
Transformations for polyhedral process networks
Meijer, S.

Citation
Meijer, S. (2010, December 8). Transformations for polyhedral process networks. Retrieved
from https://hdl.handle.net/1887/16221

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16221

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16221

Chapter2
Background

In this chapter, we give the definitions and notations that are used throughout the

rest of this dissertation, i.e., we review some basic mathematical notations and def-

initions as discussed in for example [72, 74]. We thereby focus on polyhedra and

the polyhedral model that are used by compiler optimizations to efficiently analyze

and transform input programs. Then, we define the input programs, i.e., the class of

applications, that can be analyzed with this polyhedral model and show an example

of a Polyhedral Process Network (PPN). We discuss the structure and properties of

PPNs, which is necessary to understand the chapters that deal with analyzing and

transforming PPNs.

2.1 Polyhedra

The scalar product or inner product of two vectors a and b, denoted by a · b, is

defined as a · b = aTb =
∑n

i=1 aibi, where a = (a1, .., an) and b = (b1, .., bn) are

column vectors. Note that a · b = 0 iff vectors a and b are orthogonal or a = b = 0.

Given a non-zero vector y in Rn and a constant α, the following sets of points are

defined:

• A hyperplane H = {x | x · y = α}.

• A closed half-spaceH = {x | x · y ≥ α}.

• An open half-spaceH = {x | x · y > α}.

An affine hyperplane is a (d−1)-dimensional hyperplane in a d-dimensional space,

and thus divides the space in exactly two parts. A line, for example, is an affine

18 Background

hyperplane in a 2-dimensional space, but not in a 3-dimensional space. We will use

hyperplanes to define a polyhedron, but also in the process splitting transformation

to partition processes in PPNs (see Chapter 3).

A rational polyhedron P is a subset of Qd bounded by a finite number of closed

half-spaces, i.e.,

P = {x ∈ Qd | Ax ≥ b} (2.1)

where A is an integral m× d matrix, and b is an integral vector of sizem.

A polytope is a bounded polyhedron.

Figure 2.1 shows two 2-dimensional spaces with a number of closed half-spaces

defining two polyhedra. The purpose of this example is to show the difference be-

tween a polyhedron and polytope. In Figure 2.1 A), a polyhedron is shown that is

defined by only two constraints. As a result, the polyhedron is unbounded because

there are no constraints on the maximum values that the points can have. In contrast,

Figure 2.1 B) shows 4 lines/constraints that encapsulate all points within the grey

area, which makes it an example of a bounded polyhedron, i.e. a polytope.

A) Polyhedron
 B) Polytope

Figure 2.1: Polyhedron vs. Polytope

Polyhedra can also depend on a vector of parameters, denoted by p, and we there-

fore define a parameterized polyhedron, denoted by P(p).

A parameterized polyhedron P(p) is a polyhedron whose closed half-spaces are

affinely dependent on a vector of parameters p ∈ Qd, i.e.,

P(p) = {x ∈ Qd | Ax ≥ Bp+ b} (2.2)

2.2 Lexicographic Order 19

where A is an integralm×dmatrix, B is an integralm×nmatrix, and b is an integral

vector of sizem.

We use polyhedra to model all iterations of a program statement in nested-loop

programs. That is, we extract and use the polyhedral model to efficiently analyze

and transform input programs, which we further discuss in Sections 2.4 and 2.5. In

Section 2.2, we first discuss how different points in a set can be compared and ranked

using Parametric Integer Linear Programming (PILP) techniques.

2.2 Lexicographic Order

In program analysis, many problems can be formulated as a Parametric Integer Lin-

ear Programming (PILP) problem. An example of such a problem is to find the first,

or last, array element accessed by a program statement in a nested-loop. Thus, para-

metric integer programming [24], [74] is used to find exact solutions and feasible

points ranked according to a lexicographic order. In program analysis of nested-loop

programs, we are dealing with sets of integer vectors defined by linear inequalities.

If we consider a set S as an example, then recall from Section 2.1 that it is defined

as S = {x ∈ Zd | Ax ≥ b} with A ∈ Zm×d and b ∈ Zd. Then, parametric integer

linear programming is used to find the minimum or maximum point in set S. And

two points a ∈ Zn and b ∈ Zn in set S can be compared by using the lexicographic

order.

We say that a is lexicographically smaller than b, denoted by a ≺ b, if for the first

position i in which both vectors are different, we have a(i) < b(i). This is expressed

as a set of equalities and inequalities as:

a ≺ b ≡
n
∨

i=1

(a(i) < b(i) ∧
i−1
∧

j=1

a(j) = b(j)) (2.3)

Let us take as an example a set S with 5 elements: S = {(1, 1), (1, 2), (2, 1), (2, 2),

(2, 3)}. Using Formula 2.3, we see that (1, 1) is lexicographical smaller than (1, 2),

denoted by (1, 1) ≺ (1, 2), because (1 = 1 ∧ 1 < 2). Similarly, we see that (1, 1) is

lexicographical smaller than (2, 3), i.e., (1, 1) ≺ (2, 3), because comparing the first

component of both points gives (1 < 2). Element (1, 1) is the smallest element of

set S and we define it as the lexicographical minimum element, denoted by lexmin.

Similarly, we also define the lexicographical maximum point as the largest element,

denoted by lexmax. For set S, element (2, 3) is the largest element. The problem

of finding the lexicographical minimum/maximum point within a set of linear con-

straints can be solved with PILP. The example set S as we have defined it above

20 Background

can also be represented by a set of constraints, i.e., S = {(i, j) ∈ Z2 | 1 ≤ i ≤

2 ∧ 1 ≤ j ≤ 3}, and the ILP problem (no parameters are used in this example) can

be subsequently formulated as shown in Table 2.1.

Objective: lexmin{(i, j)}

Subject to: 1 ≤ i ≤ 2

1 ≤ j ≤ 3

Table 2.1: Constraint system

The solution to find the minimum point for a given convex domain is based on

the dual simplex algorithm [48] that is implemented in open-source libraries such as

isl [93], Parma Polyhedral Library [4], and Piplib [24]. On a very high-level, the idea

of the PIP algorithm and dual simplex method, is to find a minimum real point for

a given convex set. Then, iteratively, new constraints are added not removing any

integer points from the set. These libraries will thus find (1, 1) as the lexicographical

minimum, and (2, 3) as the lexicographical maximum point.

Using the lexicographical order, it is also possible to rank an iteration point in poly-

hedra.

Definition 1 The rank of a point p ∈ P , is a number n ∈ Z denoting all points that

are lexicographical smaller than p.

For example, let us consider point (i = 1, j = 3) of the filter function call

statement in Figure 2.3 B). To rank this point, we use the lexigraphical order to de-

termine all points that precede (1, 3). Therefore, we first consider all points that are

smaller in the first component of point (1, 3), i.e., i < 1. The points that satisfy this

constraint, corresponds to all points within the top most and largest grey box in Fig-

ure 2.3 B); for all these points i = 0. In addition, we consider the points that have

the same value in the first component, but which have a smaller value in the second

component, i.e., i = 1 ∧ j < 3. This corresponds to all points within the second and

smallest grey box in Figure 2.3 B). Thus, the rank of point (1, 3), corresponds to the

number of elements in the set (i < 1 ∨ (i = 1 ∧ j < 3)), i.e., all greyed points in

Figure 2.3 B). If we assumeN = 100, then the rank of (1, 3) is 100+2 = 102, which

is thus obtained by counting the number of points in a set. Counting the number of

points in (parametric) polyhedra, i.e., the enumeration of (parametric) polyhedra, is

a research field in itself. The basic idea is to derive a quasi-polynomial that describes

the number of integer points in a polytope P . For an in-depth discussion, the reader

is referred to, for example, the works [18], [97]. In this dissertation, we use that work

which is implemented in the polyhedral library PolyLib [98]. Thus, when we want

2.3 Static Affine Nested-Loop Programs 21

to know the cardinality, or the number of points, of a set S, which we denote by |S|,

then we use the counting functions from these libraries.

2.3 Static Affine Nested-Loop Programs

In Section 2.5, we consider parallel application specifications that are functionally

equivalent to sequential program specifications that are static affine nested-loop pro-

grams. These are the subject of this section.

Definition 2 A static affine nested loop program (SANLP) is a program where each

program statements is enclosed by one or more loops and if-statements, and where:

• loops have a constant step size;

• loops have bounds that are affine expressions of the enclosing loop iterators,

static program parameters, and constants;

• if-statements have affine conditions in terms of the loop iterators, static pro-

gram parameters, and constants;

• index expressions of array references are affine constructs of the enclosing loop

iterators, static program parameters, and constants;

• data flow between statements in the loop is explicit, which prohibits that two

statements that contain function calls communicate through shared variables

invisible to the compiler.

An example of a static affine nested-loop program is shown in Figure 2.2.

1 #parameter 10 <= N <= 100;

2 for (i=0; i<= 2*N; i++)

3 for (j=0; j<= 4*N; j++)

4 a[i][j] = read_data (); // statement S0

5 for (i=0; i<= N; i++) {

6 for (j=i; j<= N; j++) {

7 if (i+j <= N-1) {

8 a[i][j] = filter(a[2*i][4*j]); // statement S1

9 }

10 write_data(a[i][j]); // statement S2

11 }

12 }

Figure 2.2: Example code of a SANLP

22 Background

A static program parameter N is defined in line 1. This static parameter indi-

cates that N can take a value between 10 and 100 which, however, cannot change

at run-time. Using static parameters is very useful because an equivalent parallel

specification, such as a PPN, needs to be derived only once, even if some require-

ments of the application change. Loops need not necessarily be perfect nests. That

is, the program statements can appear at any level of the nested-loop, and thus not

necessarily at the innermost loop level. Furthermore, the program statements can be

guarded by if-statements, as shown in line 7. However, the conditions in these if-

statements can only be affine combinations of loop iterators, static program param-

eters, and constants, and thus cannot have data dependent behavior. The functions

in line 4, 8, 10 read and write data only through arrays, and not for example

through shared variables, or pointers to the arrays not visible to the compiler. In other

words, the data flow is made explicit by reading/writing data only through affine array

accesses.

The polyhedral model is an appealing model to represent and manipulate loop

nest structures and their program statements in static affine-nested loop programs,

as shown in for example [69], [63], [70]. Program parts that can be modeled with

the polyhedral model are called static control parts (SCoPs) in the compiler commu-

nity [76]. To be more precise, a SCoP is defined as a single-entry-single-exit region of

the control-flow where loops bounds and conditional predicates are affine functions

enclosing loop counters and invariant parameters. Once the polyhedral model is ex-

tracted from a SANLP or SCoP, see Section 2.4, data dependence analysis and loop

restructuring transformations such as loop fusion, loop fission and strip-mining can

be efficiently implemented using existing tools (e.g., PolyLib [98], the Parma Poly-

hedral Library, and Cloog [7]). The reason is that the iteration domain of a program

statement, i.e., all iterations of that statements, are represented by a single geometri-

cal object - a polyhedron. This polyhedron can be analyzed with PILP techniques as

presented in Section 2.2.

Although the polyhedral model does impose some restrictions on the input program,

in many application domains it is natural to express time critical parts of the appli-

cations in the form of a SANLP. Examples are DSP and audio/video stream-based

applications in consumer electronics, modeling and simulation applications in high

performance computing, molecular biology, radio astronomy, medical imaging, and

high energy physics. Therefore, the polyhedral model is highly relevant because it

enables efficient code restructuring and analysis in many program code parts.

2.4 Extracting the Polyhedral Model from SANLPs 23

2.4 Extracting the Polyhedral Model from SANLPs

The polyhedral model is a description of all program statements and their iteration

points in Static Affine Nested-Loop Programs (SANLPs) with polyhedra. We refer

to all iteration points of a program statement as the iteration domain, which in the

program code (i.e., the SANLP) is defined by the enclosing loops of the program

statements. Since the iteration points of a program statement are executed in a partic-

ular order, the polyhedral objects that model these iterations are ordered as well, i.e.,

the polyhedral model that we use for our program analysis consist of:

• polyhedra that define the iteration domains of program statements,

• a lexicographical ordering (see Section 2.2) of the points within the polyhedra.

• and data access functions for array references, which map a point from the

iteration domain to a point in the data space that is accessed by the array refer-

ences, i.e., the affine index expression as discussed in Section 2.3.

In the polyhedral model that we extract from SANLPs, an iteration vector is associ-

ated with each program statement. The dimension of the vector is equal to the number

of loops that enclose the statement. The i-th component of the vector corresponds to

the value of a loop iterator at depth i. Thus, the iteration domain of a statement is

given by a set of linear inequalities defining a polyhedron in an d-dimensional do-

main, where d corresponds to the dimension of the iteration vector, i.e., the depth of

the enclosing loop nest. In fact, the polyhedral model of the iteration domain of a

statement is just a set of linear equalities and inequalities. Here is an example.

i

j()M = [2 4]

0

0 1 2 j

1

2

3

:

..3 N−1

N−1

i>=0

j>=i

i+j<=N−1

0

0 1 2 j

1

2

3

:

2*N

4*N..3

i
j<=N

i<=N

i

A) Iteration Space "read_data" B) Iteration Space "filter"

(2,12)

Figure 2.3: Iteration Space of read data and filter Function Call Statements

Figure 2.3 shows the two iteration domains of the read_data and filter func-

tion call statements from Figure 2.2. Let us focus on the iteration domain of the

24 Background

filter function call statement shown in Figure 2.3 B). For brevity, we refer to this

statement as S1. Since statement S1 is enclosed by two for-loops i and j, its iter-

ation domain is 2-dimensional, and is referred to as DS1. The lower/upper bounds

of the enclosing loops are the first constraints that we take into account when defin-

ing the iteration domain of S1. Loop i starts at 0 and has maximum value of N ,

which translates to the following 2 constraints: i ≥ 0 and i ≤ N . Loop j has an

initial value equal to i and has a maximum value of N , which translates to another

two constraints: j ≥ i and j ≤ N . In addition to the constraints imposed by the

lower/upper bounds of loops, the execution of program statement S1 is guarded by

an if-statement, which imposes another restriction on the iteration domain, i.e, only

iteration points smaller than i + j ≤ N − 1 are executed. Figure 2.3 B) shows

5 different lines in a 2-dimensional domain, which correspond to the 5 constraints

imposed by the upper/lower bounds of the loops and the if-statement as we have de-

scribed above. Thus, the constraints restrict the iterations points that are executed by

S1, and the iteration points actually executed by S1 are denoted by the solid dots in

Figure 2.3 B), i.e., they form a triangle. These iteration points are executed in the

order from top to bottom and from left to right. We have extracted all constraints

on the execution of S1 to define its iteration domain DS1 in the polytope represen-

tation: DS1(N) = {(i, j) ∈ Z2 | 0 ≤ i ≤ N ∧ i ≤ j ≤ N ∧ i + j ≤ N − 1}.

All executions of program statement S1 are in this way represented with one geo-

metrical object, i.e., a polytope. Once an iteration domain has been extracted for

a statement, it can be efficiently further analyzed and transformed using polyhedral

analysis and tools. For example, the number of integer points of an iteration domain

can be counted [18], [96] which is useful for loop optimizations [20] and data cache

analysis [19]. Another application is the (re)scheduling of iterations and subsequently

the code generation of iteration domains [7].

2.5 Polyhedral Process Networks

Extracting the polyhedral model for SANLPs as discussed in Section 2.4, enables

exact data-flow analysis of scalar and array references. This exact data flow analysis

uses the PILP techniques as discussed in Section 2.2 and is the most fundamental step

in deriving PPNs in a fully analytical way from SANLPs as described in [89,90,95].

For an in-depth discussion on the derivation of PPNs, the reader is referred to these

works. In this section, we only discuss the different properties of PPNs, and show the

corresponding PPN for the code example in Figure 2.2.

In the partitioning strategy of the pn compiler [95], one autonomous process with

local control and memories is created for each program statement. Subsequently,

the control for the FIFO communication is automatically derived. We refer to pro-

2.5 Polyhedral Process Networks 25

cess networks derived by the pn compiler as polyhedral process networks (PPNs).

The reason is that they are functionally equivalent to Static Affine Nested Loop Pro-

grams (SANLPs), the processes are structured in a particular way, and the execution

of processes and FIFO reads/writes are described by polyhedra. Polyhedral process

networks are, therefore, a special case of Kahn Process Networks (KPNs) [40], be-

cause Kahn Process Networks is a simple, yet powerful model of computation that

only specifies how processes synchronize and communicate. Thus, the KPNmodel of

computation does not impose any restrictions on, for example, the internal structure

of processes and only defines that processes use a blocking FIFO read primitive and

have unbounded FIFO buffers. However, as already mentioned above, the processes

in PPNs are internally structured in a particular way. That is, in each execution of

a process, we can distinguish a Read phase (R), an Execute phase (E), and a Write

phase (W). To be more specific, a process consists of:

1. a list of input port domains to read all the function input arguments from the

corresponding input FIFO channels,

2. a function that processes the input arguments and produces function output

arguments, and

3. a list of output port domains to write the function output arguments to the

corresponding output FIFO channels.

There can be two exceptions: source and sink processes. The former only generates

data and does not read any data from other processes. The latter only collects data and

does not write any data to other processes. However, source/sink processes can have

incoming/outgoing channels, but then these channels are self-channels and data is

read/written from/to itself. We illustrate the structure of the processes in a PPN with

an example shown in Figure 2.4. This PPN is derived from the SANLP shown in

Figure 2.2, where we have set the parameterN to 100. Since that SANLP consists of

3 statements S0, S1 and S2, the corresponding PPN consists of 3 processes P0 ,P1

and P2 .

It can be seen that process P0 is a source process because it does not read data from

other processes, and that process P2 is a sink process because it does not write data

to other processes. Process P1 , on the other hand, first reads data from FIFO channel

F1 , processes it by executing function filter, and writes the result to its outgoing

FIFO channel F3 . Thus, it clearly shows the different read, execute, write phases as

also indicated with the letters R, E, and W in Figure 2.4. Furthermore, we see that

each process executes a particular function that corresponds to a function from the

SANLP.

26 Background

for(int i = 0; i <= 99; i++) {

 for(int j = 2*i; j <= -2*i + 396; j++) {

 R in = read(F1);
 /* IP1 */

 E out = filter(in) ;

 W write(F3, out);
 /* OP1 */

 }

 }

 } // for j

 } // for c0

for(int i = 49; i <= 149; i++) {

 for(int j = i + 101; j <= 250; j++) {

 R if(i + j-299 >= 0) {
 /* IP1 */

 in = read(F3);

 }

 if(-i-j + 298 >= 0) {
 /* IP2 */

 in = read(F2);

 }

 E write_data(in) ;

 } // for j

 } // for i

for(int i = 0; i <= 200; i++) {

 for(int j = 0; j <= 400 ; j++) {

 E out = read_data() ;

 W if(j/4 - i/2 >= 0) {

/* OP1 */
 if(-j/4 - i/2 + 99 >= 0) {

 write(F1, out);

 }

 }

/* OP2 */
 if(i + j-N >= 0) {

 if(-i + j >= 0) {

 if(-j + N >= 0) {

 write(F2, out);

 }

 }

 }

 } // for j

 } // for i

F1

F2

F3

Source Process P0

Process P1

Sink Process P2

Figure 2.4: Derived Polyhedral Process Network (PPN)Model and its Representation

in Executable Program Code

Definition 3 A process function represents the computational part of a process. It

corresponds to a function call statement in the sequential application that is a pure

function without side-effects which only reads/writes through its input/output argu-

ments.

For the PPN in Figure 2.4, the process function of P0 is read_data, and we

see that filter and write_data are the process functions of processes P1 and

P2 , respectively. These process functions are important for the process splitting and

merging transformations that we present in Chapters 3 and 4, because the goal of both

transformations is to create a more load-balanced PPN. Therefore, it is important to

know the cost for executing the process function once, and we refer to this as the

process workload.

Definition 4 The process workload of a process Pi, denoted by WPi
, represent the

total number of required time units to execute the process function once, provided

that i) all its input data is available (i.e., the reading phase is ignored), and ii) the

time to write the output data is excluded (i.e., the writing phase is ignored).

To give an example for the PPN shown in Figure 2.4, one can think of the read_data

process function as a very light-weight process function that only reads data from a

2.5 Polyhedral Process Networks 27

memory location, i.e., the process workloadWP0 is very small as executing that func-

tion is completed in a few clock cycles. The filter process function can be con-

sidered to be a more coarse-grain function as some actual computation is performed

on the data. Thus, the process workload WP1 is much larger than WP0 . Similar to

the read_data function, the write_data process workload WP2 is very small

as only data is written back to some memory location and not any computations on

the data is performed. The process workload does not include the time required to

read/write the data before/after executing the process function.

Definition 5 A process iteration of a process Pi is defined as a single execution of

the process function, where first all input data is read from incoming FIFO channels

(i.e., the read phase), the process function is executed (i.e., the execute phase), and

subsequently all output data is written to outgoing FIFO channels (i.e., the write

phase).

All iterations of a process are described by a process iteration domain.

Definition 6 The process iteration domain of a process Pi, denoted by DPi
, is de-

fined as all process iterations of process Pi and is described by a set of equalities and

inequalities, i.e., a polytope.

Thus, the process iteration domain is described with a polytope as we have discussed

in Section 2.1. For process P1 , for example, the process iteration domain is defined

as DP1 = {(i, j) ∈ Z2 | 0 ≤ i ≤ 99 ∧ 2i ≤ j ≤ −2i + 396}. This corresponds to

the control part, i.e., the two for-loops, of process P1 as can be seen in Figure 2.4.

Definition 7 The process iteration domain size, denoted by |DPi
|, represents the

total number of iterations of process Pi.

The process iteration domain size is obtained by counting the number of integer

points in a polytope, which is supported by the polyhedral library PolyLib [98] as also

indicated in Section 2.2. Calculating a process iteration domain sizes, is obviously

the first prerequisite to estimate the total execution time of a process. It is used to

evaluate the process splitting transformation and is further discussed in Chapter 3.

Finally, we give 3 definitions that are related to the communication in polyhedral

process networks. First, we consider input port domains that implement the control

to read data from FIFO channels, then we define a mapping function that specifies an

iteration point where data is produced, and finally we define an output port domain

that specifies a set of points that generate data for a particular input port.

Definition 8 The n-th input port domain of process Pi, denoted by IPn
Pi
, is defined

as a subset of the process iteration domain where data is read from the n-th incoming

FIFO channel, i.e., IPn
Pi
⊆ DPi

.

28 Background

Consider process P1 in Figure 2.4, which has one input port domain IP1
P1 . This

input port domain is read at each process iteration, which means that the input port do-

main contains the same points as the process iteration domain, i.e., IP1
P1 = DP1 =

{(i, j) ∈ Z2 | 0 ≤ i ≤ 99 ∧ 2i ≤ j ≤ −2i + 396}. But when we look at process

P2 , for example, then we see that the input data is sometimes read from IP1
P2 and

in other cases from IP2
P2 , i.e. they are a subset of the process iteration domain. To

be more specific, we see that IP1
P2 = {(i, j) ∈ Z2 | i + j − 299 ≥ 0} ∩ DP2

, and

that IP2
P2 = {(i, j) ∈ Z2 | − i + j + 298 ≥ 0} ∩ DP2

, where DP2
= {(i, j) ∈

Z2 | 49 ≤ i ≤ 149 ∧ i + 101 ≤ j ≤ 250}. Note that these two input ports are

mutually exclusive. The reason is that the write_data process function has only

one input argument and process P2 needs only one input token per process iteration

from one of these two input ports.

In a similar way, we define an output port domain which represents the process

iterations for which writing data to a particular FIFO channel occurs.

Definition 9 The n-th output port domain of a process Pi, denote by OPn
Pk
, is de-

fined as the subset where data is written to the n-th outgoing FIFO channel, i.e.,

OPn
Pk
⊆ DPk

.

When we first consider process P1 from Figure 2.4 again, we see that it has one

output port, which is active at each process iteration, i.e., OP1
P1 = DP1 . A more

complicated example is the first output port domain OP1
P0 of process P0 . It can be

seen that it is active only at particular iterations, i.e., OP1
PO = {(i, j) ∈ Z2 | j/4 −

i/2 ≥ 0 ∧ −j/4 − i/2 + 99 ≥ 0} ∩ DP0
, where DP0

= {(i, j) ∈ Z2 | 0 ≤ i ≤

200 ∧ 0 ≤ j ≤ 400}. The reason that divisions of j and i by 4 and 2 appear in the

constraints, is the result of consumer process P1 reading data in a particular pattern,

i.e., array a is accessed with 2 ∗ i and 4 ∗ j, see line 8 in Figure 2.2.

We have defined input and output port domains that specify at which process itera-

tions data is read/written. Thus, producer/consumer pairs of processes are connected

via the output port domain of the producer with the input port domain of the con-

sumer. Besides the port domains that specify when data is read/written, there is map-

ping function that specifies the relation between the input and output port domains,

i.e., we define an affine mapping function M which maps the consumer process iter-

ations to the producer iterations where the data is produced:

Definition 10 We define an affine mapping function Mk as a function that maps

the process iteration points from the k-th input port domain of a consumer process

Pi to the process iteration points of the corresponding producer process Pj , i.e.,

OP l
Pj

= Mk(IPk
Pi
).

An example is given in Figure 2.3. Let us consider process iteration (1, 3) of the

2.6 Validity of Transformations 29

consumer process that executes function filter as shown in Figure 2.3 B). Since

data is read from a[2 ∗ i][4 ∗ j], process iteration (1, 3) reads data that is produced

at iteration (2 ∗ 1, 4 ∗ 3) = (2, 12). This point is marked in the producer iteration

domain as shown in Figure 2.3 A). Thus, we have a mapping function

M :

(

ip
jp

)

= [2 4]

(

ic
jc

)

, where

(

ip
jp

)

∈ OP 1
P0

and

(

ic
jc

)

∈ IP 1
P1
. This

mapping function is also shown in Figure 2.3, and maps consumer iteration (ic =

1, jc = 3) to its corresponding producer iteration (ip = 2, jp = 12).

2.6 Validity of Transformations

In this section, we briefly review the validity of the process transformations presented

in Chapters 3, 4, and 5. That is, we indicate that we can always apply the process

splitting and merging transformations in a valid way for any given PPN. We first look

at the validity of statement reordering transformations for sequential input programs,

because the same constraints apply for process transformations in PPNs. Therefore,

we discuss the different types of data dependencies that can exist between program

statements that should be respected when the program code is transformed, which

ensures that the transformed program code is input/output equivalent with the original

program code.

As data dependence analysis is such a crucial step in program transformations, it

is extensively researched and discussed in the literature [2, 6, 43, 57]. The goal of

data dependence analysis is to find dependent program statements that read/write

data from/to the same memory location. Three different data dependence relations

can be identified. A flow or true dependence exist between two program statements

A and B when A produces data that is read by B. This is denoted by A δf B.

The two other dependence relations are anti and output dependencies. In case of an

anti-dependence, data is first read by a statement A and then written by statement

B, which is denoted by A δa B. An output-dependence exists when two statements

A and B write to the same memory location, which is denoted by A δo B. These

data dependencies can also exists between different executions of statements within

a loop-nest. If that is the case, then we say that the dependence is loop-carried.

As already mentioned, the data dependence information is used in optimizations

and transformations to ensure correct behavior of the transformed program code.

Transforming the program code is valid as long as the data dependencies are not

changed. In our analysis to derive PPNs from static affine nested loop programs, we

use exact array data flow analysis [25, 71]. This means that dependencies between

statements are represented by exact dependency relations in the form of an affine

combination of loop iterators and program parameters. Thus, the dependencies are

30 Background

not abstracted with, for example, direction or distance vectors. An example of an

exact dependence relation is the mapping function shown in Figure 2.3. It maps an

iteration point of the consumer iteration space to an iteration point of the consumer

where the data is produced. Taking into account these exact data dependence relations

between consumer and producer statements, makes it possible to apply the process

splitting and merging transformations in a valid way for any given PPN. That is,

for the splitting transformation, more processes are introduced and the dependencies

are recalculated to ensure that the processes communicate data in the proper way.

For the process merging transformation, the executions of different processes are

merged into a single process. The polyhedra that describe the process iterations of

different processes, are merged using the work and code generator described in [7].

The merging is done pairwise for two given processes and the validity is checked

using the exact dependence relations as described in [92, 94].

