPN in Figure 4.3 consists of

4 processes and thus we obtain first a topologically ordered list of 4 processes, i.e.,

list = {P1 ,P2 ,P3 ,P4}. For each of these processes, we calculate the through-

put at which the incoming data arrives, how fast a process can actually process this

data, and the slowest value is propagated to the outgoing FIFO channels. The most

interesting steps are 4.2.1− 4.4 in Figure 4.9, because the throughput of FIFO chan-

nels F3 and F4 are aggregated. Process P4 needs input tokens from both channels

for each of its process iterations. Since the slowest FIFO throughput determines the

aggregated FIFO throughput, the minimum FIFO throughput is selected in step 4.4.
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Figure 4.9: Throughput Calculation

In this way, we have propagated the slowest throughput of process P2 to the sink

process, which determines in the end the overall system throughput.

4.5 Case-Studies

In this section we map two different nested loop kernels on the ESPAM platform

prototyped on a Xilinx Virtex 2 Pro FPGA. Each process is mapped one-to-one on

a MicroBlaze softcore processor and the processors are point-to-point connected.

FIFO communication is implemented with FSL links and a FIFO access costs 10

clock cycles. We investigate if our throughput modeling captures the differences in

performance results for different process merging configurations and process work-

loads.

4.5.1 Merging Light-Weight Producers

In the first experiment, we merge two light-weight producers (workload of 54 time

units) into a single process, and we should observe that the new compound process

does not become the process that determines the system throughput, i.e., the through-
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put of the PPNs before and after the process merging are the same. Then, we increase

the workload of the producers to 59 time units such that we intentionally introduce

a new bottleneck in the PPN. The throughput of the PPN after the process merg-

ing should be less than the initial PPN, and we test whether this is captured by our

throughput model.

114

c

C

P3

P12

114

105

108/118

a b

for (i=0; i<M; i++) 

   c[i] = P3 (a[i],b[i]);

  for (i=0; i<M; i++) {

    a[i] = P1 (a[i]);

    b[i] = P2 (b[i]);

  }

     C (c[i]);

  for (i=0; i<M; i++)

A) Nested Loop C) Merged

P3

P1 P2

C

105

c

54/59 54/59a b

F1 F2

F3

F1 F2

F3

#define M 1000

B) PPN

Figure 4.10: Example PPN

Figure 4.10 shows the nested loop program in A), the derived PPN in B), and the

PPN with producers P1 and P2 merged in C). We calculate the throughput of the

PPN before and after merging by applying Algorithm 1.

Figure 4.11 shows the analysis for process P1 ,P2 ,P3 and C . In process P3 ,

two FIFO throughput values are aggregated as shown in step 3.4 of the throughput

calculation in Figure 4.11. We find a process throughput of τP3 = 1
135 for process

P3 , which is propagated to C such that the system throughput is τPPNout = τC = 1
135

as well.

Next, we calculate the system throughput for the PPN with processes P1 and P2

merged into one compound process. The throughput calculation is shown in Fig-

ure 4.12, and thus we find a system throughput of τPPN
′

out = 1
135 . Since we find a

throughput of τout = 1
135 for both PPNs before and after merging, we predict that

the initial PPN and transformed PPN′ perform equally well. This is confirmed by the

actual measured performance results shown in Figure 4.13. That is, the first and sec-

ond bar in Figure 4.13 denote the cycle numbers for the initial PPN and transformed

PPN′, which are the same.

Then we increase the workload of the producer processes and intentionally create

a compound process that is the most compute intensive process. We check if this is

captured by our throughput model by analyzing the throughput of the PPNs before

and after the merging. The throughput model gives a throughput of 1
135 and 1

138
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Figure 4.11: Throughput Estimation of Processes P1 ,P2 ,P3 ,C in Figure 4.10 B)

for the initial and transformed PPN, respectively. Thus, the throughput calculation

indicates that the throughput of the merged PPN is lower, which is confirmed by the

third and fourth bar in the measured performance results in Figure 4.13.
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Figure 4.12: Throughput Estimation after merging P1 and P2
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Figure 4.13: Measured Performance Results Before/After Merging P1 and P2

4.5.2 Merging Processes in Networks with Different Data Paths

In this experiment we consider the more complicated network shown in Figure 4.14

that combines different properties. First of all, it has processes with different domain

sizes. Processes P1 and P2 execute 500 times, while the other processes execute

1000 times. As a result, coefficients will scale down the F1 and F2 FIFO read

throughput. Second, two data paths come together in process P3 where one token
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is needed per iteration of P3 similar to the example in Figure 4.8 B). Third, in pro-

cess P6 two datapaths are joined as well where both tokens are needed for each

iteration, similar to the example in Figure 4.8 C). We estimate the system through-

a[i] = P3(a[i]);
b[i] = P4();

b[i] = P5(b[i])

P6(a[i],b[i]);

for (i=0; i<1000; i++) {

}

}

P1

P2

P5

P6

P3

P4

F1

F2

F3

F4

F5

500

500

1000
1000

1000

1000

a[i] = P1();

a[i] = P2();

for (i=0; i<1000; i++) {

if i%2 =0

if i%2=1

Figure 4.14: Nested-loop Program and its Derived PPN

put by applying Algorithm 1 again and test the throughput modeling with 3 different

process workload configurations. Each configuration is a tuple where the first value

corresponds to the workload of process P1, the 2nd value to workload of P2, etc.

Figure 4.15 shows the measured performance results and for each configuration the

initial PPN in Figure 4.14 is used as a reference (the first bar) and different merg-

ings are shown in the 2nd, 3rd and 4th bars. For example, the second bar denotes

the performance results after merging processes P1, P2 and P3. If we take the 2nd

workload configuration as an example, our model finds the following throughputs:
1
65 ,

1
100 ,

1
65 ,

1
80 ,

1
75 . Thus, the estimation indicates that the first merging (i.e., 1

100),

leads to a lower throughput than the initial PPN (i.e., 1
65 ). The second merging ( 1

65 )

gives the same performance results, and the third ( 1
80 ) and fourth (

1
75 ) are worse than

the initial PPN. From these estimations, we conclude that processes P2 and P4 can

be merged and achieve the same system throughput. This estimation is correct as

confirmed by the actual measured performance results shown in Figure 4.15.

4.6 Discussion and Summary

We have presented a solution approach for throuhgput modeling of Polyhedral Pro-

cess Networks (PPNs) to evaluate process merging transformations. Our approach

takes into account all major factors that influence the throughput. Therefore, we can

accurately capture the throughput trend and select the best possible merging as illus-

trated with the experiments.

The throughput model defined in this chapter, requires the cost estimations of the

process workloads and the FIFO communication primitives, similar to the process

splitting transformation. Therefore, the same remark with respect to the modeling of

the workload and FIFO communication with a constant value should be taken into
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Figure 4.15: Measured Results on the ESPAM Platform

account. For an in-depth discussion, the reader is referred to Section 3.6.

Our throughput model calculates an average throughput for a given PPN, i.e., we do

not take into account the dynamic behavior how output tokens are produced. This is

best illustrated with the coefficient used in Formula 4.6 to determine the FIFO write

throughput: the number of tokens written to a FIFO channel is divided by the total

number of process iterations. However, the calculation of average throughput values

allows efficient evaluation of the process merging transformations on the ESPAM

platform, for two reasons. First, recall from Section 4.3 that the process workload is

the same for all programmable cores in the target platform, i.e., we use a homoge-

neous MPSoC and assign the processes one-to-one to the cores. Second, also recall

that we use buffer sizes that give maximum performance, which are calculated by

the pn compiler. This is different in the work of [86], where the workload of a pro-

cessor can vary as multiple processes can be assigned to that processor. To estimate

buffer sizes and/or the system performance in this case, the dynamic behavior of the

platform and application are important. In Section 1.3, we have indicated that this

dynamic behavior is captured with maximum and minimum values of arrival/service

curves. This throughput calculation is more complex than our approach, which we do

not need for evaluating the process merging transformation on the ESPAM platform,

because we assign the processes one-to-one and use buffer sizes that give maximum

performance.
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