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Chapter3
Process Splitting Transformations

In this chapter, we present an approach how the process splitting transformation, in-

troduced in Chapter 1, can be applied to transform a Polyhedral Process Network in

order to select and obtain the best performance results from different splitting alter-

natives. Recall that the Polyhedral Process Network (PPN) model of computation

is used as a programming model in the Daedalus framework [62] to help with the

difficult task of programming and mapping applications onto Multi-Processor Sys-

tems on Chip. PPNs are automatically derived from sequential nested-loop programs

by using the pn compiler [95] as we have illustrated with an example in Chapter 2.

In the derived parallel PPN specification, the following partitioning strategy is used:

each process in the PPN corresponds to a function call statement in the sequential

program.

A)

for (i=0; i<4; i++)

for (i=0; i<4; i++)

a[i],b[j] = F(a[i],b[j]);

for (j=0; j<4; j++)

a[i],b[i] = init();

init F
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for (i=0; i<4; i++)

if(i%2==0)

if(i%2==1)

a[i],b[j] = F(a[i],b[j]);

a[i],b[j] = F(a[i],b[j]);

for (j=0; j<4; j++)

Figure 3.1: Polyhedral Process Networks

Figure 3.1 A) shows a PPN consisting of two process with 4 FIFO channels, and

also the nested loop program from which this PPN is derived. Deriving the network

using the pn partitioning strategy, as described above, does not necessarily lead to
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optimal performance results as the network may not be well balanced. Therefore,

process partitioning transformations can distribute the workload of a single process

over multiple processes to better balance the network. We can achieve this, for ex-

ample, as shown in Figure 3.1 B). The function call statement F is duplicated and

assigned to odd and even iterations of the outer loop iterator. The corresponding net-

work has now two processes executing the F function resulting in a more balanced

network. In [79], a number of algorithmic transformations have been presented which

a designer can apply on the source code to balance the network. However, no hints

are given to the designer when a particular transformation can be applied to mini-

mize, for example, the execution time. So, a number of transformations have been

defined, but the designer does not know when to apply which transformation. In our

motivating examples (Section 3.2) we show that it is not straightforward to select the

best transformation for the best performance results. In order to select the best par-

titioning transformation, the different alternatives must be evaluated and metrics are

required to do so. This chapter, therefore, deals with:

1. Definition of evaluation metrics;

2. Calculation of the metric values using an analytical framework;

3. A compile-time evaluation approach to select a particular transformation based

on the metric values.

We show results for 3 different applications with different properties mapped onto

the Cell processor [39] and the ESPAM platform prototyped on a Xilinx Vertex 2

FPGA [61].

3.1 Process Splitting: Definitions, Notations, and Examples

First, it is important to note that process splitting is a general term referring to trans-

formations duplicating program code to obtain more processes. In Figure 3.1 B), we

have shown one example of process splitting, but there are many other possibilities

to duplicate the program code. In [79], a number of parametric transformations have

been presented that can be used to split up processes. Two of these splitting transfor-

mations are the modulo unfolding and the plane-cut transformation:

Notation 1: we refer to the modulo unfolding transformation as unfold(I,U),

where parameters I and U are respectively the iteration vector of the function of a

process and the vector of unfolding factors for each loop iterator.
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Notation 2: we refer to the plane-cut transformation as planecut(I,P) where

parameter I is the iteration vector and parameter P is a set of affine hyperplanes (see

Section 2.1).

Definition 11 A process partition, or partition in short, is a new instance of an orig-

inal process that is created by applying a process splitting transformation unfold

or planecut. Thus, the different process partitions execute the same function, pos-

sibly, in parallel.

In the remainder of this chapter, we focus on the unfolding and plane-cutting trans-

formations. In [79], some more (algorithmic) transformation techniques have been

presented. An example is the skewing transformation, which re-times the process

iterations. However, only the unfolding and plane-cutting split-up a process, i.e.,

assign process iterations to different partitions. To illustrate the difference in the

unfolding and plane-cutting transformations, we consider the example shown in Fig-

ure 3.2.
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Figure 3.2: Examples of Process Splitting Transformations

Figure 3.2 shows the dependency graph of the program depicted in Figure 3.1 A)

and is characterized by a two dimensional process iteration domain and horizontal

and vertical dependencies. Loop iterator i corresponds to the outer loop and iterator

j corresponds to the inner loop such that the lexigraphical order is from top to bottom

and from left to right. The arrows denote dependencies. The dependency graphs are

annotated with two possible partitionings which are the result of applying transforma-

tions. The plane-cut transformation planecut({i,j},{j=2}) has been applied

in Figure 3.2 A) such that partition P1 executes all points with j ≤ 2 (the white itera-

tion points) and P2 executes all points with j ≥ 3 (grey points). Another partitioning
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is shown in Figure 3.2 B) which corresponds to the modulo unfolding transformation

presented in Figure 3.1 B) and is formally specified as unfold({i,j},{2,0}).

All even i iterations are assigned to P2, and all odd i iteration points are assigned

to P1. The plane-cut and unfolding transformations and partitions differ in terms of

the amount of inter-process communication (as indicated with the bold arrows) and

initial delay of the partitions. In the plane cutting example in Figure 3.2 A), inter-

process communication occurs 4 times and the first iteration point of P2, i.e., point

(1, 3), must wait for 2 iterations (1, 1) and (1, 2) of P1 before it can start executing.

In the modulo unfolding partitioning in Figure 3.2 B), P2 starts after 1 iteration of

P1, but then 12 inter-process data transfers are performed. This makes clear that

different transformations lead to different behavior of the partitioned processes.

To give a more elaborate example of the internal structure of processes, we consider

the processes in Figure 3.3. It shows one of the unfolded F processes and source

process init from Figure 3.1 B).

CH_1

CH_5

CH_3

..

F Process

if( j == 0 )

              if( j−1 >= 0 ) 

if( −j + 2 >= 0 )

writeFIFO(CH_2, &out_2);

readFIFO(CH_1, &in_0);

Init Process

        } // for i

      } // for j

            init(&out_0, &out_1) ;

            if( i%2 == 0 )

if( −i + 1 >= 0 )

/* OP1 */

/* OP2 */

/* OP3 */ writeFIFO(CH_5, &out_1);

writeFIFO(CH_3, &out_0);

if( (i−1)%2 == 0 )

writeFIFO(CH_1, &out_0);

writeFIFO(CH_7, &out_3);

writeFIFO(CH_7, &out_3);/* OP2 */

              F(in_0, in_1, &out_2, &out_3);

readFIFO(CH_6, &in_1);

readFIFO(CH_5, &in_1);

/* IP3 */

readFIFO(CH_2, &in_0);

/* IP4 */

          if( i%2 == 0 ) {

          }

/* OP3 */

/* OP1 */

/* IP2 */

/* IP1 */

CH_2

..

CH_7CH_6

for( i=0; i<=3 ; i++ ) 

        for( j=3; j<=3; j++ ) {

for( i=3; i<=6; i++) {

        for( j=0; j<=3; j++) {

              if( i−4 == 0 )

if( i−4 == 0 )

        } // for j

      } // for i

Figure 3.3: Structure of Unfolded Process F
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It can be seen that process F has one so called self-channel or self-edge, i.e., channel

CH_2 from/to process F. Self-channels are important in determining how to split-up

processes as will be discussed later. Furthermore, it can be seen that the splitting

transformation introduces a control statement inside the process (i.e., the bold modulo

statement) to partition and ensure that an iteration point is executed by one partition

only, and not by two partitions for example.

3.2 Challenges of Applying the Process Splitting Transfor-

mation

In this section we show performance results for two applications. These two moti-

vating examples show that the question which transformation to apply contains many

subtle parts, based on the interplay of many factors which may not be evident at first

sight. This makes it difficult to select the proper process splitting transformation.
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Figure 3.4: Results of Different Splittings on the ESPAM platform

The first bar in Figure 3.4 corresponds to the performance result for the unmodi-

fied application and its derived PPN in Figure 3.1 A) mapped on the ESPAM plat-

form [60,61]. The application is executed in 4.8 million cycles. Then, the network is

balanced by applying the modulo unfolding and plane-cut transformations and thus

two partitions are created for function call statement F. The second bar corresponds

to the plane cut transformation and the third bar to the two times unfolded version

shown in Figure 3.1 B). The fourth and fifth bars display results for creating three

partitions using the same transformations. It can be seen that the plane-cut transfor-

mation is better than the modulo unfolding: 2.5 million vs. 3.1 million cycles for

creating 2 partitions and 1.8 million vs. 2.2 million cycles for creating 3 partitions.
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These results are surprising as the initial producer delay for the plane-cut is larger

than for the modulo unfolding, but still the plane-cut transformation leads to better

performance results. In this example, the number of intra and inter-process com-

munication is not important as the cost for intra and inter-process communication

are the same on the ESPAM platform. Therefore, the measured performance results

can only be explained by a non-constant cost for the communication when different

transformations are applied, which involves a FIFO read/write primitive and a con-

trol part when to read/write (the function workload cannot change and is constant).

We observe that by introducing modulo statements, the communication (the control

part) becomes more costly as the modulo expressions will appear in the definitions of

the input/output ports. An example is the bold modulo statement in the F process in

Figure 3.3. The modulo statement is introduced as a result of the transformation and

is evaluated every iteration. In general, the if-conditions for reading/writing from/to

FIFO channels are more expensive as more complex expressions must be evaluated.

P1 P2 P3

C C

for (i=2; i<100; i++)

  for (j=0; j<100; j++)

    C(x[i], y[j], z[2*i][4*j]);
plane−cutmodulo

unfolding

for (i=2; i<100; i++) {

  for (j=0; j<100; j++) {

    if (j%2==0) 

  }
  }

    if (j%2==1) 

      C(x[i], y[j], z[2*i][4*j]);

      C(x[i], y[j], z[2*i][4*j]);

for (i=2; i<100; i++) {

  for (j=0; j<100; j++) {

    if (j>=50) 

    else 

  }
  }

      C(x[i], y[j], z[2*i][4*j]);

      C(x[i], y[j], z[2*i][4*j]);

Figure 3.5: Modulo unfolding vs. Plane-cut

Another application is shown in Figure 3.5. The initial application source-code at

the top (the producer processes P1, P2, and P3 are omitted for the sake of brevity) is

transformed by unfolding the inner loop two times: unfold({i,j},{0,2}), and

a plane-cut on the inner loop: planecut({i,j},{j=50}). The PPN is topolog-

ically the same for both transformations, but internally the processes are different.

In Figure 3.6, the performance results for the initial network and both transformed

networks are shown. The first bar corresponds to the initial network and it shows that

the application requires 22 million cycles to finish its execution. The second and third

bar correspond to the plane-cut and modulo unfolding and require, respectively, 17

million and 15 million cycles. We observe that the plane-cut method is slightly worse

compared to the modulo unfolding. Although there are no dependencies between the

two processes executing function C (see Figure 3.5), the consumer processes C in
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Figure 3.6: Measured Performance Results of the PPNs in Figure 3.5 on ESPAM

the plane-cut example must wait more iterations before the producer processes gen-

erate the first data compared to the modulo unfolding example (this is discussed in

detail in Section 3.3.2 and in the case-studies in Section 3.5). From this example we

learn that it is not enough to consider only inter-process communication and initial

delay caused by other partitions, but also the delay caused by all other producers. In

Section 3.3, we define the metrics that should be taken into account in applying and

evaluating different transformations.

Problem Statement

There are many possibilities to partition processes as we have shown in this section.

Different partitioning strategies have a significant impact on performance results and

thus selecting the best partitioning strategy is crucial in achieving the best possible re-

sults. Figure 3.4 and 3.6, for example, show that it is not straightforward to select the

best partitioning candidate. The challenge is to find a compile-time solution to pre-

dict the best possible partitioning and thus minimize the execution time. Therefore,

one should be able to answer the following two questions:

• Given the two parameterized transformations unfold(I,U) and

planecut(I,P), which transformation should one apply for a given process

to be split-up?

• For a chosen transformation, what should the parameter values be? For the

unfold transformation, for example, one should choose one or more loop

iterators to unfold and corresponding unfolding factors.
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3.3 Partitioning Metrics

A process Pi has a process iteration domain DPi
and is transformed by transforma-

tion H into n disjoint partitions H(DPi
) = {DP 1

i
, .., DPn

i
}. Different partitioning

transformations result in partitions with different properties and in this section we

discuss six metrics we have identified to evaluate different partitionings. The metrics

we discuss are i) computation costs, ii) communication costs, iii) initial delays, iv)

production period, v) data transfers, vi) additional control overhead.

3.3.1 Computation and Communication Costs

In each process iteration, a function is executed as illustrated in Figure 3.3 (function

F). The complexity of this function can vary from a simple multiply-accumulate op-

eration in a matrix multiplication kernel to a coarse grain task such as a DCT in a

JPEG encoder application. The complexity of this function contributes, among other

factors, to the delay at which data is produced. In determining the total execution

time of a process Pi, the workload, i.e., the computation cost, of a process function

is taken into account and is denoted byWPi
(see also Section 2.5). An accurate costs

estimation is thus crucial for selecting the best possible partitioning strategy and in-

accurate estimations can lead to wrong decisions. We consider the function cost as

an input parameter for our algorithm that can be obtained by running the function

once on the target platform. We consider the function cost to be a constant value, see

Section 3.6 for a discussion on this. Besides the execution of a function, a process

reads from a number of input channels to get all function input arguments at each

iteration. Similarly, it writes the result to a number of output channels. The FIFO

read/write primitives can be supported by hardware (e.g., the ESPAM platform), or

must be supported with a software implementation (e.g., the CELL). Clearly, the

communication cost of data communication depends on the target platform and can

influence the partitioning significantly. With a software implementation of FIFOs, for

example, data communication can easily become more costly than the computation

itself. The ratio of computation and communication is an important metric to evalu-

ate different partitionings. To the costs for inter-process communication we refer as

Cinter and for intra-process communication we use Cintra. These are constant costs

to transfer a single token from a producer to a consumer process and are obtained

by checking/measuring the costs for the read/write primitives on the target platforms.

The reader is referred to Section 3.6 for a more in-depth discussion on using constant

values for the cost of process functions and FIFO communication.
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3.3.2 Initial Delay

A partition may not directly start executing its first iteration as a result of depen-

dencies. In that case, a producer process, or another partition, is responsible for

generating the required initial data.

Definition 12 We define the initial delay as the number of iterations a producer ex-

ecutes before it generates the first data for a partition, and we denote it by Y (DPn
i
)

for a partition DPn
i
.

For example, the second partition P2 in Figure 3.2 A) must wait 2 iterations for

producer P1 before it can start its execution and in Figure 3.2 B) the second parti-

tion can start after 1 iteration. For each partition DPn
i
we calculate the initial delay,

which may be caused by a producer process or another partition. Each partition has a

number of input ports and we determine the lexicographical minimum point of each

function input argument. This point corresponds to the iteration point where data is

read for the first time with respect to that function argument. Figure 3.7 shows the

function call statement F from Figure 3.3. It has two input arguments in0 and in1.

At different iterations, argument in0 is read from input ports IP1 or IP2 , and the

second argument from input ports IP3 or IP4 .

IP1

IP2

IP3

IP4

in0

in1

F(in0,in1)

OP1

OP2

OP3

Figure 3.7: Function Input Arguments and its Delay Calculation

For each input argument, we determine the first read action by considering the lexi-

cographical minimum point of all associated input ports. For the example above, we

calculate the minimum of IP1 and IP2 , and then we do the same for IP3 and IP4 .

In general, when there are x input arguments with y input ports associated to the first

function argument and z ports to the last argument, we calculate the producer points



40 Process Splitting Transformations

as follows:

p1 = M(a), where a = lexmin(

y
⋃

j=1

IP j)

: :

px = M(b), where b = lexmin(

z
⋃

j=1

IP j) (3.1)

We apply the mapping function M (see Section 2.5) of each input port to obtain all

producer points pt where 1 ≤ t ≤ x. The initial data is generated at these producer

iteration points, which means that the consumer is waiting for all preceding producer

iteration points to receive its initial data. Now, to calculate this initial delay, the

rank function (see Section 2.2) is applied to a producer point returning the number

of preceding iterations for a given iteration point. We calculate this offset, the initial

delay Yt, for all producer points pt ∈ DPt
of the last partition DCn as follows:

Yt(DCn) =

{

rank(pt, DPt
) ifPt 6= Cn

rank(pt, DPt
) +

∑n−1
x=0 Y (DCx) otherwise

(3.2)

It shows that if the producer Pt and consumer Cn are different processes, then the

offset is calculated based only on the number of iterations of the producer process.

If the producer point belongs to the same process but to a different partition, then

the delay of the preceding partitions Y (DCx) are taken into account. The initial time

T init
Cn a consumerCn is waiting for initial data, is determined by the slowest producer.

To calculate this time, we consider all Yt(DCn) values as defined above. These values

are multiplied by the estimated time T iter
Pt

required for one process iteration, which

we define with Formula 3.9 in Section 3.4, of the corresponding producer and the

maximum value is taken:

T init
Cn = maxt{Yt(DCn) · T iter

Pt
} (3.3)

3.3.3 Production Period

The calculation of the initial delay is not enough to accurately estimate the execution

time of a partition. For example, a producer can generate data for a consumer at its

first iteration, but then it may take a number of iterations before it generates new data.

This illustrates that the production period of a producer process is another import

metric.

Definition 13 The production period of a process is the number of process iterations

between two consecutive data productions.
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A more elaborate example is given in Figure 3.8. Both the circles and crosses de-

note process iteration points. The circles indicate that data is produced for a particular

consumer at that point, and the crosses indicate that no data is produced. A consumer

21 ... j

1

:

i i

j1 2 ...

1

:

.. .. .. ..

A) Producer P1 B) Producer P2

Figure 3.8: Production Period Examples

process receiving data from these two producers is waiting 1 iteration for producer

P1 and 10 iterations for P2 to generate the initial data so that the consumer can start

executing. After this initial delay, producer P2 is producing data at each iteration,

while P1 is producing data in either 2 or 5 iterations. We define the average produc-

tion period dPi
as the average number of iterations that is required to generate new

data by producer Pi.

Definition 14 The average production period, denoted by dPi
, is calculated by di-

viding the total number of iteration points of a producer process Pi by the total num-

ber of generated data tokens:

dPi
=

|DPi
|

|M(IPC)|
(3.4)

where IPC is the input port domain of consumer process C,M is the mapping func-

tion which is used to obtain the producer iteration points for this input port domain,

and DPi
is the process iteration domain of the producer process Pi.

To illustrate the production period, we consider the example in Figure 3.8 and as-

sume the iteration domain consist of 3 rows and 5 columns. The production period

is 15
6 = 2.5 and 15

5 = 3 for producer P1 and P2, respectively. The time T period
Pi

required to generate new data is the average production period multiplied by the re-

quired time T iter
Pi

that is needed for one process iteration of a producer:

T period
Pi

= dPi
· T iter

Pi
(3.5)

In Section 3.4, we explain how the time T iter
Pi

for a process iteration is calculated.
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3.3.4 Data Transfers

Different partitionings can lead to a different number of inter- and intra-process data

transfers which is denoted by DT . A data transfer occurs when data is read/written

to/from a FIFO channel. We already considered the example in Figure 3.2 A), where

the plane-cut results in 4 + 4 = 8 data transfers (the bold arrows) from one process

to the other process and 40 transfers to/from the same process. In Figure 3.2 B),

the partitioning strategy results in 12 + 12 = 24 inter-process data transfers and

12 + 12 = 24 intra-process data transfers. The number of data transfers is impor-

tant. For the examples in Figure 3.2, it is clear that the plane-cut is better than the

modulo unfolding if inter-process communication is costly, because there are only

8 inter-process communication compared to 24 transfers for the modulo unfolding

transformation.

For a process Pi, we calculate the number of intra and inter process data transfers

by considering all input/output port domains of this process and check, in the poly-

hedral process network, if the corresponding output/input port domains belong to

the same process Pi. If this is the case, then we classify the input/output port and

corresponding channel as intra-process communication, and inter-process communi-

cation otherwise. We compute the number of intra and inter process data transfers as

follows:

DTRd
inter =

∑

i

|M i(IP i)|

DTRd
intra =

∑

j

|M j(IP j)|

DTWr
inter =

∑

k

|OPk|

DTWr
intra =

∑

l

|OP l| (3.6)

Equation 3.6 shows that the size of all input port domains determine the total number

of intra/inter process data transfers for data that is read. In a similar way, we define

data that is written as inter/intra process data transfers by considering the output port

domains.

3.3.5 Additional Control Overhead

The process partitioning transformations are equivalent to source-code transforma-

tions as already indicated and also described in [79]. In Figure 3.1 B), a function call
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statement is duplicated and assigned to even/odd iterations of the outer loop itera-

tor. We have shown in Figure 3.3, that the control for reading/writing from/to FIFO

channels becomes more complex as a result of the transformation. This additional

control overhead can change the computation-communication ratio. If this is not

taken into account, then execution times cannot be accurately estimated leading to

incorrect predictions which transformation is better. It is very difficult however, to

predict this additional control overhead as the nesting level of the if-statements are

different for each application and transformation. As a result, costs for the control

overhead cannot be accurately estimated at compile-time. Furthermore, it is not feasi-

ble to ask the designer to provide the costs as there may be many ports to be checked.

However, there are cases when the control overhead can be safely ignored. The addi-

tional control can only change significantly the computation-communication ratio if

the computational process workload is small. With coarse grain tasks, the additional

control will not change significantly this ratio and it is not necessary to take this into

account in the cost function. Another approach to avoid the additional control over-

head is a manual modification of the generated code. In case of the modulo unfolding

for example, the introduced modulo statements can be manually removed from the

generated code by adjusting the loop step-size and corresponding conditions in the

input/output port domains. The conditions for the plane-cut are usually much sim-

pler and thus can be ignored in many cases. In our approach we consider examples

with compute intensive tasks and change manually the generated code to remove the

additional control overhead.

3.4 Compile-time Selection of Splitting Transformation

In this section, we present a solution approach and analytical model to predict, at

compile-time, which transformation should be applied to obtain the best performance

results. To compare different transformations, we estimate the execution time of a

transformation.

Definition 15 The execution time of a transformation, denoted by Ttransformation,

is defined as the estimated total execution time, i.e., the time required to execute all

process iterations of the last processes partition which is obtained after applying the

process splitting transformation.

One solution to evaluate the different splitting transformations is simply to evaluate

all possibilities. This is possible, because we define in this section a compile-time

model that allows a designer to estimate the execution of a transformation. However,

evaluating all possibilities is not a very attractive solution as the number of possi-

bilities to check and evaluate can be large. Here we present an approach that does
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Figure 3.9: Decision Tree

not require to evaluate all possible transformations, i.e., some transformations can

be excluded beforehand. To achieve this, the decision to evaluate and apply a par-

ticular transformation for a given process is made using the decision tree shown in

Figure 3.9. The transformations listed in the leaf nodes of the decision tree are con-

sidered, the corresponding execution times Ttransformation are calculated using the

analytical model, and the minimum value is selected. There are 5 possibilities to ap-

ply a process splitting transformation: a horizontal, vertical, diagonal plane-cut, and

modulo unfolding on the inner- and outermost loop. Thus, the advantage of using the

decision tree is that some possibilities do not need to be evaluated.

To balance the network, the designer starts with selecting the most computation-

ally intensive process which will be split-up using the unfolding or plane-cut trans-

formation. Following the decision tree, inter-process communication is avoided as

much as possible by analyzing the self-dependencies of that process. If there are no

self-dependencies at all before the partitioning, then a partitioning cannot introduce

inter-process communication. If a single self-dependency exists, then inter-process

communication can be introduced by a transformation if the transformation is not

chosen carefully. Thus, the idea of the decision-tree is to avoid inter-process com-

munication as much as possible by creating partitions that ”follow the directions”

of these dependencies. In other words, producer-consumer pairs are clustered into
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the same partition, and not assigned to different partitions, such that the communi-

cation remains local. For example, if there exists a single horizontal dependency

in a 2-dimensional process iteration domain, then vertical partitions will introduce

inter-process communication, while horizontal partitions will not. For multiple de-

pendencies that are orthogonal to each other, a partitioning with inter-process com-

munication cannot be avoided. These cases are captured in the decision tree shown

in Figure 3.9 and we discuss each of these cases in more detail. Please note that we

illustrate below our approach with 2-dimensional process iteration domains, while

the approach also works for processes with n-dimensional domains where n > 2.

This is shown with a case-study in Section 3.5.2. For higher dimensional iteration

domains (i.e., n > 2), the principle of the decision tree in Figure 3.9 remains the

same, only the space spanned by the dependencies are different. Consider, for exam-

ple, case 2 of the decision tree shown in Figure 3.9. A horizontal dependency in

a 2-dimensional domain is a line, while in the a 3-dimensional domain it can also be

a plane. Thus, independent partitions can be created as long as the dependencies do

not span the entire iteration domain.

Case 1

The first branch in the tree checks if there are any self-dependencies. If not, then only

the plane-cut and modulo unfolding on the inner most loop iterator (indicated by imod

in Figure 3.9) are compared. Thus, case 1 is the easiest case because inter-process

communication cannot be introduced by the splitting transformation since the process

does not have any self-dependencies. In this case, the most important factor is the

initial delay which we illustrate with the example shown in Figure 3.10.
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Figure 3.10: Decision Tree: Case 1

Recall from Section 3.3.2 , that the initial delay represents the number of process

iterations, which a producer process needs to execute before it generates the first
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input data for a consumer process. This initial delay is the reason that only the plane-

cutting on the inner-loop j and the modulo unfolding on the inner-loop are compared

in case 1. For other transformations, such as modulo unfolding on the outer-loop

i, the initial delay will always be larger. To illustrate this, take into account that the

lexicographical order of the Consumer process iterations is from from top to bottom

and from left to right, in Figure 3.10. Process iteration (i = 0, j = 2) is, therefore,

the first process iteration to be executed by the second process partition after applying

the plane-cut transformation. Similarly, process iteration (i = 1, j = 0) is the first it-

eration to be executed by the second partition after applying modulo unfolding on the

outer-loop i, and iteration (i = 0, j = 1) is the first for the unfolding transformation

on the inner loop j. When data is produced in the same order as it is consumed, then

it should be clear that iteration (1, 0)must always wait more iterations than iterations

(0, 1) and (0, 2) before its input data is generated by the producer. Hence, unfolding

on the outer-loop i is not considered. The plane-cut is the preferred transformation

to apply, because the introduced overhead of the transformation is less than mod-

ulo unfolding on the inner-loop j. However, the initial delay can be much larger and

therefore the plane-cut and modulo unfolding (inner) are the two transformations that

are evaluated and compared at compile-time.

Case 2 & Case 3

In case the selected process has self-dependencies, then the dependency directions are

analyzed. We have identified 3 different cases as shown in Figure 3.9. For case 2

and case 3, inter-process communication can still be avoided: i.e., when the pro-

cess has a horizontal/vertical self-dependency, or a diagonal self-dependency. For

these cases, the dependent iterations are assigned to the same partition and the com-

munication remains local to each partition.
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Figure 3.11: Decision Tree: Case 2

The reason to consider a single self-dependency and multiple linearly dependent
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self-dependencies as one case, is because inter-process communication can be avoided.

Therefore, it is crucial that the multiple self-dependencies are linearly dependent,

which is illustrated with the example in Figure 3.11. Intuitively, the idea is to split-up

a process in such a way that the plane-cut or modulo unfolding follows ”the same

direction” as the linearly dependent self-dependencies. Figure 3.11 shows such an

example with two different dependencies: one in the direction of (i + 1, j + 0), or

in short (1, 0), and the other one in the direction of (2, 0). These dependencies al-

low a partitioning that creates independent partitions, with the dependent iterations

assigned to a same partition. This is illustrated with the plane-cut transformation

shown in Figure 3.11 A), and the modulo unfolding on the inner loop j shown in

Figure 3.11 B). It is clear that for these cases there is no difference if there is only

one self-dependency, or multiple linearly dependent: the partitions will be free of any

inter-process communication. In case 2, the modulo unfolding on the outer loop

is not considered because the initial delay will always be significantly larger than the

other two partitionings and therefore it will never be better. The best transformation

is obtained by evaluating the execution times of the plane-cut and modulo unfold-

ing on the inner loop iterator. While Figure 3.11 shows two processes with vertical

self-dependencies, another possibility are horizontal self-dependencies, i.e., in the

direction (i+0, j+1). We do not further elaborate on this case as the analysis is the

same as for the vertical dependencies.
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For diagonal self-dependencies, i.e., case 3 of the decision tree, different splitting

transformations should be evaluated compared to the horizontal/vertical dependen-

cies. Figure 3.12 shows an example of a diagonal self-dependency. In this case, it is

clear that a diagonal plane-cut results in partitions that do not need to communicate,

as shown in Figure 3.12 A). On the other hand, the initial delay can be quite large.

The first iteration of the second partition corresponds to iteration (1, 0). If a producer

processes first generates data for all points on the first line with i = 0, then the sec-

ond partition cannot directly start executing. In that case, a modulo unfolding on the
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inner/outer loop as shown in Figure 3.12, will have much smaller initial delays: the

first iterations of the second partition correspond to iterations (0, 1) and (1, 0) for the

modulo unfolding on the inner and outer loop, respectively. Note that in this example,

the first iterations of the second partition for the diagonal plane-cut and unfolding on

the outermost loop i are the same, i.e., iteration (1, 0), but this does not need to be

the case in general. Although the modulo unfolding can have a smaller initial de-

lay than the plane-cut transformation, the different partitions must synchronize and

communicate data, which is not the case for the plane-cut. The transformation that

results in the best performance results, therefore, depends on the costs for FIFO com-

munication and the process workload, and thus the plane-cut and modulo unfolding

transformations should be evaluated and compared.

Case 4

When a process has multiple linearly independent self-dependencies, it is not possible

to create partitions without any inter-process communication. This corresponds to

case 4 of the decision tree. For example, when a process with a 2-dimensional

process iteration domain and 2 self-dependencies that are perpendicular, i.e., they

are orthogonal as shown in Figure 3.13 A), any process splitting transformation will

result in inter-process communication between the different partitions.

i

j
j

i

C) Diagonal Plane−cut

i

j

Partition P2Partition P1

B) Plane−cut inner loopA) Orthogonal Dependences

Partition P1

Partition P2

Figure 3.13: Decision Tree, Case 4: Linear Independent Self-Dependencies

In Figure 3.13 A), a 2-dimensional process iteration domain is shown where the

arrows denote dependencies, i.e., the dependencies are orthogonal to each other. The

lexicographical order of the iteration points is from top to bottom and from left to

right, (i.e., i is the outer loop and j the inner loop). Thus, for dependencies that are

orthogonal to each other, unfolding on the inner most loop is not considered because

this transformation leads to sequential execution of the partitions. In addition to the

unfolding on the inner most loop, we also do not consider the diagonal plane-cut. The

reason is that the delay for the iteration points at the diagonal of the second partition,
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is always much larger than the initial delay for the plane-cut on the inner loop and

the modulo unfolding on the outer loop. Therefore, the plane-cut transformation on

the inner loop must be compared with unfolding the outer loop (refered to as omod).

While orthogonal dependencies are one example of linearly independent dependen-

cies, there are many other possibilities for two dependencies to be linearly indepen-

dent. An example is shown in Figure 3.13 B). Although the dependencies are not

orthogonal, they are linearly independent and a plane-cut on the inner loop j = 2, as

shown in Figure 3.13 B), would result in 9 inter-process communications. A diagonal

plane-cut, however, as shown in Figure 3.13 C), would result in only 1 inter-process

communication. Furthermore, we see that for both plane-cuts, that there is no initial

delay. However, there is a small delay for the first synchronization point in the diag-

onal plane-cut, i.e., the two highlighted iteration points in Figure 3.13 C). That is, the

synchronization point is the 5th iteration point of partition 1, and the consumer point

is the 4th iteration of partition 2. This means that partition 2 is waiting 1 iteration for

partition 1 to receive its data, which does not occur in the plane-cut on the inner loop.

Despite this small delay, the diagonal plane-cut can possibly be better than a plane-

cut on the inner loop, depending on the costs for communication and the workload

of the process function, because it has less inter-process communications. Therefore,

the diagonal plane-cut, plane-cut on the inner loop, and modulo unfolding should be

evaluated and compared.

Calculating the Execution Time of a Transformation

Now we present how the execution time of a transformation can be estimated and

thus how transformations can be evaluated and compared. The execution time of a

transformation is calculated by summing the initial time T init
Pn
i

the last partition is

waiting for data and the time T exec
Pn
i

required for executing that last partition Pn
i :

Ttransformation = T init
Pn
i

+ T exec
Pn
i

(3.7)

The initial delay T init
Pn
i

is defined in Formula (3.3) and represents the maximum time

before the first initial data is produced by producer processes. The execution time

T exec
Pn
i

for a partitioning is defined and calculated as follows:

T exec
Pn
i

= |DPn
i
| ·max(Tavg period, T

iter
Pn
i
) (3.8)

In this formula, T iter
Pn
i

is the execution time that is required to execute a single itera-

tion of the last partition. The costs for executing a single process iteration includes

reading all the process function input arguments, execution of the process function,

and writing of the result(s) to the output port(s). If this time is less than the time
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required by a producer to generate data, then the execution of an iteration is domi-

nated by the producer process. For this reason, we check if Tavg period ≥ T iter
Pn
i

and

use this time, if necessary, multiplied by the number of process iteration points in the

domain to calculate the execution time T exec
Pn
i

. The time required to execute a single

iteration T iter
Pn
i

in this formula is approximated by considering the workload WPn
i
of

the partition Pn
i , and the average time for inter- and intra-process data transfers:

T iter
Pn
i

= WPn
i
+

DTRd
inter

|DPn
i
|
· CRd

inter +
DTRd

intra

|DPn
i
|
· CRd

intra + (3.9)

+
DTWr

inter

|DPn
i
|
· CWr

inter +
DTWr

intra

|DPn
i
|
· CWr

intra

whereCRd
inter,C

Rd
intra,C

Wr
inter,C

Wr
intra are the costs for reading and writing data for inter

and intra-process communication as defined in Section 3.3.1. DTRd
inter, DTRd

intra,

DTWr
inter, and DTWr

intra are, respectively, the total number of inter and intra process

data transfers as defined in Formula 3.6.

If the computation of a process is not dominated by its own execution T iter
Pn
i
, but by

the producer(s) and its large production period(s), then the average period Tavg period

from the producers is used to calculate the execution time of a single iteration. Tavg period

in Formula (3.8) corresponds to the execution time a partition is waiting for data con-

sidering its producer process. The average time is approximated taking into account

the number of tokens transfered between a producer-partition pair with respect to the

total number of data transfers. This number is used as a weight for the production

period of a producer. The average period Tavg period is calculated by summing the

production period multiplied by the weight factor for all n producers:

Tavg period =
n
∑

i=1

T period
Pi

·
|OP i|

∑n
j=1 |OP j |

(3.10)

where T period
Pi

corresponds to the production period as defined in Formula (3.5).

3.5 Case-Studies

In this section we present 3 different applications. The first application is an applica-

tion with a single diagonal dependency for the compute process, the second applica-

tion is a matrix multiplication, and the third is an application with four different pro-

ducers and (initial) delays. We map the applications on the ESPAM platform [60,61]

prototyped on a Xilinx Virtex 2 FPGA and the CELL processor [34]. For program-

ming the Xilinx Virtex 2 Pro FPGA, we use the Daedalus tool-flow [62] to implement
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a multi-processor system on chip. Each process from the network is mapped onto a

MicroBlaze softcore processor and the processes are point-to-point connected. The

FIFO channels are implemented using FSL channel components provided by Xilinx.

We measured that writing/reading to/from FIFOs is completed in just 10 clock cy-

cles. The second platform is the CELL BE processor and we use the code generator

presented in [58] to map applications on the Cell processor of a Playstation 3

console. We map the compute processes to different SPEs and source/sink processes

to the PPU. The FIFO channels are implemented in local memories of both the pro-

ducer and consumer process. Synchronization with signals/mailboxes ensures mu-

tual exclusive access, which makes the read/write primitives much more expensive

compared to the ESPAM platform. In these case-studies, we will not exhaustively

explore all cases and transformations. Instead, we focus on case 3 and case 4 of

the decision tree shown in Figure 3.9, because they are the most interesting from the

dependencies point of view. For these two cases, we experiment with different intial

delays, production periods, and inter-process communication. For each experiment,

we show our approach applied on different transformations to verify that our model

correctly captures these differences and thus predicts correctly the execution times.

3.5.1 Single Diagonal Dependence

In this experiment we consider a kernel as also used in [25]. This example is used

to check if we can correctly predict which transformation is better by using the an-

alytical model as we have defined in Section 3.4. The application is characterized

by a compute process with a two dimensional iteration domain and a single diagonal

self-dependency as shown in Figure 3.14. The application has three statements S1,

S2, and S3 and the corresponding iteration domains and dependencies are shown in

Figure 3.14 as well. In this example, a triangular assignment of process iterations

to partitions using a diagonal plane-cut results in two partitions P1 and P2 free of

any inter-process communication. The second partition P2 does not have any initial

delay with respect to the first partition P1, but it does have a relatively large initial

delay with respect to producer S1, i.e., 6 process iterations of S1, see Figure 3.14.

The modulo assignment on the other hand, as also illustrated in Figure 3.14, would

introduce many inter-process communications, but it has a small initial delay of only

2 iterations with respect to partition P1. With this experiment, we investigate if the

model captures well the trade-off of having inter-process communication at low costs,

or a case without any inter-process communication but with a relatively large initial

delay. For testing purposes only, the iteration domains, compared to Figure 3.14,

have been increased in the experiments to 20 iterations points for producer S1, and a

2-dimensional iteration domains of 10× 10 for the compute process S2.

To evaluate and determine the transformation to be applied for this example, the
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Figure 3.14: Nested-loop Program and Partitioned Dependence Graph

decision tree is checked as presented in Section 3.4. There is a self-dependency for

compute process S2, so the right branch is taken and the dependency directions are

analyzed. It is a single diagonal self-dependency and thus the decision tree indicates

that we should consider the transformations in case 3, i.e., the transformations

plane-cut and modulo unfolding on the inner and outer loop must be evaluated using

Formula 3.7.

Communication Cost

CRd
inter : PPE ↔ SPEi 4000

CRd
inter : SPEi ↔ SPEj 160

CRd
intra : SPEi ↔ SPEi 10

CWr
inter = CWr

intra 10

Table 3.1: Communication Costs on the Cell

Table 3.1 shows the costs for communication on the Cell platform. It can be seen

that there are two different costs for CRd
inter, because inter-process communication in

the Cell can occur between the PPE and an SPE (the cost is 4000 cycles), but also

between different SPEs (the cost is 160 cycles). Reading data from the same SPE,

and also the writing of data, costs 10 cycles. There is no difference in the costs for

writing data via inter/intra process communication, because data is always written to

a local FIFO buffer of a producer process.

The two partitions P1 and P2 have a process workload of WP1 = WP2 = 5000.
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The producer S1 does not have any workload such thatWS1 = 0. These computation

costs are shown in Table 3.2.

Computation Cost

WP1 = WP2 5000

WS1 0

Table 3.2: Computation Costs on the Cell

Next, we consider the specific metric values of the second partition P2 for the

different process splitting transformations as shown in Table 3.3.

Metric planecut unfold (outer) unfold (inner)

Prod. Delays YS1(DP2),YP1(DP2) 11, 0 0, 3 2, 0

Production Periods dS1, dP1
20
10(S1)

50
45(P1), 205 (S1)

50
45(P1), 205 (S1)

DTRd
inter 9 45 + 5 = 50 45 + 5 = 50

DTRd
intra 36 0 0

DTWr
inter 9 45 + 5 = 50 45 + 5 = 50

DTWr
intra 36 0 0

Table 3.3: Partition P2 and its Metric Values

The first row shows that the plane-cut transformation has an initial delay of 11 itera-

tion caused by producer S1. The modulo transformation on the outer loop has an ini-

tial delay of 3 iterations: the second partition P2 needs to wait 2 iterations for the first

partition P1, which on its turn needs to wait 1 iteration for producer S1. The modulo

transformation on the inner loop has an initial delay of 2 iterations, which is caused

only by only one process, i.e., producer S1. For the plane-cut experiment, 10 data to-

kens are read from S1, which produces 20 tokens in total. Therefore, the production

period is 20
10 . Furthermore, 9 tokens are read/written via inter-process communica-

tion, and 36 tokens are read/written via intra-process communication. For both the

unfolding transformations, 50 tokens are read via inter-process communication and

0 tokens via intra-process communication. The writing of tokens is performed with

50 tokens via inter-process communication, and 0 tokens via intra-process commu-

nication. We use these metric values to calculate the execution time of the modulo

unfolding transformation Tomod using the model defined in Formula 3.7 as follows:

Tomod = T init
P2 + T exec

P2 = 11108 + 305450 = 316558

T iter
P2 = 5000 + 45

50 · 160 +
5
50 · 4000 +

50
50 · 10 = 5554

T period
S1 = 20

5 · 10 = 40
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T period
P1 = 50

45 · 5554 = 6788

Tavg period = 5
50 · T

period
S1 + 45

50 · T
period
P1 = 5

50 · 40 +
45
50 · 6788 = 6109

T exec
P2 = 50 ·max(5554, 6109) = 305450

T init
P2 = dP1 · T

iter
P1 = 2 · 5554 = 11108

If we do the same for the plane-cut and unfolding on the inner loop, then we obtain

Tplane = 301248 and Timod = 304736. Thus, we find that Tplane < Timod < Tomod

which indicates that the plane-cut transformation can be applied best because its es-

timated execution time is smaller compared to the other 2 transformations. In other

words, our solution approach finds that the plane-cut transformation must be applied

to obtain the best performance results. This compile-time hint is correct according to

the measured performance results shown in Figure 3.15.
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Figure 3.15: Diagonal Dependencies: Measured Performance Results on the Cell

The first bar in Figure 3.15 shows the result for the initial PPN on the Cell. The

application executes in just over 1 million cycles. The second, third and fourth bar

show the measured performance results for the plane-cut, and modulo unfolding on

the outer and inner loop, respectively. We observe that the plane-cut is better than the

2 modulo unfolding transformations, which corresponds to the compile-time hints as

calculated above. The purpose of calculating the execution time is not to estimate

the real absolute performance results as close as possible, but to capture the trend

of the transformations instead. The difference of the calculated execution times and

the measured performance results on the Cell, for example, can be explained by the

initialization and termination of SPE threads.

For the ESPAM platform we perform the same calculations and predictions. The

metrics are different only for the computation and communication costs. These costs
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are both shown in Table 3.4, i.e., the process workload of the compute process is

5000 cycles, and the cost for reading/writing data through inter- and intra-processes

communication is 10 cycles. Note that the costs for all communication types are

the same on the ESPAM platform, whereas on the Cell they are different and more

expensive.

Metric Cost

WorkloadWP2 5000

Comm. Costs: CRd
inter, C

Wr
inter 10

Comm. Costs: CRd
intra, C

Wr
intra 10

Table 3.4: Workload and Communication Costs on ESPAM

Using the metric values in Table 3.3 and 3.4, we calculate and predict the execution

time for the three transformations on the ESPAM platform in the same way as we have

shown above. We find that Tomod ≈ 252240, Tplane ≈ 276200, and Timod ≈ 251220

and observe that Timod < Tomod < Tplane. Thus, the prediction is that the modulo

unfolding transformation on the inner loop is better than the plane-cut and unfolding

on the outer loop. The measured performance results shown in Figure 3.16 illustrate

that this predictions are correct.
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Figure 3.16: Diagonal Dependencies: Measured Performance Results on ESPAM

The first bar shows the measured performance results for the initial PPN, the sec-

ond bar corresponds to the plane-cut transformation, and the third and fourth bars

correspond to the results for the modulo unfolding on the outer and inner loop, re-

spectively. It can be seen that the differences in the measured performance for the
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different transformations are very small, as also predicted by the estimated execu-

tion times. Despite these small differences, the predictions are correct and unfolding

on the inner loop results in the best performance results. We see that the plane-cut

transformation gives the worst performance results on the ESPAM platform, while

it is the best alternative on the Cell. From this experiment, we conclude that the

analytical model captures well the fact that the initial delay can be the dominating

factor even if there is inter-process communication, i.e., for the ESPAM platform the

communication costs are cheap thereby making the initial delay the crucial factor.

Note that on the ESPAM platform the estimated execution times approximate very

well the actual measured execution times. For the Cell platform, the estimated execu-

tion times are less than the measured execution times for this particular experiment,

because we do not take into account the overhead in SPE thread creation, synchro-

nization, and termination, and the absolute execution times are small. For PPNs with

large execution times, this overhead will not be significant and, thus, the estimated

execution times will approximate better the performance results as we show in the

next experiments.

3.5.2 Matrix Multiplication with Multiple Dependencies

We consider a matrix multiplication kernel implemented with a 3 dimensional loop

nest structure. A single plane and its dependencies are already shown in Figure 3.2.

The matrix application is an extension of this as there are a number of these planes

with dependencies from each point in a plane to the same point in the next plane.

The matrix multiplication application is considered because both transformations will

lead to a great number of inter- and intra-process communication, such that the same

transformation may have a completely different impact on the Cell than on the ES-

PAM platform. We verify that the analytical model and solution approach correctly

predicts this behavior. The initial PPN consists of 4 processes. Processes P1 ,P2 ,P3

initialize, respectively, the matrix where the result is stored and the two matrices

that are multiplied. Process P4 is the compute process and with the plane-cut and

unfolding transformations we create a second process P4 ′. We consider compute

process P4 , check the decision tree in Figure 3.9 and see that there are multiple

self-dependencies for this process; the horizontal and vertical dependencies are or-

thogonal to each other, i.e., case 4 of the decision tree. Thus, the transformations

plane-cut on the inner loop, and unfolding on the outermost loop should be evaluated.

Note that we do not evaluate the diagonal plane-cut, which is taken into account when

the dependencies are linearly independent and not orthogonal, see the discussion on

case4 in Section 3.4. If we experiment with a kernel of 200× 200× 200 iterations

and apply the plane-cut transformation on the inner loop, then the first 100 iterations

of the inner loop are assigned to the first partition and the remaining 100 to the sec-
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Metric planecut unfold (outer)

YP1 (DP4 ′),YP2 (DP4 ′),YP3 (DP4 ′),YP4 (DP4 ′) 0, 100, 100, 100 200, 200, 0, 1

Production Periods dP1, dP2, dP3, dP4 0, 2, 2, 100 2, 2, 0, 1

DTRd
inter 40 · 103 4 · 106

DTRd
intra 12 · 106 8 · 106

DTWr
inter 0 4 · 106

DTWr
intra 12 · 106 8 · 106

Table 3.5: Partition P4 ′ and its Metric Values on the Cell

ond. As a result, the initial delay of the second partition is 100 iterations. In the

modulo unfolding all iterations of the outer loop i%2 = 1 are assigned to the first

partition, and i%2 = 0 to the second. As a result, the delay is 1 for the second par-

tition. The metric values for this example are shown in Table 3.5, and it can be seen

that there is a great number of inter and intra process data transfers.

Now we compute the time for both transformations by using these values in the

formulas as we have presented before. We do no repeat all intermediate steps to

calculate these numbers, but just give the final outcome. Note that the costs for

FIFO communication is the same as in the previous experiment, see Table 3.1. The

workload is also the same, i.e., 5000 cycles for the compute process(es).

The analytical model gives as a result that Tplane ≈ 20.4·109 and Tomod ≈ 21.4·109.

Because the estimated time for the plane-cut transformation is less than the mod-

ulo unfolding, we conclude that the plane-cut transformation results in better perfor-

mance results. As can be seen in Figure 3.17, the analytical model predicts correctly

that the measured performance results on the Cell platform for the plane-cut transfor-

mation is better than the unfolding transformation. The first bar corresponds to the

initial Polyhedral Process Network, which needs more than 4000 million cycles to

finish its execution. The plane-cut transformed network is finished in 20071 million

cycles and the unfolding transformation in 20445 million cycles.

Now we follow the same steps and predict the results for the ESPAM platform.

Recall that the costs for communication and computation on the ESPAM platform

is 10 clock cycles for both intra and inter process communication. The workload

of the compute process(es) is 5000 cycles, and the process iteration domain is 20 ×

20 × 20. Thus, the total number of process iterations is 8000. After splitting the

compute process, 4000 process iterations are executed by one partition, and the other

4000 process iterations by the other partition. We calculate the values and we obtain

Tplane ≈ 20.29 · 106 and Tomod ≈ 20.24 · 106. Since the communication costs on the

ESPAM platform are very cheap and the same for intra or inter process data transfers,

we observe that the initial delay of a partition (i.e., YP4(DP4′), see Table 3.5) is the
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Figure 3.17: Measured Performance Results of Matrix Multiplication on the Cell

determining factor in this experiment. The analytical model predicts that the modulo

unfolding transformation leads to better performance results. Figure 3.18, indeed,

shows that for the measured performance results, the unfolding is better than the

plane-cut.
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Figure 3.18: Measured Performance Results of Matrix Multiplication on ESPAM

The first bar shows the results of the matrix multiplication mapped as a Polyhe-
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dral Process Network onto the ESPAM platform. It is finished in a bit more than

40 million clock cycles. The second bar shows the result for the plane-cut trans-

formation, which is finished in 20060044 cycles. The third bar corresponds to the

modulo unfolding and we see that the unfolding transformation is slightly better than

the plane-cut, i.e., it is finished in 20042850 cycles.

3.5.3 Four Producers with Delays

In this experiment, we investigate the effects of production periods on different trans-

formations. The production period of one producer process is chosen to be much

larger than the other producers. The experiment has been setup in this way, to

see if the analytical model under these conditions still correctly predicts the trend.

The Polyhedral Process Network (PPN) used in this experiments is derived from the

nested loop program below:

for (i=2; i<100; i++)

for (j=0; j<100; j++)

x[i], y[j] = C(x[i], y[j], z[2*i][4*j], w[i][j]);

At each iteration, function C is executed and data is read from different arrays. Ar-

rays x and y are read at each iteration and also new values are written into it. Thus,

there are two (orthogonal) self-dependencies for this function call statement. The

third input argument array z is indexed with expressions 2 ∗ i and 4 ∗ j. Consecu-

tive read accesses at the consumer process, map to iteration points at the producer

process which are not consecutive. For example, iterations (2, 0) and (2, 1) of the

consumer map to iterations (4, 0) and (4, 4) at the producer. In this way, we model a

producer process with a production period that is different from the other processes.

The fourth input argument is array w, which is written and read at each iteration of

the producer and consumer. Furthermore, the first iteration of i starts at 2, such that

there is an initial delay for each of the producers. The corresponding PPN is shown

in Figure 3.19 A). It consists of 4 producer processes P1 ,P2 ,P3 ,P4 and a single

consumer C .

To determine which transformation is better, the decision tree (see Figure 3.9) indi-

cates that the transformations plane-cut on the inner loop and unfolding on the outer

loop must be compared, i.e., it is case 4, as the dependencies are orthogonal in this

example. The networks for the unfolding and plane-cut transformations are shown

in Figure 3.19 B) and C), respectively. It can be seen in Figure 3.19 C) that, for

the plane-cut transformation, the second partition C2 receives data from processes

P1 ,P2 ,P4 ,C1 . The first iteration to be executed by the second partition C2 is it-

eration point (2, 50). Producer process P1 generates data for this point at iteration

(4, 200) as a result of index expressions 2∗i and 4∗j at the consumer C2 . Therefore,

the initial delay is 4 ∗ 400 + 200 = 1800 iterations with regards to producer process
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Figure 3.19: Consumer(s) with 4 Producers

P1. To calculate the production period, we find that producer P1 executes 80.000

iterations and that consumer C2 reads 4900 tokens from it. Therefore, the produc-

tion period is 80000
4900 ≈ 16 iterations. For the other producer process, the initial delays

and production periods are calculated in a similar way and are also shown in Table

3.6. For the unfolding transformation, we see in Figure 3.19 B) that partition C2

depends on 5 producers. To give an example of the initial delay calculation for this

transformation, we consider the first iteration point (3, 0) of partition C2 . This point

is mapped to iteration point (6, 0) of the producer P1 , and hence the initial delay is

6 ∗ 400 + 1 = 2401. The other delays are 1201, 4, 1 and 1 iterations with respect to

the remaining 4 producer processes, which is also shown in Table 3.6.

Metric planecut unfold (outer)

YP1 (DC2 ), ..,YP4 (DC2 ),YC1 (DC2 ) 1800, 850, 0, 3, 3 2401, 1201, 4,1,1

dP1, dP2, dP3, dP4, dC1 16, 16, 0, 2, 50 16, 16, 2, 1, 2

DTRd
inter 98 4800

DTRd
intra 9652 4851

DTWr
inter 0 4800

DTWr
intra 9652 4851

Table 3.6: Partition C2 and its Metric Values on the Cell

The communication costs and the process workload are the same as in the previous

experiments, i.e., the communication costs are shown in Table 3.3 and the workload

is 5000 cycles for the compute process. If we use these metric values to calculate

and predict the execution times of the transformed PPNs, we obtain that Tplane ≈ 39

million cycles and Tomod ≈ 37 million cycles.

The measured performance results on the Cell platform confirm that the compile-

time hint is correct. The first bar in Figure 3.20 shows that the PPN is finished in
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Figure 3.20: Measured Performance Results on the Cell

50.9 million cycles. The second bar corresponds to the plane-cut transformation

and is finished in 38.6 million cycles, and the third bar corresponds to the unfolding

transformation which is finished in 37 million cycles. We observe that, indeed, the

unfolding transformation is better compared to the plane-cut transformation.

If we want to predict which transformation is better for the ESPAM platform, we

repeat all steps. The only difference are the metric values for writing/reading to/from

FIFO channels, which are shown in Table 3.4. If we compute the execution time for

both transformations, we find Tplane ≈ 27.8million cycles and Tomod ≈ 25.6million

cycles . This prediction indicates that the unfolding transformation should be applied

to minimize the execution time.
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Figure 3.21: Measured Performance Results on ESPAM Platform

Themeasured performance results on the ESPAMplatform are shown in Figure 3.21.

The initial polyhedral process network is finished in 53 million cycles, the plane-cut
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transformed network in 26.9million cycles, and the unfolded network in 24.9million

cycles. This confirms the prediction that the unfolding transformation leads to better

performance results than the plane-cut.

3.6 Discussion and Summary

We have presented a compile-time approach to select a particular splitting transfor-

mation in order to achieve the best possible performance results. We defined the

metrics that are required to make such a decision, showed how the metric values can

be calculated, and presented a solution approach that uses these metric values to eval-

uate the different transformations to give hints to the designer. With the experiments,

we have shown that our model correctly predicts which transformation can be applied

best. In order to correctly predict which transformation is better, the designer needs to

provide the following parameters: the workload of all functions, the costs for FIFO

reading/writing on the target platform, and on which process the process splitting

should be applied. A designer may therefore still have the following questions:

1. Which process should be split-up for the best performance results?

2. What if the process workload is not constant?

3. What if the cost for FIFO reading/writing is not constant?

The first two questions are related, because the process splitting transformation has

the largest positive impact when it is applied on the process with the largest workload,

i.e., the computationally most intensive process. To obtain the process workload, the

designer has to run the functions on the target platform, or generate a profile of the

application. Thus, not only the workload is obtained, but also a first indication which

process can possibly be the bottleneck process of the system. For simple polyhedral

process networks, i.e., if they behave like SDF graphs [47] and always read/write

from/to the FIFO channels, the workload is enough to identify the bottleneck pro-

cesses. However, when the process network has complicated communication pat-

terns, it becomes very difficult to identify a single bottleneck process. The reason is

that different processes can dominate the throughput at different stages of the execu-

tion of the application. This could imply that the designer needs to apply splitting

on different processes in order to obtain a balanced PPN that meets the performance

requirements, i.e, following the Y-chart approach, and in an iterative way, splitting

can be applied consecutively on different processes. In Chapter 5, we show an ex-

ample of different processes that dominate the throughput at different stages of the

execution of the PPN. Moreover, an approach is presented how to apply the process

splitting and merging transformation in combination that relieves the designer from
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the task to select a particular process. In this approach, the results of this chapter are

used to decide how a process must be split up. Thus, question 1 posed here is solved

as discussed in Chapter 5.

Besides selecting the best process on which the splitting transformation should be

applied, a designer can have process functions with non-constant execution times.

In the experiments discussed in Section 3.5, the workload is constant because the

functions internally do not have any branches. In other words, the process workload

consists of one sequence of instructions, without any branches with a varying number

of instructions. Executing such functions will always require the same number of

time units, i.e., it is constant. However, if a function does have branches then the

execution time of that process can vary depending on which branches are taken. To

model the workload of a process in this case, two options are possible: to take the

worst-case execution time of the function, or to calculate an average value. It should

be clear, however, that the model becomes less precise regardless whatever option

the designer chooses as a solution to set the workload. The main question is: will

this result in incorrect predictions what transformation should be applied? We have

not investigated this with experiments, but it is not difficult to imagine that this can

actually happen. If the error in the workload is significant, then the wrong value

can be chosen in calculating the execution time of one process iteration as shown in

Formula 3.8. On the other hand, if an imprecise workload value is used, then it is used

in all evaluations of the different splitting transformations. So, in the end the trend

may still be correct, but as already mentioned above, this has not been investigated.

The reason is that we consider a class of applications, i.e., streaming applications, that

does not expose this behavior in its process functions. Typically, data is streamed in

and a series of computations are performed on the data before data is written back.

In the unlikely case the process functions have some branches, then these different

branches have similar computational workload.

Similar to the process workload, the costs for FIFO communication has also been

modeled with a constant value. The problem is that imprecise cost estimations make

evaluating the model less precise. The communication costs can have non-constant

values when the platform interconnect, for example, is designed to provide a “best

effort” service, instead of a “guaranteed service”. We assumed the latter and thus

created platform instances that provide constant costs for FIFO communication. For

embedded platforms this is a realistic assumption, because these platforms should be

predictable and analyzable. In the ESPAM platform for example, the FIFO commu-

nication is implemented with hardware components and the processors can be point-

to-point connected. In this case, the costs for FIFO communication is truly constant.

However, if a crossbar is chosen as the interconnect for the different processors, then

the FIFO costs are not constant anymore as it depends on the number of requests and

the arbitration scheme of the crossbar. In [38], a performance model is introduced
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for different crossbar configurations, which can serve as a basis to model the FIFO

costs, but we did not investigate this in the experiments. The other platform used in

the experiments is the Cell platform, which uses the so called Element Interconnect

Bus (EIB) [3] to connect the different processing elements. It is a bus consisting of

4 data rings and a shared command bus and multiple data transfers can be in process

concurrently on each ring. We implemented FIFO communication on this provided

communication infrastructure [58] and modeled the costs with a constant value. This

could be inaccurate as a FIFO transfer on the CELL consists of 3 parts, i.e., 2 signals

and 1 DMA transfers, and thus 3 factors influence the actual time for performing one

data transfer. However, when we measure the costs for FIFO reading/writing on the

real hardware, they are almost constant. Apparently, all request can be processed and

no delays occur in processing them, i.e., the bus is not saturated with requests, and

the costs for FIFO reading/writing are nearly constant. We were therefore able to

also correctly predict the performance results for the different process splittings on

the CELL platform.


