
Transformations for polyhedral process networks
Meijer, S.

Citation
Meijer, S. (2010, December 8). Transformations for polyhedral process networks. Retrieved
from https://hdl.handle.net/1887/16221

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16221

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16221

Chapter1
Introduction

In 1965, Moore predicted that the number of transistors on a semiconductor and thus

the overall chip performance would double every two years [56]. This has become

known asMoore’s law and due to the minitiurization of transistors, chip manufactures

were able to produce faster, more powerful processors every year. Moore’s law has

proven to be correct for many years, but it was also clear that this trend had to come

to an end at some point in time. Moore also stated that ”no physical quantity can

continue to change exponentially forever”. Today, chip manufactures have to deal

with electrical power leakage and heat dissipation as a result of packing more and

more transistors into a smaller area. In addition, the minitiurization of transistors has

reached its physical limits and it cannot further help in producing faster processors.

As a solution to produce more powerful processors, multi/many-core processor ar-

chitectures were introduced. Multi/many-core processors consist of multiple proces-

sors, possibly of the same type, and are interconnected and integrated into a single

chip. Hence, the name Multi-Processor Systems on-Chip (MPSoC). For example,

mainstream consumer PCs nowadays come with dual/quad core processors, game

consoles such as the PlayStation 3 and its Cell processor have 9 cores [39],

GPUs have 128 stream processors, and cell phones have many different compute and

hardware components. Inspired by Moore’s law, many people believe that the new

trend is an exponential growth of the number of cores in processors. Processors, how-

ever, are only a small part of complex systems that are shipped to the market. Equally

important is the entire software-stack that provides services to end-users and develop-

ers. A powerful processor is useless without good compilers, debuggers, simulators,

operating systems, libraries, etc. So the programmability of a processor highly deter-

mines its success.

If we consider software compilers for single processors with a sequential execu-

tion model, then it is widely accepted that they do a reasonably good job in auto-

2 Introduction

matically translating high-level program descriptions into low-level machine code.

When the compiler technology for single processors matured, it raised the program-

ming abstraction level and gave a boost to the productivity of developers and greatly

improved maintainability and portability of program code. Both the hardware and

compilers focused on exploiting Instruction Level Parallelism (ILP) as much as pos-

sible. Single processor architectures support ILP with superscalar, out-of-order, and

instruction pipelining techniques implemented in hardware. For other architectures,

such as VLIW [26] and EPIC [73] processors, it is the compiler’s responsibility to

find parallel instructions. Therefore, much research has been done in techniques such

as automatic vectorization, software pipelining, and other scheduling techniques to

overlap instructions (ILP) as much as possible.

While the programming of a single processor is already a difficult task, there is now

another dimension of complexity with the introduction of Multi-Processor System

on Chips (MPSoCs). The programming of these multi-processor systems is a diffi-

cult and time consuming process as it involves careful partitioning and assignment of

program tasks to different processing elements of the MPSoC platform. A program

task can for example be a function, i.e., a set of instructions, that reads function input

arguments, performs some computations, and write the results to its function out-

put arguments. Overlapping different program tasks by executing them in parallel at

different processors of the MPSoC platform can result in significantly reduced execu-

tion times. This illustrates that besides Instruction Level Parallelism (ILP), that Task

Level Parallelism (TLP) is an important factor that needs to be taken into account in

programming MPSoC platforms. Exploiting TLP is difficult as the different program

tasks need to synchronized and must also exchange data in a particular way, which

makes the programming of MPSoC platforms more difficult than a single processor

system. So the question is: how can MPSoC platforms be efficiently programmed

using the available resources of the hardware platform?

If we roughly classify the different approaches to program Multi-Processor System

on Chips (MPSoCs), we see that it is either the programmer’s responsibility to create

different program tasks, or a compiler oriented approach where program tasks are au-

tomatically extracted from sequential program specifications. Examples of the former

approach are new programming languages (e.g., OpenCL [64], StreamIT [87]), lan-

guage extensions (e.g., CUDA [59]), compiler pragma’s (e.g., OpenMP), and libraries

(e.g., Pthreads, MPI [27]). Examples of the latter are parallelizing compilers that ex-

tract program tasks or threads from sequential code (e.g., the Intel compiler [10],

Pluto [13], SUIF [36], Polaris [12]). Parallelizing compilers is the subject of the

work presented in this dissertation. The Leiden Embedded Research Center (LERC)

has developed a tool-flow to program embedded Multi-Processor Systems on Chip

(MPSoC) in a systematic and automated way. To be more specific, the goal is to

make the programming more easy and to present a solution for the question raised

3

earlier: how to efficiently program an MPSoC. The LERC’s solution relies on two

basic principles: i) a parallel Model of Computation (MoC) must be used to specify

an application, and ii) this parallel specification should be executed on a hardware

platform that exactly matches the MoC.

Pµ

Pµ Pµ

System−level
specification

specification

V
a
lid

a
ti
o
n
 /
 C

a
lib

ra
ti
o
n

Gate−level
specification

RTL

specification

MemMem

HW IP

MPSoC

connect
Inter−

Functional

in XML
Mapping spec.

in XML

Sequential
program in C

L
ib

ra
ry

 I
P

 c
o

m
p

o
n

e
n

ts

RTL
Models

Models
High−level

Platform spec.

Automated system−level synthesis: Espam

netlist
Platform

in VHDL
IP cores

processors
C code for Auxiliary

files

Application spec. in XML

Sesame PN compiler

RTL synthesis: commercial tool, e.g. Xilinx Platform Studio

Parallelization:System−level design space exploration:

Manually creating a PPN

Polyhedral Process Network

Figure 1.1: Daedalus tool-flow overview

The Daedalus tool-flow [61] that is being developed by LERC and shown in Fig-

ure 1.1, aims at providing a complete solution for system-level design of MPSoC

platforms. It implements the two principles described above. From this tool-flow, let

us consider first the functional specification of the application that a designer should

provide. The first part of LERC’s solution to make the programming of MPSoCs

easier, relies on the fact that application developers find it more easy to specify an

application as a sequential program as opposed to writing a parallel one. At the same

time, we know that a parallel application specification can be mapped onto a parallel

architecture more naturally than a sequential program. So, the idea is to combine the

best of these worlds by deriving an equivalent parallel specification from sequential

program specifications. This has resulted in the open-source pn compiler [95], that

is part of the Daedalus tool-flow as shown in Figure 1.1. The pn compiler translates

applications specified as Static Affine Nested-Loop Programs (SANLP), i.e., a sub-

set of the C language as we discuss in Chapter 2, to Polyhedral Process Networks

(PPNs) [8]. The PPN Model of Computation consists of autonomously running pro-

4 Introduction

cesses with private memory and control that communicate over point-to-point FIFO

channels using blocking FIFO read/write primitives (discussed in detail in Chapter 2).

for(int t=1; t<=P; t++){

 for(int i=1; i<=M; i++){

 for(int j=4; j<=N; j++){

 r1[i+1][j-3] = F1(...); //stm1

 }

 }

 for(int l=3; l<=M; l++){

 for(int m=3; m<=N-1; m++){

 if (l+m<= 7){

 r2[l][m] = F2(r1[l-1][m-2]); //stm2

 }

 if (l+m>=8){

 r2[l][m] = F3(r1[l][N-3]); //stm3

 }

 ... = F4(r2[l][m]); //stm4

 }

 }

}

pn
F3F2

F1

Get() Get()

Put() Put()

FIFO1 FIFO2

F4

FIFO3 FIFO4

Put() Put()

Get() Get()

SANLP Process Network MoC

Figure 1.2: Compiling a Static Affine Nested-Loop Program (SANLP) to a Polyhe-

dral Process Network

The derivation of a PPN from a static affine nested-loop programs is illustrated with

an example in Figure 1.2. This example is taken from [89] and reveals how program

statements are translated to processes and how array accesses are replaced by FIFO

read/write statements. In Figure 1.2, a sequential program with 4 program statements

is shown at the left-hand side. The statement’s variable indexing functions are affine

expressions in the loop iterators and static program parameters. The derived and

functionally equivalent PPN for this code is shown at the right-hand side. Each pro-

gram statement is translated to a process, and the array accesses have been replaced

with read and write functions such that the processes only communicate data over

FIFO channels.

Let us now consider the second design step of the Daedalus tool-flow, i.e., the trans-

lation from the system-level specification of the MPSoC platform to the RTL speci-

fication of the platform, as shown in Figure 1.1. The idea of the Daedalus tool-flow,

is to generate a hardware platform that ”natively” supports the execution of Poly-

hedral Process Networks (PPNs). That is, the ESPAM platform executes PPNs very

efficiently because the operational semantics of the process network model of compu-

tation are supported with hardware components. For example, data communication

and process synchronization of processes are realized by distributed memories, which

can be organized as one or more FIFOs. Thus, blocking FIFO read/write primitives

are hardware supported and make the processes to be self-scheduled very efficiently.

Furthermore, the ESPAM platform allows processes to be assigned to independent

1.1 Problem Statement 5

Instruction Set Architecture (ISA) components and/or IP-cores that must exist in the

library of predefined IP components. The ESPAM tool automatically generates a

hardware platform prototyped on an FPGA board based on 3 specifications as shown

at the system specification level in Figure 1.1. The first specification is a high-level

platform specification describing only the number of processing elements and the

inter-connect of the platform. The second is an application specification in the form

of a PPN that can be generated by the pn compiler, but can also be specified by hand.

The third is a mapping specification describing how the processes of the PPN are as-

signed to the processing elements of the hardware platform. The ESPAM tool takes

these 3 specifications as an input, and creates the corresponding RTL specification

of the MPSoC platform and maps the PPN process threads onto IP-cores and/or pro-

grammable processors. Thus, we see that the Daedalus tool-flow enables designers to

implement a sequential program specification onto a multi-processor system on chip

in a systematic and automated way.

1.1 Problem Statement

The Y-chart approach is a very general iterative system-level design methodology

[44]. Figure 1.3 illustrates this approach and captures the iterative process of getting

− ESPAM

− Intel IXP

− CELL

1−to−1 mapping

?

Instance

Architecture Application

Performance

Numbers

Performance

Analysis

Mapping

SANLP

 PN

PN Compiler

II

I

III

2) − hints how to apply them

 − and evaluation.

1) Transformations:

Figure 1.3: The Y-chart Approach

to a satisfactory design point. It takes an application specification and a platform

specification. Then, after executing the application onto the platform, performance

numbers are obtained for a particular design point. The performance of an application

can be measured by considering the execution time or throughput of that application

on a simulator or the real hardware platform. If the design point does not meet the

6 Introduction

performance or resource constraints (i.e., the constraints on the number of tasks as-

signed to a processing element), then the platform, application and/or mapping can

be adjusted accordingly. By iteratively changing some parameter values in this de-

sign methodology, the implementation should converge to, for example, the desired

performance. Let us now project the different aspects of the Y-chart approach onto

the Daedalus tool-flow. Recall that the Daedalus tool-flow (see Figure 1.1) takes

the application, platform, and mapping specifications as an input, as shown in the

Y-chart approach, and allows a designer to create and program an MPSoC platform.

In addition, the Sesame tool [67, 88] that is integrated into Daedalus, can be used

for design-space exploration at the system-level of abstraction. The Sesame tool,

however, only explores different platform and mapping instances. These two design-

space exploration aspects correspond to arrows I and II in the Y-chart approach,

see Figure 1.3. The Daedalus tool-flow does not support the third exploration aspect,

i.e., the exploration of different application instances as indicated with the bold arrow

III in the Y-chart. Although some transformations have been defined to change a

PPN application specification [79], i.e., to reduce/increase the number of processes

in a PPN, the Daedalus tool-flow does not give any hints or tips to the designer how

to apply these transformations in order to transform a PPN in the best possible way.

Applying transformations as part of the tool-flow is the subject of this dissertation.

It is crucial to assist the designer in applying the transformations in the best possi-

ble way since there are many possibilities to transform an application to meet the

performance requirements or resource constraints. In this dissertation, we do not in-

vestigate different mapping strategies and always assume to have a 1-to-1 mapping

of processes to processors. Thus, the grouping or splitting of tasks is not achieved

by different mapping strategies, but by the pn compiler instead, i.e., we focus on

the pn compiler that is used to derive PPNs from sequential program specifications.

Although the pn compiler relieves the designer from the difficult and error-prone

task of identifying and synchronizing different program partitions, it is not guaran-

teed that the performance/resource constraints are met. Recall that the pn compiler

uses a partitioning strategy that creates a single thread for each program statement in

the sequential code. As one program statement can be much more computationally

intensive than others, the corresponding process network may be highly imbalanced

not meeting the performance and resource constraints. Therefore, we formulate the

first problem area as follows.

• Issue I: It is unlikely that all the designer’s constraints are met in one transla-

tion step of the Daedalus tool-flow. That is, the Daedalus tool-flow can quickly

generate a single design point, and can also explore different architecture and

mapping instances by means of simulation. It, however, does not provide any

compile-time infrastructure and hints/heuristics to transform and evaluate dif-

1.2 Contributions 7

ferent application instances. Transforming application instances is crucial to

meet the performance/resource constraints. Moreover, the compile-time hints

are not only necessary to assist the designer in making the correct design de-

cisions, but also to reduce the number of design points a designer should con-

sider/evaluate. Therefore, the main research topic of this dissertation is to assist

the designer in transforming a PPN specification to obtain a satisfactory design

point as illustrated with the bold arrow III in Figure 1.3.

The first issue as discussed above addresses the program specification in the design

process. A second addresses the target platform specification. The Daedalus tool-

flow targets FPGA based platforms and creates an instance of the ESPAM execution

platform. That is, an execution platform prototyped on an FPGA that matches the

process network model of computation. However, such a specific platform may not

always be available to a designer and we therefore formulate a second issue.

• Issue II: Currently, the Daedalus tool-flow aims at creating an MPSoC in-

stance that exactly matches the process network model of computation on an

FPGA based platform, but such a specific platform may not always be avail-

able. We want to investigate how to execute polyhedral process networks on

programmable, off-the-shelf multi-processor platforms. This means that the

different components of the process network model of computation must be

mapped onto fixed hardware components of the target platform.

1.2 Contributions

To address the first issue as defined in Section 1.1, we define compile-time ap-

proaches to transform and thus optimize PPNs. These optimizations consist of compile-

time guided application of transformations that restructure PPNs in a certain way.

First, we briefly review the transformations as they have been defined in [78, 79] and

then we present the contributions.

The first transformation is a process splitting transformation which increases the

number of processes in a PPN, and the second is the process merging transformation

which reduces the number of processes in a polyhedral process network:

1. The process splitting transformation is a transformation that copies program

statements, comparable to the classical loop-unrolling transformation. As a

result, the derived process network has multiple processes executing the same

function possibly in parallel.

2. The process merging transformation achieves the opposite of the splitting trans-

formation and groups, clusters, or merges several processes into one compound

8 Introduction

process. The functions in the merged processes will be executed sequentially

in the compound process.

Using these two transformations, an initial process network can be optimized to

meet performance/resource constraints. The arbitrary PPN example shown in Figure

1.4, consists initially of 3 processes. Using the process merging transformation, pro-

cesses P2 and P3 can be sequentialized into compound process P23 . Thus, we say

that less parallelism is exploited. By using the process splitting transformation, pro-

cesses P2 and P3 can be split up to create extra copies. As a result, more processes

can execute in parallel and thus we say that more parallelism is exploited.

P1 P23

P1 P2

P3

P2

P3

P1 P2

P3
..

..

Less Parallelism More Parallelism

Transformations

Figure 1.4: Deriving Different PPNs using Process Splitting and Merging Transfor-

mations

• Contribution I [51, 53]: our first contribution consists of compile-time so-

lution approaches for process splitting and merging to assist the designer in

achieving his performance/resource requirements:

– The process splitting transformation: a process can be split up in many

different ways and many factors influence the final performance results.

We identify factors and define corresponding metrics that play a key role

in the performance results, and show an analytical approach to calculate

and evaluate them at compile-time. The analysis is performed locally on

the process that is selected for splitting [51].

– The process merging transformation: we define a throughput model for

Polyhedral Process Networks (PPN). This allows the designer to evaluate

1.3 Related Work 9

the throughput of different transformed networks derived from the same

PPN. The designer, thus, can select the merging alternative with the best

throughput. The throughput model is used for a global analysis of the

entire network, as opposed to the splitting transformation, since the ef-

fects of the merging cannot be studied only by locally looking into the

processes to be merged [53].

• Contribution II [52]: we present a holistic approach to use both the process

splitting and process merging transformation in combination. This is a neces-

sity to obtain good performance results that cannot be achieved by using only

one transformation. Our solution approach solves the problem of ordering the

different transformations and the problem of identifying the most suitable pro-

cesses to merge/split. We create a number of load-balanced compound pro-

cesses equal to the number of tasks a designer wants to create that can, for

example, be the available processing elements of the target platform. In the

holistic approach, we use the results of Contribution I to decide how the pro-

cesses can be best split up, and the throughput model can be used for evaluating

the solutions.

• Contribution III [50,58]: to address the second issue presented in Section 1.1,

i.e., the programming of standard and off-the-shelf MPSoC platforms, we present

approaches to execute PPNs onto the Intel IXP Network Processor and the Cell

Processor. Thus, we investigate how to efficiently realize FIFO communication

using the provided communication infrastructures of these platforms.

1.3 Related Work

The research work presented in this dissertation contributes to the underlying theory

of the Daedalus tool-flow [61], and hence it contributes to the the research area of

tool-flows for systematic and automated application-to-platform mapping, which has

been widely studied in the research community. As it is an extensive research area,

we first give a brief overview of related tool-flows. Then, we describe in more detail

the related work with respect to the specific contributions of this dissertation.

To start with the frameworks, the System-On-Chip Environment (SCE) [21] en-

ables designers to go from a specification all the way down to a hardware/software

implementation. The Program State Machine (PSM) is used as a model of computa-

tion, which brings together concepts of hierarchical concurrent finite-state machines,

dataflow graphs and imperative programming languages in a single model of compu-

tation [28,33]. Basically, it encapsulates basic algorithms written in C, providing the

designer in this way with the flexibility to manually write C and to manually parti-

10 Introduction

tion the code in a particular way using a data flow model. This is different from the

Daedalus approach, as the designer only writes the sequential top-level application

description. It is the responsibility of the pn compiler to partition the code and to de-

rive a polyhedral process network. The functionality of the processes in the Daedalus

tool-flow can be specified by the designer as sequential functions in C, similar to

SCE, or as IP-cores from the component library.

A second related framework is SystemCoDesigner, which maps applications

specified in SystemC onto a heterogeneous platform [42]. Similar to the SCE ap-

proach, it is the designer’s responsibility to write an actor orientated application

in SystemC, whereas the Daedalus tool-flow derives Polyhedral Process Networks

(PPNs) from a sequential program. Similar to Daedalus, it allows to create a het-

erogeneous MPSoC by instantiating and connecting cores from a component library.

In addition, actors in SystemCoDesigner can be implemented as a hardware ac-

celerator using the Forte Cynthesizer. The high-level synthesis of processes to hard-

ware is currently not (yet) supported by Daedalus. A research work in the context

of the Daedalus tool-flow explored the VHDL synthesis of processes in a PPN using

PICO [91], but it is not integrated into the Daedalus tool-flow and thus not available

yet.

Two more frameworks that provide a complete environment for modeling applica-

tions, design space exploration, prototyping and synthesis of MPSoC platforms are

Koski [41] and PeaCE [35]. The main difference between Daedalus and Koski is that

the functionality of the system in Koski is described with an application model in an

UML environment. And PeaCE, that is short for Ptolemy extension as a Codesign

Environment, restricts itself to SDF graphs and finite state machines as the model of

computation.

Next, we briefly discuss four frameworks that focus more on the software part

of MPSoC platforms. MAPS is a framework for MPSoC application paralleliza-

tion [15]. It provides a set of tools which guides the parallelization processes. In con-

trast to our analytical compile-time parallelization approach, MAPS parallelization

is mainly based on profile information and manually written Kahn Process Network

(KPN) specifications. It provides a source-to-source translation, i.e., the output code

is threaded C code that can be compiled with other compilers to the target platform.

MAMPS [45] is another tool-flow that maps SDF graphs onto MPSoC platforms. Be-

sides the difference that they map SDFs, the work focuses on homogeneous MPSoCs

consisting of MicroBlaze processors that are point-to-point connected. Daedalus sup-

ports heterogeneous platforms and interconnects such as crossbars and shared busses.

On the other hand, MAMPS supports the mapping of multiple applications, while

Daedalus currently supports only single application mapping. The Distributed Op-

eration Layer (DOL) [84] is another framework for specifying and mapping parallel

applications onto heterogeneous multiprocessor platforms. The target platform is a

1.3 Related Work 11

fixed tiled multi-processor embedded system. As an application model, Kahn Pro-

cess Networks (KPNs) are used that are specified manually by the designer. In the

performance analysis, a technique is used based on real-time calculus, which has

some similarities with our throughput model used to evaluate process merging trans-

formation, i.e., the second contribution of this dissertation. We discuss this in more

detail when we discuss the related work for the process merging transformation. In

the design space exploration of DOL, mainly different mappings are evaluated, but

different instances of the KPN application are not explored. As a last framework, we

briefly discuss Metropolis [5]. It uses a pre-defined platform such that the system

design problem is reduced to mapping the desired functions onto the given platform.

Metropolis is a very general framework as it does not define any specific design

tools, such as for example Daedalus. Instead, based on a meta-model with formal

semantics, it allows designers to simulate, formally analyze, and synthesize complex

systems.

Next, we discuss the related work with respect to the specific contributions of this

dissertation, i.e., the process network transformations and the mapping of PPNs onto

programmable MPSoCs.

Our process splitting transformation is related to the loop unrolling transforma-

tion used in compiler design [57]. The relation is that both transformations aim at

enhancing parallelism in a sequential program. However, loop unrolling enhances

instruction level parallelism by copying a loop body several times and re-indexing

the variables in the body, thus creating more parallel instructions and reducing the

loop control overhead. In contrast, our splitting transformation enhances task-level

parallelism by copying a program statement a number of times such that these copies

can be encapsulated in concurrent processes. In [77], splitting and re-timing transfor-

mations are described for improving block schedules for Homogeneous Synchronous

Data Flow (HSDF) graphs by exploiting inter-iteration parallelism. This is related to

our splitting transformation in the sense that the latter also facilitate the exploitation

of inter-iteration parallelism available in a SANLP when such program is converted

to a set of PPN specifications. In [66], Parhi and Messerschmitt describe a splitting

transformation developed to be applied on iterative data-flow programs. This trans-

formation is similar to our splitting in that both transformations increase the number

of tasks in a program and exploit the hidden concurrency for static programs. The

main difference between our work and the work presented in [66, 77] however, is

that we have devised an approach to evaluate the quality achieved by applying the

transformations when targeting a particular MPSoC platform. We show in this dis-

sertation, that there are several factors that must be taken into account when deciding

what transformation to apply in order to improve the system performance. In con-

trast, in [77] the transformations are applied on the HSDF graph corresponding to an

application where no information about the target implementation platform is con-

12 Introduction

sidered. In [83], Teich and Thiele propose an approach to partition affine dependence

algorithms for mapping onto reduced/fixed size processor arrays. Their approach is

based on two transformations called Expand and Reduce. This relates to our work

in the sense that process splitting transformations are also an approach to partition

algorithms. However, there are two important differences. First, the result of the

partitioning, i.e., the generated PPNs are suitable for mapping onto heterogeneous

multi-processor platforms. Second, by using our process splitting transformations

we do a reverse partitioning compared to the approach of Teich and Thiele. They

start with a dependence graph (DG) representation of an algorithm which is the par-

titioning of an algorithm. Then they apply tiling (grouping) on the DG representation

to obtain a desired partitioning in which less parallelism is exploited. In contrast, we

start with a SANLP, derive a PPN, and by applying process splitting we partition the

computational workload onto several processes. That is, in the proposed approach we

take into account the characteristics of a particular MPSoC target platform and eval-

uate the quality of different (possible) transformations, thereby obtaining a desired

partitioning in which more parallelism is exploited.

When we look at the process merging transformation, then we see that many related

research works focus on the merging of tasks or processes, which is called clustering

in the domain of Synchronous Data Flow (SDF) graphs [47]. These works, however,

mainly deal with the code generation of clustered or grouped tasks itself [9, 23]. We

analyze and model networks with a given compound process and schedule to compare

different PPN instances by defining and using a throughput model, see Chapter 4.

There are other works on throughput computation, but they are developed for SDF

and CSDF models [30,55], which are less expressive models than the PPN model we

use. Besides the difference in the models of computation, there is also a difference in

the analysis. That is, in [30] two approaches are presented to calculate the throughput

of SDFGs based on either the conversion of SDF to Homogeneous SDF or on state

space exploration. In both cases, the disadvantage is that the number of actor or states,

respectively, can explode. The advantage, however, is that cyclic graphs can also be

analyzed, while our approach is restricted to acyclic process networks. Another work

also investigated the trade-offs in buffer requirements and throughput constraints for

SDFs [80], and in a follow up also for cyclo-static dataflow graphs [81]. The analy-

sis, again, relies on state-space exploration techniques, but it does investigate buffer

requirements that we omitted in our throughput model. The reason is that we as-

sume buffer sizes that give maximum performance, which are calculated by the pn

compiler. Another main difference with these works is that we use the throughput

model for evaluating and comparing the process splitting and merging transforma-

tions, while the throughput models for (C)SDF graphs focus only on buffer sizes and

throughput. Thus, they do not investigate any transformations. Another analytical

model for analyzing embedded real-time systems is network calculus [46] and an ex-

1.3 Related Work 13

tension of this which is called real-time calculus [16, 85]. The analysis is based on

the minimum and maximum number of events that arrive in a time interval, which

are called the arrival curves. In a similar way, service curves are defined, which rep-

resent upper and lower bounds of the available resources in an interval. Based on

given traces of event streams, timing properties, on-chip memory requirements, and

the load on different platform components can be analyzed. This is different from our

approach as we only analyze the throughput of the process network given the work-

load of each process. Thus, our approach does not require to have the event stream

of the system, which may be difficult to obtain. In the network calculus, however, the

minimum and maximum arrival of events are propagated and thus also the dynamic

behavior is captured. In our approach, we calculate an average throughput and thus

the dynamic throughput behavior of processes is not captured. It makes, however, our

throughput model simple and very efficient to compare different network instances

and process merging transformations. As a consequence, however, our approach does

not analyze the memory requirements/constraints. While the network calculus does

analyze the memory requirements, it can suffer from some inaccuracies when the

bounds on the event streams are not tight. Finally, an approach is presented in [22]

to automatically synthesize a multiprocessor architecture for process networks under

particular mapping and performance constraints. This is different from our work as

the process networks are not analyzed and transformed.

The second contribution of this dissertation deals with a holistic approach to com-

bine process splitting and merging transformations, which is most closely related

to the work in [31] that aims at exploiting coarse-grained task, data and pipeline par-

allelism in stream programs. The StreamIt [87] compiler derives stream graphs which

are mapped on the Raw architecture and has optimizations for filter fusion and fis-

sion [32], comparable to our process merging and splitting transformations. In their

approach, they start to fuse filters until a certain point and then perform fission on this

coarsed-grain task to create more data-level parallelism. The fusion is performed as

long as the result of each fusion is stateless. We show in Chapter 5 that processes with

state (self-edges) and networks with cycles can also be fissed and that performance

gains are possible, which is not considered in [31]. A second difference is that we

derive process networks from sequential programs written in C and not in a language,

such as the StreamIt language, that has constructs to specify filters and FIFO commu-

nication and each kernel has a single input and single output channel. The processes

in our polyhedral process networks can have multiple input/output channels and can

read/write all or a subset of these channels. In [14], another approach is shown for

mapping stream programs onto heterogeneous multiprocessor systems. A partition-

ing algorithm is presented that takes as input a graph, and outputs a mapping to fuse

kernels to tasks. In an iterative manner, tasks are merged, kernels are moved from

bottleneck processors, and tasks are created. Similar to the StreamIt approach, an

14 Introduction

annotated version of the C programming language is used, and only stateless kernels

are split for greater parallelism. Besides the average load of each kernel on each pro-

cessor, similar to the workload of our processes, an additional parameter is required

to be obtained from run-time analysis. That is, the average date rate on each stream

that must be obtained from a profile.

In [68], the scheduling of Synchronous DataFlow (SDF) graphs [47] to parallel tar-

gets focused on partitioning and scheduling techniques that exploit task and pipeline

parallelism. To schedule a SDF graph, a precedence graph is first constructed, which

exposes the available data level parallelism. Then, to limit the explosion of nodes,

clustering is applied and thus composite nodes are created. A fundamental differ-

ence with our work is that workloads are not taken into account in the clustering as

we discuss in Chapter 5. And in addition to this, polyhedral process networks are

more expressive than SDFs as FIFO channels can be read/written in a way that are

described by (parameterized) polytopes. Thus, FIFO reads/writes can occur in some

patterns, similar to the cyclo-static dataflow graphs (CSDF) [11], with the difference

that the cycles in PPNs can be very large as they are derived from nested-loop pro-

grams. The R-Stream compiler [54] is a proprietary high level compiler for stream

programs. It also uses the polyhedral model to partition code and data for a paramet-

ric parallel machine. The work focuses on the re-scheduling of computations (e.g.,

modulo scheduling) and placing explicit communications (e.g., DMA calls) to auto-

matically put a multi-buffering scheme in place. Thus, the focus is on scheduling

at the level of statement instances, and not on tasks/processes that can contain many

statement instances as in our case.

The third contribution of this dissertation investigates the mapping of polyhedral

process networks onto programmable MPSoC platforms such as the Intel IXP

network processor and the Cell processor. We have developed source-to-source trans-

lation tool-flows to generate compilable source-code for the different components of

PPNs. i.e, the processes and FIFO channels as we discuss in Chapter 6. To pro-

gram the IXP, some high-level programming models have been developed. This basi-

cally means that the developer can use some higher-level languages and abstractions,

e.g., the possibility to compose a number of operations that work on streams of data,

and that assembly language is not a developer’s only option. NP-Click [75] is one

example as it offers an abstraction of the underlying hardware. Another effort for

improving the programming of an IXP, is the µL programming language and the

µC compiler by Network Speed Technologies [29, 82]. The difference with our ap-

proach is that both NP-Click and µL programming language, obviously, focus very

much on internet packet handling, while we are interested in a programming model

that supports the class of stream-based applications. Intel on the other hand, has

developed an auto-partitioning C compiler as described in [49], which is therefore

more closely related to our approach. An input application is specified as a set of

1.4 Outline 15

sequential C programs, which are called packet processing stages (PPSes). These

PPSes closely correspond to the Communicating Sequential Processes (CSP) model

of computation [37]. However, to express a program in PPSes is the responsibility

of a programmer. In contrast, the pn compiler automatically generates PPNs from

applications written as static affine nested loop programs [95].

Regarding the Cell processor, a great number of research works have been pub-

lished since its introduction: ranging from case-studies and application specific im-

plementations, to frameworks that deal with parallelization and mapping of appli-

cations onto the Cell. One model-based project that is similar to our approach in

programming the Cell BE platform is the architecture-independent stream-oriented

language StreamIt, which shares some properties with the Synchronous DataFlow

(SDF) model of computation. The Multicore Streaming Layer (MSL) [99] frame-

work realizes the StreamIt language on the Cell BE platform thereby focussing on

automatic management and optimization of communication between cores. All data

transfers are explicitly controlled by a static scheduler. This is different from our

approach, since we use the PPN model of computation where the processes synchro-

nize and communicate data over FIFO channels using blocking read/write primitives

in absence of a global scheduler. A PPN is therefore self-scheduled, which can have

as an advantage that there is no central scheduler that can become the bottleneck of

the system. On the other hand, the blocking FIFO communication is software imple-

mented, which makes it expensive communication primitives to use. As a last dif-

ference, and already discussed in this section, the SDF MoC used by StreamIt is less

expressive Model of Computation (MoC) than our PPN MoC. Besides frameworks

that support the parallel execution of applications, there are also communication li-

braries that focus more on the low-level communication infrastructure of the Cell,

such as for example the Cell Messaging Layer [65]. It presents a similar idea as in

our approach, i.e., a receiver initiated communication scheme as we will discuss in

Section 6.1. However, the library offers just low-level send and receive primitives

without focusing on the realization of more complex communication schemes such

as FIFO reads/writes.

1.4 Outline

The remaining part of this dissertation is organized as follows.

In Chapter 2, we first introduce the basic terminology and show with a simple run-

ning example how polyhedral process networks are derived from sequential static

affine nested-loop programs.

In Chapter 3, we present the first process network transformation, i.e., the process

splitting transformation. We define the metrics that play an important role in process

16 Introduction

splitting and give a solution approach how these can be evaluated at compile-time to

select the best partitioning.

In Chapter 4, we discuss the second transformation, i.e., the process merging trans-

formation. In order to evaluate which merging is the best, we define a throughput

model for process networks such that the throughput for a given PPN can be calcu-

lated and evaluated.

In Chapter 5, we present a holistic approach to transform PPNs using the process

splitting and merging transformations in combination. We show that it is necessary

to use both transformations to achieve the best performance results that cannot be

achieved using one transformation only.

In Chapter 6, we present approaches to realize FIFO communication for executing

polyhedral process networks on the Intel IXP network and the Cell BE processors.

Both platforms are instances of programmable MPSoCs platform, but each with their

own characteristics. While the IXP has hardware support for FIFO communication

to some extent, the CELL must implement FIFO communication completely in soft-

ware.

Finally, we conclude this dissertation in Chapter 7 with a summary of the presented

research work along with some concluding remarks.

