
Transformations for polyhedral process networks
Meijer, S.

Citation
Meijer, S. (2010, December 8). Transformations for polyhedral process networks. Retrieved
from https://hdl.handle.net/1887/16221

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16221

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/16221

Transformations for Polyhedral
Process Networks

Sjoerd Meijer

Transformations for Polyhedral Process Networks

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op woensdag 8 december 2010

klokke 16:15 uur

door

Sjoerd Meijer

geboren te Leiderdorp

in 1979.

Samenstelling promotiecommissie:

promotor Prof.dr. Ed F. Deprettere Universiteit Leiden

co-promotor Dr. Todor Stefanov Universiteit Leiden

overige leden: Prof.dr. Harry Wijshoff Universiteit Leiden

Prof.dr. Joost Kok Universiteit Leiden

Prof. Dr.-Ing. Jürgen Teich Universität Erlangen-Nürnberg

Prof.dr. Gerard Smit Universiteit Twente

Prof.dr. Henk Corporaal Technische Universiteit Eindhoven

Transformations for Polyhedral Process Networks

Sjoerd Meijer. -

Thesis Universiteit Leiden. - With index, ref. - With summary in Dutch

ISBN 978-90-9025792-1

Copyright c©2010 by Sjoerd Meijer, Leiden, The Netherlands.

Cover design by Senny Yu.

All rights reserved. No part of the material protected by this copyright notice may

be reproduced or utilized in any form or by any means, electronic or mechanical, in-

cluding photocopying, recording or by any information storage and retrieval system,

without permission from the author.

Printed in the Netherlands

vi

Contents

1 Introduction 1

1.1 Problem Statement . 5

1.2 Contributions . 7

1.3 Related Work . 9

1.4 Outline . 15

2 Background 17

2.1 Polyhedra . 17

2.2 Lexicographic Order . 19

2.3 Static Affine Nested-Loop Programs 21

2.4 Extracting the Polyhedral Model from SANLPs 23

2.5 Polyhedral Process Networks . 24

2.6 Validity of Transformations . 29

3 Process Splitting Transformations 31

3.1 Process Splitting: Definitions, Notations, and Examples 32

3.2 Challenges of Applying the Process Splitting Transformation 35

3.3 Partitioning Metrics . 38

3.3.1 Computation and Communication Costs 38

3.3.2 Initial Delay . 39

3.3.3 Production Period . 40

3.3.4 Data Transfers . 42

3.3.5 Additional Control Overhead 42

3.4 Compile-time Selection of Splitting Transformation 43

3.5 Case-Studies . 50

3.5.1 Single Diagonal Dependence 51

3.5.2 Matrix Multiplication with Multiple Dependencies 56

viii Contents

3.5.3 Four Producers with Delays 59

3.6 Discussion and Summary . 62

4 Process Merging Transformations 65

4.1 Process Merging: Definitions . 65

4.2 Challenges of Applying the Process Merging Transformation 66

4.3 Restrictions on the Throughput Modeling 69

4.4 Throughput Modeling . 70

4.4.1 Process Throughput and Throughput Propagation 70

4.4.2 Isolated Throughput of a (Compound) Process 72

4.4.3 FIFO Channel Throughput 74

4.4.4 Aggregated FIFO Throughput 75

4.4.5 System Throughput Calculation Algorithm 77

4.5 Case-Studies . 78

4.5.1 Merging Light-Weight Producers 78

4.5.2 Merging Processes in Networks with Different Data Paths . 81

4.6 Discussion and Summary . 82

5 Appling Transformations in Combination 85

5.1 Impact of the Transformation on Performance Results 87

5.1.1 Transforming a PPN to Create More Processes 87

5.1.2 Transforming a PPN to Reduce the Number of Processes . . 89

5.1.3 The Optimization Pitfall: Performance Degradation 90

5.2 Compile-Time Solution for Transformation Ordering 91

5.2.1 Creating Load-Balanced Tasks 93

5.2.2 Selecting Processes for Transformations 94

5.3 Exploiting Data-Level Parallelism 95

5.3.1 Stateful Processes . 97

5.3.2 Cycles . 97

5.4 Case-Studies . 99

5.4.1 QR Decomposition: a PPN with Stateful Processes and Cycles 100

5.4.2 Transforming Perfectly Balanced PPNs 102

5.5 Discussion and Summary . 105

6 Executing PPNs on Fixed Programmable MPSoC Platforms 111

6.1 The Programmable Platforms . 112

6.2 Realizing FIFO Communication 114

6.3 Performance Results . 118

6.4 Discussion and Summary . 123

7 Conclusions 125

Contents ix

Bibliography 130

Index 140

Acknowledgments 143

Samenvatting 145

Curriculum Vitae 147

Chapter1
Introduction

In 1965, Moore predicted that the number of transistors on a semiconductor and thus

the overall chip performance would double every two years [56]. This has become

known asMoore’s law and due to the minitiurization of transistors, chip manufactures

were able to produce faster, more powerful processors every year. Moore’s law has

proven to be correct for many years, but it was also clear that this trend had to come

to an end at some point in time. Moore also stated that ”no physical quantity can

continue to change exponentially forever”. Today, chip manufactures have to deal

with electrical power leakage and heat dissipation as a result of packing more and

more transistors into a smaller area. In addition, the minitiurization of transistors has

reached its physical limits and it cannot further help in producing faster processors.

As a solution to produce more powerful processors, multi/many-core processor ar-

chitectures were introduced. Multi/many-core processors consist of multiple proces-

sors, possibly of the same type, and are interconnected and integrated into a single

chip. Hence, the name Multi-Processor Systems on-Chip (MPSoC). For example,

mainstream consumer PCs nowadays come with dual/quad core processors, game

consoles such as the PlayStation 3 and its Cell processor have 9 cores [39],

GPUs have 128 stream processors, and cell phones have many different compute and

hardware components. Inspired by Moore’s law, many people believe that the new

trend is an exponential growth of the number of cores in processors. Processors, how-

ever, are only a small part of complex systems that are shipped to the market. Equally

important is the entire software-stack that provides services to end-users and develop-

ers. A powerful processor is useless without good compilers, debuggers, simulators,

operating systems, libraries, etc. So the programmability of a processor highly deter-

mines its success.

If we consider software compilers for single processors with a sequential execu-

tion model, then it is widely accepted that they do a reasonably good job in auto-

2 Introduction

matically translating high-level program descriptions into low-level machine code.

When the compiler technology for single processors matured, it raised the program-

ming abstraction level and gave a boost to the productivity of developers and greatly

improved maintainability and portability of program code. Both the hardware and

compilers focused on exploiting Instruction Level Parallelism (ILP) as much as pos-

sible. Single processor architectures support ILP with superscalar, out-of-order, and

instruction pipelining techniques implemented in hardware. For other architectures,

such as VLIW [26] and EPIC [73] processors, it is the compiler’s responsibility to

find parallel instructions. Therefore, much research has been done in techniques such

as automatic vectorization, software pipelining, and other scheduling techniques to

overlap instructions (ILP) as much as possible.

While the programming of a single processor is already a difficult task, there is now

another dimension of complexity with the introduction of Multi-Processor System

on Chips (MPSoCs). The programming of these multi-processor systems is a diffi-

cult and time consuming process as it involves careful partitioning and assignment of

program tasks to different processing elements of the MPSoC platform. A program

task can for example be a function, i.e., a set of instructions, that reads function input

arguments, performs some computations, and write the results to its function out-

put arguments. Overlapping different program tasks by executing them in parallel at

different processors of the MPSoC platform can result in significantly reduced execu-

tion times. This illustrates that besides Instruction Level Parallelism (ILP), that Task

Level Parallelism (TLP) is an important factor that needs to be taken into account in

programming MPSoC platforms. Exploiting TLP is difficult as the different program

tasks need to synchronized and must also exchange data in a particular way, which

makes the programming of MPSoC platforms more difficult than a single processor

system. So the question is: how can MPSoC platforms be efficiently programmed

using the available resources of the hardware platform?

If we roughly classify the different approaches to program Multi-Processor System

on Chips (MPSoCs), we see that it is either the programmer’s responsibility to create

different program tasks, or a compiler oriented approach where program tasks are au-

tomatically extracted from sequential program specifications. Examples of the former

approach are new programming languages (e.g., OpenCL [64], StreamIT [87]), lan-

guage extensions (e.g., CUDA [59]), compiler pragma’s (e.g., OpenMP), and libraries

(e.g., Pthreads, MPI [27]). Examples of the latter are parallelizing compilers that ex-

tract program tasks or threads from sequential code (e.g., the Intel compiler [10],

Pluto [13], SUIF [36], Polaris [12]). Parallelizing compilers is the subject of the

work presented in this dissertation. The Leiden Embedded Research Center (LERC)

has developed a tool-flow to program embedded Multi-Processor Systems on Chip

(MPSoC) in a systematic and automated way. To be more specific, the goal is to

make the programming more easy and to present a solution for the question raised

3

earlier: how to efficiently program an MPSoC. The LERC’s solution relies on two

basic principles: i) a parallel Model of Computation (MoC) must be used to specify

an application, and ii) this parallel specification should be executed on a hardware

platform that exactly matches the MoC.

Pµ

Pµ Pµ

System−level
specification

specification

V
a
lid

a
ti
o
n
 /
 C

a
lib

ra
ti
o
n

Gate−level
specification

RTL

specification

MemMem

HW IP

MPSoC

connect
Inter−

Functional

in XML
Mapping spec.

in XML

Sequential
program in C

L
ib

ra
ry

 I
P

 c
o

m
p

o
n

e
n

ts

RTL
Models

Models
High−level

Platform spec.

Automated system−level synthesis: Espam

netlist
Platform

in VHDL
IP cores

processors
C code for Auxiliary

files

Application spec. in XML

Sesame PN compiler

RTL synthesis: commercial tool, e.g. Xilinx Platform Studio

Parallelization:System−level design space exploration:

Manually creating a PPN

Polyhedral Process Network

Figure 1.1: Daedalus tool-flow overview

The Daedalus tool-flow [61] that is being developed by LERC and shown in Fig-

ure 1.1, aims at providing a complete solution for system-level design of MPSoC

platforms. It implements the two principles described above. From this tool-flow, let

us consider first the functional specification of the application that a designer should

provide. The first part of LERC’s solution to make the programming of MPSoCs

easier, relies on the fact that application developers find it more easy to specify an

application as a sequential program as opposed to writing a parallel one. At the same

time, we know that a parallel application specification can be mapped onto a parallel

architecture more naturally than a sequential program. So, the idea is to combine the

best of these worlds by deriving an equivalent parallel specification from sequential

program specifications. This has resulted in the open-source pn compiler [95], that

is part of the Daedalus tool-flow as shown in Figure 1.1. The pn compiler translates

applications specified as Static Affine Nested-Loop Programs (SANLP), i.e., a sub-

set of the C language as we discuss in Chapter 2, to Polyhedral Process Networks

(PPNs) [8]. The PPN Model of Computation consists of autonomously running pro-

4 Introduction

cesses with private memory and control that communicate over point-to-point FIFO

channels using blocking FIFO read/write primitives (discussed in detail in Chapter 2).

for(int t=1; t<=P; t++){

 for(int i=1; i<=M; i++){

 for(int j=4; j<=N; j++){

 r1[i+1][j-3] = F1(...); //stm1

 }

 }

 for(int l=3; l<=M; l++){

 for(int m=3; m<=N-1; m++){

 if (l+m<= 7){

 r2[l][m] = F2(r1[l-1][m-2]); //stm2

 }

 if (l+m>=8){

 r2[l][m] = F3(r1[l][N-3]); //stm3

 }

 ... = F4(r2[l][m]); //stm4

 }

 }

}

pn
F3F2

F1

Get() Get()

Put() Put()

FIFO1 FIFO2

F4

FIFO3 FIFO4

Put() Put()

Get() Get()

SANLP Process Network MoC

Figure 1.2: Compiling a Static Affine Nested-Loop Program (SANLP) to a Polyhe-

dral Process Network

The derivation of a PPN from a static affine nested-loop programs is illustrated with

an example in Figure 1.2. This example is taken from [89] and reveals how program

statements are translated to processes and how array accesses are replaced by FIFO

read/write statements. In Figure 1.2, a sequential program with 4 program statements

is shown at the left-hand side. The statement’s variable indexing functions are affine

expressions in the loop iterators and static program parameters. The derived and

functionally equivalent PPN for this code is shown at the right-hand side. Each pro-

gram statement is translated to a process, and the array accesses have been replaced

with read and write functions such that the processes only communicate data over

FIFO channels.

Let us now consider the second design step of the Daedalus tool-flow, i.e., the trans-

lation from the system-level specification of the MPSoC platform to the RTL speci-

fication of the platform, as shown in Figure 1.1. The idea of the Daedalus tool-flow,

is to generate a hardware platform that ”natively” supports the execution of Poly-

hedral Process Networks (PPNs). That is, the ESPAM platform executes PPNs very

efficiently because the operational semantics of the process network model of compu-

tation are supported with hardware components. For example, data communication

and process synchronization of processes are realized by distributed memories, which

can be organized as one or more FIFOs. Thus, blocking FIFO read/write primitives

are hardware supported and make the processes to be self-scheduled very efficiently.

Furthermore, the ESPAM platform allows processes to be assigned to independent

1.1 Problem Statement 5

Instruction Set Architecture (ISA) components and/or IP-cores that must exist in the

library of predefined IP components. The ESPAM tool automatically generates a

hardware platform prototyped on an FPGA board based on 3 specifications as shown

at the system specification level in Figure 1.1. The first specification is a high-level

platform specification describing only the number of processing elements and the

inter-connect of the platform. The second is an application specification in the form

of a PPN that can be generated by the pn compiler, but can also be specified by hand.

The third is a mapping specification describing how the processes of the PPN are as-

signed to the processing elements of the hardware platform. The ESPAM tool takes

these 3 specifications as an input, and creates the corresponding RTL specification

of the MPSoC platform and maps the PPN process threads onto IP-cores and/or pro-

grammable processors. Thus, we see that the Daedalus tool-flow enables designers to

implement a sequential program specification onto a multi-processor system on chip

in a systematic and automated way.

1.1 Problem Statement

The Y-chart approach is a very general iterative system-level design methodology

[44]. Figure 1.3 illustrates this approach and captures the iterative process of getting

− ESPAM

− Intel IXP

− CELL

1−to−1 mapping

?

Instance

Architecture Application

Performance

Numbers

Performance

Analysis

Mapping

SANLP

 PN

PN Compiler

II

I

III

2) − hints how to apply them

 − and evaluation.

1) Transformations:

Figure 1.3: The Y-chart Approach

to a satisfactory design point. It takes an application specification and a platform

specification. Then, after executing the application onto the platform, performance

numbers are obtained for a particular design point. The performance of an application

can be measured by considering the execution time or throughput of that application

on a simulator or the real hardware platform. If the design point does not meet the

6 Introduction

performance or resource constraints (i.e., the constraints on the number of tasks as-

signed to a processing element), then the platform, application and/or mapping can

be adjusted accordingly. By iteratively changing some parameter values in this de-

sign methodology, the implementation should converge to, for example, the desired

performance. Let us now project the different aspects of the Y-chart approach onto

the Daedalus tool-flow. Recall that the Daedalus tool-flow (see Figure 1.1) takes

the application, platform, and mapping specifications as an input, as shown in the

Y-chart approach, and allows a designer to create and program an MPSoC platform.

In addition, the Sesame tool [67, 88] that is integrated into Daedalus, can be used

for design-space exploration at the system-level of abstraction. The Sesame tool,

however, only explores different platform and mapping instances. These two design-

space exploration aspects correspond to arrows I and II in the Y-chart approach,

see Figure 1.3. The Daedalus tool-flow does not support the third exploration aspect,

i.e., the exploration of different application instances as indicated with the bold arrow

III in the Y-chart. Although some transformations have been defined to change a

PPN application specification [79], i.e., to reduce/increase the number of processes

in a PPN, the Daedalus tool-flow does not give any hints or tips to the designer how

to apply these transformations in order to transform a PPN in the best possible way.

Applying transformations as part of the tool-flow is the subject of this dissertation.

It is crucial to assist the designer in applying the transformations in the best possi-

ble way since there are many possibilities to transform an application to meet the

performance requirements or resource constraints. In this dissertation, we do not in-

vestigate different mapping strategies and always assume to have a 1-to-1 mapping

of processes to processors. Thus, the grouping or splitting of tasks is not achieved

by different mapping strategies, but by the pn compiler instead, i.e., we focus on

the pn compiler that is used to derive PPNs from sequential program specifications.

Although the pn compiler relieves the designer from the difficult and error-prone

task of identifying and synchronizing different program partitions, it is not guaran-

teed that the performance/resource constraints are met. Recall that the pn compiler

uses a partitioning strategy that creates a single thread for each program statement in

the sequential code. As one program statement can be much more computationally

intensive than others, the corresponding process network may be highly imbalanced

not meeting the performance and resource constraints. Therefore, we formulate the

first problem area as follows.

• Issue I: It is unlikely that all the designer’s constraints are met in one transla-

tion step of the Daedalus tool-flow. That is, the Daedalus tool-flow can quickly

generate a single design point, and can also explore different architecture and

mapping instances by means of simulation. It, however, does not provide any

compile-time infrastructure and hints/heuristics to transform and evaluate dif-

1.2 Contributions 7

ferent application instances. Transforming application instances is crucial to

meet the performance/resource constraints. Moreover, the compile-time hints

are not only necessary to assist the designer in making the correct design de-

cisions, but also to reduce the number of design points a designer should con-

sider/evaluate. Therefore, the main research topic of this dissertation is to assist

the designer in transforming a PPN specification to obtain a satisfactory design

point as illustrated with the bold arrow III in Figure 1.3.

The first issue as discussed above addresses the program specification in the design

process. A second addresses the target platform specification. The Daedalus tool-

flow targets FPGA based platforms and creates an instance of the ESPAM execution

platform. That is, an execution platform prototyped on an FPGA that matches the

process network model of computation. However, such a specific platform may not

always be available to a designer and we therefore formulate a second issue.

• Issue II: Currently, the Daedalus tool-flow aims at creating an MPSoC in-

stance that exactly matches the process network model of computation on an

FPGA based platform, but such a specific platform may not always be avail-

able. We want to investigate how to execute polyhedral process networks on

programmable, off-the-shelf multi-processor platforms. This means that the

different components of the process network model of computation must be

mapped onto fixed hardware components of the target platform.

1.2 Contributions

To address the first issue as defined in Section 1.1, we define compile-time ap-

proaches to transform and thus optimize PPNs. These optimizations consist of compile-

time guided application of transformations that restructure PPNs in a certain way.

First, we briefly review the transformations as they have been defined in [78, 79] and

then we present the contributions.

The first transformation is a process splitting transformation which increases the

number of processes in a PPN, and the second is the process merging transformation

which reduces the number of processes in a polyhedral process network:

1. The process splitting transformation is a transformation that copies program

statements, comparable to the classical loop-unrolling transformation. As a

result, the derived process network has multiple processes executing the same

function possibly in parallel.

2. The process merging transformation achieves the opposite of the splitting trans-

formation and groups, clusters, or merges several processes into one compound

8 Introduction

process. The functions in the merged processes will be executed sequentially

in the compound process.

Using these two transformations, an initial process network can be optimized to

meet performance/resource constraints. The arbitrary PPN example shown in Figure

1.4, consists initially of 3 processes. Using the process merging transformation, pro-

cesses P2 and P3 can be sequentialized into compound process P23 . Thus, we say

that less parallelism is exploited. By using the process splitting transformation, pro-

cesses P2 and P3 can be split up to create extra copies. As a result, more processes

can execute in parallel and thus we say that more parallelism is exploited.

P1 P23

P1 P2

P3

P2

P3

P1 P2

P3
..

..

Less Parallelism More Parallelism

Transformations

Figure 1.4: Deriving Different PPNs using Process Splitting and Merging Transfor-

mations

• Contribution I [51, 53]: our first contribution consists of compile-time so-

lution approaches for process splitting and merging to assist the designer in

achieving his performance/resource requirements:

– The process splitting transformation: a process can be split up in many

different ways and many factors influence the final performance results.

We identify factors and define corresponding metrics that play a key role

in the performance results, and show an analytical approach to calculate

and evaluate them at compile-time. The analysis is performed locally on

the process that is selected for splitting [51].

– The process merging transformation: we define a throughput model for

Polyhedral Process Networks (PPN). This allows the designer to evaluate

1.3 Related Work 9

the throughput of different transformed networks derived from the same

PPN. The designer, thus, can select the merging alternative with the best

throughput. The throughput model is used for a global analysis of the

entire network, as opposed to the splitting transformation, since the ef-

fects of the merging cannot be studied only by locally looking into the

processes to be merged [53].

• Contribution II [52]: we present a holistic approach to use both the process

splitting and process merging transformation in combination. This is a neces-

sity to obtain good performance results that cannot be achieved by using only

one transformation. Our solution approach solves the problem of ordering the

different transformations and the problem of identifying the most suitable pro-

cesses to merge/split. We create a number of load-balanced compound pro-

cesses equal to the number of tasks a designer wants to create that can, for

example, be the available processing elements of the target platform. In the

holistic approach, we use the results of Contribution I to decide how the pro-

cesses can be best split up, and the throughput model can be used for evaluating

the solutions.

• Contribution III [50,58]: to address the second issue presented in Section 1.1,

i.e., the programming of standard and off-the-shelf MPSoC platforms, we present

approaches to execute PPNs onto the Intel IXP Network Processor and the Cell

Processor. Thus, we investigate how to efficiently realize FIFO communication

using the provided communication infrastructures of these platforms.

1.3 Related Work

The research work presented in this dissertation contributes to the underlying theory

of the Daedalus tool-flow [61], and hence it contributes to the the research area of

tool-flows for systematic and automated application-to-platform mapping, which has

been widely studied in the research community. As it is an extensive research area,

we first give a brief overview of related tool-flows. Then, we describe in more detail

the related work with respect to the specific contributions of this dissertation.

To start with the frameworks, the System-On-Chip Environment (SCE) [21] en-

ables designers to go from a specification all the way down to a hardware/software

implementation. The Program State Machine (PSM) is used as a model of computa-

tion, which brings together concepts of hierarchical concurrent finite-state machines,

dataflow graphs and imperative programming languages in a single model of compu-

tation [28,33]. Basically, it encapsulates basic algorithms written in C, providing the

designer in this way with the flexibility to manually write C and to manually parti-

10 Introduction

tion the code in a particular way using a data flow model. This is different from the

Daedalus approach, as the designer only writes the sequential top-level application

description. It is the responsibility of the pn compiler to partition the code and to de-

rive a polyhedral process network. The functionality of the processes in the Daedalus

tool-flow can be specified by the designer as sequential functions in C, similar to

SCE, or as IP-cores from the component library.

A second related framework is SystemCoDesigner, which maps applications

specified in SystemC onto a heterogeneous platform [42]. Similar to the SCE ap-

proach, it is the designer’s responsibility to write an actor orientated application

in SystemC, whereas the Daedalus tool-flow derives Polyhedral Process Networks

(PPNs) from a sequential program. Similar to Daedalus, it allows to create a het-

erogeneous MPSoC by instantiating and connecting cores from a component library.

In addition, actors in SystemCoDesigner can be implemented as a hardware ac-

celerator using the Forte Cynthesizer. The high-level synthesis of processes to hard-

ware is currently not (yet) supported by Daedalus. A research work in the context

of the Daedalus tool-flow explored the VHDL synthesis of processes in a PPN using

PICO [91], but it is not integrated into the Daedalus tool-flow and thus not available

yet.

Two more frameworks that provide a complete environment for modeling applica-

tions, design space exploration, prototyping and synthesis of MPSoC platforms are

Koski [41] and PeaCE [35]. The main difference between Daedalus and Koski is that

the functionality of the system in Koski is described with an application model in an

UML environment. And PeaCE, that is short for Ptolemy extension as a Codesign

Environment, restricts itself to SDF graphs and finite state machines as the model of

computation.

Next, we briefly discuss four frameworks that focus more on the software part

of MPSoC platforms. MAPS is a framework for MPSoC application paralleliza-

tion [15]. It provides a set of tools which guides the parallelization processes. In con-

trast to our analytical compile-time parallelization approach, MAPS parallelization

is mainly based on profile information and manually written Kahn Process Network

(KPN) specifications. It provides a source-to-source translation, i.e., the output code

is threaded C code that can be compiled with other compilers to the target platform.

MAMPS [45] is another tool-flow that maps SDF graphs onto MPSoC platforms. Be-

sides the difference that they map SDFs, the work focuses on homogeneous MPSoCs

consisting of MicroBlaze processors that are point-to-point connected. Daedalus sup-

ports heterogeneous platforms and interconnects such as crossbars and shared busses.

On the other hand, MAMPS supports the mapping of multiple applications, while

Daedalus currently supports only single application mapping. The Distributed Op-

eration Layer (DOL) [84] is another framework for specifying and mapping parallel

applications onto heterogeneous multiprocessor platforms. The target platform is a

1.3 Related Work 11

fixed tiled multi-processor embedded system. As an application model, Kahn Pro-

cess Networks (KPNs) are used that are specified manually by the designer. In the

performance analysis, a technique is used based on real-time calculus, which has

some similarities with our throughput model used to evaluate process merging trans-

formation, i.e., the second contribution of this dissertation. We discuss this in more

detail when we discuss the related work for the process merging transformation. In

the design space exploration of DOL, mainly different mappings are evaluated, but

different instances of the KPN application are not explored. As a last framework, we

briefly discuss Metropolis [5]. It uses a pre-defined platform such that the system

design problem is reduced to mapping the desired functions onto the given platform.

Metropolis is a very general framework as it does not define any specific design

tools, such as for example Daedalus. Instead, based on a meta-model with formal

semantics, it allows designers to simulate, formally analyze, and synthesize complex

systems.

Next, we discuss the related work with respect to the specific contributions of this

dissertation, i.e., the process network transformations and the mapping of PPNs onto

programmable MPSoCs.

Our process splitting transformation is related to the loop unrolling transforma-

tion used in compiler design [57]. The relation is that both transformations aim at

enhancing parallelism in a sequential program. However, loop unrolling enhances

instruction level parallelism by copying a loop body several times and re-indexing

the variables in the body, thus creating more parallel instructions and reducing the

loop control overhead. In contrast, our splitting transformation enhances task-level

parallelism by copying a program statement a number of times such that these copies

can be encapsulated in concurrent processes. In [77], splitting and re-timing transfor-

mations are described for improving block schedules for Homogeneous Synchronous

Data Flow (HSDF) graphs by exploiting inter-iteration parallelism. This is related to

our splitting transformation in the sense that the latter also facilitate the exploitation

of inter-iteration parallelism available in a SANLP when such program is converted

to a set of PPN specifications. In [66], Parhi and Messerschmitt describe a splitting

transformation developed to be applied on iterative data-flow programs. This trans-

formation is similar to our splitting in that both transformations increase the number

of tasks in a program and exploit the hidden concurrency for static programs. The

main difference between our work and the work presented in [66, 77] however, is

that we have devised an approach to evaluate the quality achieved by applying the

transformations when targeting a particular MPSoC platform. We show in this dis-

sertation, that there are several factors that must be taken into account when deciding

what transformation to apply in order to improve the system performance. In con-

trast, in [77] the transformations are applied on the HSDF graph corresponding to an

application where no information about the target implementation platform is con-

12 Introduction

sidered. In [83], Teich and Thiele propose an approach to partition affine dependence

algorithms for mapping onto reduced/fixed size processor arrays. Their approach is

based on two transformations called Expand and Reduce. This relates to our work

in the sense that process splitting transformations are also an approach to partition

algorithms. However, there are two important differences. First, the result of the

partitioning, i.e., the generated PPNs are suitable for mapping onto heterogeneous

multi-processor platforms. Second, by using our process splitting transformations

we do a reverse partitioning compared to the approach of Teich and Thiele. They

start with a dependence graph (DG) representation of an algorithm which is the par-

titioning of an algorithm. Then they apply tiling (grouping) on the DG representation

to obtain a desired partitioning in which less parallelism is exploited. In contrast, we

start with a SANLP, derive a PPN, and by applying process splitting we partition the

computational workload onto several processes. That is, in the proposed approach we

take into account the characteristics of a particular MPSoC target platform and eval-

uate the quality of different (possible) transformations, thereby obtaining a desired

partitioning in which more parallelism is exploited.

When we look at the process merging transformation, then we see that many related

research works focus on the merging of tasks or processes, which is called clustering

in the domain of Synchronous Data Flow (SDF) graphs [47]. These works, however,

mainly deal with the code generation of clustered or grouped tasks itself [9, 23]. We

analyze and model networks with a given compound process and schedule to compare

different PPN instances by defining and using a throughput model, see Chapter 4.

There are other works on throughput computation, but they are developed for SDF

and CSDF models [30,55], which are less expressive models than the PPN model we

use. Besides the difference in the models of computation, there is also a difference in

the analysis. That is, in [30] two approaches are presented to calculate the throughput

of SDFGs based on either the conversion of SDF to Homogeneous SDF or on state

space exploration. In both cases, the disadvantage is that the number of actor or states,

respectively, can explode. The advantage, however, is that cyclic graphs can also be

analyzed, while our approach is restricted to acyclic process networks. Another work

also investigated the trade-offs in buffer requirements and throughput constraints for

SDFs [80], and in a follow up also for cyclo-static dataflow graphs [81]. The analy-

sis, again, relies on state-space exploration techniques, but it does investigate buffer

requirements that we omitted in our throughput model. The reason is that we as-

sume buffer sizes that give maximum performance, which are calculated by the pn

compiler. Another main difference with these works is that we use the throughput

model for evaluating and comparing the process splitting and merging transforma-

tions, while the throughput models for (C)SDF graphs focus only on buffer sizes and

throughput. Thus, they do not investigate any transformations. Another analytical

model for analyzing embedded real-time systems is network calculus [46] and an ex-

1.3 Related Work 13

tension of this which is called real-time calculus [16, 85]. The analysis is based on

the minimum and maximum number of events that arrive in a time interval, which

are called the arrival curves. In a similar way, service curves are defined, which rep-

resent upper and lower bounds of the available resources in an interval. Based on

given traces of event streams, timing properties, on-chip memory requirements, and

the load on different platform components can be analyzed. This is different from our

approach as we only analyze the throughput of the process network given the work-

load of each process. Thus, our approach does not require to have the event stream

of the system, which may be difficult to obtain. In the network calculus, however, the

minimum and maximum arrival of events are propagated and thus also the dynamic

behavior is captured. In our approach, we calculate an average throughput and thus

the dynamic throughput behavior of processes is not captured. It makes, however, our

throughput model simple and very efficient to compare different network instances

and process merging transformations. As a consequence, however, our approach does

not analyze the memory requirements/constraints. While the network calculus does

analyze the memory requirements, it can suffer from some inaccuracies when the

bounds on the event streams are not tight. Finally, an approach is presented in [22]

to automatically synthesize a multiprocessor architecture for process networks under

particular mapping and performance constraints. This is different from our work as

the process networks are not analyzed and transformed.

The second contribution of this dissertation deals with a holistic approach to com-

bine process splitting and merging transformations, which is most closely related

to the work in [31] that aims at exploiting coarse-grained task, data and pipeline par-

allelism in stream programs. The StreamIt [87] compiler derives stream graphs which

are mapped on the Raw architecture and has optimizations for filter fusion and fis-

sion [32], comparable to our process merging and splitting transformations. In their

approach, they start to fuse filters until a certain point and then perform fission on this

coarsed-grain task to create more data-level parallelism. The fusion is performed as

long as the result of each fusion is stateless. We show in Chapter 5 that processes with

state (self-edges) and networks with cycles can also be fissed and that performance

gains are possible, which is not considered in [31]. A second difference is that we

derive process networks from sequential programs written in C and not in a language,

such as the StreamIt language, that has constructs to specify filters and FIFO commu-

nication and each kernel has a single input and single output channel. The processes

in our polyhedral process networks can have multiple input/output channels and can

read/write all or a subset of these channels. In [14], another approach is shown for

mapping stream programs onto heterogeneous multiprocessor systems. A partition-

ing algorithm is presented that takes as input a graph, and outputs a mapping to fuse

kernels to tasks. In an iterative manner, tasks are merged, kernels are moved from

bottleneck processors, and tasks are created. Similar to the StreamIt approach, an

14 Introduction

annotated version of the C programming language is used, and only stateless kernels

are split for greater parallelism. Besides the average load of each kernel on each pro-

cessor, similar to the workload of our processes, an additional parameter is required

to be obtained from run-time analysis. That is, the average date rate on each stream

that must be obtained from a profile.

In [68], the scheduling of Synchronous DataFlow (SDF) graphs [47] to parallel tar-

gets focused on partitioning and scheduling techniques that exploit task and pipeline

parallelism. To schedule a SDF graph, a precedence graph is first constructed, which

exposes the available data level parallelism. Then, to limit the explosion of nodes,

clustering is applied and thus composite nodes are created. A fundamental differ-

ence with our work is that workloads are not taken into account in the clustering as

we discuss in Chapter 5. And in addition to this, polyhedral process networks are

more expressive than SDFs as FIFO channels can be read/written in a way that are

described by (parameterized) polytopes. Thus, FIFO reads/writes can occur in some

patterns, similar to the cyclo-static dataflow graphs (CSDF) [11], with the difference

that the cycles in PPNs can be very large as they are derived from nested-loop pro-

grams. The R-Stream compiler [54] is a proprietary high level compiler for stream

programs. It also uses the polyhedral model to partition code and data for a paramet-

ric parallel machine. The work focuses on the re-scheduling of computations (e.g.,

modulo scheduling) and placing explicit communications (e.g., DMA calls) to auto-

matically put a multi-buffering scheme in place. Thus, the focus is on scheduling

at the level of statement instances, and not on tasks/processes that can contain many

statement instances as in our case.

The third contribution of this dissertation investigates the mapping of polyhedral

process networks onto programmable MPSoC platforms such as the Intel IXP

network processor and the Cell processor. We have developed source-to-source trans-

lation tool-flows to generate compilable source-code for the different components of

PPNs. i.e, the processes and FIFO channels as we discuss in Chapter 6. To pro-

gram the IXP, some high-level programming models have been developed. This basi-

cally means that the developer can use some higher-level languages and abstractions,

e.g., the possibility to compose a number of operations that work on streams of data,

and that assembly language is not a developer’s only option. NP-Click [75] is one

example as it offers an abstraction of the underlying hardware. Another effort for

improving the programming of an IXP, is the µL programming language and the

µC compiler by Network Speed Technologies [29, 82]. The difference with our ap-

proach is that both NP-Click and µL programming language, obviously, focus very

much on internet packet handling, while we are interested in a programming model

that supports the class of stream-based applications. Intel on the other hand, has

developed an auto-partitioning C compiler as described in [49], which is therefore

more closely related to our approach. An input application is specified as a set of

1.4 Outline 15

sequential C programs, which are called packet processing stages (PPSes). These

PPSes closely correspond to the Communicating Sequential Processes (CSP) model

of computation [37]. However, to express a program in PPSes is the responsibility

of a programmer. In contrast, the pn compiler automatically generates PPNs from

applications written as static affine nested loop programs [95].

Regarding the Cell processor, a great number of research works have been pub-

lished since its introduction: ranging from case-studies and application specific im-

plementations, to frameworks that deal with parallelization and mapping of appli-

cations onto the Cell. One model-based project that is similar to our approach in

programming the Cell BE platform is the architecture-independent stream-oriented

language StreamIt, which shares some properties with the Synchronous DataFlow

(SDF) model of computation. The Multicore Streaming Layer (MSL) [99] frame-

work realizes the StreamIt language on the Cell BE platform thereby focussing on

automatic management and optimization of communication between cores. All data

transfers are explicitly controlled by a static scheduler. This is different from our

approach, since we use the PPN model of computation where the processes synchro-

nize and communicate data over FIFO channels using blocking read/write primitives

in absence of a global scheduler. A PPN is therefore self-scheduled, which can have

as an advantage that there is no central scheduler that can become the bottleneck of

the system. On the other hand, the blocking FIFO communication is software imple-

mented, which makes it expensive communication primitives to use. As a last dif-

ference, and already discussed in this section, the SDF MoC used by StreamIt is less

expressive Model of Computation (MoC) than our PPN MoC. Besides frameworks

that support the parallel execution of applications, there are also communication li-

braries that focus more on the low-level communication infrastructure of the Cell,

such as for example the Cell Messaging Layer [65]. It presents a similar idea as in

our approach, i.e., a receiver initiated communication scheme as we will discuss in

Section 6.1. However, the library offers just low-level send and receive primitives

without focusing on the realization of more complex communication schemes such

as FIFO reads/writes.

1.4 Outline

The remaining part of this dissertation is organized as follows.

In Chapter 2, we first introduce the basic terminology and show with a simple run-

ning example how polyhedral process networks are derived from sequential static

affine nested-loop programs.

In Chapter 3, we present the first process network transformation, i.e., the process

splitting transformation. We define the metrics that play an important role in process

16 Introduction

splitting and give a solution approach how these can be evaluated at compile-time to

select the best partitioning.

In Chapter 4, we discuss the second transformation, i.e., the process merging trans-

formation. In order to evaluate which merging is the best, we define a throughput

model for process networks such that the throughput for a given PPN can be calcu-

lated and evaluated.

In Chapter 5, we present a holistic approach to transform PPNs using the process

splitting and merging transformations in combination. We show that it is necessary

to use both transformations to achieve the best performance results that cannot be

achieved using one transformation only.

In Chapter 6, we present approaches to realize FIFO communication for executing

polyhedral process networks on the Intel IXP network and the Cell BE processors.

Both platforms are instances of programmable MPSoCs platform, but each with their

own characteristics. While the IXP has hardware support for FIFO communication

to some extent, the CELL must implement FIFO communication completely in soft-

ware.

Finally, we conclude this dissertation in Chapter 7 with a summary of the presented

research work along with some concluding remarks.

Chapter2
Background

In this chapter, we give the definitions and notations that are used throughout the

rest of this dissertation, i.e., we review some basic mathematical notations and def-

initions as discussed in for example [72, 74]. We thereby focus on polyhedra and

the polyhedral model that are used by compiler optimizations to efficiently analyze

and transform input programs. Then, we define the input programs, i.e., the class of

applications, that can be analyzed with this polyhedral model and show an example

of a Polyhedral Process Network (PPN). We discuss the structure and properties of

PPNs, which is necessary to understand the chapters that deal with analyzing and

transforming PPNs.

2.1 Polyhedra

The scalar product or inner product of two vectors a and b, denoted by a · b, is

defined as a · b = aTb =
∑n

i=1 aibi, where a = (a1, .., an) and b = (b1, .., bn) are

column vectors. Note that a · b = 0 iff vectors a and b are orthogonal or a = b = 0.

Given a non-zero vector y in Rn and a constant α, the following sets of points are

defined:

• A hyperplane H = {x | x · y = α}.

• A closed half-spaceH = {x | x · y ≥ α}.

• An open half-spaceH = {x | x · y > α}.

An affine hyperplane is a (d−1)-dimensional hyperplane in a d-dimensional space,

and thus divides the space in exactly two parts. A line, for example, is an affine

18 Background

hyperplane in a 2-dimensional space, but not in a 3-dimensional space. We will use

hyperplanes to define a polyhedron, but also in the process splitting transformation

to partition processes in PPNs (see Chapter 3).

A rational polyhedron P is a subset of Qd bounded by a finite number of closed

half-spaces, i.e.,

P = {x ∈ Qd | Ax ≥ b} (2.1)

where A is an integral m× d matrix, and b is an integral vector of sizem.

A polytope is a bounded polyhedron.

Figure 2.1 shows two 2-dimensional spaces with a number of closed half-spaces

defining two polyhedra. The purpose of this example is to show the difference be-

tween a polyhedron and polytope. In Figure 2.1 A), a polyhedron is shown that is

defined by only two constraints. As a result, the polyhedron is unbounded because

there are no constraints on the maximum values that the points can have. In contrast,

Figure 2.1 B) shows 4 lines/constraints that encapsulate all points within the grey

area, which makes it an example of a bounded polyhedron, i.e. a polytope.

A) Polyhedron B) Polytope

Figure 2.1: Polyhedron vs. Polytope

Polyhedra can also depend on a vector of parameters, denoted by p, and we there-

fore define a parameterized polyhedron, denoted by P(p).

A parameterized polyhedron P(p) is a polyhedron whose closed half-spaces are

affinely dependent on a vector of parameters p ∈ Qd, i.e.,

P(p) = {x ∈ Qd | Ax ≥ Bp+ b} (2.2)

2.2 Lexicographic Order 19

where A is an integralm×dmatrix, B is an integralm×nmatrix, and b is an integral

vector of sizem.

We use polyhedra to model all iterations of a program statement in nested-loop

programs. That is, we extract and use the polyhedral model to efficiently analyze

and transform input programs, which we further discuss in Sections 2.4 and 2.5. In

Section 2.2, we first discuss how different points in a set can be compared and ranked

using Parametric Integer Linear Programming (PILP) techniques.

2.2 Lexicographic Order

In program analysis, many problems can be formulated as a Parametric Integer Lin-

ear Programming (PILP) problem. An example of such a problem is to find the first,

or last, array element accessed by a program statement in a nested-loop. Thus, para-

metric integer programming [24], [74] is used to find exact solutions and feasible

points ranked according to a lexicographic order. In program analysis of nested-loop

programs, we are dealing with sets of integer vectors defined by linear inequalities.

If we consider a set S as an example, then recall from Section 2.1 that it is defined

as S = {x ∈ Zd | Ax ≥ b} with A ∈ Zm×d and b ∈ Zd. Then, parametric integer

linear programming is used to find the minimum or maximum point in set S. And

two points a ∈ Zn and b ∈ Zn in set S can be compared by using the lexicographic

order.

We say that a is lexicographically smaller than b, denoted by a ≺ b, if for the first

position i in which both vectors are different, we have a(i) < b(i). This is expressed

as a set of equalities and inequalities as:

a ≺ b ≡
n
∨

i=1

(a(i) < b(i) ∧
i−1
∧

j=1

a(j) = b(j)) (2.3)

Let us take as an example a set S with 5 elements: S = {(1, 1), (1, 2), (2, 1), (2, 2),

(2, 3)}. Using Formula 2.3, we see that (1, 1) is lexicographical smaller than (1, 2),

denoted by (1, 1) ≺ (1, 2), because (1 = 1 ∧ 1 < 2). Similarly, we see that (1, 1) is

lexicographical smaller than (2, 3), i.e., (1, 1) ≺ (2, 3), because comparing the first

component of both points gives (1 < 2). Element (1, 1) is the smallest element of

set S and we define it as the lexicographical minimum element, denoted by lexmin.

Similarly, we also define the lexicographical maximum point as the largest element,

denoted by lexmax. For set S, element (2, 3) is the largest element. The problem

of finding the lexicographical minimum/maximum point within a set of linear con-

straints can be solved with PILP. The example set S as we have defined it above

20 Background

can also be represented by a set of constraints, i.e., S = {(i, j) ∈ Z2 | 1 ≤ i ≤

2 ∧ 1 ≤ j ≤ 3}, and the ILP problem (no parameters are used in this example) can

be subsequently formulated as shown in Table 2.1.

Objective: lexmin{(i, j)}

Subject to: 1 ≤ i ≤ 2

1 ≤ j ≤ 3

Table 2.1: Constraint system

The solution to find the minimum point for a given convex domain is based on

the dual simplex algorithm [48] that is implemented in open-source libraries such as

isl [93], Parma Polyhedral Library [4], and Piplib [24]. On a very high-level, the idea

of the PIP algorithm and dual simplex method, is to find a minimum real point for

a given convex set. Then, iteratively, new constraints are added not removing any

integer points from the set. These libraries will thus find (1, 1) as the lexicographical

minimum, and (2, 3) as the lexicographical maximum point.

Using the lexicographical order, it is also possible to rank an iteration point in poly-

hedra.

Definition 1 The rank of a point p ∈ P , is a number n ∈ Z denoting all points that

are lexicographical smaller than p.

For example, let us consider point (i = 1, j = 3) of the filter function call

statement in Figure 2.3 B). To rank this point, we use the lexigraphical order to de-

termine all points that precede (1, 3). Therefore, we first consider all points that are

smaller in the first component of point (1, 3), i.e., i < 1. The points that satisfy this

constraint, corresponds to all points within the top most and largest grey box in Fig-

ure 2.3 B); for all these points i = 0. In addition, we consider the points that have

the same value in the first component, but which have a smaller value in the second

component, i.e., i = 1 ∧ j < 3. This corresponds to all points within the second and

smallest grey box in Figure 2.3 B). Thus, the rank of point (1, 3), corresponds to the

number of elements in the set (i < 1 ∨ (i = 1 ∧ j < 3)), i.e., all greyed points in

Figure 2.3 B). If we assumeN = 100, then the rank of (1, 3) is 100+2 = 102, which

is thus obtained by counting the number of points in a set. Counting the number of

points in (parametric) polyhedra, i.e., the enumeration of (parametric) polyhedra, is

a research field in itself. The basic idea is to derive a quasi-polynomial that describes

the number of integer points in a polytope P . For an in-depth discussion, the reader

is referred to, for example, the works [18], [97]. In this dissertation, we use that work

which is implemented in the polyhedral library PolyLib [98]. Thus, when we want

2.3 Static Affine Nested-Loop Programs 21

to know the cardinality, or the number of points, of a set S, which we denote by |S|,

then we use the counting functions from these libraries.

2.3 Static Affine Nested-Loop Programs

In Section 2.5, we consider parallel application specifications that are functionally

equivalent to sequential program specifications that are static affine nested-loop pro-

grams. These are the subject of this section.

Definition 2 A static affine nested loop program (SANLP) is a program where each

program statements is enclosed by one or more loops and if-statements, and where:

• loops have a constant step size;

• loops have bounds that are affine expressions of the enclosing loop iterators,

static program parameters, and constants;

• if-statements have affine conditions in terms of the loop iterators, static pro-

gram parameters, and constants;

• index expressions of array references are affine constructs of the enclosing loop

iterators, static program parameters, and constants;

• data flow between statements in the loop is explicit, which prohibits that two

statements that contain function calls communicate through shared variables

invisible to the compiler.

An example of a static affine nested-loop program is shown in Figure 2.2.

1 #parameter 10 <= N <= 100;

2 for (i=0; i<= 2*N; i++)

3 for (j=0; j<= 4*N; j++)

4 a[i][j] = read_data (); // statement S0

5 for (i=0; i<= N; i++) {

6 for (j=i; j<= N; j++) {

7 if (i+j <= N-1) {

8 a[i][j] = filter(a[2*i][4*j]); // statement S1

9 }

10 write_data(a[i][j]); // statement S2

11 }

12 }

Figure 2.2: Example code of a SANLP

22 Background

A static program parameter N is defined in line 1. This static parameter indi-

cates that N can take a value between 10 and 100 which, however, cannot change

at run-time. Using static parameters is very useful because an equivalent parallel

specification, such as a PPN, needs to be derived only once, even if some require-

ments of the application change. Loops need not necessarily be perfect nests. That

is, the program statements can appear at any level of the nested-loop, and thus not

necessarily at the innermost loop level. Furthermore, the program statements can be

guarded by if-statements, as shown in line 7. However, the conditions in these if-

statements can only be affine combinations of loop iterators, static program param-

eters, and constants, and thus cannot have data dependent behavior. The functions

in line 4, 8, 10 read and write data only through arrays, and not for example

through shared variables, or pointers to the arrays not visible to the compiler. In other

words, the data flow is made explicit by reading/writing data only through affine array

accesses.

The polyhedral model is an appealing model to represent and manipulate loop

nest structures and their program statements in static affine-nested loop programs,

as shown in for example [69], [63], [70]. Program parts that can be modeled with

the polyhedral model are called static control parts (SCoPs) in the compiler commu-

nity [76]. To be more precise, a SCoP is defined as a single-entry-single-exit region of

the control-flow where loops bounds and conditional predicates are affine functions

enclosing loop counters and invariant parameters. Once the polyhedral model is ex-

tracted from a SANLP or SCoP, see Section 2.4, data dependence analysis and loop

restructuring transformations such as loop fusion, loop fission and strip-mining can

be efficiently implemented using existing tools (e.g., PolyLib [98], the Parma Poly-

hedral Library, and Cloog [7]). The reason is that the iteration domain of a program

statement, i.e., all iterations of that statements, are represented by a single geometri-

cal object - a polyhedron. This polyhedron can be analyzed with PILP techniques as

presented in Section 2.2.

Although the polyhedral model does impose some restrictions on the input program,

in many application domains it is natural to express time critical parts of the appli-

cations in the form of a SANLP. Examples are DSP and audio/video stream-based

applications in consumer electronics, modeling and simulation applications in high

performance computing, molecular biology, radio astronomy, medical imaging, and

high energy physics. Therefore, the polyhedral model is highly relevant because it

enables efficient code restructuring and analysis in many program code parts.

2.4 Extracting the Polyhedral Model from SANLPs 23

2.4 Extracting the Polyhedral Model from SANLPs

The polyhedral model is a description of all program statements and their iteration

points in Static Affine Nested-Loop Programs (SANLPs) with polyhedra. We refer

to all iteration points of a program statement as the iteration domain, which in the

program code (i.e., the SANLP) is defined by the enclosing loops of the program

statements. Since the iteration points of a program statement are executed in a partic-

ular order, the polyhedral objects that model these iterations are ordered as well, i.e.,

the polyhedral model that we use for our program analysis consist of:

• polyhedra that define the iteration domains of program statements,

• a lexicographical ordering (see Section 2.2) of the points within the polyhedra.

• and data access functions for array references, which map a point from the

iteration domain to a point in the data space that is accessed by the array refer-

ences, i.e., the affine index expression as discussed in Section 2.3.

In the polyhedral model that we extract from SANLPs, an iteration vector is associ-

ated with each program statement. The dimension of the vector is equal to the number

of loops that enclose the statement. The i-th component of the vector corresponds to

the value of a loop iterator at depth i. Thus, the iteration domain of a statement is

given by a set of linear inequalities defining a polyhedron in an d-dimensional do-

main, where d corresponds to the dimension of the iteration vector, i.e., the depth of

the enclosing loop nest. In fact, the polyhedral model of the iteration domain of a

statement is just a set of linear equalities and inequalities. Here is an example.

i

j()M = [2 4]

0

0 1 2 j

1

2

3

:

..3 N−1

N−1

i>=0

j>=i

i+j<=N−1

0

0 1 2 j

1

2

3

:

2*N

4*N..3

i
j<=N

i<=N

i

A) Iteration Space "read_data" B) Iteration Space "filter"

(2,12)

Figure 2.3: Iteration Space of read data and filter Function Call Statements

Figure 2.3 shows the two iteration domains of the read_data and filter func-

tion call statements from Figure 2.2. Let us focus on the iteration domain of the

24 Background

filter function call statement shown in Figure 2.3 B). For brevity, we refer to this

statement as S1. Since statement S1 is enclosed by two for-loops i and j, its iter-

ation domain is 2-dimensional, and is referred to as DS1. The lower/upper bounds

of the enclosing loops are the first constraints that we take into account when defin-

ing the iteration domain of S1. Loop i starts at 0 and has maximum value of N ,

which translates to the following 2 constraints: i ≥ 0 and i ≤ N . Loop j has an

initial value equal to i and has a maximum value of N , which translates to another

two constraints: j ≥ i and j ≤ N . In addition to the constraints imposed by the

lower/upper bounds of loops, the execution of program statement S1 is guarded by

an if-statement, which imposes another restriction on the iteration domain, i.e, only

iteration points smaller than i + j ≤ N − 1 are executed. Figure 2.3 B) shows

5 different lines in a 2-dimensional domain, which correspond to the 5 constraints

imposed by the upper/lower bounds of the loops and the if-statement as we have de-

scribed above. Thus, the constraints restrict the iterations points that are executed by

S1, and the iteration points actually executed by S1 are denoted by the solid dots in

Figure 2.3 B), i.e., they form a triangle. These iteration points are executed in the

order from top to bottom and from left to right. We have extracted all constraints

on the execution of S1 to define its iteration domain DS1 in the polytope represen-

tation: DS1(N) = {(i, j) ∈ Z2 | 0 ≤ i ≤ N ∧ i ≤ j ≤ N ∧ i + j ≤ N − 1}.

All executions of program statement S1 are in this way represented with one geo-

metrical object, i.e., a polytope. Once an iteration domain has been extracted for

a statement, it can be efficiently further analyzed and transformed using polyhedral

analysis and tools. For example, the number of integer points of an iteration domain

can be counted [18], [96] which is useful for loop optimizations [20] and data cache

analysis [19]. Another application is the (re)scheduling of iterations and subsequently

the code generation of iteration domains [7].

2.5 Polyhedral Process Networks

Extracting the polyhedral model for SANLPs as discussed in Section 2.4, enables

exact data-flow analysis of scalar and array references. This exact data flow analysis

uses the PILP techniques as discussed in Section 2.2 and is the most fundamental step

in deriving PPNs in a fully analytical way from SANLPs as described in [89,90,95].

For an in-depth discussion on the derivation of PPNs, the reader is referred to these

works. In this section, we only discuss the different properties of PPNs, and show the

corresponding PPN for the code example in Figure 2.2.

In the partitioning strategy of the pn compiler [95], one autonomous process with

local control and memories is created for each program statement. Subsequently,

the control for the FIFO communication is automatically derived. We refer to pro-

2.5 Polyhedral Process Networks 25

cess networks derived by the pn compiler as polyhedral process networks (PPNs).

The reason is that they are functionally equivalent to Static Affine Nested Loop Pro-

grams (SANLPs), the processes are structured in a particular way, and the execution

of processes and FIFO reads/writes are described by polyhedra. Polyhedral process

networks are, therefore, a special case of Kahn Process Networks (KPNs) [40], be-

cause Kahn Process Networks is a simple, yet powerful model of computation that

only specifies how processes synchronize and communicate. Thus, the KPNmodel of

computation does not impose any restrictions on, for example, the internal structure

of processes and only defines that processes use a blocking FIFO read primitive and

have unbounded FIFO buffers. However, as already mentioned above, the processes

in PPNs are internally structured in a particular way. That is, in each execution of

a process, we can distinguish a Read phase (R), an Execute phase (E), and a Write

phase (W). To be more specific, a process consists of:

1. a list of input port domains to read all the function input arguments from the

corresponding input FIFO channels,

2. a function that processes the input arguments and produces function output

arguments, and

3. a list of output port domains to write the function output arguments to the

corresponding output FIFO channels.

There can be two exceptions: source and sink processes. The former only generates

data and does not read any data from other processes. The latter only collects data and

does not write any data to other processes. However, source/sink processes can have

incoming/outgoing channels, but then these channels are self-channels and data is

read/written from/to itself. We illustrate the structure of the processes in a PPN with

an example shown in Figure 2.4. This PPN is derived from the SANLP shown in

Figure 2.2, where we have set the parameterN to 100. Since that SANLP consists of

3 statements S0, S1 and S2, the corresponding PPN consists of 3 processes P0 ,P1

and P2 .

It can be seen that process P0 is a source process because it does not read data from

other processes, and that process P2 is a sink process because it does not write data

to other processes. Process P1 , on the other hand, first reads data from FIFO channel

F1 , processes it by executing function filter, and writes the result to its outgoing

FIFO channel F3 . Thus, it clearly shows the different read, execute, write phases as

also indicated with the letters R, E, and W in Figure 2.4. Furthermore, we see that

each process executes a particular function that corresponds to a function from the

SANLP.

26 Background

for(int i = 0; i <= 99; i++) {

 for(int j = 2*i; j <= -2*i + 396; j++) {

 R in = read(F1); /* IP1 */

 E out = filter(in) ;

 W write(F3, out); /* OP1 */

 }

 }

 } // for j

 } // for c0

for(int i = 49; i <= 149; i++) {

 for(int j = i + 101; j <= 250; j++) {

 R if(i + j-299 >= 0) { /* IP1 */

 in = read(F3);

 }

 if(-i-j + 298 >= 0) { /* IP2 */

 in = read(F2);

 }

 E write_data(in) ;

 } // for j

 } // for i

for(int i = 0; i <= 200; i++) {

 for(int j = 0; j <= 400 ; j++) {

 E out = read_data() ;

 W if(j/4 - i/2 >= 0) {

/* OP1 */ if(-j/4 - i/2 + 99 >= 0) {

 write(F1, out);
 }

 }

/* OP2 */ if(i + j-N >= 0) {

 if(-i + j >= 0) {

 if(-j + N >= 0) {

 write(F2, out);

 }

 }

 }

 } // for j

 } // for i

F1

F2

F3

Source Process P0

Process P1

Sink Process P2

Figure 2.4: Derived Polyhedral Process Network (PPN)Model and its Representation

in Executable Program Code

Definition 3 A process function represents the computational part of a process. It

corresponds to a function call statement in the sequential application that is a pure

function without side-effects which only reads/writes through its input/output argu-

ments.

For the PPN in Figure 2.4, the process function of P0 is read_data, and we

see that filter and write_data are the process functions of processes P1 and

P2 , respectively. These process functions are important for the process splitting and

merging transformations that we present in Chapters 3 and 4, because the goal of both

transformations is to create a more load-balanced PPN. Therefore, it is important to

know the cost for executing the process function once, and we refer to this as the

process workload.

Definition 4 The process workload of a process Pi, denoted by WPi
, represent the

total number of required time units to execute the process function once, provided

that i) all its input data is available (i.e., the reading phase is ignored), and ii) the

time to write the output data is excluded (i.e., the writing phase is ignored).

To give an example for the PPN shown in Figure 2.4, one can think of the read_data

process function as a very light-weight process function that only reads data from a

2.5 Polyhedral Process Networks 27

memory location, i.e., the process workloadWP0 is very small as executing that func-

tion is completed in a few clock cycles. The filter process function can be con-

sidered to be a more coarse-grain function as some actual computation is performed

on the data. Thus, the process workload WP1 is much larger than WP0 . Similar to

the read_data function, the write_data process workload WP2 is very small

as only data is written back to some memory location and not any computations on

the data is performed. The process workload does not include the time required to

read/write the data before/after executing the process function.

Definition 5 A process iteration of a process Pi is defined as a single execution of

the process function, where first all input data is read from incoming FIFO channels

(i.e., the read phase), the process function is executed (i.e., the execute phase), and

subsequently all output data is written to outgoing FIFO channels (i.e., the write

phase).

All iterations of a process are described by a process iteration domain.

Definition 6 The process iteration domain of a process Pi, denoted by DPi
, is de-

fined as all process iterations of process Pi and is described by a set of equalities and

inequalities, i.e., a polytope.

Thus, the process iteration domain is described with a polytope as we have discussed

in Section 2.1. For process P1 , for example, the process iteration domain is defined

as DP1 = {(i, j) ∈ Z2 | 0 ≤ i ≤ 99 ∧ 2i ≤ j ≤ −2i + 396}. This corresponds to

the control part, i.e., the two for-loops, of process P1 as can be seen in Figure 2.4.

Definition 7 The process iteration domain size, denoted by |DPi
|, represents the

total number of iterations of process Pi.

The process iteration domain size is obtained by counting the number of integer

points in a polytope, which is supported by the polyhedral library PolyLib [98] as also

indicated in Section 2.2. Calculating a process iteration domain sizes, is obviously

the first prerequisite to estimate the total execution time of a process. It is used to

evaluate the process splitting transformation and is further discussed in Chapter 3.

Finally, we give 3 definitions that are related to the communication in polyhedral

process networks. First, we consider input port domains that implement the control

to read data from FIFO channels, then we define a mapping function that specifies an

iteration point where data is produced, and finally we define an output port domain

that specifies a set of points that generate data for a particular input port.

Definition 8 The n-th input port domain of process Pi, denoted by IPn
Pi
, is defined

as a subset of the process iteration domain where data is read from the n-th incoming

FIFO channel, i.e., IPn
Pi
⊆ DPi

.

28 Background

Consider process P1 in Figure 2.4, which has one input port domain IP1
P1 . This

input port domain is read at each process iteration, which means that the input port do-

main contains the same points as the process iteration domain, i.e., IP1
P1 = DP1 =

{(i, j) ∈ Z2 | 0 ≤ i ≤ 99 ∧ 2i ≤ j ≤ −2i + 396}. But when we look at process

P2 , for example, then we see that the input data is sometimes read from IP1
P2 and

in other cases from IP2
P2 , i.e. they are a subset of the process iteration domain. To

be more specific, we see that IP1
P2 = {(i, j) ∈ Z2 | i + j − 299 ≥ 0} ∩ DP2

, and

that IP2
P2 = {(i, j) ∈ Z2 | − i + j + 298 ≥ 0} ∩ DP2

, where DP2
= {(i, j) ∈

Z2 | 49 ≤ i ≤ 149 ∧ i + 101 ≤ j ≤ 250}. Note that these two input ports are

mutually exclusive. The reason is that the write_data process function has only

one input argument and process P2 needs only one input token per process iteration

from one of these two input ports.

In a similar way, we define an output port domain which represents the process

iterations for which writing data to a particular FIFO channel occurs.

Definition 9 The n-th output port domain of a process Pi, denote by OPn
Pk
, is de-

fined as the subset where data is written to the n-th outgoing FIFO channel, i.e.,

OPn
Pk
⊆ DPk

.

When we first consider process P1 from Figure 2.4 again, we see that it has one

output port, which is active at each process iteration, i.e., OP1
P1 = DP1 . A more

complicated example is the first output port domain OP1
P0 of process P0 . It can be

seen that it is active only at particular iterations, i.e., OP1
PO = {(i, j) ∈ Z2 | j/4 −

i/2 ≥ 0 ∧ −j/4 − i/2 + 99 ≥ 0} ∩ DP0
, where DP0

= {(i, j) ∈ Z2 | 0 ≤ i ≤

200 ∧ 0 ≤ j ≤ 400}. The reason that divisions of j and i by 4 and 2 appear in the

constraints, is the result of consumer process P1 reading data in a particular pattern,

i.e., array a is accessed with 2 ∗ i and 4 ∗ j, see line 8 in Figure 2.2.

We have defined input and output port domains that specify at which process itera-

tions data is read/written. Thus, producer/consumer pairs of processes are connected

via the output port domain of the producer with the input port domain of the con-

sumer. Besides the port domains that specify when data is read/written, there is map-

ping function that specifies the relation between the input and output port domains,

i.e., we define an affine mapping function M which maps the consumer process iter-

ations to the producer iterations where the data is produced:

Definition 10 We define an affine mapping function Mk as a function that maps

the process iteration points from the k-th input port domain of a consumer process

Pi to the process iteration points of the corresponding producer process Pj , i.e.,

OP l
Pj

= Mk(IPk
Pi
).

An example is given in Figure 2.3. Let us consider process iteration (1, 3) of the

2.6 Validity of Transformations 29

consumer process that executes function filter as shown in Figure 2.3 B). Since

data is read from a[2 ∗ i][4 ∗ j], process iteration (1, 3) reads data that is produced

at iteration (2 ∗ 1, 4 ∗ 3) = (2, 12). This point is marked in the producer iteration

domain as shown in Figure 2.3 A). Thus, we have a mapping function

M :

(

ip
jp

)

= [2 4]

(

ic
jc

)

, where

(

ip
jp

)

∈ OP 1
P0

and

(

ic
jc

)

∈ IP 1
P1
. This

mapping function is also shown in Figure 2.3, and maps consumer iteration (ic =

1, jc = 3) to its corresponding producer iteration (ip = 2, jp = 12).

2.6 Validity of Transformations

In this section, we briefly review the validity of the process transformations presented

in Chapters 3, 4, and 5. That is, we indicate that we can always apply the process

splitting and merging transformations in a valid way for any given PPN. We first look

at the validity of statement reordering transformations for sequential input programs,

because the same constraints apply for process transformations in PPNs. Therefore,

we discuss the different types of data dependencies that can exist between program

statements that should be respected when the program code is transformed, which

ensures that the transformed program code is input/output equivalent with the original

program code.

As data dependence analysis is such a crucial step in program transformations, it

is extensively researched and discussed in the literature [2, 6, 43, 57]. The goal of

data dependence analysis is to find dependent program statements that read/write

data from/to the same memory location. Three different data dependence relations

can be identified. A flow or true dependence exist between two program statements

A and B when A produces data that is read by B. This is denoted by A δf B.

The two other dependence relations are anti and output dependencies. In case of an

anti-dependence, data is first read by a statement A and then written by statement

B, which is denoted by A δa B. An output-dependence exists when two statements

A and B write to the same memory location, which is denoted by A δo B. These

data dependencies can also exists between different executions of statements within

a loop-nest. If that is the case, then we say that the dependence is loop-carried.

As already mentioned, the data dependence information is used in optimizations

and transformations to ensure correct behavior of the transformed program code.

Transforming the program code is valid as long as the data dependencies are not

changed. In our analysis to derive PPNs from static affine nested loop programs, we

use exact array data flow analysis [25, 71]. This means that dependencies between

statements are represented by exact dependency relations in the form of an affine

combination of loop iterators and program parameters. Thus, the dependencies are

30 Background

not abstracted with, for example, direction or distance vectors. An example of an

exact dependence relation is the mapping function shown in Figure 2.3. It maps an

iteration point of the consumer iteration space to an iteration point of the consumer

where the data is produced. Taking into account these exact data dependence relations

between consumer and producer statements, makes it possible to apply the process

splitting and merging transformations in a valid way for any given PPN. That is,

for the splitting transformation, more processes are introduced and the dependencies

are recalculated to ensure that the processes communicate data in the proper way.

For the process merging transformation, the executions of different processes are

merged into a single process. The polyhedra that describe the process iterations of

different processes, are merged using the work and code generator described in [7].

The merging is done pairwise for two given processes and the validity is checked

using the exact dependence relations as described in [92, 94].

Chapter3
Process Splitting Transformations

In this chapter, we present an approach how the process splitting transformation, in-

troduced in Chapter 1, can be applied to transform a Polyhedral Process Network in

order to select and obtain the best performance results from different splitting alter-

natives. Recall that the Polyhedral Process Network (PPN) model of computation

is used as a programming model in the Daedalus framework [62] to help with the

difficult task of programming and mapping applications onto Multi-Processor Sys-

tems on Chip. PPNs are automatically derived from sequential nested-loop programs

by using the pn compiler [95] as we have illustrated with an example in Chapter 2.

In the derived parallel PPN specification, the following partitioning strategy is used:

each process in the PPN corresponds to a function call statement in the sequential

program.

A)

for (i=0; i<4; i++)

for (i=0; i<4; i++)

a[i],b[j] = F(a[i],b[j]);

for (j=0; j<4; j++)

a[i],b[i] = init();

init F

B)

a_2

a_1

b_1

b_2

F

init

F

a_1

b_1

a_2

b_2 b_2

a_2

a_1

:

for (i=0; i<4; i++)

if(i%2==0)

if(i%2==1)

a[i],b[j] = F(a[i],b[j]);

a[i],b[j] = F(a[i],b[j]);

for (j=0; j<4; j++)

Figure 3.1: Polyhedral Process Networks

Figure 3.1 A) shows a PPN consisting of two process with 4 FIFO channels, and

also the nested loop program from which this PPN is derived. Deriving the network

using the pn partitioning strategy, as described above, does not necessarily lead to

32 Process Splitting Transformations

optimal performance results as the network may not be well balanced. Therefore,

process partitioning transformations can distribute the workload of a single process

over multiple processes to better balance the network. We can achieve this, for ex-

ample, as shown in Figure 3.1 B). The function call statement F is duplicated and

assigned to odd and even iterations of the outer loop iterator. The corresponding net-

work has now two processes executing the F function resulting in a more balanced

network. In [79], a number of algorithmic transformations have been presented which

a designer can apply on the source code to balance the network. However, no hints

are given to the designer when a particular transformation can be applied to mini-

mize, for example, the execution time. So, a number of transformations have been

defined, but the designer does not know when to apply which transformation. In our

motivating examples (Section 3.2) we show that it is not straightforward to select the

best transformation for the best performance results. In order to select the best par-

titioning transformation, the different alternatives must be evaluated and metrics are

required to do so. This chapter, therefore, deals with:

1. Definition of evaluation metrics;

2. Calculation of the metric values using an analytical framework;

3. A compile-time evaluation approach to select a particular transformation based

on the metric values.

We show results for 3 different applications with different properties mapped onto

the Cell processor [39] and the ESPAM platform prototyped on a Xilinx Vertex 2

FPGA [61].

3.1 Process Splitting: Definitions, Notations, and Examples

First, it is important to note that process splitting is a general term referring to trans-

formations duplicating program code to obtain more processes. In Figure 3.1 B), we

have shown one example of process splitting, but there are many other possibilities

to duplicate the program code. In [79], a number of parametric transformations have

been presented that can be used to split up processes. Two of these splitting transfor-

mations are the modulo unfolding and the plane-cut transformation:

Notation 1: we refer to the modulo unfolding transformation as unfold(I,U),

where parameters I and U are respectively the iteration vector of the function of a

process and the vector of unfolding factors for each loop iterator.

3.1 Process Splitting: Definitions, Notations, and Examples 33

Notation 2: we refer to the plane-cut transformation as planecut(I,P) where

parameter I is the iteration vector and parameter P is a set of affine hyperplanes (see

Section 2.1).

Definition 11 A process partition, or partition in short, is a new instance of an orig-

inal process that is created by applying a process splitting transformation unfold

or planecut. Thus, the different process partitions execute the same function, pos-

sibly, in parallel.

In the remainder of this chapter, we focus on the unfolding and plane-cutting trans-

formations. In [79], some more (algorithmic) transformation techniques have been

presented. An example is the skewing transformation, which re-times the process

iterations. However, only the unfolding and plane-cutting split-up a process, i.e.,

assign process iterations to different partitions. To illustrate the difference in the

unfolding and plane-cutting transformations, we consider the example shown in Fig-

ure 3.2.

1

2

3

4

21 3 4 21 3 4

1

2

3

4

i

A) Plane−cut

i

j

P1

P2

P1

P2

F

F

F

F F

F

F

F F

F

F

F

F

F

F

F

P1 P2

F F F F

F F F F

F F F

FFFF

j
b_1b_1 b_1 b_1

a_1

a_1

a_1

a_1

b_1b_1 b_1 b_1

a_1

a_1

a_1

a_1

a_2 a_2

a_2

a_2

a_2

a_2

a_2

a_2

b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2

a_2 a_2 a_2

a_2 a_2

a_2

a_2 a_2 a_2

a_2a_2

b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

b_2 b_2

b_2

F

B) Modulo Unfolding

a_2

a_2

a_2

a_2

b_2

i

Figure 3.2: Examples of Process Splitting Transformations

Figure 3.2 shows the dependency graph of the program depicted in Figure 3.1 A)

and is characterized by a two dimensional process iteration domain and horizontal

and vertical dependencies. Loop iterator i corresponds to the outer loop and iterator

j corresponds to the inner loop such that the lexigraphical order is from top to bottom

and from left to right. The arrows denote dependencies. The dependency graphs are

annotated with two possible partitionings which are the result of applying transforma-

tions. The plane-cut transformation planecut({i,j},{j=2}) has been applied

in Figure 3.2 A) such that partition P1 executes all points with j ≤ 2 (the white itera-

tion points) and P2 executes all points with j ≥ 3 (grey points). Another partitioning

34 Process Splitting Transformations

is shown in Figure 3.2 B) which corresponds to the modulo unfolding transformation

presented in Figure 3.1 B) and is formally specified as unfold({i,j},{2,0}).

All even i iterations are assigned to P2, and all odd i iteration points are assigned

to P1. The plane-cut and unfolding transformations and partitions differ in terms of

the amount of inter-process communication (as indicated with the bold arrows) and

initial delay of the partitions. In the plane cutting example in Figure 3.2 A), inter-

process communication occurs 4 times and the first iteration point of P2, i.e., point

(1, 3), must wait for 2 iterations (1, 1) and (1, 2) of P1 before it can start executing.

In the modulo unfolding partitioning in Figure 3.2 B), P2 starts after 1 iteration of

P1, but then 12 inter-process data transfers are performed. This makes clear that

different transformations lead to different behavior of the partitioned processes.

To give a more elaborate example of the internal structure of processes, we consider

the processes in Figure 3.3. It shows one of the unfolded F processes and source

process init from Figure 3.1 B).

CH_1

CH_5

CH_3

..

F Process

if(j == 0)

 if(j−1 >= 0)

if(−j + 2 >= 0)

writeFIFO(CH_2, &out_2);

readFIFO(CH_1, &in_0);

Init Process

 } // for i

 } // for j

 init(&out_0, &out_1) ;

 if(i%2 == 0)

if(−i + 1 >= 0)

/* OP1 */

/* OP2 */

/* OP3 */ writeFIFO(CH_5, &out_1);

writeFIFO(CH_3, &out_0);

if((i−1)%2 == 0)

writeFIFO(CH_1, &out_0);

writeFIFO(CH_7, &out_3);

writeFIFO(CH_7, &out_3);/* OP2 */

 F(in_0, in_1, &out_2, &out_3);

readFIFO(CH_6, &in_1);

readFIFO(CH_5, &in_1);

/* IP3 */

readFIFO(CH_2, &in_0);

/* IP4 */

 if(i%2 == 0) {

 }

/* OP3 */

/* OP1 */

/* IP2 */

/* IP1 */

CH_2

..

CH_7CH_6

for(i=0; i<=3 ; i++)

 for(j=3; j<=3; j++) {

for(i=3; i<=6; i++) {

 for(j=0; j<=3; j++) {

 if(i−4 == 0)

if(i−4 == 0)

 } // for j

 } // for i

Figure 3.3: Structure of Unfolded Process F

3.2 Challenges of Applying the Process Splitting Transformation 35

It can be seen that process F has one so called self-channel or self-edge, i.e., channel

CH_2 from/to process F. Self-channels are important in determining how to split-up

processes as will be discussed later. Furthermore, it can be seen that the splitting

transformation introduces a control statement inside the process (i.e., the bold modulo

statement) to partition and ensure that an iteration point is executed by one partition

only, and not by two partitions for example.

3.2 Challenges of Applying the Process Splitting Transfor-

mation

In this section we show performance results for two applications. These two moti-

vating examples show that the question which transformation to apply contains many

subtle parts, based on the interplay of many factors which may not be evident at first

sight. This makes it difficult to select the proper process splitting transformation.

0

1000000

2000000

3000000

4000000

5000000

6000000

1 2 3

Partitions

#
 C

y
c

le
s

Plane cut

Modulo Unfolding

Figure 3.4: Results of Different Splittings on the ESPAM platform

The first bar in Figure 3.4 corresponds to the performance result for the unmodi-

fied application and its derived PPN in Figure 3.1 A) mapped on the ESPAM plat-

form [60,61]. The application is executed in 4.8 million cycles. Then, the network is

balanced by applying the modulo unfolding and plane-cut transformations and thus

two partitions are created for function call statement F. The second bar corresponds

to the plane cut transformation and the third bar to the two times unfolded version

shown in Figure 3.1 B). The fourth and fifth bars display results for creating three

partitions using the same transformations. It can be seen that the plane-cut transfor-

mation is better than the modulo unfolding: 2.5 million vs. 3.1 million cycles for

creating 2 partitions and 1.8 million vs. 2.2 million cycles for creating 3 partitions.

36 Process Splitting Transformations

These results are surprising as the initial producer delay for the plane-cut is larger

than for the modulo unfolding, but still the plane-cut transformation leads to better

performance results. In this example, the number of intra and inter-process com-

munication is not important as the cost for intra and inter-process communication

are the same on the ESPAM platform. Therefore, the measured performance results

can only be explained by a non-constant cost for the communication when different

transformations are applied, which involves a FIFO read/write primitive and a con-

trol part when to read/write (the function workload cannot change and is constant).

We observe that by introducing modulo statements, the communication (the control

part) becomes more costly as the modulo expressions will appear in the definitions of

the input/output ports. An example is the bold modulo statement in the F process in

Figure 3.3. The modulo statement is introduced as a result of the transformation and

is evaluated every iteration. In general, the if-conditions for reading/writing from/to

FIFO channels are more expensive as more complex expressions must be evaluated.

P1 P2 P3

C C

for (i=2; i<100; i++)

 for (j=0; j<100; j++)

 C(x[i], y[j], z[2*i][4*j]);
plane−cutmodulo

unfolding

for (i=2; i<100; i++) {

 for (j=0; j<100; j++) {

 if (j%2==0)

 }
 }

 if (j%2==1)

 C(x[i], y[j], z[2*i][4*j]);

 C(x[i], y[j], z[2*i][4*j]);

for (i=2; i<100; i++) {

 for (j=0; j<100; j++) {

 if (j>=50)

 else

 }
 }

 C(x[i], y[j], z[2*i][4*j]);

 C(x[i], y[j], z[2*i][4*j]);

Figure 3.5: Modulo unfolding vs. Plane-cut

Another application is shown in Figure 3.5. The initial application source-code at

the top (the producer processes P1, P2, and P3 are omitted for the sake of brevity) is

transformed by unfolding the inner loop two times: unfold({i,j},{0,2}), and

a plane-cut on the inner loop: planecut({i,j},{j=50}). The PPN is topolog-

ically the same for both transformations, but internally the processes are different.

In Figure 3.6, the performance results for the initial network and both transformed

networks are shown. The first bar corresponds to the initial network and it shows that

the application requires 22 million cycles to finish its execution. The second and third

bar correspond to the plane-cut and modulo unfolding and require, respectively, 17

million and 15 million cycles. We observe that the plane-cut method is slightly worse

compared to the modulo unfolding. Although there are no dependencies between the

two processes executing function C (see Figure 3.5), the consumer processes C in

3.2 Challenges of Applying the Process Splitting Transformation 37

0

5

10

15

20

25

#
 c

y
c
le

s
 (

in
 m

il
li
o

n
s
)

initial PPN

Planecut

Unfold Inner

Figure 3.6: Measured Performance Results of the PPNs in Figure 3.5 on ESPAM

the plane-cut example must wait more iterations before the producer processes gen-

erate the first data compared to the modulo unfolding example (this is discussed in

detail in Section 3.3.2 and in the case-studies in Section 3.5). From this example we

learn that it is not enough to consider only inter-process communication and initial

delay caused by other partitions, but also the delay caused by all other producers. In

Section 3.3, we define the metrics that should be taken into account in applying and

evaluating different transformations.

Problem Statement

There are many possibilities to partition processes as we have shown in this section.

Different partitioning strategies have a significant impact on performance results and

thus selecting the best partitioning strategy is crucial in achieving the best possible re-

sults. Figure 3.4 and 3.6, for example, show that it is not straightforward to select the

best partitioning candidate. The challenge is to find a compile-time solution to pre-

dict the best possible partitioning and thus minimize the execution time. Therefore,

one should be able to answer the following two questions:

• Given the two parameterized transformations unfold(I,U) and

planecut(I,P), which transformation should one apply for a given process

to be split-up?

• For a chosen transformation, what should the parameter values be? For the

unfold transformation, for example, one should choose one or more loop

iterators to unfold and corresponding unfolding factors.

38 Process Splitting Transformations

3.3 Partitioning Metrics

A process Pi has a process iteration domain DPi
and is transformed by transforma-

tion H into n disjoint partitions H(DPi
) = {DP 1

i
, .., DPn

i
}. Different partitioning

transformations result in partitions with different properties and in this section we

discuss six metrics we have identified to evaluate different partitionings. The metrics

we discuss are i) computation costs, ii) communication costs, iii) initial delays, iv)

production period, v) data transfers, vi) additional control overhead.

3.3.1 Computation and Communication Costs

In each process iteration, a function is executed as illustrated in Figure 3.3 (function

F). The complexity of this function can vary from a simple multiply-accumulate op-

eration in a matrix multiplication kernel to a coarse grain task such as a DCT in a

JPEG encoder application. The complexity of this function contributes, among other

factors, to the delay at which data is produced. In determining the total execution

time of a process Pi, the workload, i.e., the computation cost, of a process function

is taken into account and is denoted byWPi
(see also Section 2.5). An accurate costs

estimation is thus crucial for selecting the best possible partitioning strategy and in-

accurate estimations can lead to wrong decisions. We consider the function cost as

an input parameter for our algorithm that can be obtained by running the function

once on the target platform. We consider the function cost to be a constant value, see

Section 3.6 for a discussion on this. Besides the execution of a function, a process

reads from a number of input channels to get all function input arguments at each

iteration. Similarly, it writes the result to a number of output channels. The FIFO

read/write primitives can be supported by hardware (e.g., the ESPAM platform), or

must be supported with a software implementation (e.g., the CELL). Clearly, the

communication cost of data communication depends on the target platform and can

influence the partitioning significantly. With a software implementation of FIFOs, for

example, data communication can easily become more costly than the computation

itself. The ratio of computation and communication is an important metric to evalu-

ate different partitionings. To the costs for inter-process communication we refer as

Cinter and for intra-process communication we use Cintra. These are constant costs

to transfer a single token from a producer to a consumer process and are obtained

by checking/measuring the costs for the read/write primitives on the target platforms.

The reader is referred to Section 3.6 for a more in-depth discussion on using constant

values for the cost of process functions and FIFO communication.

3.3 Partitioning Metrics 39

3.3.2 Initial Delay

A partition may not directly start executing its first iteration as a result of depen-

dencies. In that case, a producer process, or another partition, is responsible for

generating the required initial data.

Definition 12 We define the initial delay as the number of iterations a producer ex-

ecutes before it generates the first data for a partition, and we denote it by Y (DPn
i
)

for a partition DPn
i
.

For example, the second partition P2 in Figure 3.2 A) must wait 2 iterations for

producer P1 before it can start its execution and in Figure 3.2 B) the second parti-

tion can start after 1 iteration. For each partition DPn
i
we calculate the initial delay,

which may be caused by a producer process or another partition. Each partition has a

number of input ports and we determine the lexicographical minimum point of each

function input argument. This point corresponds to the iteration point where data is

read for the first time with respect to that function argument. Figure 3.7 shows the

function call statement F from Figure 3.3. It has two input arguments in0 and in1.

At different iterations, argument in0 is read from input ports IP1 or IP2 , and the

second argument from input ports IP3 or IP4 .

IP1

IP2

IP3

IP4

in0

in1

F(in0,in1)

OP1

OP2

OP3

Figure 3.7: Function Input Arguments and its Delay Calculation

For each input argument, we determine the first read action by considering the lexi-

cographical minimum point of all associated input ports. For the example above, we

calculate the minimum of IP1 and IP2 , and then we do the same for IP3 and IP4 .

In general, when there are x input arguments with y input ports associated to the first

function argument and z ports to the last argument, we calculate the producer points

40 Process Splitting Transformations

as follows:

p1 = M(a), where a = lexmin(

y
⋃

j=1

IP j)

: :

px = M(b), where b = lexmin(

z
⋃

j=1

IP j) (3.1)

We apply the mapping function M (see Section 2.5) of each input port to obtain all

producer points pt where 1 ≤ t ≤ x. The initial data is generated at these producer

iteration points, which means that the consumer is waiting for all preceding producer

iteration points to receive its initial data. Now, to calculate this initial delay, the

rank function (see Section 2.2) is applied to a producer point returning the number

of preceding iterations for a given iteration point. We calculate this offset, the initial

delay Yt, for all producer points pt ∈ DPt
of the last partition DCn as follows:

Yt(DCn) =

{

rank(pt, DPt
) ifPt 6= Cn

rank(pt, DPt
) +

∑n−1
x=0 Y (DCx) otherwise

(3.2)

It shows that if the producer Pt and consumer Cn are different processes, then the

offset is calculated based only on the number of iterations of the producer process.

If the producer point belongs to the same process but to a different partition, then

the delay of the preceding partitions Y (DCx) are taken into account. The initial time

T init
Cn a consumerCn is waiting for initial data, is determined by the slowest producer.

To calculate this time, we consider all Yt(DCn) values as defined above. These values

are multiplied by the estimated time T iter
Pt

required for one process iteration, which

we define with Formula 3.9 in Section 3.4, of the corresponding producer and the

maximum value is taken:

T init
Cn = maxt{Yt(DCn) · T iter

Pt
} (3.3)

3.3.3 Production Period

The calculation of the initial delay is not enough to accurately estimate the execution

time of a partition. For example, a producer can generate data for a consumer at its

first iteration, but then it may take a number of iterations before it generates new data.

This illustrates that the production period of a producer process is another import

metric.

Definition 13 The production period of a process is the number of process iterations

between two consecutive data productions.

3.3 Partitioning Metrics 41

A more elaborate example is given in Figure 3.8. Both the circles and crosses de-

note process iteration points. The circles indicate that data is produced for a particular

consumer at that point, and the crosses indicate that no data is produced. A consumer

21 ... j

1

:

i i

j1 2 ...

1

:

..

A) Producer P1 B) Producer P2

Figure 3.8: Production Period Examples

process receiving data from these two producers is waiting 1 iteration for producer

P1 and 10 iterations for P2 to generate the initial data so that the consumer can start

executing. After this initial delay, producer P2 is producing data at each iteration,

while P1 is producing data in either 2 or 5 iterations. We define the average produc-

tion period dPi
as the average number of iterations that is required to generate new

data by producer Pi.

Definition 14 The average production period, denoted by dPi
, is calculated by di-

viding the total number of iteration points of a producer process Pi by the total num-

ber of generated data tokens:

dPi
=

|DPi
|

|M(IPC)|
(3.4)

where IPC is the input port domain of consumer process C,M is the mapping func-

tion which is used to obtain the producer iteration points for this input port domain,

and DPi
is the process iteration domain of the producer process Pi.

To illustrate the production period, we consider the example in Figure 3.8 and as-

sume the iteration domain consist of 3 rows and 5 columns. The production period

is 15
6 = 2.5 and 15

5 = 3 for producer P1 and P2, respectively. The time T period
Pi

required to generate new data is the average production period multiplied by the re-

quired time T iter
Pi

that is needed for one process iteration of a producer:

T period
Pi

= dPi
· T iter

Pi
(3.5)

In Section 3.4, we explain how the time T iter
Pi

for a process iteration is calculated.

42 Process Splitting Transformations

3.3.4 Data Transfers

Different partitionings can lead to a different number of inter- and intra-process data

transfers which is denoted by DT . A data transfer occurs when data is read/written

to/from a FIFO channel. We already considered the example in Figure 3.2 A), where

the plane-cut results in 4 + 4 = 8 data transfers (the bold arrows) from one process

to the other process and 40 transfers to/from the same process. In Figure 3.2 B),

the partitioning strategy results in 12 + 12 = 24 inter-process data transfers and

12 + 12 = 24 intra-process data transfers. The number of data transfers is impor-

tant. For the examples in Figure 3.2, it is clear that the plane-cut is better than the

modulo unfolding if inter-process communication is costly, because there are only

8 inter-process communication compared to 24 transfers for the modulo unfolding

transformation.

For a process Pi, we calculate the number of intra and inter process data transfers

by considering all input/output port domains of this process and check, in the poly-

hedral process network, if the corresponding output/input port domains belong to

the same process Pi. If this is the case, then we classify the input/output port and

corresponding channel as intra-process communication, and inter-process communi-

cation otherwise. We compute the number of intra and inter process data transfers as

follows:

DTRd
inter =

∑

i

|M i(IP i)|

DTRd
intra =

∑

j

|M j(IP j)|

DTWr
inter =

∑

k

|OPk|

DTWr
intra =

∑

l

|OP l| (3.6)

Equation 3.6 shows that the size of all input port domains determine the total number

of intra/inter process data transfers for data that is read. In a similar way, we define

data that is written as inter/intra process data transfers by considering the output port

domains.

3.3.5 Additional Control Overhead

The process partitioning transformations are equivalent to source-code transforma-

tions as already indicated and also described in [79]. In Figure 3.1 B), a function call

3.4 Compile-time Selection of Splitting Transformation 43

statement is duplicated and assigned to even/odd iterations of the outer loop itera-

tor. We have shown in Figure 3.3, that the control for reading/writing from/to FIFO

channels becomes more complex as a result of the transformation. This additional

control overhead can change the computation-communication ratio. If this is not

taken into account, then execution times cannot be accurately estimated leading to

incorrect predictions which transformation is better. It is very difficult however, to

predict this additional control overhead as the nesting level of the if-statements are

different for each application and transformation. As a result, costs for the control

overhead cannot be accurately estimated at compile-time. Furthermore, it is not feasi-

ble to ask the designer to provide the costs as there may be many ports to be checked.

However, there are cases when the control overhead can be safely ignored. The addi-

tional control can only change significantly the computation-communication ratio if

the computational process workload is small. With coarse grain tasks, the additional

control will not change significantly this ratio and it is not necessary to take this into

account in the cost function. Another approach to avoid the additional control over-

head is a manual modification of the generated code. In case of the modulo unfolding

for example, the introduced modulo statements can be manually removed from the

generated code by adjusting the loop step-size and corresponding conditions in the

input/output port domains. The conditions for the plane-cut are usually much sim-

pler and thus can be ignored in many cases. In our approach we consider examples

with compute intensive tasks and change manually the generated code to remove the

additional control overhead.

3.4 Compile-time Selection of Splitting Transformation

In this section, we present a solution approach and analytical model to predict, at

compile-time, which transformation should be applied to obtain the best performance

results. To compare different transformations, we estimate the execution time of a

transformation.

Definition 15 The execution time of a transformation, denoted by Ttransformation,

is defined as the estimated total execution time, i.e., the time required to execute all

process iterations of the last processes partition which is obtained after applying the

process splitting transformation.

One solution to evaluate the different splitting transformations is simply to evaluate

all possibilities. This is possible, because we define in this section a compile-time

model that allows a designer to estimate the execution of a transformation. However,

evaluating all possibilities is not a very attractive solution as the number of possi-

bilities to check and evaluate can be large. Here we present an approach that does

44 Process Splitting Transformations

− plane−cut (inner)

− imod

Case 1

− imod
− plane−cut − plane−cut (inner)

− omod

no yes

Case 3

Directions?

Self−Dependencies?

Case 2

Orthogonal

(linear independent)diagonalhorizontal/vertical * *

Case 4

− plane−cut (diagonal)

− omod
− imod

*) Single dependence, or mulitple linearly dependent

(− plane−cut diagonal)

Figure 3.9: Decision Tree

not require to evaluate all possible transformations, i.e., some transformations can

be excluded beforehand. To achieve this, the decision to evaluate and apply a par-

ticular transformation for a given process is made using the decision tree shown in

Figure 3.9. The transformations listed in the leaf nodes of the decision tree are con-

sidered, the corresponding execution times Ttransformation are calculated using the

analytical model, and the minimum value is selected. There are 5 possibilities to ap-

ply a process splitting transformation: a horizontal, vertical, diagonal plane-cut, and

modulo unfolding on the inner- and outermost loop. Thus, the advantage of using the

decision tree is that some possibilities do not need to be evaluated.

To balance the network, the designer starts with selecting the most computation-

ally intensive process which will be split-up using the unfolding or plane-cut trans-

formation. Following the decision tree, inter-process communication is avoided as

much as possible by analyzing the self-dependencies of that process. If there are no

self-dependencies at all before the partitioning, then a partitioning cannot introduce

inter-process communication. If a single self-dependency exists, then inter-process

communication can be introduced by a transformation if the transformation is not

chosen carefully. Thus, the idea of the decision-tree is to avoid inter-process com-

munication as much as possible by creating partitions that ”follow the directions”

of these dependencies. In other words, producer-consumer pairs are clustered into

3.4 Compile-time Selection of Splitting Transformation 45

the same partition, and not assigned to different partitions, such that the communi-

cation remains local. For example, if there exists a single horizontal dependency

in a 2-dimensional process iteration domain, then vertical partitions will introduce

inter-process communication, while horizontal partitions will not. For multiple de-

pendencies that are orthogonal to each other, a partitioning with inter-process com-

munication cannot be avoided. These cases are captured in the decision tree shown

in Figure 3.9 and we discuss each of these cases in more detail. Please note that we

illustrate below our approach with 2-dimensional process iteration domains, while

the approach also works for processes with n-dimensional domains where n > 2.

This is shown with a case-study in Section 3.5.2. For higher dimensional iteration

domains (i.e., n > 2), the principle of the decision tree in Figure 3.9 remains the

same, only the space spanned by the dependencies are different. Consider, for exam-

ple, case 2 of the decision tree shown in Figure 3.9. A horizontal dependency in

a 2-dimensional domain is a line, while in the a 3-dimensional domain it can also be

a plane. Thus, independent partitions can be created as long as the dependencies do

not span the entire iteration domain.

Case 1

The first branch in the tree checks if there are any self-dependencies. If not, then only

the plane-cut and modulo unfolding on the inner most loop iterator (indicated by imod

in Figure 3.9) are compared. Thus, case 1 is the easiest case because inter-process

communication cannot be introduced by the splitting transformation since the process

does not have any self-dependencies. In this case, the most important factor is the

initial delay which we illustrate with the example shown in Figure 3.10.

1

2

2

2

1

1

1

1

1

1

2

2

2

2

plane−cut (inner)

j

:

..

Consumer

0

1

2

3

0 1 2 3

i

122

0

1

:

Producer

Figure 3.10: Decision Tree: Case 1

Recall from Section 3.3.2 , that the initial delay represents the number of process

iterations, which a producer process needs to execute before it generates the first

46 Process Splitting Transformations

input data for a consumer process. This initial delay is the reason that only the plane-

cutting on the inner-loop j and the modulo unfolding on the inner-loop are compared

in case 1. For other transformations, such as modulo unfolding on the outer-loop

i, the initial delay will always be larger. To illustrate this, take into account that the

lexicographical order of the Consumer process iterations is from from top to bottom

and from left to right, in Figure 3.10. Process iteration (i = 0, j = 2) is, therefore,

the first process iteration to be executed by the second process partition after applying

the plane-cut transformation. Similarly, process iteration (i = 1, j = 0) is the first it-

eration to be executed by the second partition after applying modulo unfolding on the

outer-loop i, and iteration (i = 0, j = 1) is the first for the unfolding transformation

on the inner loop j. When data is produced in the same order as it is consumed, then

it should be clear that iteration (1, 0)must always wait more iterations than iterations

(0, 1) and (0, 2) before its input data is generated by the producer. Hence, unfolding

on the outer-loop i is not considered. The plane-cut is the preferred transformation

to apply, because the introduced overhead of the transformation is less than mod-

ulo unfolding on the inner-loop j. However, the initial delay can be much larger and

therefore the plane-cut and modulo unfolding (inner) are the two transformations that

are evaluated and compared at compile-time.

Case 2 & Case 3

In case the selected process has self-dependencies, then the dependency directions are

analyzed. We have identified 3 different cases as shown in Figure 3.9. For case 2

and case 3, inter-process communication can still be avoided: i.e., when the pro-

cess has a horizontal/vertical self-dependency, or a diagonal self-dependency. For

these cases, the dependent iterations are assigned to the same partition and the com-

munication remains local to each partition.

0

0

i

1 2

2

1

3

3 j

0

0

i

1 2

2

1

3

3 j

B) Modulo Unfolding (inner)A) plane−cut (inner)

dependency (2,0)

dependency (1,0)

Partition P1 Partition P2 P1 P2 P1 P2

Figure 3.11: Decision Tree: Case 2

The reason to consider a single self-dependency and multiple linearly dependent

3.4 Compile-time Selection of Splitting Transformation 47

self-dependencies as one case, is because inter-process communication can be avoided.

Therefore, it is crucial that the multiple self-dependencies are linearly dependent,

which is illustrated with the example in Figure 3.11. Intuitively, the idea is to split-up

a process in such a way that the plane-cut or modulo unfolding follows ”the same

direction” as the linearly dependent self-dependencies. Figure 3.11 shows such an

example with two different dependencies: one in the direction of (i + 1, j + 0), or

in short (1, 0), and the other one in the direction of (2, 0). These dependencies al-

low a partitioning that creates independent partitions, with the dependent iterations

assigned to a same partition. This is illustrated with the plane-cut transformation

shown in Figure 3.11 A), and the modulo unfolding on the inner loop j shown in

Figure 3.11 B). It is clear that for these cases there is no difference if there is only

one self-dependency, or multiple linearly dependent: the partitions will be free of any

inter-process communication. In case 2, the modulo unfolding on the outer loop

is not considered because the initial delay will always be significantly larger than the

other two partitionings and therefore it will never be better. The best transformation

is obtained by evaluating the execution times of the plane-cut and modulo unfold-

ing on the inner loop iterator. While Figure 3.11 shows two processes with vertical

self-dependencies, another possibility are horizontal self-dependencies, i.e., in the

direction (i+0, j+1). We do not further elaborate on this case as the analysis is the

same as for the vertical dependencies.

0

0

i

1 2

2

1

3

3 j

0

0

i

1 2

2

1

3

3 j

A) plane−cut (diagonal)

Partition P2

Partition P1

B) Modulo Unfolding (inner + outer)

P2

P2

P2 P2

Figure 3.12: Decision Tree: Case 3

For diagonal self-dependencies, i.e., case 3 of the decision tree, different splitting

transformations should be evaluated compared to the horizontal/vertical dependen-

cies. Figure 3.12 shows an example of a diagonal self-dependency. In this case, it is

clear that a diagonal plane-cut results in partitions that do not need to communicate,

as shown in Figure 3.12 A). On the other hand, the initial delay can be quite large.

The first iteration of the second partition corresponds to iteration (1, 0). If a producer

processes first generates data for all points on the first line with i = 0, then the sec-

ond partition cannot directly start executing. In that case, a modulo unfolding on the

48 Process Splitting Transformations

inner/outer loop as shown in Figure 3.12, will have much smaller initial delays: the

first iterations of the second partition correspond to iterations (0, 1) and (1, 0) for the

modulo unfolding on the inner and outer loop, respectively. Note that in this example,

the first iterations of the second partition for the diagonal plane-cut and unfolding on

the outermost loop i are the same, i.e., iteration (1, 0), but this does not need to be

the case in general. Although the modulo unfolding can have a smaller initial de-

lay than the plane-cut transformation, the different partitions must synchronize and

communicate data, which is not the case for the plane-cut. The transformation that

results in the best performance results, therefore, depends on the costs for FIFO com-

munication and the process workload, and thus the plane-cut and modulo unfolding

transformations should be evaluated and compared.

Case 4

When a process has multiple linearly independent self-dependencies, it is not possible

to create partitions without any inter-process communication. This corresponds to

case 4 of the decision tree. For example, when a process with a 2-dimensional

process iteration domain and 2 self-dependencies that are perpendicular, i.e., they

are orthogonal as shown in Figure 3.13 A), any process splitting transformation will

result in inter-process communication between the different partitions.

i

j
j

i

C) Diagonal Plane−cut

i

j

Partition P2Partition P1

B) Plane−cut inner loopA) Orthogonal Dependences

Partition P1

Partition P2

Figure 3.13: Decision Tree, Case 4: Linear Independent Self-Dependencies

In Figure 3.13 A), a 2-dimensional process iteration domain is shown where the

arrows denote dependencies, i.e., the dependencies are orthogonal to each other. The

lexicographical order of the iteration points is from top to bottom and from left to

right, (i.e., i is the outer loop and j the inner loop). Thus, for dependencies that are

orthogonal to each other, unfolding on the inner most loop is not considered because

this transformation leads to sequential execution of the partitions. In addition to the

unfolding on the inner most loop, we also do not consider the diagonal plane-cut. The

reason is that the delay for the iteration points at the diagonal of the second partition,

3.4 Compile-time Selection of Splitting Transformation 49

is always much larger than the initial delay for the plane-cut on the inner loop and

the modulo unfolding on the outer loop. Therefore, the plane-cut transformation on

the inner loop must be compared with unfolding the outer loop (refered to as omod).

While orthogonal dependencies are one example of linearly independent dependen-

cies, there are many other possibilities for two dependencies to be linearly indepen-

dent. An example is shown in Figure 3.13 B). Although the dependencies are not

orthogonal, they are linearly independent and a plane-cut on the inner loop j = 2, as

shown in Figure 3.13 B), would result in 9 inter-process communications. A diagonal

plane-cut, however, as shown in Figure 3.13 C), would result in only 1 inter-process

communication. Furthermore, we see that for both plane-cuts, that there is no initial

delay. However, there is a small delay for the first synchronization point in the diag-

onal plane-cut, i.e., the two highlighted iteration points in Figure 3.13 C). That is, the

synchronization point is the 5th iteration point of partition 1, and the consumer point

is the 4th iteration of partition 2. This means that partition 2 is waiting 1 iteration for

partition 1 to receive its data, which does not occur in the plane-cut on the inner loop.

Despite this small delay, the diagonal plane-cut can possibly be better than a plane-

cut on the inner loop, depending on the costs for communication and the workload

of the process function, because it has less inter-process communications. Therefore,

the diagonal plane-cut, plane-cut on the inner loop, and modulo unfolding should be

evaluated and compared.

Calculating the Execution Time of a Transformation

Now we present how the execution time of a transformation can be estimated and

thus how transformations can be evaluated and compared. The execution time of a

transformation is calculated by summing the initial time T init
Pn
i

the last partition is

waiting for data and the time T exec
Pn
i

required for executing that last partition Pn
i :

Ttransformation = T init
Pn
i

+ T exec
Pn
i

(3.7)

The initial delay T init
Pn
i

is defined in Formula (3.3) and represents the maximum time

before the first initial data is produced by producer processes. The execution time

T exec
Pn
i

for a partitioning is defined and calculated as follows:

T exec
Pn
i

= |DPn
i
| ·max(Tavg period, T

iter
Pn
i
) (3.8)

In this formula, T iter
Pn
i

is the execution time that is required to execute a single itera-

tion of the last partition. The costs for executing a single process iteration includes

reading all the process function input arguments, execution of the process function,

and writing of the result(s) to the output port(s). If this time is less than the time

50 Process Splitting Transformations

required by a producer to generate data, then the execution of an iteration is domi-

nated by the producer process. For this reason, we check if Tavg period ≥ T iter
Pn
i

and

use this time, if necessary, multiplied by the number of process iteration points in the

domain to calculate the execution time T exec
Pn
i

. The time required to execute a single

iteration T iter
Pn
i

in this formula is approximated by considering the workload WPn
i
of

the partition Pn
i , and the average time for inter- and intra-process data transfers:

T iter
Pn
i

= WPn
i
+

DTRd
inter

|DPn
i
|
· CRd

inter +
DTRd

intra

|DPn
i
|
· CRd

intra + (3.9)

+
DTWr

inter

|DPn
i
|
· CWr

inter +
DTWr

intra

|DPn
i
|
· CWr

intra

whereCRd
inter,C

Rd
intra,C

Wr
inter,C

Wr
intra are the costs for reading and writing data for inter

and intra-process communication as defined in Section 3.3.1. DTRd
inter, DTRd

intra,

DTWr
inter, and DTWr

intra are, respectively, the total number of inter and intra process

data transfers as defined in Formula 3.6.

If the computation of a process is not dominated by its own execution T iter
Pn
i
, but by

the producer(s) and its large production period(s), then the average period Tavg period

from the producers is used to calculate the execution time of a single iteration. Tavg period

in Formula (3.8) corresponds to the execution time a partition is waiting for data con-

sidering its producer process. The average time is approximated taking into account

the number of tokens transfered between a producer-partition pair with respect to the

total number of data transfers. This number is used as a weight for the production

period of a producer. The average period Tavg period is calculated by summing the

production period multiplied by the weight factor for all n producers:

Tavg period =
n
∑

i=1

T period
Pi

·
|OP i|

∑n
j=1 |OP j |

(3.10)

where T period
Pi

corresponds to the production period as defined in Formula (3.5).

3.5 Case-Studies

In this section we present 3 different applications. The first application is an applica-

tion with a single diagonal dependency for the compute process, the second applica-

tion is a matrix multiplication, and the third is an application with four different pro-

ducers and (initial) delays. We map the applications on the ESPAM platform [60,61]

prototyped on a Xilinx Virtex 2 FPGA and the CELL processor [34]. For program-

ming the Xilinx Virtex 2 Pro FPGA, we use the Daedalus tool-flow [62] to implement

3.5 Case-Studies 51

a multi-processor system on chip. Each process from the network is mapped onto a

MicroBlaze softcore processor and the processes are point-to-point connected. The

FIFO channels are implemented using FSL channel components provided by Xilinx.

We measured that writing/reading to/from FIFOs is completed in just 10 clock cy-

cles. The second platform is the CELL BE processor and we use the code generator

presented in [58] to map applications on the Cell processor of a Playstation 3

console. We map the compute processes to different SPEs and source/sink processes

to the PPU. The FIFO channels are implemented in local memories of both the pro-

ducer and consumer process. Synchronization with signals/mailboxes ensures mu-

tual exclusive access, which makes the read/write primitives much more expensive

compared to the ESPAM platform. In these case-studies, we will not exhaustively

explore all cases and transformations. Instead, we focus on case 3 and case 4 of

the decision tree shown in Figure 3.9, because they are the most interesting from the

dependencies point of view. For these two cases, we experiment with different intial

delays, production periods, and inter-process communication. For each experiment,

we show our approach applied on different transformations to verify that our model

correctly captures these differences and thus predicts correctly the execution times.

3.5.1 Single Diagonal Dependence

In this experiment we consider a kernel as also used in [25]. This example is used

to check if we can correctly predict which transformation is better by using the an-

alytical model as we have defined in Section 3.4. The application is characterized

by a compute process with a two dimensional iteration domain and a single diagonal

self-dependency as shown in Figure 3.14. The application has three statements S1,

S2, and S3 and the corresponding iteration domains and dependencies are shown in

Figure 3.14 as well. In this example, a triangular assignment of process iterations

to partitions using a diagonal plane-cut results in two partitions P1 and P2 free of

any inter-process communication. The second partition P2 does not have any initial

delay with respect to the first partition P1, but it does have a relatively large initial

delay with respect to producer S1, i.e., 6 process iterations of S1, see Figure 3.14.

The modulo assignment on the other hand, as also illustrated in Figure 3.14, would

introduce many inter-process communications, but it has a small initial delay of only

2 iterations with respect to partition P1. With this experiment, we investigate if the

model captures well the trade-off of having inter-process communication at low costs,

or a case without any inter-process communication but with a relatively large initial

delay. For testing purposes only, the iteration domains, compared to Figure 3.14,

have been increased in the experiments to 20 iterations points for producer S1, and a

2-dimensional iteration domains of 10× 10 for the compute process S2.

To evaluate and determine the transformation to be applied for this example, the

52 Process Splitting Transformations

5

10

0

i

0

1

2

3

4

5

1 2 3

j

i
1 52 3 100

4 5 i

6 7 8 9

S1

S3

4

B) Partitioned Iteration Domain

S2

Diagonal Plane−cut

0 1 2 3 4 5
0
1
2
3
4
5 S2

D
S2

Modulo unfolding

A) Nested−loop kernel

for (i=0l i<11; i++)

a[i] = init ();

for (i=0; i<6; i++)

for (j=0; j<6; j++)

 a[i+j] = a[i+j];

for (i=0; i<11; i++)

 sink(a[i]);S3:

S2:

S1:

P1

P2

P1 P2 P1 P2 P1 P2
j

i

Figure 3.14: Nested-loop Program and Partitioned Dependence Graph

decision tree is checked as presented in Section 3.4. There is a self-dependency for

compute process S2, so the right branch is taken and the dependency directions are

analyzed. It is a single diagonal self-dependency and thus the decision tree indicates

that we should consider the transformations in case 3, i.e., the transformations

plane-cut and modulo unfolding on the inner and outer loop must be evaluated using

Formula 3.7.

Communication Cost

CRd
inter : PPE ↔ SPEi 4000

CRd
inter : SPEi ↔ SPEj 160

CRd
intra : SPEi ↔ SPEi 10

CWr
inter = CWr

intra 10

Table 3.1: Communication Costs on the Cell

Table 3.1 shows the costs for communication on the Cell platform. It can be seen

that there are two different costs for CRd
inter, because inter-process communication in

the Cell can occur between the PPE and an SPE (the cost is 4000 cycles), but also

between different SPEs (the cost is 160 cycles). Reading data from the same SPE,

and also the writing of data, costs 10 cycles. There is no difference in the costs for

writing data via inter/intra process communication, because data is always written to

a local FIFO buffer of a producer process.

The two partitions P1 and P2 have a process workload of WP1 = WP2 = 5000.

3.5 Case-Studies 53

The producer S1 does not have any workload such thatWS1 = 0. These computation

costs are shown in Table 3.2.

Computation Cost

WP1 = WP2 5000

WS1 0

Table 3.2: Computation Costs on the Cell

Next, we consider the specific metric values of the second partition P2 for the

different process splitting transformations as shown in Table 3.3.

Metric planecut unfold (outer) unfold (inner)

Prod. Delays YS1(DP2),YP1(DP2) 11, 0 0, 3 2, 0

Production Periods dS1, dP1
20
10(S1)

50
45(P1), 205 (S1)

50
45(P1), 205 (S1)

DTRd
inter 9 45 + 5 = 50 45 + 5 = 50

DTRd
intra 36 0 0

DTWr
inter 9 45 + 5 = 50 45 + 5 = 50

DTWr
intra 36 0 0

Table 3.3: Partition P2 and its Metric Values

The first row shows that the plane-cut transformation has an initial delay of 11 itera-

tion caused by producer S1. The modulo transformation on the outer loop has an ini-

tial delay of 3 iterations: the second partition P2 needs to wait 2 iterations for the first

partition P1, which on its turn needs to wait 1 iteration for producer S1. The modulo

transformation on the inner loop has an initial delay of 2 iterations, which is caused

only by only one process, i.e., producer S1. For the plane-cut experiment, 10 data to-

kens are read from S1, which produces 20 tokens in total. Therefore, the production

period is 20
10 . Furthermore, 9 tokens are read/written via inter-process communica-

tion, and 36 tokens are read/written via intra-process communication. For both the

unfolding transformations, 50 tokens are read via inter-process communication and

0 tokens via intra-process communication. The writing of tokens is performed with

50 tokens via inter-process communication, and 0 tokens via intra-process commu-

nication. We use these metric values to calculate the execution time of the modulo

unfolding transformation Tomod using the model defined in Formula 3.7 as follows:

Tomod = T init
P2 + T exec

P2 = 11108 + 305450 = 316558

T iter
P2 = 5000 + 45

50 · 160 +
5
50 · 4000 +

50
50 · 10 = 5554

T period
S1 = 20

5 · 10 = 40

54 Process Splitting Transformations

T period
P1 = 50

45 · 5554 = 6788

Tavg period = 5
50 · T

period
S1 + 45

50 · T
period
P1 = 5

50 · 40 +
45
50 · 6788 = 6109

T exec
P2 = 50 ·max(5554, 6109) = 305450

T init
P2 = dP1 · T

iter
P1 = 2 · 5554 = 11108

If we do the same for the plane-cut and unfolding on the inner loop, then we obtain

Tplane = 301248 and Timod = 304736. Thus, we find that Tplane < Timod < Tomod

which indicates that the plane-cut transformation can be applied best because its es-

timated execution time is smaller compared to the other 2 transformations. In other

words, our solution approach finds that the plane-cut transformation must be applied

to obtain the best performance results. This compile-time hint is correct according to

the measured performance results shown in Figure 3.15.

1053500

864983

740000

950000

0

200000

400000

600000

800000

1000000

1200000

#
 C

y
c

le
s

initial PPN

Planecut

Unfold (outer)

Unfold (inner)

Figure 3.15: Diagonal Dependencies: Measured Performance Results on the Cell

The first bar in Figure 3.15 shows the result for the initial PPN on the Cell. The

application executes in just over 1 million cycles. The second, third and fourth bar

show the measured performance results for the plane-cut, and modulo unfolding on

the outer and inner loop, respectively. We observe that the plane-cut is better than the

2 modulo unfolding transformations, which corresponds to the compile-time hints as

calculated above. The purpose of calculating the execution time is not to estimate

the real absolute performance results as close as possible, but to capture the trend

of the transformations instead. The difference of the calculated execution times and

the measured performance results on the Cell, for example, can be explained by the

initialization and termination of SPE threads.

For the ESPAM platform we perform the same calculations and predictions. The

metrics are different only for the computation and communication costs. These costs

3.5 Case-Studies 55

are both shown in Table 3.4, i.e., the process workload of the compute process is

5000 cycles, and the cost for reading/writing data through inter- and intra-processes

communication is 10 cycles. Note that the costs for all communication types are

the same on the ESPAM platform, whereas on the Cell they are different and more

expensive.

Metric Cost

WorkloadWP2 5000

Comm. Costs: CRd
inter, C

Wr
inter 10

Comm. Costs: CRd
intra, C

Wr
intra 10

Table 3.4: Workload and Communication Costs on ESPAM

Using the metric values in Table 3.3 and 3.4, we calculate and predict the execution

time for the three transformations on the ESPAM platform in the same way as we have

shown above. We find that Tomod ≈ 252240, Tplane ≈ 276200, and Timod ≈ 251220

and observe that Timod < Tomod < Tplane. Thus, the prediction is that the modulo

unfolding transformation on the inner loop is better than the plane-cut and unfolding

on the outer loop. The measured performance results shown in Figure 3.16 illustrate

that this predictions are correct.

499080

258774 253298

274273

0

100000

200000

300000

400000

500000

600000

#
 c

y
c
le

s

initial PPN

Planecut

Unfolding (outer)

Unfolding (inner)

Figure 3.16: Diagonal Dependencies: Measured Performance Results on ESPAM

The first bar shows the measured performance results for the initial PPN, the sec-

ond bar corresponds to the plane-cut transformation, and the third and fourth bars

correspond to the results for the modulo unfolding on the outer and inner loop, re-

spectively. It can be seen that the differences in the measured performance for the

56 Process Splitting Transformations

different transformations are very small, as also predicted by the estimated execu-

tion times. Despite these small differences, the predictions are correct and unfolding

on the inner loop results in the best performance results. We see that the plane-cut

transformation gives the worst performance results on the ESPAM platform, while

it is the best alternative on the Cell. From this experiment, we conclude that the

analytical model captures well the fact that the initial delay can be the dominating

factor even if there is inter-process communication, i.e., for the ESPAM platform the

communication costs are cheap thereby making the initial delay the crucial factor.

Note that on the ESPAM platform the estimated execution times approximate very

well the actual measured execution times. For the Cell platform, the estimated execu-

tion times are less than the measured execution times for this particular experiment,

because we do not take into account the overhead in SPE thread creation, synchro-

nization, and termination, and the absolute execution times are small. For PPNs with

large execution times, this overhead will not be significant and, thus, the estimated

execution times will approximate better the performance results as we show in the

next experiments.

3.5.2 Matrix Multiplication with Multiple Dependencies

We consider a matrix multiplication kernel implemented with a 3 dimensional loop

nest structure. A single plane and its dependencies are already shown in Figure 3.2.

The matrix application is an extension of this as there are a number of these planes

with dependencies from each point in a plane to the same point in the next plane.

The matrix multiplication application is considered because both transformations will

lead to a great number of inter- and intra-process communication, such that the same

transformation may have a completely different impact on the Cell than on the ES-

PAM platform. We verify that the analytical model and solution approach correctly

predicts this behavior. The initial PPN consists of 4 processes. Processes P1 ,P2 ,P3

initialize, respectively, the matrix where the result is stored and the two matrices

that are multiplied. Process P4 is the compute process and with the plane-cut and

unfolding transformations we create a second process P4 ′. We consider compute

process P4 , check the decision tree in Figure 3.9 and see that there are multiple

self-dependencies for this process; the horizontal and vertical dependencies are or-

thogonal to each other, i.e., case 4 of the decision tree. Thus, the transformations

plane-cut on the inner loop, and unfolding on the outermost loop should be evaluated.

Note that we do not evaluate the diagonal plane-cut, which is taken into account when

the dependencies are linearly independent and not orthogonal, see the discussion on

case4 in Section 3.4. If we experiment with a kernel of 200× 200× 200 iterations

and apply the plane-cut transformation on the inner loop, then the first 100 iterations

of the inner loop are assigned to the first partition and the remaining 100 to the sec-

3.5 Case-Studies 57

Metric planecut unfold (outer)

YP1 (DP4 ′),YP2 (DP4 ′),YP3 (DP4 ′),YP4 (DP4 ′) 0, 100, 100, 100 200, 200, 0, 1

Production Periods dP1, dP2, dP3, dP4 0, 2, 2, 100 2, 2, 0, 1

DTRd
inter 40 · 103 4 · 106

DTRd
intra 12 · 106 8 · 106

DTWr
inter 0 4 · 106

DTWr
intra 12 · 106 8 · 106

Table 3.5: Partition P4 ′ and its Metric Values on the Cell

ond. As a result, the initial delay of the second partition is 100 iterations. In the

modulo unfolding all iterations of the outer loop i%2 = 1 are assigned to the first

partition, and i%2 = 0 to the second. As a result, the delay is 1 for the second par-

tition. The metric values for this example are shown in Table 3.5, and it can be seen

that there is a great number of inter and intra process data transfers.

Now we compute the time for both transformations by using these values in the

formulas as we have presented before. We do no repeat all intermediate steps to

calculate these numbers, but just give the final outcome. Note that the costs for

FIFO communication is the same as in the previous experiment, see Table 3.1. The

workload is also the same, i.e., 5000 cycles for the compute process(es).

The analytical model gives as a result that Tplane ≈ 20.4·109 and Tomod ≈ 21.4·109.

Because the estimated time for the plane-cut transformation is less than the mod-

ulo unfolding, we conclude that the plane-cut transformation results in better perfor-

mance results. As can be seen in Figure 3.17, the analytical model predicts correctly

that the measured performance results on the Cell platform for the plane-cut transfor-

mation is better than the unfolding transformation. The first bar corresponds to the

initial Polyhedral Process Network, which needs more than 4000 million cycles to

finish its execution. The plane-cut transformed network is finished in 20071 million

cycles and the unfolding transformation in 20445 million cycles.

Now we follow the same steps and predict the results for the ESPAM platform.

Recall that the costs for communication and computation on the ESPAM platform

is 10 clock cycles for both intra and inter process communication. The workload

of the compute process(es) is 5000 cycles, and the process iteration domain is 20 ×

20 × 20. Thus, the total number of process iterations is 8000. After splitting the

compute process, 4000 process iterations are executed by one partition, and the other

4000 process iterations by the other partition. We calculate the values and we obtain

Tplane ≈ 20.29 · 106 and Tomod ≈ 20.24 · 106. Since the communication costs on the

ESPAM platform are very cheap and the same for intra or inter process data transfers,

we observe that the initial delay of a partition (i.e., YP4(DP4′), see Table 3.5) is the

58 Process Splitting Transformations

40000

20071 20445

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

#
 C

y
c
le

s
 (

in
 m

il
li
o

n
)

initial PPN

Planecut

Unfolding

Figure 3.17: Measured Performance Results of Matrix Multiplication on the Cell

determining factor in this experiment. The analytical model predicts that the modulo

unfolding transformation leads to better performance results. Figure 3.18, indeed,

shows that for the measured performance results, the unfolding is better than the

plane-cut.

40089736

2004285020060044

0

5000000

10000000

15000000

20000000

25000000

30000000

35000000

40000000

45000000

#
 C

y
c

le
s

initial PPN

Planecut

Unfold

Figure 3.18: Measured Performance Results of Matrix Multiplication on ESPAM

The first bar shows the results of the matrix multiplication mapped as a Polyhe-

3.5 Case-Studies 59

dral Process Network onto the ESPAM platform. It is finished in a bit more than

40 million clock cycles. The second bar shows the result for the plane-cut trans-

formation, which is finished in 20060044 cycles. The third bar corresponds to the

modulo unfolding and we see that the unfolding transformation is slightly better than

the plane-cut, i.e., it is finished in 20042850 cycles.

3.5.3 Four Producers with Delays

In this experiment, we investigate the effects of production periods on different trans-

formations. The production period of one producer process is chosen to be much

larger than the other producers. The experiment has been setup in this way, to

see if the analytical model under these conditions still correctly predicts the trend.

The Polyhedral Process Network (PPN) used in this experiments is derived from the

nested loop program below:

for (i=2; i<100; i++)

for (j=0; j<100; j++)

x[i], y[j] = C(x[i], y[j], z[2*i][4*j], w[i][j]);

At each iteration, function C is executed and data is read from different arrays. Ar-

rays x and y are read at each iteration and also new values are written into it. Thus,

there are two (orthogonal) self-dependencies for this function call statement. The

third input argument array z is indexed with expressions 2 ∗ i and 4 ∗ j. Consecu-

tive read accesses at the consumer process, map to iteration points at the producer

process which are not consecutive. For example, iterations (2, 0) and (2, 1) of the

consumer map to iterations (4, 0) and (4, 4) at the producer. In this way, we model a

producer process with a production period that is different from the other processes.

The fourth input argument is array w, which is written and read at each iteration of

the producer and consumer. Furthermore, the first iteration of i starts at 2, such that

there is an initial delay for each of the producers. The corresponding PPN is shown

in Figure 3.19 A). It consists of 4 producer processes P1 ,P2 ,P3 ,P4 and a single

consumer C .

To determine which transformation is better, the decision tree (see Figure 3.9) indi-

cates that the transformations plane-cut on the inner loop and unfolding on the outer

loop must be compared, i.e., it is case 4, as the dependencies are orthogonal in this

example. The networks for the unfolding and plane-cut transformations are shown

in Figure 3.19 B) and C), respectively. It can be seen in Figure 3.19 C) that, for

the plane-cut transformation, the second partition C2 receives data from processes

P1 ,P2 ,P4 ,C1 . The first iteration to be executed by the second partition C2 is it-

eration point (2, 50). Producer process P1 generates data for this point at iteration

(4, 200) as a result of index expressions 2∗i and 4∗j at the consumer C2 . Therefore,

the initial delay is 4 ∗ 400 + 200 = 1800 iterations with regards to producer process

60 Process Splitting Transformations

P3 P4P2P1

C

P3P2P1 P4

C2

C1

P3P2P1 P4

C) Plane−cut

C1

C2

B) UnfoldingA) Initial PPN

Figure 3.19: Consumer(s) with 4 Producers

P1. To calculate the production period, we find that producer P1 executes 80.000

iterations and that consumer C2 reads 4900 tokens from it. Therefore, the produc-

tion period is 80000
4900 ≈ 16 iterations. For the other producer process, the initial delays

and production periods are calculated in a similar way and are also shown in Table

3.6. For the unfolding transformation, we see in Figure 3.19 B) that partition C2

depends on 5 producers. To give an example of the initial delay calculation for this

transformation, we consider the first iteration point (3, 0) of partition C2 . This point

is mapped to iteration point (6, 0) of the producer P1 , and hence the initial delay is

6 ∗ 400 + 1 = 2401. The other delays are 1201, 4, 1 and 1 iterations with respect to

the remaining 4 producer processes, which is also shown in Table 3.6.

Metric planecut unfold (outer)

YP1 (DC2), ..,YP4 (DC2),YC1 (DC2) 1800, 850, 0, 3, 3 2401, 1201, 4,1,1

dP1, dP2, dP3, dP4, dC1 16, 16, 0, 2, 50 16, 16, 2, 1, 2

DTRd
inter 98 4800

DTRd
intra 9652 4851

DTWr
inter 0 4800

DTWr
intra 9652 4851

Table 3.6: Partition C2 and its Metric Values on the Cell

The communication costs and the process workload are the same as in the previous

experiments, i.e., the communication costs are shown in Table 3.3 and the workload

is 5000 cycles for the compute process. If we use these metric values to calculate

and predict the execution times of the transformed PPNs, we obtain that Tplane ≈ 39

million cycles and Tomod ≈ 37 million cycles.

The measured performance results on the Cell platform confirm that the compile-

time hint is correct. The first bar in Figure 3.20 shows that the PPN is finished in

3.5 Case-Studies 61

50.9

38.6 37

0

10

20

30

40

50

60

#
 c

y
c

le
s

 (
in

 m
il
li
o

n
s

)

initial PPN

Planecut

Unfolding

Figure 3.20: Measured Performance Results on the Cell

50.9 million cycles. The second bar corresponds to the plane-cut transformation

and is finished in 38.6 million cycles, and the third bar corresponds to the unfolding

transformation which is finished in 37 million cycles. We observe that, indeed, the

unfolding transformation is better compared to the plane-cut transformation.

If we want to predict which transformation is better for the ESPAM platform, we

repeat all steps. The only difference are the metric values for writing/reading to/from

FIFO channels, which are shown in Table 3.4. If we compute the execution time for

both transformations, we find Tplane ≈ 27.8million cycles and Tomod ≈ 25.6million

cycles . This prediction indicates that the unfolding transformation should be applied

to minimize the execution time.

53

24.9

26.9

0

10

20

30

40

50

60

#
 c

y
c

le
s

 (
in

 m
il
li
o

n
s

)

initial PPN

Planecut

Unfolding

Figure 3.21: Measured Performance Results on ESPAM Platform

Themeasured performance results on the ESPAMplatform are shown in Figure 3.21.

The initial polyhedral process network is finished in 53 million cycles, the plane-cut

62 Process Splitting Transformations

transformed network in 26.9million cycles, and the unfolded network in 24.9million

cycles. This confirms the prediction that the unfolding transformation leads to better

performance results than the plane-cut.

3.6 Discussion and Summary

We have presented a compile-time approach to select a particular splitting transfor-

mation in order to achieve the best possible performance results. We defined the

metrics that are required to make such a decision, showed how the metric values can

be calculated, and presented a solution approach that uses these metric values to eval-

uate the different transformations to give hints to the designer. With the experiments,

we have shown that our model correctly predicts which transformation can be applied

best. In order to correctly predict which transformation is better, the designer needs to

provide the following parameters: the workload of all functions, the costs for FIFO

reading/writing on the target platform, and on which process the process splitting

should be applied. A designer may therefore still have the following questions:

1. Which process should be split-up for the best performance results?

2. What if the process workload is not constant?

3. What if the cost for FIFO reading/writing is not constant?

The first two questions are related, because the process splitting transformation has

the largest positive impact when it is applied on the process with the largest workload,

i.e., the computationally most intensive process. To obtain the process workload, the

designer has to run the functions on the target platform, or generate a profile of the

application. Thus, not only the workload is obtained, but also a first indication which

process can possibly be the bottleneck process of the system. For simple polyhedral

process networks, i.e., if they behave like SDF graphs [47] and always read/write

from/to the FIFO channels, the workload is enough to identify the bottleneck pro-

cesses. However, when the process network has complicated communication pat-

terns, it becomes very difficult to identify a single bottleneck process. The reason is

that different processes can dominate the throughput at different stages of the execu-

tion of the application. This could imply that the designer needs to apply splitting

on different processes in order to obtain a balanced PPN that meets the performance

requirements, i.e, following the Y-chart approach, and in an iterative way, splitting

can be applied consecutively on different processes. In Chapter 5, we show an ex-

ample of different processes that dominate the throughput at different stages of the

execution of the PPN. Moreover, an approach is presented how to apply the process

splitting and merging transformation in combination that relieves the designer from

3.6 Discussion and Summary 63

the task to select a particular process. In this approach, the results of this chapter are

used to decide how a process must be split up. Thus, question 1 posed here is solved

as discussed in Chapter 5.

Besides selecting the best process on which the splitting transformation should be

applied, a designer can have process functions with non-constant execution times.

In the experiments discussed in Section 3.5, the workload is constant because the

functions internally do not have any branches. In other words, the process workload

consists of one sequence of instructions, without any branches with a varying number

of instructions. Executing such functions will always require the same number of

time units, i.e., it is constant. However, if a function does have branches then the

execution time of that process can vary depending on which branches are taken. To

model the workload of a process in this case, two options are possible: to take the

worst-case execution time of the function, or to calculate an average value. It should

be clear, however, that the model becomes less precise regardless whatever option

the designer chooses as a solution to set the workload. The main question is: will

this result in incorrect predictions what transformation should be applied? We have

not investigated this with experiments, but it is not difficult to imagine that this can

actually happen. If the error in the workload is significant, then the wrong value

can be chosen in calculating the execution time of one process iteration as shown in

Formula 3.8. On the other hand, if an imprecise workload value is used, then it is used

in all evaluations of the different splitting transformations. So, in the end the trend

may still be correct, but as already mentioned above, this has not been investigated.

The reason is that we consider a class of applications, i.e., streaming applications, that

does not expose this behavior in its process functions. Typically, data is streamed in

and a series of computations are performed on the data before data is written back.

In the unlikely case the process functions have some branches, then these different

branches have similar computational workload.

Similar to the process workload, the costs for FIFO communication has also been

modeled with a constant value. The problem is that imprecise cost estimations make

evaluating the model less precise. The communication costs can have non-constant

values when the platform interconnect, for example, is designed to provide a “best

effort” service, instead of a “guaranteed service”. We assumed the latter and thus

created platform instances that provide constant costs for FIFO communication. For

embedded platforms this is a realistic assumption, because these platforms should be

predictable and analyzable. In the ESPAM platform for example, the FIFO commu-

nication is implemented with hardware components and the processors can be point-

to-point connected. In this case, the costs for FIFO communication is truly constant.

However, if a crossbar is chosen as the interconnect for the different processors, then

the FIFO costs are not constant anymore as it depends on the number of requests and

the arbitration scheme of the crossbar. In [38], a performance model is introduced

64 Process Splitting Transformations

for different crossbar configurations, which can serve as a basis to model the FIFO

costs, but we did not investigate this in the experiments. The other platform used in

the experiments is the Cell platform, which uses the so called Element Interconnect

Bus (EIB) [3] to connect the different processing elements. It is a bus consisting of

4 data rings and a shared command bus and multiple data transfers can be in process

concurrently on each ring. We implemented FIFO communication on this provided

communication infrastructure [58] and modeled the costs with a constant value. This

could be inaccurate as a FIFO transfer on the CELL consists of 3 parts, i.e., 2 signals

and 1 DMA transfers, and thus 3 factors influence the actual time for performing one

data transfer. However, when we measure the costs for FIFO reading/writing on the

real hardware, they are almost constant. Apparently, all request can be processed and

no delays occur in processing them, i.e., the bus is not saturated with requests, and

the costs for FIFO reading/writing are nearly constant. We were therefore able to

also correctly predict the performance results for the different process splittings on

the CELL platform.

Chapter4
Process Merging Transformations

Recall from Chapter 3 that the partitioning strategy of the pn compiler may not nec-

essarily result in PPNs that meet the performance/resource requirements. To meet

the performance requirements, a designer can apply the process splitting transforma-

tion as discussed in Chapter 3. In this chapter, we introduce the process merging

transformation that reduces the number of processes in a PPN. The process merging

transformation is not only useful to meet the performance constraints, but also allows

a designer to achieve the same performance using fewer processes in some cases.

We show that many solutions exist to merge different processes in a PPN with great

differences in performance results. Thus, it is not trivial to select the best merging

solution. We address this issue in this chapter by presenting a compile-time solution

to evaluate different merging alternatives.

4.1 Process Merging: Definitions

The process merging transformation reduces the number of processes in a PPN by

sequentializing n processes in a single compound process.

Definition 16 The process merging transformations takes n processesP1 , ..,Pn and

sequentializes them into one compound process P1 ..n .

Definition 17 A compound process is formed by merging n processes and executes

in a sequential way the functions of the processes that are merged.

A compound process has, therefore, the following properties:

• Per iteration of the compound process, process functions of P1 , ..,Pn are exe-

cuted sequentially.

66 Process Merging Transformations

• The process iteration domain sizes of P1 , ..,Pn can be different. Then, the

different process functions are executed sequentially per compound process

iteration for a number of overlapping process iterations. In the remaining com-

pound process iterations, where the process iterations do not overlap, only the

process function(s) is executed of the process that has the largest number of

process iterations.

• If there exists a dependency between the processes, then the pn compiler cal-

culates a safe offset between the process functions in the compound process.

As a result of using the process merging transformation, less processes need to be

mapped on the platform’s processing elements, at the price of possibly having less

processes running in parallel. A designer needs to apply the process merging trans-

formation in case i) the number of processes is larger than the number of processing

elements, or ii) the network is not well balanced and therefore the same overall per-

formance can be achieved using less resources. For both cases, the problem is that

many different options exist to merge two or more processes. The total number of

options to merge different processes for a PPN with n processes is
∑n

i=2

(

n

i

)

. To

give an example for a PPN with 5 processes there are
(

5

2

)

+

(

5

3

)

+

(

5

4

)

+

(

5

5

)

= 26 different options to merge 2, 3, 4, or 5 processes. The challenge is how to find

the best solution from all these options. To solve this problem, an analytical through-

put modeling framework for Polyhedral Process Networks (PPNs) is defined in this

chapter. The throughput model is used to evaluate the throughput of different process

mergings in order to select the best option which gives a system throughput as close

as possible to the initial PPN.

4.2 Challenges of Applying the Process Merging Transfor-

mation

With 3 motivating examples we show that selecting the best merging option is not

a straightforward task as it depends on the inter-play of many factors which may

not be evident at first sight. The first factor to be considered is the workload of a

process. Recall from Chapter 2, that the workload WPi
of a process Pi denotes the

number of time units that are required to execute a function, i.e., the pure computa-

tional workload, excluding the communication. Figure 4.1 shows a PPN consisting

of 6 processes. It is annotated with the process workload and shows the number

of readings/writings from/to each FIFO channel. Process P2 , for example, has a

workload of 10 time units and a single token is read/written from/to a FIFO channel

per process iteration, which is denoted by ”[1]” and can be repeated (possibly) in-

4.2 Challenges of Applying the Process Merging Transformation 67

P4

P3P2

P1

P5

P6

WP45 = 6+2

WP23 = 10+1

[1]

[1]

[1]

[1]
[1] [1]

[1]

[1]

[1]

[1]

τ
in τout

6 2

10

1 1

1

τin
0

τ1013 10 10 out

τ13 10 10 10
P45
out

τ13 11 11 11 out
P23

10 13 20 23 30 40

PPN

Figure 4.1: Process Workload Influencing the System Throughput

finitely many times. The network has two datapaths DP1 = (P1 ,P2 ,P3 ,P6) and

DP2 = (P1 ,P4 ,P5 ,P6) that transfer an equal amount of tokens. We observe that

process P2 determines the system throughput, which is illustrated with the time lines

at the bottom of Figure 4.1. The first time line shows the rate τin at which tokens

arrive at the network, i.e., each time unit. The second time line shows the system

throughput of the initial PPN, denoted by τPPNout .

Definition 18 The system throughput, denoted by τout, is defined as the number of

data tokens produced by the network per time unit.

Process P6 needs 13 time units (1+10+1+1) to produce its first token. Then, it pro-

duces a new token each 10 cycles which is dictated by the slowest process P2 . If we

apply the process merging transformation to processes P2 and P3 , then compound

process P23 becomes the most computationally intensive process of the network.

Processes P2 (10 time units) and P3 (1 time unit) are sequentialized and thus it will

take 10+1=11 time units instead of 10 time units for process P6 to produce a new

token, as shown in the time line denoted by τP23
out . We observe that the throughput

of this network is lower than the throughput of the initial PPN. The fourth time line,

denoted by τP45
out , shows the system throughput after merging processes P4 and P5 .

In this case, however, we see that the system throughput is not affected, i.e., it is the

same as the throughput of the initial PPN, because the two merged and sequentialized

processes do not dictate the system throughput. Thus, a designer can safely merge

these processes and achieve the same system throughput as the initial PPN.

With the following example, we show that considering the process workload WPi

only is not enough; a second factor that needs to be taken into account is the rate of

producing tokens. Consider the PPN in Figure 4.2 which is topologically the same as

in the previous example. The only difference is that both datapaths transfer a different

68 Process Merging Transformations

P4

P3P2

P1

P5

P6

[1] [1]

[1]

τ
in τout

[001111]

1

P45
6 2

10 P23

1 [110000] [110000]

[001111]
1

[1]

[1][1]

[1] [1]

0 10 13 20 23 30 40 τin

1 1 1

11 τ13 10
P45
out

11 1 1 1 τ13
P23
out

τ13 10 out4

3

2 9

PPN

Figure 4.2: Production Rate Influencing the System Throughput

number of tokens. This is indicated with the patterns [110000] and [001111]

at which process P1 writes to its outgoing FIFO channels. A ”1” in these patterns

indicates that data is read/written and a ”0” that no data is read/written. So, the FIFO

channel connecting P1 and P2 , for example, is written the first two iterations of

P1 , but not in the remaining 4. As a consequence of these patterns, more tokens are

communicated through the second datapath DP2 = (P1 ,P4 ,P5 ,P6). Therefore,

we observe that, despite process P2 largest workload of 10 time units, process P4

with a workload of 6 is more dominant. Therefore, merging processes P4 and P5

leads to a lower network throughput compared to merging P2 and P3 , as can be

seen in the time lines τP45out and τP23out in Figure 4.2. We observe a trend which is

completely different from the previous example. According to Figure 4.2, a designer

can safely merge processes P2 and P3 as opposed to P4 and P5 to achieve a system

throughput that is equal to the throughput of the initial PPN.

In the last motivating example, we consider the PPN shown in Figure 4.3. The

processes always read and/or write a single token when they are executed. Therefore,

one could expect that this example is different from the example in Figure 4.2, but

similar to the example in Figure 4.1. We show, however, that neither case applies

and that a third factor needs to be taken into account. In this example, process P1

is the computationally most intensive process with a workload of 53 time units. If a

designer wants to merge processes, a logical choice would be to merge P2 and P3

and not to consider the heavy process P1 .

Processes P2 and P3 both have a workload of 25 time units and thus the compound

process P23 has a summed workload of 50 time units, which is smaller than process

P1 (53 time units). For this reason, we expect performance results that are equally

good as the initial PPN. However, when we measure the performance results of both

the initial PPN and the transformed PPN on the ESPAM platform [61], there is a

4.3 Restrictions on the Throughput Modeling 69

P1
53

W
P23

= 25+25=50

P2
25

25

P3
23

τin
τout

[1]

[1]

[1]
[1]

[1]
[1]

[1]
[1]

P4

Figure 4.3: Sequentialized FIFO Accesses Influencing the System Throughput

20% degradation in the performance results. Although the workload of compound

process P23 is lower than P1 , the compound process reads sequentially from two

input channels and writes sequentially to two output channels. This makes it the

heaviest process in the network. So, besides sequential execution of the process

workloads, we observe that sequential FIFO reading/writing is another aspect that

should be taken into account.

The 3 examples above show that it is not trivial to merge processes and to achieve

performance results as close as possible to the initial PPN. Therefore, we want to have

a compile-time framework to evaluate the system throughput such that the best possi-

ble merging can be selected. Our compile-time framework is based on the throughput

modeling techniques presented in Section 4.4.

4.3 Restrictions on the Throughput Modeling

A number of restrictions apply on the throughput model as presented in Section 4.4.

First of all, we consider acyclic PPN graphs. Cycles in a PPN are responsible for

sequential execution of some of the processes involved in the cycle. The sequential

execution can vary from a single initial delay, to a delay at each iteration of some

of the processes. For accurate throughput modeling, these cycles must be taken into

account which we do not study in this work. The reason is that throughput modeling

for acyclic networks is already a very difficult task, which is even more challenging

for cyclic networks. There are recent works that started to investigate the performance

analysis of cyclic dataflow graphs [86], but more research is required in that area in

the future.

Secondly, it is important to state that our goal is not to compare different PPNs, but

to compare transformed PPNs derived from a single PPN. Therefore, in the through-

put modeling, we do not take into account the latency of a token, i.e., the time that

elapses between injecting a token in the PPN and the time when that token leaves the

PPN. Thus, we do not calculate the total execution time of PPNs, but only want to

capture the throughput trend instead. The reason is that the framework should be fast,

70 Process Merging Transformations

and only as accurate as needed to correctly capture the throughput trend for different

process mergings.

Thirdly, the process workload WPi
and the costs for FIFO communication are pa-

rameters in our system throughput modeling. These are constant values that should

be provided by the designer who can obtain them, for example, by executing the

function and FIFO read/write primitives once on the target platform. The reader is

referred to Section 3.6 for a discussion on the modeling of the process workload and

FIFO read/write primitives with constant values. Although our approach is extensible

to heterogeneous MPSoCs, we restrict ourself to MPSoCs with programmable homo-

geneous cores. The reason is that a process function implemented as software cannot

be merged with a process function that is implemented as a hardware IP core. Sim-

ilarly, one cannot merge two processes both implemented as IP cores. This means

that once the process workload of a given process is determined, that this process

workload value is the same for all programmable homogeneous cores in the target

platform.

Finally, we do not study the effect of different buffer sizes. Although buffer sizes

play an important role in the performance results, there are studies [17] showing that

saturation points can be found where performance does not increase for larger buffer

sizes. The pn compiler can find such points and we use buffer sizes that correspond

to these points, i.e., the buffer sizes that give maximum performance.

4.4 Throughput Modeling

We introduce first the solution approach to model the throughput of polyhedral pro-

cess networks with an example. Then, we define all concepts and steps of the through-

put model in detail. Finally, we present the overall algorithm for the throughput

modeling.

4.4.1 Process Throughput and Throughput Propagation

The solution approach for the overall Polyhedral Process Network (PPN) throughput

modeling relies on calculating the throughput τPi
of a process Pi for all processes and

propagation of the lowest process throughput to the sink processes. For a process Pi,

the propagation consists of selecting either the aggregated incoming FIFO throughput

τFaggr
or the isolated process throughput τ isoPi

:

τPi
= min(τFaggr

, τ isoPi
), (4.1)

Before defining formally τFaggr
and τ isoPi

(in Sections 4.4.2 - 4.4.4), we first give an

intuitive example of the solution approach applied on the PPN shown in Figure 4.3

4.4 Throughput Modeling 71

and explain the meaning of Equation 4.1. First, the workload of each process is taken

into account and let us assume that it takes 10, 20, 10, 10 time units for processes

P1 ,P2 ,P3 ,P4 , respectively, for executing its function. This means that, for ex-

ample, P1 can read and produce a new token every 10 time units if there is input

data. Thus, we define the isolated process throughput to be τ isoP1 = 1
10 tokens per

time units (excluding communication costs for the sake of simplicity). Similarly for

the other processes, we define τ isoP2 = 1
20 , τ

iso
P3 = 1

10 , τ
iso
P4 = 1

10 . However, the re-

quired input data for a process can be delivered with a different throughput, i.e., the

aggregated incoming FIFO throughput τFaggr
. Consequently, the lowest throughput

(τFaggr
or τ isoPi

) determines the actual process throughput τPi
. Therefore, the mini-

mum throughput value is selected as shown in Equation 4.1. This is repeated for all

processes by iteratively applying Equation 4.1 on each process to select the lowest

throughput and to propagate it to the sink processes. First, the PPN graph is topologi-

cally sorted to obtain a linear ordering of processes, e.g., P1 ,P2 ,P3 ,P4 . In step I)

P1

1

10
τ

P1
=

1

10
τ

P1
=

1

10
τ

P1
=

iso

τ
in

= 1 F2

F1

10

10 10

10

..

..

..
1 1 1

I)

P2
1

10
τ

P1
= 1

20
τ

P2
=

τ
P2

=
1

20

iso

F1 F3
.. ..

20 201010

II)

1

10
τ

P4
=

iso

1

20
τ

out
=

1

10
τ

P3
=

1010
..

20

1
τ

Faggr
=

1

20
τ

P2
=

P3

1

10
τ

P3
=

iso

1

10
τ

P1
=

1

10
τ

P3
=

F2 F4..
1010

..
1010

..
F3 20

20

F4

P4
..

20 20

IV)III)

Figure 4.4: Throughput Propagation Example

of Figure 4.4, process P1 is the first process to be considered. While it receives to-

kens at each time unit (τin = 1), it is ready to execute again after 10 time units due

to the process workload (τ isoP1 = 1
10). We see that the actual process throughput is

determined by the process itself (it is the slowest) and Equation 4.1 is used to find

this: τP1 = min(1, 1
10) =

1
10 with which it writes to both its outgoing FIFO channels

F1 and F2 .

If we continue with the second process in step II), we see that P2 receives tokens

72 Process Merging Transformations

from P1 with a throughput of τP1 = 1
10 . However, P2 is twice slower than P1

which is delivering the data: τP2 = min(1
10 ,

1
20) = 1

20 . Thus, we know that P2

writes its results to FIFO channel F3 with a throughput of 1
20 .

In step III), we calculate the throughput for process P3 . It receives data from P1

with a throughput of τP1 = 1
10 , and it can process data with a throughput of τ isoP3 =

1
10 . We compare what is slower by calculating τP3 = min(1

10 ,
1
10) =

1
10 and set this

as the throughput at which P3 writes to FIFO channel F4 .

Finally, we consider process P4 in step IV). Process P4 reads from two FIFO

channels F3 and F4 , which are written by P2 and P3 with different throughputs.

Therefore, the FIFO throughput must be aggregated in order to have a single through-

put value at which data arrives. If we assume that both channels are read per process

iteration of P4 , then the slowest FIFO throughput determines the aggregated FIFO

throughput. For this example, 1
20 is the slowest component and we set τFaggr

= 1
20 .

Applying Equation 4.1 shows that the data is delivered with a lower throughput than

P4 can actually process: τP4 = min(1
20 ,

1
10) = 1

20 and set this to be the process

throughput. In this way, we have propagated the slowest throughput from P2 to the

sink process P4 , which in the end determines the overall system throughput. In the

next sections we exactly define how the (isolated) process throughput and (aggre-

gated) FIFO throughput can be calculated.

4.4.2 Isolated Throughput of a (Compound) Process

Definition 19 The isolated process throughput of a process Pi, denoted by τ isoPi
, is

the number of tokens produced by Pi per time unit when the input rate of its input

data is∞.

We illustrate the isolated process throughput with the example shown in Figure 4.5.

P
i

τ iso
τ in =

8

P
i

Pi
..

, T

8(min
isoτ = iter

Pi

1
)

Figure 4.5: Isolated Process Throughput

We model the input data to arrive infinitely fast, i.e., τin = ∞, such that the time

T iter
Pi

that is required for one process iteration, determines the throughput at which

4.4 Throughput Modeling 73

tokens are produced by Pi. This means that the isolated process throughput is deter-

mined only by the workload WPi
of a process and the number of FIFO reads/writes

per process iteration provided that no blocking occurs:

τ isoPi
=

1

T iter
Pi

, (4.2)

where T iter
Pi

is the time to execute one process iteration as we have defined in For-

mula 3.9. It is important to note that two factors as identified in the motivating ex-

amples are taken into account in modeling the isolated process throughput: the time

T iter
Pi

for one process iteration includes the process workload WPi
and also the num-

ber of sequential FIFO accesses (i.e., the data transfers).

In a similar way, we must also model the isolated throughput τ isoPm
of a compound

process Pm in order to evaluate the system throughput for a PPN with merged pro-

cesses. Assume that Pm is formed by merging processes Pi and Pj with iteration do-

mainsDPi
andDPj

, respectively. We define the isolated compound process through-

put as τ isoPm
= 1

T iter
Pm

, where

T iter
Pm

=
|DPi
|

|DPj
|
· (T iter

Pi
+ T iter

Pj
) +
|DPj

| − |DPi
|

|DPj
|

· (T iter
Pj

) (4.3)

with |DPi
| ≤ |DPj

|. To model the time T iter
Pm

for executing the compound process,

we take into account the generated schedule of the compound process as produced

by the pn and ESPAM tools [61, 95]. The execution of the process functions are

interleaved as much as possible. This means that per iteration of the compound pro-

cess, all functions are sequentially executed if this is allowed by the inter-process

dependencies. In case of inter-process dependencies, an offset is calculated for the

producer-consumer pair to ensure correct program behavior, and then the function

execution is interleaved again. Therefore, we calculate fractions where the execu-

tion of the functions overlap and multiply it with the process iteration costs of these

functions, i.e., the first term in Equation 4.3. And then we consider for the remaining

iterations the cost of the process with the largest domain size only, i.e., the second

term in Equation 4.3. Note that the coefficients in Equation 4.3 represent these frac-

tions which should sum up to 1. Formula 4.4 below shows how T iter
Pm

is calculated

when n process are merged into a compound process Pm.

T iter
Pm

=
|D1|

|Dn|
· (

n
∑

i=1

T iter
i) +

n
∑

j=2

|Dj | − |Dj−1|

|Dn|
· (

n
∑

k=j

T iter
k)

 (4.4)

74 Process Merging Transformations

where the different process iteration domains have been sorted and renumbered ac-

cording to their domain sizes, i.e., D1 ≤ .. ≤ Di−1 ≤ Di ≤ Di+1 ≤ .. ≤ Dn.

4.4.3 FIFO Channel Throughput

The throughput of a FIFO-channel is determined by the throughput of the processes

accessing it. Let us consider the example shown in Figure 4.6. Assume that P1

executes 500 times, i.e., |DP1 | = 500, and each time it writes to F1 and F2 .

P1 P2
W

P2
= 5W 10

P1
=

DP1 = 500

D’P1 = 1000

F1
1010 10 10..

500 tokens

..

500=P2D

F2 ..

Figure 4.6: FIFO Channel Throughput

Process P1 needs 10 time units to produce a token. Consumer process P2 is twice

as fast and needs only 5 time units to consume a token, but still it receives tokens

only each 10 time units due to the slower producer. As a result, P2 blocks on reading

and waits for data, which follows the operational semantics of the PPN model of

computation: a process stalls if it tries to read from an empty FIFO channel and

proceeds only if data is available again. This example shows that, to calculate the

FIFO throughput τfi of a FIFO channel fi, the minimum is taken of the FIFO write

throughput τWr
fi

and the FIFO read throughput τRd
fi

:

τfi = min(τWr
fi

, τRd
fi

), (4.5)

where τWr
fi

= τP1 (see Equation 4.1) and τRd
fi

= τ isoP2 (see Equation 4.2). Let us

consider another example where P1 executes 1000 times, i.e., |D′

P1 | = 1000 as

also shown in Figure 4.6. Assume that in one iteration of P1 data is written to

FIFO channel F1 , and in the next iteration to F2 . This is repeated such that in total

500 tokens are written to both FIFOs F1 and F2 . To compensate for a producer

that does not write data to a FIFO channel at each iteration, we define a coefficient

that divides the total number of tokens transfered over a channel by the iteration

domain size of a producer process Pi. This coefficient denotes an average production

rate, expressed in a number of producer iteration points. Note that this takes into

account the different production rates of processes as also identified in the motivating

example in Figure 4.2. By multiplying this coefficient with the process throughput,

we define FIFO write/read throughput τWr
fi

and τRd
fi

of a FIFO channel fi as shown

4.4 Throughput Modeling 75

in Equations 4.6 and 4.7. In this way, we model a lower throughput if necessary.

τWr
fi

=
|OP j

Pi
|

|DPi
|
· τPi

(4.6)

τRd
fi

=
|IP j

Pi
|

|DPi
|
· τ isoPi

, (4.7)

For the example, we see that τWr
f1 = 500

1000 ·
1
10 = 1

20 and the FIFO read throughput is

τRd
f1 = 500

500 ·
1
5 = 1

5 . Consequently, the FIFO throughput is τf1 = min(1
20 ,

1
5) =

1
20

tokens per time unit.

4.4.4 Aggregated FIFO Throughput

The throughput of a process τPi
is either determined by the FIFO throughput from

which it receives its data, i.e., τFaggr
, or by the computational workload of the pro-

cess itself, i.e., τ isoPi
, as shown in Equation 4.1. τ isoPi

is computed with Equation 4.2.

Here we show how to compute τFaggr
, which deals with the problem how to model

the throughput of data in case there are multiple incoming FIFO channels. This is

illustrated with the example in Figure 4.7.

f2
τ

Pi

f1τ fnτ ?, .., How to model

fnτ

f1τ

Pi

Faggr
τ

:

Figure 4.7: Modeling Multiple Incoming FIFO Channels

Process Pi has n incoming FIFO channels each with its own throughput. We need to

model these different incoming FIFO channel throughputs as one throughput value,

i.e., τFaggr
, because we must determine what is slower: the arrival of the input data

or the process itself. The throughput of the incoming FIFO channels are aggregated

according to the way the process function input arguments are read.

To illustrate the calculation of the aggregated FIFO throughput, let us first consider

Process P in Figure 4.8, which has one input argument value a that is read from

two different input ports IP1 and IP2 . Thus, two tokens are delivered, but only one

is read for each iteration of the consumer process. The other token will be read in

another iteration. To model the throughput at which data arrives, the sum is taken of

the FIFO throughput F1 and F2 , i.e., τFaggr
= τf1 + τf2 . Effectively, this means that

76 Process Merging Transformations

F3

F4

IP2

IP1

a

F1

F2

F(a)

Process P
out

out

F4

F3
a

F(a,b)

IP1a

IP2
b

F1

F2

Process P’

F(a,b)

:
Fm

IP1a
:

Fn

F1

:

F1’

IPn

IP1’

b
IPm

Process P’’

F1

F2

Process P

for (i=0;i<10;i++) {

for (j=0;j<10;j++) {

a = F1.read();

if (i<5)

B) C)

D)

if (i>=5)
a = F2.read();

out = F(a);

if (j==0)

F3.write(out);

if (j>0)

F4.write(out);
}}

A)

Figure 4.8: Process Structure (left) and FIFO Throughput Aggregation (right)

the aggregated incoming FIFO throughput becomes higher, which corresponds to the

behavior that one token is needed but two are delivered. Note that any imbalance in

the number of tokens transfered over each FIFO channel has already been taken into

account in the FIFO read/write throughput as defined in Equation 4.6 and 4.7.

Process P ′ in Figure 4.8 is the second example, which reads its two input arguments

values a and b from FIFOs F1 and F2 . Thus, both FIFOs are read per process

iteration of P ′. If one FIFO throughput is fast and the other one is slower, then the

slowest FIFO throughput determines the aggregated FIFO throughput. Therefore, we

select the minimum throughput in this case, i.e., τFaggr
= min(τf1 , τf2).

Finally, the general case is illustrated with process P ′′ in Figure 4.8, i.e., it com-

bines the previous two examples. Process P ′′ has multiple function input arguments

and multiple incoming FIFO channels per input argument. To calculate the aggre-

gated FIFO throughput, the throughput is summed of all the FIFO channels that are

connected to one function input argument (the first example). Next, the minimum

throughput, i.e., the slowest throughput, is taken of all the throughputs for the dif-

ferent function input arguments (the second example). Thus, the aggregated FIFO

throughput τFaggr
for P ′′ is calculated as follows:

τFaggr
= min(τf1 + ..+ τfn , τ

′

f1
+ ..+ τ ′fm).

The general formula to calculate the aggregated FIFO throughput τFaggr
is given

below:

τFaggr
= min(

n
∑

i=1

τfi , ...,
m
∑

j=1

τfj) (4.8)

4.4 Throughput Modeling 77

where each sum corresponds to the sum of the throughputs of a number of FIFO chan-

nels connected to one process function input argument. Thus, the first term sums the

throughput τfi of n different FIFO channels connected to one process function input

argument, and the last term sums the throughput τfj of m different FIFO channels

connected to another process function input argument. Finally, the minimum is taken

to determine the slowest FIFO throughput.

4.4.5 System Throughput Calculation Algorithm

Up to now, we have formally defined all the components that allow the throughput

calculation and propagation to be done in a systematic and automated way. The

pseudo code of the throughput calculation and propagation algorithm is shown in

Algorithm 1.

Algorithm 1 : PPN Throughput Estimation Pseudo-code

Require: PPN : a Polyhedral Process Network

Require: WPi
: the computational workload of all processes.

Require: CRd,Wr
intra,inter: the costs for the FIFO read/write primitives.

list ← Create topological ordering for PPN

for all process Pi ∈ list do

1) Calculate τ isoPi
= set isolated throughput(Pi,WPi

, CRd,Wr
intra,inter)

2) Set τRd
fj

for all incoming FIFOs fj of Pi.

3) Set τfj for all incoming FIFOs fj of Pi.

4) Calculate τFaggr
= calc fifo aggr(τfj , .., τfn)

5) Set τPi
= min(τ isoPi

, τFaggr
)

6) Set τWr
fj

for all outgoing FIFO fj of Pi.

end for

return τPPNout = τP|list|

This algorithm was introduced informally with the example in Section 4.4.1. Here

we give the formal solution by applying Algorithm 1 on this example. All steps of

Algorithm 1 are shown in Figure 4.9. The example PPN in Figure 4.3 consists of

4 processes and thus we obtain first a topologically ordered list of 4 processes, i.e.,

list = {P1 ,P2 ,P3 ,P4}. For each of these processes, we calculate the through-

put at which the incoming data arrives, how fast a process can actually process this

data, and the slowest value is propagated to the outgoing FIFO channels. The most

interesting steps are 4.2.1− 4.4 in Figure 4.9, because the throughput of FIFO chan-

nels F3 and F4 are aggregated. Process P4 needs input tokens from both channels

for each of its process iterations. Since the slowest FIFO throughput determines the

aggregated FIFO throughput, the minimum FIFO throughput is selected in step 4.4.

78 Process Merging Transformations

WP1 = WP3 = WP4 = 10, WP2 = 20

CRd = CWr = 0

0 list = {P1 ,P2 ,P3 ,P4}

1.1 τ isoP1 = 1
10

1.2 τRd
fin

=∞

1.3 τfin =∞

1.4 τFaggr
=∞

1.5 τP1 = min(1
10 ,∞) = 1

10

1.6.1 τWr
F1 = 1

10

1.6.2 τWr
F2 = 1

10

2.1 τ isoP2 = 1
20

2.2 τRdF1 = 1
20

2.3 τF1 = min(τWr
F1 , τRdF1) =

1
20

2.4 τFaggr
= min(1

20) =
1
20

2.5 τP2 = min(1
20 ,

1
20) =

1
20

2.6 τWr
F3 = 1

20

3.1 τ isoP3 = 1
10

3.2 τRdF2 = 1
10

3.3 τF2 = min(τWr
F2 , τRdF2) =

1
10

3.4 τFaggr
= min(1

10) =
1
10

3.5 τP3 = min(1
10 ,

1
10) =

1
10

3.6 τWr
F4 = 1

10

4.1 τ isoP4 = 1
10

4.2.1 τRdF3 = 1
10

4.2.2 τRdF4 = 1
10

4.3.1 τF3 = min(τWr
F3 , τRdF3) =

1
20

4.3.2 τF4 = min(τWr
F4 , τRdF4) =

1
10

4.4 τFaggr
= min(1

10 ,
1
20) =

1
20

4.5 τP4 = min(1
20 ,

1
10) =

1
20

4.6 τPPN
out = τP4 = 1

20

Figure 4.9: Throughput Calculation

In this way, we have propagated the slowest throughput of process P2 to the sink

process, which determines in the end the overall system throughput.

4.5 Case-Studies

In this section we map two different nested loop kernels on the ESPAM platform

prototyped on a Xilinx Virtex 2 Pro FPGA. Each process is mapped one-to-one on

a MicroBlaze softcore processor and the processors are point-to-point connected.

FIFO communication is implemented with FSL links and a FIFO access costs 10

clock cycles. We investigate if our throughput modeling captures the differences in

performance results for different process merging configurations and process work-

loads.

4.5.1 Merging Light-Weight Producers

In the first experiment, we merge two light-weight producers (workload of 54 time

units) into a single process, and we should observe that the new compound process

does not become the process that determines the system throughput, i.e., the through-

4.5 Case-Studies 79

put of the PPNs before and after the process merging are the same. Then, we increase

the workload of the producers to 59 time units such that we intentionally introduce

a new bottleneck in the PPN. The throughput of the PPN after the process merg-

ing should be less than the initial PPN, and we test whether this is captured by our

throughput model.

114

c

C

P3

P12

114

105

108/118

a b

for (i=0; i<M; i++)

 c[i] = P3 (a[i],b[i]);

 for (i=0; i<M; i++) {

 a[i] = P1 (a[i]);

 b[i] = P2 (b[i]);

 }

 C (c[i]);

 for (i=0; i<M; i++)

A) Nested Loop C) Merged

P3

P1 P2

C

105

c

54/59 54/59a b

F1 F2

F3

F1 F2

F3

#define M 1000

B) PPN

Figure 4.10: Example PPN

Figure 4.10 shows the nested loop program in A), the derived PPN in B), and the

PPN with producers P1 and P2 merged in C). We calculate the throughput of the

PPN before and after merging by applying Algorithm 1.

Figure 4.11 shows the analysis for process P1 ,P2 ,P3 and C . In process P3 ,

two FIFO throughput values are aggregated as shown in step 3.4 of the throughput

calculation in Figure 4.11. We find a process throughput of τP3 = 1
135 for process

P3 , which is propagated to C such that the system throughput is τPPNout = τC = 1
135

as well.

Next, we calculate the system throughput for the PPN with processes P1 and P2

merged into one compound process. The throughput calculation is shown in Fig-

ure 4.12, and thus we find a system throughput of τPPN
′

out = 1
135 . Since we find a

throughput of τout = 1
135 for both PPNs before and after merging, we predict that

the initial PPN and transformed PPN′ perform equally well. This is confirmed by the

actual measured performance results shown in Figure 4.13. That is, the first and sec-

ond bar in Figure 4.13 denote the cycle numbers for the initial PPN and transformed

PPN′, which are the same.

Then we increase the workload of the producer processes and intentionally create

a compound process that is the most compute intensive process. We check if this is

captured by our throughput model by analyzing the throughput of the PPNs before

and after the merging. The throughput model gives a throughput of 1
135 and 1

138

80 Process Merging Transformations

0 list = {P1 ,P2 ,P3 ,C}

1.1 τ isoP1 = 1
54+0+10 = 1

64

1.2 τRd
fin

=∞

1.3 τfin =∞

1.4 τFaggr
=∞

1.5 τP1 = min(1
64 ,∞) = 1

64

1.6 τWr
F1 = 1000

1000 ·
1
64 = 1

64

2.1 τ isoP2 = 1
54+0+10 = 1

64

2.2 τRd
fin

=∞

2.3 τfin =∞

2.4 τFaggr
=∞

2.5 τP2 = min(1
64 ,∞) = 1

64

2.6 τWr
F2 = 1000

1000 ·
1
64 = 1

64

3.1 τ isoP3 = 1
105+(2·10)+10 = 1

135

3.2.1 τRdF1 = 1000
1000 ·

1
135

3.2.2 τRdF2 = 1000
1000 ·

1
135

3.3.1 τF1 = min(1
64 ,

1
135) =

1
135

3.3.2 τF2 = min(1
64 ,

1
135) =

1
135

3.4 τFaggr
= min(1

135 ,
1

135) =
1

135

3.5 τP3 = min(1
135 ,

1
135) =

1
135

3.6 τWr
F3 = 1000

1000 ·
1

135 = 1
135

4.1 τ isoC = 1
114+10+0 = 1

124

4.2 τRdF3 = 1000
1000 ·

1
124 = 1

124

4.3 τF3 = min(1
135 ,

1
124) =

1
135

4.4 τFaggr
= 1

135

4.5 τC = min(1
135 ,

1
124) =

1
135

4.6 τPPN
out = τC = 1

135

Figure 4.11: Throughput Estimation of Processes P1 ,P2 ,P3 ,C in Figure 4.10 B)

for the initial and transformed PPN, respectively. Thus, the throughput calculation

indicates that the throughput of the merged PPN is lower, which is confirmed by the

third and fourth bar in the measured performance results in Figure 4.13.

4.5 Case-Studies 81

0 list = {P12 ,P3 ,C}

1.1 τ isoP12 = 1
54+54+0+2·10 = 1

128

1.2 τRd
fin

=∞

1.3 τfin =∞

1.4 τFaggr
=∞

1.5 τP12 = min(1
128 ,∞) = 1

128

1.6.1 τWr
F1 = 1000

1000 ·
1

128 = 1
128

1.6.2 τWr
F2 = 1000

1000 ·
1

128 = 1
128

2.1 τ isoP3 = 1
105+2·10+1·10 = 1

135

2.2.1 τRd
F1 = 1000

1000 ·
1

135 = 1
135

2.2.2 τRd
F2 = 1000

1000 ·
1

135 = 1
135

2.3.1 τF1 = min(1
128 ,

1
135) =

1
135

2.3.2 τF2 = min(1
128 ,

1
135) =

1
135

2.4 τFaggr
= min(1

135 ,
1

135) =
1

135

2.5 τP3 = min(1
135 ,

1
135) =

1
135

2.6 τWr
F3 = 1000

1000 ·
1

135 = 1
135

3.1 τ isoC = 1
114+10+0 = 1

124

3.2 τRdF3 = 1000
1000 ·

1
124 = 1

124

3.3 τF3 = min(1
135 ,

1
124) =

1
135

3.4 τFaggr
= 1

135

3.5 τC = min(1
135 ,

1
124) =

1
135

3.6 τPPN
out = τC = 1

135

Figure 4.12: Throughput Estimation after merging P1 and P2

114000

116000

118000

120000

122000

124000

126000

128000

1 2

Different workload configurations

#
 C

y
c

le
s

PPN

Merged

Figure 4.13: Measured Performance Results Before/After Merging P1 and P2

4.5.2 Merging Processes in Networks with Different Data Paths

In this experiment we consider the more complicated network shown in Figure 4.14

that combines different properties. First of all, it has processes with different domain

sizes. Processes P1 and P2 execute 500 times, while the other processes execute

1000 times. As a result, coefficients will scale down the F1 and F2 FIFO read

throughput. Second, two data paths come together in process P3 where one token

82 Process Merging Transformations

is needed per iteration of P3 similar to the example in Figure 4.8 B). Third, in pro-

cess P6 two datapaths are joined as well where both tokens are needed for each

iteration, similar to the example in Figure 4.8 C). We estimate the system through-

a[i] = P3(a[i]);
b[i] = P4();

b[i] = P5(b[i])

P6(a[i],b[i]);

for (i=0; i<1000; i++) {

}

}

P1

P2

P5

P6

P3

P4

F1

F2

F3

F4

F5

500

500

1000
1000

1000

1000

a[i] = P1();

a[i] = P2();

for (i=0; i<1000; i++) {

if i%2 =0

if i%2=1

Figure 4.14: Nested-loop Program and its Derived PPN

put by applying Algorithm 1 again and test the throughput modeling with 3 different

process workload configurations. Each configuration is a tuple where the first value

corresponds to the workload of process P1, the 2nd value to workload of P2, etc.

Figure 4.15 shows the measured performance results and for each configuration the

initial PPN in Figure 4.14 is used as a reference (the first bar) and different merg-

ings are shown in the 2nd, 3rd and 4th bars. For example, the second bar denotes

the performance results after merging processes P1, P2 and P3. If we take the 2nd

workload configuration as an example, our model finds the following throughputs:
1
65 ,

1
100 ,

1
65 ,

1
80 ,

1
75 . Thus, the estimation indicates that the first merging (i.e., 1

100),

leads to a lower throughput than the initial PPN (i.e., 1
65). The second merging (1

65)

gives the same performance results, and the third (1
80) and fourth (

1
75) are worse than

the initial PPN. From these estimations, we conclude that processes P2 and P4 can

be merged and achieve the same system throughput. This estimation is correct as

confirmed by the actual measured performance results shown in Figure 4.15.

4.6 Discussion and Summary

We have presented a solution approach for throuhgput modeling of Polyhedral Pro-

cess Networks (PPNs) to evaluate process merging transformations. Our approach

takes into account all major factors that influence the throughput. Therefore, we can

accurately capture the throughput trend and select the best possible merging as illus-

trated with the experiments.

The throughput model defined in this chapter, requires the cost estimations of the

process workloads and the FIFO communication primitives, similar to the process

splitting transformation. Therefore, the same remark with respect to the modeling of

the workload and FIFO communication with a constant value should be taken into

4.6 Discussion and Summary 83

0

20000

40000

60000

80000

100000

120000

140000

160000

W=(55,35,25,25,30,25) W=(55,35,25,25,45,25) W=(55,35,25,25,75,25)
Workload Configurations

#
 C

y
c
le

s

PPN

M(P1,P2,P3)

M(P2,P4)

M(P3,P4)

M(P4,P6)

Figure 4.15: Measured Results on the ESPAM Platform

account. For an in-depth discussion, the reader is referred to Section 3.6.

Our throughput model calculates an average throughput for a given PPN, i.e., we do

not take into account the dynamic behavior how output tokens are produced. This is

best illustrated with the coefficient used in Formula 4.6 to determine the FIFO write

throughput: the number of tokens written to a FIFO channel is divided by the total

number of process iterations. However, the calculation of average throughput values

allows efficient evaluation of the process merging transformations on the ESPAM

platform, for two reasons. First, recall from Section 4.3 that the process workload is

the same for all programmable cores in the target platform, i.e., we use a homoge-

neous MPSoC and assign the processes one-to-one to the cores. Second, also recall

that we use buffer sizes that give maximum performance, which are calculated by

the pn compiler. This is different in the work of [86], where the workload of a pro-

cessor can vary as multiple processes can be assigned to that processor. To estimate

buffer sizes and/or the system performance in this case, the dynamic behavior of the

platform and application are important. In Section 1.3, we have indicated that this

dynamic behavior is captured with maximum and minimum values of arrival/service

curves. This throughput calculation is more complex than our approach, which we do

not need for evaluating the process merging transformation on the ESPAM platform,

because we assign the processes one-to-one and use buffer sizes that give maximum

performance.

84 Process Merging Transformations

Chapter5
Appling Transformations in

Combination

In Chapter 3 we have discussed a compile-time approach for evaluating the process

splitting transformation [51, 78, 79], and in Chapter 4 an approach for evaluating the

process merging transformation [53]. These two parameterized transformations play

a vital role in meeting the performance/resource constraints. The splitting transfor-

mation is parameterized in the sense that a given process can be split up in many

different ways, and the designer must choose a specific splitting factor (i.e., the num-

ber of created copies). For the merging transformation, it is obvious that the designer

must decide which processes to merge. The problem is that, for both transformations,

the designer must select a particular process(es) to apply the transformations on in

order to achieve good results. This is not a straightforward task as we explain in Sec-

tion 5.2.2. In addition to this, both transformations can be applied one after the other

and in a different order with different parameters which may, or may not, give better

results than applying one transformation only. Therefore, in this chapter we

• investigate whether applying the two transformations in combination can give

better performance results than applying only one,

• propose a solution approach that solves the very difficult problem of determin-

ing the best order of applying the transformations and the best transformation

parameters,

• relieve the designer from the difficult task of selecting processes on which the

applied transformations have the largest positive performance impact, and

• present a solution approach that exploits available data-level parallelism in

cyclic PPNs and/or PPNs with stateful processes.

86 Appling Transformations in Combination

Program

pn compiler

1

10=P2 P3τ in τout

Transformed

PPNs

P1

τout
1

 6=

1

10

1

10

τ in P3

τ in
1

10

1

 6

for (i=0; i<N; i++)

 x[i] = P1();

 y[i] = P2(x[i]);

 P3(y[i]);
}

= 10T
P1

iter
= 6T

P2

iter = 1T
P3

iter

= 10T
P1

iter

= 10T
P1

iter

= 6T
P2

iter

= 1T
P3

iter
1

10=τout
P23P1

= 10T
P1

iter
= 7T

P23

iter

I

More parallelism Less parallelism

IIIII

P1

P1

P2

(Only Merging)(Only Splitting)

Initial PPN:

Figure 5.1: Deriving and Transforming Process Networks

In this Chapter, we apply the different transformations in combination on the initial

PPN shown in Figure 5.1. Arrow II is an example of applying the process split-

ting transformation on process P1 . The transformed network has two processes P1

executing the same function such that the data tokens are delivered twice faster to

the consumer process P2 . Recall from Chapter 3, that we refer to the two processes

P1 as process partitions of P1 . Arrow III is an example of transforming the ini-

tial PPN by applying the merging transformation on processes P2 and P3 to create

compound process P23 . The problem how to apply each transformation has been

discussed in the previous chapters. However, still a remaining challenge is to devise

a holistic approach to help the designer in transforming and mapping PPNs onto the

available processing elements of the provided target platform to achieve even bet-

ter performance results using the two transformations in combination. In the next

section, we first investigate the effects on the performance results of applying both

transformations in combination. Next, we propose a solution how to order them, and

finally we present two case-studies.

5.1 Impact of the Transformation on Performance Results 87

5.1 Impact of the Transformation on Performance Results

We investigate whether applying both the process splitting and merging transforma-

tions in combination gives better performance results than applying only one transfor-

mation. Consider the initial and transformed PPNs in Figure 5.1. Each process Pi is

annotated with the time T iter
Pi

that is required to execute one process iteration, which

includes the time for executing the process function and also the FIFO communica-

tion costs, see Definition 3.9. For example, a process iteration of P1 is completed in

10 time units, i.e., T iter
P1 = 10, while P2 is a computationally less intensive process

as one process iterations is completed in only 6 time units, i.e., T iter
P2 = 6. Process

P1 determines therefore the system throughput of the initial PPN. The throughput is

denoted by τout and we define it as the number of tokens produced by the network per

time unit (see Definition 18 in Section 4.2). Since P1 is the most computationally in-

tensive process that fires each 10 time units, the throughput and number of produced

tokens is 1
10 tokens per time unit. Now we show and discuss many different examples

in this section to illustrate how difficult it is for a designer to apply transformation,

even for such a simple initial PPN as shown in Figure 5.1.

5.1.1 Transforming a PPN to Create More Processes

If we want to increase the performance results for a given PPN, the number of pro-

cesses can be increased using the process splitting transformation to benefit from

more parallelism. In this subsection we, therefore, show two different PPNs con-

sisting of 4 processes that are derived from the same initial PPN consisting of 3

processes. The first transformed PPN is derived from the initial PPN in Figure 5.1

using only the process splitting transformation, and the second is derived from the

initial PPN using both the process splitting and merging transformation.

Transformed PPN1 (only splitting)

We split up process P1 two times as shown in Figure 5.1. Then there are 2 processes

that generate data in parallel for consumer process P2 . As a result, process P2

receives its input data twice as fast. Therefore, we say that process P2 receives its

data with an aggregated throughput of 1
10+

1
10 = 1

5 . We know that the slowest process

in a network determines the system throughput and to check this, we compare the

incoming throughput of a process with the time it takes to fire that process function.

While P2 receives its input data with a throughput of 1
5 tokens per time unit, it

can only produce tokens with a throughput of 1
6 (T iter

P2 = 6). This means that the

input tokens arrive faster than P2 can process them. To calculate the overall system

throughput, we therefore propagate the throughput τ = 1
6 of P2 to sink process P3

and compare what is slower: the arrival of the input data, or the firing of process P3 .

88 Appling Transformations in Combination

We see that P3 can process data much faster than it actually receives since T iter
P3 = 1,

but still it produces tokens with a throughput of 1
6 caused by the slowest process P2 .

The overall system throughput is therefore τout =
1
6 and is determined by P2 . Thus,

we have derived a PPN that gives a throughput τout =
1
6 that is much better than the

initial throughput τout =
1
10 .

Now we investigate whether we can derive another network with 4 processes, using

both the process splitting and merging transformations in combination, that gives

even better performance results than our previous example.

Transformed PPN2 (splitting+merging)

We apply first the process splitting transformation on processes P1 , P2 , and P3

from the initial PPN in Figure 5.1 to derive the transformed PPN shown in Fig-

ure 5.2 A). Two independent data paths are created each consisting of 3 processes.

10
1

10
1

τout 5

1
=

10
1

10
1

10
1

10
1

10
1

10
1

10
1

τout 5

1
=

= 10
P1

T
iter

= 10
P1

T
iter

= 6
P2

T
iter

= 6
P2

T
iter

= 1
P3

T
iter

= 1
P3

T
iter

10
1

P23
T

iter
= 7

P23
T

iter
= 7= 10

P1
T

iter

= 10
P1

T
iter

P3P1

P1 P3

P2

P2

P1

P1 P23

P23

B) Merged Processes P2 & P3A) Split up Processes P1, P2 & P3

Figure 5.2: Transformed PPN2: Splitting and Merging to Create 4 Processes

In each data path, process P1 is the bottleneck process such that tokens are deliv-

ered with a throughput of 1
10 . Since there are two data paths, we say that the overall

system throughput of the transformed PPN in Figure 5.2 A) is τout =
1
5 . When we

merge P2 with P3 , process P1 remains the bottleneck and the throughput is un-

affected as shown in Figure 5.2 B). Thus, we have derived a PPN with 4 processes

that gives better performance results compared to the previous example Transformed

PPN1 (only splitting) shown in Figure 5.1. That is, applying both transformations

in combination achieves a throughput of τout =
1
5 , while applying only the process

splitting transformation gives a throughput τout =
1
6 . In fact, to create a PPN with

n processes from the initial PPN in Figure 5.1, the best performance results that can

be achieved by using the process splitting transformation only, will never be better

than the best performance results that can be achieved by applying both transforma-

tions in combination. Therefore, this example shows that both transformations must

be used in combination to achieve better performance results.

5.1 Impact of the Transformation on Performance Results 89

5.1.2 Transforming a PPN to Reduce the Number of Processes

A designer sometimes needs to reduce the number of processes for a given PPN in

order to meet resource constraints. Another reason to merge processes, is that in some

cases the same performance can be achieved using less processes. In this subsection,

our objective is to derive a PPN consisting of 2 processes when this is required for

one of the two reasons mentioned above. We start with the initial PPN in Figure 5.1

that has 3 processes and investigate again whether the combination of applying the

transformations is important when the number of processes in the network must be

reduced.

Transformed PPN3 (only merging)

A transformed PPN with 2 processes is shown in the bottom right part of Figure 5.1,

which is obtained by applying only the process merging transformation. The result-

ing network has the same throughput as the initial PPN, but uses one process less. By

merging 2 light-weight processes P2 and P3 , process P1 remains the most compu-

tationally intensive process. As a result, the system throughput remains the same as

in the initial network, i.e., τout =
1
10 .

Transformed PPN4 (splitting+merging)

An alternative using both the process splitting and merging transformations is shown

in Figure 5.3.

τout 5

1
=

10
1

10
1

T
iter

= 10
P1

T
iter

= 6
P2 T

iter
= 1

P3

T
iter

= 10
P1

T
iter

= 6
P2

T
iter

= 1
P3

τout 1 / 8.5=

17
1

17
1

P123

P123

T
iter

P123
= 17

T
iter

P123
= 17

P3

P3

P2

P2

P1

P1

A) Split up Processes P1, P2 & P3 B) Merged Processes P1& P3

Figure 5.3: Transformed PPN4: Creating 2 Load-Balanced Tasks

All processes are first split up two times as shown in Figure 5.3 A). Then, two com-

pound processes are created by merging a process partition of each process into a

compound process P123 as shown in Figure 5.3 B). The time for one process itera-

tion of the compound process is T iter
P123 = T iter

P1 + T iter
P2 + T iter

P3 = 17 time units, be-

cause all process functions are executed sequentially. This means that the compound

90 Appling Transformations in Combination

process delivers tokens with a throughput of τP123 = 1
17 . Since we have 2 compound

processes, the resulting overall throughput is τout = 1
8.5 , which is better than the

throughput τout =
1
10 of our previous example Transformed PPN3 (only merging)

shown in Figure 5.1. This is another example which shows that both transformations

should be applied in combination to obtain better performance results, which cannot

be obtained by only one transformation (i.e., the merging transformation in this case).

5.1.3 The Optimization Pitfall: Performance Degradation

We have shown that there is great potential in using both transformations in combi-

nation, but a designer should be very careful how the transformations are applied,

otherwise performance degradation may be encountered. We illustrate this with two

examples using both the process splitting and merging transformations. First we

show an example for a PPN with 4 process and then for a PPN with 2 processes.

Transformed PPN5 (splitting+merging)

We start with the initial PPN in Figure 5.1, which consists of 3 processes, and split

up both processes P1 and P2 to obtain the PPN shown in Figure 5.4 A).

P1

P1

P23
10
1

10
1

10
1

τout 5

1
=

10
1

10
1

τout 7

10
1

10
1

P2

P2

P3

= 10P1T
iter

= 10P1T
iter

= 6P2T
iter

= 6P2T
iter

= 1P3T
iter

= 10P1T
iter

= 10P1T
iter

= 6P2T
iter

P23T
iter

= 7

P2

B) Merged Processes P2 & P3

=
1

A) Split up Processes P1 & P2

P1

P1

Figure 5.4: Transformed PPN5: Splitting and Merging to Create 4 Processes

The network has a throughput of 1
5 using 5 processes, while our objective is to use 4

processes. Therefore, we merge two light-weight processes P2 and P3 . The created

compound process P23 has a process iteration time T iter
P23 = 7 time units and is

the bottleneck process of the network. The overall system throughput is, therefore,

determined byP23 and is τout = 1
7 . In this way, we have derived another PPNwith 4

processes that performs better than the initial process network (τout =
1
10). However,

the throughput τout =
1
7 is worse than the throughput achieved by applying only the

splitting transformation, i.e., transformed PPN1 (only splitting) in Figure 5.1 with a

throughput of τout =
1
6 and subsequently also worse than Transformed PPN2 shown

in Figure 5.2 B) that has a throughput τout =
1
5 .

5.2 Compile-Time Solution for Transformation Ordering 91

Transformed PPN6 (splitting+merging)

We have shown two examples to transform the initial PPN in Figure 5.1 into a PPN

with 2 processes in Transformed PPN3 and Transformed PPN4 . Both give good

performance results, but now we give an example of a PPN that performs worse. An-

other possibility to create a PPN with 2 process is to first split up the computationally

most intensive process P1 as shown in Figure 5.5 A). Then, two compound processes

τout
1

 6=

τ in

1

 6

1

10

1

10 P13

P12

τ in τout
1

16

= 10
P1

T
iter

= 10
P1

T
iter

= 6
P2

T
iter

= 1
P3

T
iter

P13
T

iter
= 11

P12
T

iter
= 16

P2

P1

P1

P3

B) Merging P1 with P2, and P1 with P3

=

A) Split up Process P1

Figure 5.5: Transformed PPN6: Splitting and Merging to Create 2 Processes

are created, one by merging process P1 with P3 , and the other one by merging pro-

cess P1 and P2 . We see that a topological cycle is introduced by merging processes

in this way and we find that the system throughput is τout =
1
16 tokens per time unit.

This result is worse than Transformed PPN3 and Transformed PPN4 that have a

throughput of τout =
1
10 and τout =

1
8.5 , respectively.

In this section, we have shown that it is necessary to apply both the process splitting

and merging transformations in combination to achieve better performance results

that cannot be achieved by applying only one transformation in isolation. On the

other hand, performance degradation may be encountered if the transformations are

not applied properly. So the question is how a designer should apply the transfor-

mations properly, i.e., choosing the best possible order of transformations and their

parameters. In the next section, we show our solution approach that addresses these

issues.

5.2 Compile-Time Solution for Transformation Ordering

Before introducing our solution in a more formal way, we show how our approach

intuitively works for the examples discussed in Section 5.1. We have already shown

3 different PPNs consisting of 4 processes that were derived from the same initial

PPN. The first transformed PPN is obtained by using only the splitting transforma-

tion as shown in Figure 5.1. In two other examples, shown in Figure 5.2 B) and

92 Appling Transformations in Combination

Figure 5.4 B), different networks were obtained by consecutively using the process

splitting and merging transformations. Our solution approach, however, gives a dif-

ferent solution and also gives better performance results as we show with the exam-

ples in Figure 5.6.

P1

τout= 1 / 2.5

A) Splitting up all Processes 4 times

1

10

1

10

1

10

1

10

P1 P3P2

τout= 1 / 4.25

P123

P123

P123

P123

P1

P1 P2

P2

P2

P3

P3

P3

B) Merging to Create Balanced Processes

6

6

6

6

10

10

10

10

1

1

1

1

1/10

1/10

1/10

1/10

17

17

17

17

1/17

1/17

1/17

1/17

Figure 5.6: Creating 4 Load-Balanced Tasks

In our simple, elegant but yet very effective solution approach, we first split up all

processes with a splitting factor that is specified by the designer. This splitting fac-

tor can, for example, be the number of available processing elements of the target

platform, or simply the number of tasks the designer wants to create. Since in our

examples the goal is to transform and create a PPN with 4 processes, we split up all

processes 4 times as shown in Figure 5.6 A). In this way, we create a PPN consisting

of 12 processes. Next, we merge back process partitions into compound processes

such that they contain one process partition of each process. Figure 5.6 B) shows

these compound processes P123 . Note that the self-edges for two compound pro-

cesses have been omitted for the sake of clarity. The time to execute one process

iteration of the compound processes is 17 time units, which is obtained by sum-

ming the process iteration time of the individual processes. Thus, we know that each

compound process produces 1
17 tokens per time unit. Since there are 4 compound

processes, the overall system throughput τout = 4
17 = 1

4.25 , which is better than

all other transformed PPNs with 4 processes shown in Figure 5.1, Figure 5.2 B), and

Figure 5.4 B).

The initial PPN in Figure 5.1 is transformed in a similar way if the number of

processes needs to be reduced. We have already shown 2 examples and our solution is

already given in Figure 5.3; all processes are first split up 2 times, and then compound

processes are created by merging different process partitions such that the resulting

transformed network consists of 2 processes.

5.2 Compile-Time Solution for Transformation Ordering 93

5.2.1 Creating Load-Balanced Tasks

While we illustrated our solution approach with examples in the previous section, a

more formal description of our solution approach is given with the pseudo-code in

Algorithm 2. We create a number of tasks from an initial PPN based on the combina-

tion of two transformations: i) the processes are split-up first, and ii) load-balanced

tasks are created by using the process merging transformation.

Algorithm 2 : Task Creation Pseudo-code

Require: A Polyhedral Process Network PPN with n processes,

Require: A process splitting factor u.

for all Pi ∈ PPN do

{Pi1, Pi2, .., Piu} = split(Pi, u)
end for

for i = 1 to u do

PCi = merge({P1i, P2i, .., Pni})
end for

return all compound processes PCi

Algorithm 2 uses two functions: split and merge. For the former, we refer

to Chapter 3 in which it is shown that a process can be split up in many different

ways and how to select the best splitting. We use the approach in Chapter 3 to se-

lect and perform the processes splitting. For the process merging transformation, we

rely on the approach described in Chapter 4. We add to this approach a procedure to

cluster producer-consumer pairs of processes. By clustering producer-consumer pro-

cesses, communication between these processes stays within one compound process

after merging. Thus, it tries to avoid communication and synchronization of differ-

ent compound processes. An example of this is given in Figure 5.6. One process

partition of P1 has only one channel to P2 , which in turn has only one channel to

P3 . Merging processes in this sequence results in compound processes that do not

have any communication channels among them. It is not always possible to obtain

completely independent compound processes. If one producer process has multiple

channels to consumer processes, as shown in Figure 5.7 A), one particular consumer

has to be selected and merged with the producer.

If we start with the first partition of P1 , i.e., grey process P1 in Figure 5.7 A), then

we see that it has two outgoing channels to two process partitions of P2 . Regardless

which partition of P2 is chosen for merging, the resulting compound processes will

have channels for data communication between them as shown in Figure 5.7 B).

In our approach, we simply consider the first outgoing channel and corresponding

consumer process, and merge it with the producer. We mark this consumer as being

merged already, to avoid that it will be selected again.

94 Appling Transformations in Combination

P12

P12

P2

P2

P1

P1

A) B)

Figure 5.7: Different Merging Options

5.2.2 Selecting Processes for Transformations

Our solution approach in Section 5.2.1 solves another problem indicated in the intro-

duction of this chapter, i.e., how to select processes to be transformed on which the

transformations have the largest positive performance impact. For the process split-

ting, it is important to find the bottleneck process of the network, because splitting

is the most beneficial when applied on the bottleneck process. For process merging,

it is important to avoid merging the bottleneck process, i.e., not introducing an even

larger bottleneck process. In general, however, it is not possible at all to determine

a single bottleneck process. The reason is that, in PPNs, different data paths can

transfer a different number of tokens. As a result, different processes can determine

the overall system throughput at different stages during the execution of the network,

which we illustrate with the example shown in Figure 5.8.

The network has two datapaths DP1 = (P1 ,P2 ,P3 ,P6) and DP2 = (P1 ,P4 ,

P5 ,P6) that transfer a different number of tokens. This is the result of the commu-

nication patterns [1100000] and [0011111] at which process P1 writes to its

outgoing FIFO channels. A ”1” in these patterns indicates that data is read/written

and a ”0” that no data is read/written. So, the FIFO channel connecting P1 and

P2 , for example, is written the first two firings of P1 , but not in the remaining 5

firings. As a consequence of these patterns, more tokens are communicated through

the second datapath DP2 . At the bottom of Figure 5.8, the different time lines of the

processes are shown. Each block corresponds to a firing of that process producing

data, and the arrow indicates the dependent consumer process. In this way, a full

simulation of the process network is shown. We observe that, despite process P2 ’s

largest process iteration time T iter
P2 = 10 time units, process P4 with T iter

P4 = 6 is

determining the throughput most of the time. This illustrates that, in general, due

to the varying and possibly complicated communication patterns, it is not possible

to decide which process to split up for a more balanced network. Our solution ap-

proach in Section 5.2.1, solves this problem as the transformations are applied on all

5.3 Exploiting Data-Level Parallelism 95

P6
τ

in

P4

P3P2

P1

P5

τout
1

3.75

T
iter
P3

= 1T
iter
P1

= 10

T
iter
P4

= 6 T
iter
P5

= 2

T
iter
P1

= 1

T
iter
P6

= 1

P2

P5

P4

P3

P1

13 23 26 30 36

P6

10 4 6

10 20 30 400

[1][1]

[1] [1]

[1][1]

[1] [1]

[1100000]

[0011111]
[0011111]

[1100000]

=

Figure 5.8: What is the Bottleneck Process: P2 or P4 ?

processes and, therefore, it is not necessary to select particular processes.

5.3 Exploiting Data-Level Parallelism

The idea of our approach presented in Section 5.2 is to create load-balanced tasks that

exploit data-level parallelism as much as possible. In this section, we want to show

that our simple solution always results in performance gains when there is data-level

parallelism to be exploited. The degree of data-level parallelism that can be exploited

is determined by:

1. Processes with self-edges in a PPN. Similar to the definition used in [31], we

refer to data-level parallelism when processes do not dependent on previous

firings of itself. Obviously, when there is no self-edge, the process is stateless

and an arbitrary number of independent process partitions can be created that

run in parallel. When a process has a self-edge, however, it produces data for

itself and there exists a dependency between different firings of that process.

Then, we refer to such a process as stateful.

2. Cycles in a PPN. A cycle can be responsible for sequential execution of the

processes involved in the cycle. If this is the case, we call it a true cycle.

96 Appling Transformations in Combination

Despite stateful processes and topological cycles, PPNs may still reveal some data-

level parallelism which is exploited by our solution approach. This means that our

solution approach gives better performance results when there is data parallelism to

be exploited, and the same performance as the initial PPN if there is nothing to be

exploited. In addition to cycles and stateful process, the workload balancing of the

initial PPN is another important factor that determines whether performance gains

are possible. We therefore first discuss this workload balancing before we elaborate

how to exploit more data-level parallelism for stateful processes and cyclic PPNs.

τin τout =
1

t
P1 P2

P2

P2τin

τin P1

P1

τin

τin

P12

P12

τout =
1

t
’

2t

1

2t

1

1

t

1

t

1

t

1

t

τout’ =
t

2

Merging
Splitting

Initial PPN:

P1
T

iter
= t t

P2
=

iter
T

Figure 5.9: Simple Acyclic Producer/Consumer

Balanced PPNs

Let us consider the PPN shown in Figure 5.9 and its two processes P1 and P2 .

• The PPN and its processes P1 and P2 shown in Figure 5.9 are balanced, be-

cause T iter
P1 = T iter

P2 = t time units. The throughput of the PPN is therefore

τout =
1
t
. If we apply splitting and merging, as illustrated with the arrows in

Figure 5.9, then a compound process has a throughput of τ = 1
2t . Since there

are two compound processes the overall throughput is τ ′out = 2 · 1
2t = 1

t
.

Thus, we see that the new throughput τ ′out is the same as the throughput of the

initial PPN, that is, τ ′out = τout.

Now let us consider the other case:

• Suppose that the PPN in Figure 5.9 and its processes P1 and P2 are imbal-

anced, then we have T iter
P1 = t and T iter

P2 = t + x, where x > 0. The

throughput of the initial PPN is τout = 1
t+x

. Then, we apply our solution

approach and create 2 independent streams. Each compound process has a

throughput of τ = 1
T iter
P1

+T iter
P2

= 1
2t+x

. Since we have 2 parallel streams, the

throughput is τ ′out = 2
2t+x

. If we want to know when splitting and merging

is worse compared to the initial PPN, then we have: 2
2t+x

< 1
t+x

. From this

inequality it follows that x < 0, which contradicts with the assumption that the

5.3 Exploiting Data-Level Parallelism 97

network is imbalanced, i.e., x > 0. Thus, the new throughput is the same or

better than the initial PPN, i.e., τ ′out ≥ τout.

We have shown that τ ′out = τout when the initial network is already balanced and

τ ′out ≥ τout when this is not the case. In other words, applying our approach results

in performance gains when there is something to be gained by load balancing. Next,

we discuss how our approach exploits data-level parallelism for PPNs with cycles

and/or stateful processes.

5.3.1 Stateful Processes

When a stateful process is split up, then the different process partitions must com-

municate data as a result of a dependency between different process iterations. The

question whether partitions of a split up process have overlapping executions or not

depends on the distance, in terms of a number of process firings, between data pro-

duction and consumption. If data is produced by a process for the next firing of the

same process (i.e., the distance is 1), then there is no data-level parallelism to be

exploited and splitting such a process results in sequential execution of the process

partitions. However, when the distance is larger than 1, then some copies of that pro-

cess have some data parallelism that can be exploited by the process splitting trans-

formation. If, for example, the distance between data production and consumption is

5, then 5 process firings can be done in parallel before communication and synchro-

nization is required again. Applying our solution approach, splits up all processes

first. As a result, the same functions are executed by several process partitions. The

necessary FIFO communication channels are automatically derived in case the split

up processes are stateful. In this way, the different process partitions overlap their

firings when this is allowed by the self-dependences, i.e., the dependence distance is

larger than 1, and synchronize their firings when necessary.

5.3.2 Cycles

For transforming processes that form a topological cycle, it is important to realize that

the process splitting and merging transformations do not re-time any of the process

firings. This means that the process firings are not re-scheduled, but only assigned to

different process partitions. Therefore, a cycle present in the initial PPN, will not be

removed by our approach and the transformed PPN will have a cycle as well. The be-

havior of the cycle is the most important factor that determines whether performance

improvements are possible or not and we illustrate this with 3 different examples in

Figure 5.10. There are 2 extremes: the first is a true cycle for which nothing can

be gained, and the second is a doubling of the throughput by creating 2 independent

streams. A third example shows a network that gives performance results between

98 Appling Transformations in Combination

Same Throughput Doubled Throughput...

τout τout2 .τout << ’ τout τout2 .τout << ’τout τout’ =

τout

τin

P12

P12

τin

’

P12
τin

τout τout’ =
P12

τout

τout

τin

τin

P12

P12

τout’

P1 P2
τin τout

τin

τout τout’ =

P2

P2

P1

P1

τout τout< 2.’

P2

P2 τ out

τ out

τin

τin P1

P1

P2

P2 τout

τout

τin

τin P1

P1

τout τout’ = 2 .

Initial PPN:
(2 processes)

.

II) III)I)

(extreme I) (extreme II)

Case I) Case II) Case III)

Figure 5.10: Throughput Possibilities after Splitting a Cycle 2 Times

the two extremes. For the three examples in Figure 5.10, we discuss how: i) the ini-

tial load balancing, and ii) the inter-process dependencies after splitting play a role

on the performance results.

Extreme I (same throughput): We already mentioned that for true cycles all pro-

cesses involved in such a cycle execute sequentially. That is, data is typically read

once from outside the cycle and then data is produced/consumed for/from processes

belonging to that cycle. For the initial PPN in Figure 5.10, this can mean that P1

reads from its input channel once, and then produces/consumes from the 2 channels

to/from P2 . If P1 injects a data token in the cycle in one firing and reads a token

from the feedback channel in the next firing, then processes P1 and P2 execute in a

pure sequential way. It is clear that for this type of cycles, performance gains are not

possible. Applying our solution approach on a true cycle, as shown with Case I

in Figure 5.10, gives the same performance results as the initial PPN. The reason is

that after splitting, the cycle is present as a path connecting P1 ,P2 ,P1 ,P2 ,P1 , and

after merging this sequential firing sequence is not changed as the dependencies and

sequential execution do not allow any overlapping executions.

Extreme II (doubled throughput): Another extreme is a transformed network with

independent data paths. The initial PPN from which this transformed PPN is derived,

5.4 Case-Studies 99

is topologically the same as the initial PPN in Case I, but the behavior is different,

i.e., it is not a true cycle because P1 injects first, for example, at least 2 tokens before

reading data from the cycle. Thus, depending on the behavior of the cycle, split-

ting processes can result in different paths where the cycle connects only processes

in the same path. In other words, independent streams can be created as illustrated

with Case III in Figure 5.10. This can easily happen when we split processes, for

example, 2 times such that the even executions of that process are assigned to one

process partition, and the odd executions to another partition. If the cycle and thus

the dependent producer and consumer executions are from even to even executions

and from odd to odd executions, then the communication remains local to one data

path as shown in Case III of Figure 5.10. This is an example of a cyclic PPN that

has the potential to scale linearly with the number of created streams. Having a trans-

formed PPN with independent data paths, however, does not automatically mean that

performance gains are possible. Besides the dependencies as we have just discussed,

the workload balancing of the initial PPN is another important factor. For our exam-

ple with the 2 independent data paths, it can still happen that the same throughput as

the initial network is achieved, i.e., τ ′out = τout, when the initial network is already

perfectly balanced. That is, for a network that is already balanced, there is nothing to

be gained with load-balancing. On the other hand, when the two processes are highly

imbalanced, then a doubling of the throughput can be approached.

Between the 2 Extremes: The last case to be discussed from Figure 5.10, is Case II

that gives performance results between the two extremes as discussed above. After

splitting and merging, the compound processes are connected with one communica-

tion channel. Depending on how many times synchronization and data communi-

cation occurs between the compound processes, the performance results can be the

same as for a true cycle (i.e., sequential execution), or the performance results can

approach a doubling of the throughput if synchronization does not play a role as, for

example, data is communicated only once.

5.4 Case-Studies

To illustrate that our approach works for PPNs with stateful processes and cycles,

we consider 2 different algorithms and implement their initial PPN and transformed

PPNs onto the ESPAM platform prototyped on a Xilinx FPGA [60], [61]. We mea-

sure the performance results to check that indeed the maximum performance gains

are obtained allowed by inter-process dependencies. First, we focus on the QR algo-

rithm, which is a matrix decomposition algorithm that is interesting as the compute

processes have self-edges (stateful processes) and, in addition to this, the PPN is

cyclic. Second, we consider a simple pipeline of processes and we show that our ap-

100 Appling Transformations in Combination

proach is as good as the initial network if the network is already perfectly balanced.

5.4.1 QR Decomposition: a PPN with Stateful Processes and Cycles

A QR decomposition of a square matrix A is a decomposition of A as A = QR,

where Q is an orthogonal matrix and R is an upper triangular matrix. Our imple-

mentation and corresponding PPN is shown in Figure 5.11 A). It consists of 2 source

processes, 1 sink process, and 2 compute processes denoted by V and R. This net-

work is highly imbalanced as process R fires more times and is also computationally

more intensive than V . Applying the process splitting transformations on processes

V and R gives as a result the network shown in Figure 5.11 B). We apply our solu-

tion approach and merge process partitions of V with R (and not V with V) to create

compound processes V R1 and V R2. We do this by considering first one partition of

V in the network and see that it has outgoing FIFO channels to another partition of

V and to one partition of R. These two process partitions are merged and in a similar

way the second compound process is created. The final result and transformed PPN is

shown in Figure 5.11 C). In all our experiments, we assume that source and sink pro-

cesses cannot be transformed. The reason is that, for example, these processes read

and write data from/to a memory location, which can only be done by one process

sequentially and, thus, not by multiple processes in parallel.

R

Source 1

Source 2

V

Sink

SinkSource 2

Source 1

Sink

Source 1

V V

Source 2

C)B)A)

16

1 1

14

1 120

16

16

120

120

1 1 1 1

1

14 14

1

12016 16 120

R R

VR1

VR2

Figure 5.11: A) Intial PPN for QR Decomposition Algorithm, B) PPN with split up

processes V and R, and C) load-balanced PPN with compound processes.

The resulting network is perfectly balanced. To implement the network, we apply

a one-to-one mapping of processes to processors and thus 5 processors are used in

total. To be more specific, the processes are executed as software routines on soft-

core MicroBlaze processors, which are point-to-point connected. Figure 5.12 shows

the corresponding measured performance results on the ESPAM platform [60], [61],

5.4 Case-Studies 101

prototyped on a Xilinx FPGA. The source and sink processes both finish one process

iteration in only 1 time unit, while the compute processes V and R are the computa-

tionally intensive processes which need respectively 100 and 450 time units for one

process iteration.

Measured Performance Results QR

0

1

2

3

4

5

6

7

5 5 6 7 7

processors

#
 c

lo
c
k
 c

y
c
le

s
 (

in
 m

il
li
o

n
s
)

Initial PPN

Split2+merge

Split3+merge

Split2

Split4+merge

Figure 5.12: Measured Performance Results of QR on the ESPAM Platform

The first bar serves as our reference point and it corresponds to the performance

results of the initial PPN shown in Figure 5.11 A). The QR network needs around

6 million cycles to finish its execution and uses 5 processors. For the same num-

ber of processors, our transformation approach gives much better performance re-

sults as shown by the second bar; the compute processes are split-up 2 times and

different partitions are merged, which is denoted by split2+merge and shown in Fig-

ure 5.11 C). When we apply our approach and create 3 compound processes, denoted

by split3+merge, then we even further improve performance results using 6 proces-

sors as shown by the third bar. Next, we compare the results of applying only the

process splitting transformation, denoted by split2 and shown in Figure 5.11 B), with

our approach of splitting processes 4 times and merging different process partitions

into compound processes, denoted by split4+merge. Both experiments use 7 proces-

sors and the 4th and 5th bars show the corresponding performance results. It can be

seen that creating balanced partitions gives better performance results than applying

only the splitting transformation. Note that the initial PPN with 5 processors executes

mostly in a sequential way, i.e., no data-level parallelism is exploited. By applying

our approach, i.e., splitting the compute processes 2, 3, and 4 times, we exploit data

level parallelism and achieve speed ups of 1.7, 2.3, and 3, respectively.

The QR algorithm is an example of Case II in Figure 5.10. The self-edges in

Figure 5.11 A) are annotated with their minimum buffer size capacity as computed

by the pn compiler [95]. Process V , for example, has a self-channel that should

102 Appling Transformations in Combination

have a capacity of at least 16 tokens to avoid a deadlock. This means that 16 tokens

are produced and buffered before they are finally consumed by the same process: 16

firings of that processes could be done in parallel before data communication and

synchronization are required again. We showed results for splitting up the stateful

processes 2, 3, and 4 times in the experiments. After applying our approach, we see

in Figure 5.11 C) that the self-channels appear as the channels connecting the com-

pound processes. These observations make clear that the cycles are not true cycles

as we have discussed in the previous section and that there is data-level parallelism

to be exploited by applying our solution approach. This is, indeed, confirmed by the

measured performance results. Our approach almost scales linearly by increasing the

number of compound processes (2nd, 3rd, and 5th bars in Figure 5.12) compared to

the initial PPN, indicating that we exploit all available data-level parallelism.

5.4.2 Transforming Perfectly Balanced PPNs

We have shown that stateful processes and cycles in PPNs restrict data-level paral-

lelism and thus influence performance results. In this section we show that the pro-

cess workload, and thus the process iteration time T iter
Pi

, is another aspect that should

be taken into account. To illustrate this, we consider a simple PPN consisting of a

pipeline of 4 processes. The goal of this experiment is to verify that our approach,

compared to applying only the process splitting transformation, does not give worse

performance results for PPNs that are already balanced. To check this, we generate

the following 4 PPNs as also shown in Figure 5.13: i) the initial PPN, ii) a PPN with

process P2 split up 2 times, iii) a PPN with processes P2 and P3 split up 2 times

and different partitions merged, and iv), a PPN with processes P2 and P3 split up 3

times and different partitions merged.

For each process network, we vary the workload of process P3 and assign 4 dif-

ferent values. As a result, the process iteration time T iter
P3 is 1, 50, 75, and 100 time

units. This means that process P2 is the bottleneck when T iter
P3 is 1, 50, and 75 time

units. By increasing it to 100, both P2 and P3 are equally computationally inten-

sive. Recall that we do not transform source and sink processes P1 and P4 in our

experiments. We therefore say that the network is imbalanced when T iter
P3 is 1, 50, or

75 time units, and balanced when we choose T iter
P3 to be 100. We expect that:

• The more balanced the network becomes by increasing the workload of P3 ,

the less is gained by splitting only process P2 two times (network II in Fig-

ure 5.13);

• Our transformation approach (network III in Figure 5.13) gives better perfor-

mance results when the network is imbalanced;

5.4 Case-Studies 103

P23

P23

P1 P4

{101, 150, 175, 200}

{101, 150, 175, 200}

1 1

P23

P23

P23

P1 P4

{101, 150, 175, 200}

{101, 150, 175, 200}

1 1

P1 P3 P4P2

P2

1 1100

100

{1, 50, 75, 100}

P1 P2 P3 P4

III)
IV)

I)

4 Processes

5 Processes

{1, 50, 75, 100}100 11

4 Processes

5 Processes

II)

S2x+M
S3x+M

S2x

Figure 5.13: Splitting vs. ”Splitting+Merging” with Different Workloads

• Our approach can even achieve better results by creating more than 2 com-

pound processes (network IV in Figure 5.13), while this is not possible using

the same number of processors and thereby applying only the process splitting

transformation.

We make 2 comparisons and measure the performance results on the ESPAM plat-

form of PPNs with an equal number of processes, i.e., PPNs with 4 processes and

PPNs with 5 processes. First, we compare the initial PPN (i.e., network I in Fig-

ure 5.13) with the network on which process splitting and merging has been applied

(i.e., network III in Figure 5.13). Second, we compare network II with network

IV from Figure 5.13.

Figure 5.14 shows the measured performance results for the 2 different PPNs with

4 processes. The x-axis shows the different T iter
P3 configurations when the workload

of process P3 is increased, and the y-axis the corresponding cycles counts. Because

we map the processes one-to-one onto processors, there are 4 processors used in this

experiment. For each workload configuration, the first bar corresponds to process

network I in Figure 5.13 and the second bar to process network III. The initial

PPN gives the same performance results for all different workload configurations

as the overall throughput is τout = 1
100 determined by process P2 . Our approach

gives better results for unbalanced networks. However, as the workload of process

P3 is increased, the network becomes more balanced and less can be gained by

transformations targeting the same number of processors. Figure 5.14 shows that

104 Appling Transformations in Combination

5 Processors

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

T_p3 = 1 T_p3 = 50 T_p3 = 75 T_p3 = 100

Workload Configurations

C
y
c
le

 C
o

u
n

t

II) Split 2x

IV) Split3x+M

Figure 5.14: Initial PPN (PPN I) vs. Split2x + Merging (PPN III)

the difference between the initial PPN and the transformed PPN becomes smaller.

The last 2 bars show the results for the PPNs where the initial network is already

balanced, i.e., T iter
P3 = 100. It can be seen that our approach is slightly worse than the

initial PPN, although the difference is not significant as it is only 2% off. The reason

is that the transformations introduce a small overhead in the compound processes,

which consist of additional control to execute the different functions. In the ideal

case when there is no overhead, the throughput of one compound process is 1
200

and thus the aggregated throughput of both compound processes is 1
100 , which is the

same as the initial PPN. Due to the additional control, however, the process iteration

time is not T iter
P23 = 200, but a little bit higher which finally results in the minor and

not significant performance degradation. The ratio of the workload and the control

overhead is important for the actual overhead and performance degradation. In our

experiments, the workload of the compound processes is 200 assembly instructions.

In most applications however, the process workload will be much larger such that the

overhead subsequently will have less impact on the performance results and will be

negligible (i.e., less than 2%).

Figure 5.15 shows the comparison between PPNs with 5 processes. That is, we

compare our solution approach that splits up all processes 3 times and merges back

different partitions, with applying only the process splitting transformation. For each

workload configuration, the first bar corresponds to network II in Figure 5.13, and

the second bar to network IV. The bold horizontal line in Figure 5.15 is the reference

corresponding to the performance results of the initial PPN.

We see that applying only process splitting for process P2 is less beneficial as the

5.5 Discussion and Summary 105

4 Processors

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

T_p3 = 1 T_p3 = 50 T_p3 = 75 T_p3 = 100

Workload Configurations

C
y
c
le

 C
o

u
n

t
I) Initial PPN

III) Split2x+M

Figure 5.15: ”Splitting 2x” (PPN II) vs. ”Splitting 3x + Merging” (PPN IV)

network becomes more balanced as illustrated with the 1st, 3th, 5th, and 7th bars.

When the network is balanced, i.e., the 7th bar, the performance results are a bit worse

than the initial PPN due to some additional control introduced by the transformations

as discussed before. For splitting and merging the processes 3 times, however, we see

that better performance results are obtained as illustrated with the 2nd, 4th, 6th, and

8th bars in Figure 5.15. The reason is that 3 balanced compound processes execute

as 3 independent streams in parallel. Each compound process delivers tokens with a

throughput of 1
200 (when the time for one process iteration of processes P2 and P3

is 100 time units). The overall system throughput is therefore τout =
3

200 ≈
1
67 . If

only P2 is split up, then the overall system throughput will be determined by P3 and

remains τout =
1

100 . We see that our approach gives better performance results for all

workload configurations. By increasing the workload and thus also T iter
P3 , the cycle

count goes up, but not as steep compared to applying only the process splitting. In

addition, our approach would also scale for more than 5 processors, as an arbitrary

number of independent streams can be created.

5.5 Discussion and Summary

We have shown that better performance results are obtained when both the process

splitting and merging transformations are applied in combination, as opposed to ap-

plying only one of these transformations. Furthermore, we have shown that it is very

difficult to identify a single bottleneck process in a PPN, since there can be many dif-

ferent bottleneck processes during the execution of a PPN. Our approach solves the

problem of selecting a process on which the transformations have the largest impact,

106 Appling Transformations in Combination

as first all processes are split up and then perfectly load-balanced compound pro-

cesses are created using the process merging transformation. Furthermore, we have

shown that our approach also works for process networks with cycles and stateful

processes. If in the initial PPN there is data-level parallelism to be exploited, then

our approach gives better performance results compared to the initial PPN by ex-

ploiting this parallelism to the maximum. The same performance results are obtained

when no data-level parallelism is available in the initial PPN.

After applying our solution approach a designer may end up with a transformed PPN

which performance is the same as the initial PPN. As already explained, the reason

can be that the initial PPN is already perfectly balanced, or cycles can be present in

the PPN that restrict the data-level parallelism. If we focus on cyclic PPNs, then we

know that performance gains are not possible when processes involved in a true cycle

are split up. This makes it clear that it is desired to indicate to the designer when a

PPN contains a true cycle. Therefore, we sketch an approach how true cycles can be

detected, i.e.,

• we investigate if the number of input tokens that the processes read from out-

side the cycle can serve as a metric to detect true cycles.

We consider the two example PPNs shown in Figure 5.16, which are different in the

number of tokens read from outside the cycle.

100

1

100

99

100

99

100

1

P1 P2

P1

P2

P1 P2
100

99

100

1

100

1

100

99

100 100

P1

P2

..

..

..

B) Extreme II: fully overlapping

100 100

..

..

..
1 2 3

2 3 41
98 99 100

98 99 100

A) Extreme I: fully sequential

1 100

1001

F1

F2

F3

F4
F1

F2

F3

F4
1 1 1 1

Figure 5.16: Different Behavior of a Cycle

The cyclic PPNs are topologically the same, but the behavior of the cycles are dif-

ferent. That is, processes P1 and P2 both have 100 process iterations, but the cyclic

PPNs are different in the total number of input tokens read from processes that are

involved in the cycle. In Figure 5.16 A), process P1 reads data only once from a

5.5 Discussion and Summary 107

process that is not part of the cycle (i.e., the process writing to FIFO channel F1),

and 99 times from FIFO channel F2 that is written by P2 , i.e., a process involved

in the cycle. These channels are therefore, respectively, annotated with the fractions
1

100 and 99
100 . The behavior of process P1 is the following: it injects one token in the

cycle in one iteration, and in a next iteration it needs to read a token from the cycle

first, before it can inject one token again. This leads to sequential execution of both

processes, as illustrated with the time lines of P1 and P2 in Figure 5.16 A). From

this example, we learn that a cycle is a true cycle when the processes read the input

data only once from outside the cycle and then always read/write from/to the cycle.

The other extreme is shown in Figure 5.16 B), where all the input data is read

from outside the cycle, except only one input token. Thus, topologically the PPN in

Figure 5.16 B) is the same as in A), but the behavior of the cycle is different. That is,

process P1 reads 99 tokens from FIFO F1 that is not part of the cycle, and only once

from FIFO F2 that is part of the cycle. This makes both processes P1 and P2 from

that point of view independent, i.e, the cycle does not sequentialize the executions of

P1 and P2 , which results in overlapping execution of both processes as illustrated

with the time lines in Figure 5.16 B). This example shows that the cycle is not a true

cycle, because all the input data (except one token) is read from outside the cycle.

From the two extreme cases presented in Figure 5.16, we learn that the number of

input tokens that the processes read from outside the cycle, can serve as a metric to

detect the behavior of a cycle, i.e., whether it is a true cycle. If only one token is

read from outside and all the others are read/written from/to the cycle, then the cycle

is a true cycle. A true cycle should be easy to detect at compile-time with similar

techniques presented in the previous chapters, i.e., polyhedral analysis and count-

ing integer points in polyhedral descriptions of input/output port domains. Thus, a

designer can be informed when a cyclic PPN contains a true cycle for which perfor-

mance gains are not possible. Besides the information on the behavior of the cycles,

a designer may also be interested in how much parallelism there is, in case there is

something to be gained. Therefore, we investigate whether the number of input to-

kens that are read from outside a cycle, is also an indication how much the processes

inside the cycle can overlap their executions.

Let us consider an example where a process reads half of its input tokens from

outside the cycle, and the other half from inside the cycle. A cyclic PPN with this

behavior is shown in Figure 5.17 A). Similar to the example in Figure 5.16, the pro-

cesses have 100 iterations, but now process P1 reads in total 50 tokens from input

port IP1 , i.e., from outside the cycle, and it reads in total 50 tokens from input port

IP2 , i.e., from a process that is part of the cycle. The FIFO channels are therefore

annotated with the fractions 50
100 . With this example, we want to indicate that i) the

communication pattern’s influence on the behavior of cycles, and ii) that these com-

munication patterns are important for all processes involved in the cycle.

108 Appling Transformations in Combination

IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2 IP1 IP2
P1 P2

100

50

100

50

100

50

100

50

100 100

IP1

IP2

IP1 IP2

..

IP1 IP2

? ?

..

1)

2)

3)

OP2

OP3

50 1001

Communication Read Patterns P1B)A)

Figure 5.17: What is the behavior when half of the data is read from outside?

Three different communication patterns are shown in Figure 5.17 B), which clas-

sifies how process P1 can read its input data from two input ports IP1 and IP2 .

Example 1) shows the time line of process P1 that has 100 process iterations. Pro-

cess P1 needs one input token from either one of its two input ports per process

iteration. It reads consecutively 50 tokens from input port IP1 in the first 50 itera-

tions. Then, 50 tokens from IP2 are consecutively read in the remaining 50 process

iterations. A different pattern is shown with example 2). In one process iteration,

one token is read from input port IP1 , and in the next iteration one token is read from

IP2 , which is repeated 50 times. Thus, the tokens are read one by one from different

input ports. Example 3) does not read all tokens consecutively from one port as in

example 1), it also does not read only 1 token as in example 2), but a number of

tokens between these extremes.

Figure 5.18 shows the overlap of the two processes involved in the cycle that read/write

data with the different communication patterns as we have identified above, i.e., it

shows the time lines of processes P1 and P2 . We experiment with different commu-

nication patterns selected from Figure 5.17 B) and want to show that there is overlap

to some extent in all the examples. Each block in the time lines corresponds to one

process iteration, i.e., the yellow, blue, white, and red boxes. The executions of P1

are annotated with the input ports from where P1 reads its input data (i.e., IP1 or

IP2). And the executions of P2 are annotated with the output ports where P2 writes

its output data to (i.e., output port OP2 or OP3). The arrows denote dependencies,

i.e., how data is communicated, and thus a simulation of the cyclic PPN is shown.

There are many combinations of different communication patterns possible for the

processes involved in the cycle, because a process does not only have 3 options to

read/write in a particular pattern, but these patterns can also be ordered differently

inside each process (see process P2 in Figure 5.18 A and B). Figure 5.18 shows

some representative examples of a cycle with different communication patterns and

it also illustrates that the overlap in process executions for some examples is minimal

(e.g., in Figure 5.18 C), while the overlap for some other examples is substantial (e.g.,

5.5 Discussion and Summary 109

OP3 OP3 OP3 OP3

IP1IP1 IP1 IP1IP1

OP3 OP2 OP2

IP2IP2

P2

P1
....

B) Patterns: 1) and 1)

Half overlapping, half sequential

IP1

OP2

IP2

OP2 OP2

IP2IP1 IP1

OP2

IP2

OP2

IP1

OP2

P1

P2

..

..

Patterns: 2) and 1)D)

Fully Overlapping

OP3 OP3OP3 OP3OP2 OP2 OP2 OP2

IP1 IP2 IP2 IP2IP1 IP1 IP1 IP2P1
.. ..

P2
..

Patterns: 1) and 1)A)

Fully Overlapping

IP1IP2IP1 IP1

OP2

IP2

OP2 OP3 OP3 OP2

IP2 IP1

OP2

P1

P2

Patterns: 1) and 3)

..

..

F)

Mostly Overlapping

IP1IP1 IP2 IP2 IP1 IP1 IP2 IP2

OP2 OP3 OP3 OP2 OP2 OP3 OP3OP2P2

P1
..

..

E) Patterns: 3) and 3)

Fully Overlapping

IP2

OP3 OP2 OP3 OP2

IP2IP1 IP1

OP2

IP1 ..
P1

P2

Patterns: 2) and 2)

Mostly sequential

C)

Figure 5.18: Behavior of a Cycle with Different Read/Write Patterns

110 Appling Transformations in Combination

in Figure 5.18 A), D) and E)). Note that the number of input data that is read from

outside the cycle is the same for all examples, i.e., 50 tokens, while the behavior

of the cycles are very different. Therefore, we conclude that the number of input

tokens read from outside the cycle cannot serve as a metric how much the processes

overlap and thus how much can be gained with applying our solution approach. More

sophisticated analysis is required, which is therefore left for future research.

Recall that our approach first splits up all processes in a PPN before process in-

stances are merged back (see Algorithm 2). Our final remark is about the order in

which the process splitting transformation is applied consecutively on all processes.

That is, we did not investigate whether applying the splitting transformation in a dif-

ferent order has an effect on, for example, the number of FIFO channels and/or the

final performance results of the transformed PPN. This is left for future research.

Chapter6
Executing PPNs on Fixed

Programmable MPSoC Platforms

In Chapter 1, we have indicated that the Daedalus tool-flow instantiates a specific

hardware platform, called ESPAM [61] , prototyped on a FPGA to execute PPNs

as efficiently as possible. Recall that we also argued in Chapter 1 that such a spe-

cific hardware platform may not always be available to a designer. Therefore, we

want to investigate how to execute PPNs onto commercial-off-the-shelf (COTS), pro-

grammable MPSoC platforms. In this chapter, we address the issue how to execute

polyhedral process networks onto COTS programmableMPSoC platforms and exper-

iment with 2 different platforms: the Intel IXP network processor [1] and the CELL

BE processor [39]. The Intel IXP is interesting as it has hardware support for FIFO

communication to some extent, i.e., the IXP is highly optimized for streaming data,

albeit in the form of internet packets. This makes the Intel IXP a dedicated stream-

ing processing platform. As a second platform, we chose to experiment with a more

general purpose MPSoC computing platform, i.e., the Cell platform, which lacks any

hardware support for FIFO communication. For both platforms, there is a mismatch

with the PPN model of computation. The mismatch is related to the FIFO read/write

primitives used in the PPN model of computation and the way FIFO communication

is supported by the hardware platform. This mismatch is the most evident in the Cell

processor because it lacks any hardware support for FIFO communication, while the

IXP has FIFO support to a certain extent. Taking this mismatch into account, we want

to investigate in this chapter, how FIFO communication can be realized in the most

efficient way using the provided communication infrastructure of these two COTS

programmable MPSoC platforms.

112 Executing PPNs on Fixed Programmable MPSoC Platforms

6.1 The Programmable Platforms

In this section, we briefly discuss the Cell processor and the Intel IXP processor archi-

tectures, i.e., we discuss the interesting components of both platforms and explain the

mismatch between the processor architectures and the PPN model of computation.

The Cell

The Cell BE platform [39] is a very good representative example of a state-of-the-art

heterogeneous programmable MPSoC platform. A high-level schematic of the Cell

architecture is shown in Figure 6.1. It has a PowerPC host processor (PPE) and a set

of eight computation-specific processors, known as synergistic processing elements

(SPEs). The memory subsystem offers private memories for each SPE processing

elements and a global memory space, to which only the PPE has direct access. Each

SPE has a Memory Flow Controller (MFC) for handling all data transfers. All pro-

cessors and I/O interfaces are connected by the coherent interconnect bus which is a

synchronous communication bus.

EIB

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

Cell BE

P6 P5

P4P3P2

P7

G
lo

b
a
l
M

e
m

o
ry

P1

PPE

EIB

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

SPE

MFC

Cell BE

P6 P5

P4P3P2

P7

G
lo

b
a
l
M

e
m

o
ry

P1

PPE

Figure 6.1: A 7-process PPN mapped onto the Cell BE platform.

The mismatch mentioned earlier is illustrated with the example in Figure 6.1. A

PPN consisting of 7 processes and 7 FIFO channels is mapped onto the Cell BE plat-

form. Processes P1 , P2 and P7 are mapped onto the PPE, and processes P3 to P6

are mapped onto different SPEs. The FIFO communication channels must be mapped

onto the Cell BE communication, synchronization and storage infrastructure. On the

one hand, the semantics of the FIFO communication is very simple: Producer and

Consumer processes in a producer/consumer pair interact asynchronously with the

communication channel to which they are connected. The synchronization between

the Producer and the Consumer is by means of blocking read/write on empty/full

FIFO channels. On the other hand, in the Cell BE platform the processors are con-

nected to a synchronous communication bus and there is no specific HW support for

6.1 The Programmable Platforms 113

blocking FIFO communication. Therefore, the PPN communication model and the

Cell BE communication infrastructure do not match. The FIFO channels have to be

realized by using the private memory of a SPE, and/or the global memory, and the

Cell BE specific synchronization methods which may be costly in terms of commu-

nication latency. The challenge is how to do this in the most efficient way, i.e., to

minimize the communication latency.

The Intel IXP

The IXP Network processor [1] is built to operate in real-time on internet traffic while

being completely programmable. The architecture uses microengines that have hard-

ware multi-threading support and various communication structures to move streams

of data around as efficiently and quickly as possible. We focus on the IXP2400 of

which a schematic is shown in Figure 6.2.

IXP2400

Media Switch
Fabric

Interface

RBUF

TBUF

Scratchpad
memory

CAP

Hash unit

DRAM

External Media
Device(s)

PCI

Intel
XScale
Core

Optional hosts
CPU, PCI

bus devices

SRAM
Controller 1

SRAM
Controller 0

DRAM
Controller 0

SRAM

ME 1:1ME 1:0

ME 1:3ME 1:2

ME 0:1ME 0:0

ME 0:3ME 0:2

Figure 6.2: IXP2400

The IXP2400 has an Intel XScale Core and eight microengines (ME0.0 - ME1.3)

clustered in two blocks of 4. Other relevant parts are the specialized controllers to

communicate data with off-chip DRAM and SRAM, the scratch path memory, and

the Media and Switch Fabric (MSF) Interface. The MSF interface governs the com-

munication with the Ethernet connection. The IXP2400 can receive and transmit data

on this interface at a speed of 2.5Gbps. The XScale core is a RISC general-purpose

processor similar to the processing units found in other hardware, including other

embedded computers, handhelds and cell phones. The intended use of XScale on the

114 Executing PPNs on Fixed Programmable MPSoC Platforms

network processors is for controlling and supporting processes on the microengines

where needed.

A microengine is a simple RISC-processor that is optimized for fast-path packet

processing tasks. Its instruction set is specifically tuned for processing network data.

It consists of over 50 different instructions including arithmetic and logical operations

that operate at bit, byte, and long-word levels, and can be combined with shift and

rotate operations in a single instruction. Integer multiplication is supported; floating

point operations are not. The microengine has special registers to communicate data

quickly and efficiently with DRAM and SRAM, its neighbors and local memory.

For example, to communicate with neighboring microengines within a cluster, this

microengine can uses special hardware support. Via special registers, it can send

data to a neighbor and receive data from a neighbor. This could be used to implement

FIFO communication, but only for one channel with a very limited buffer capacity.

Furthermore, the microengines have access to hardware rings for accessing circular

buffers located in the scratchpad and SRAM memories. In Figure 6.2, it can be

seen that these buffers are accessed via the bus. Hence, we remark that the IXP has

hardware support for FIFO communication (i.e., the available rings), but it is not as

dedicated as in the ESPAM platform [60, 61] where each processor has a dedicated

communication memory which can be organized as one or more FIFOs.

6.2 Realizing FIFO Communication

In Section 6.1, we have introduced the IXP and Cell processors. Now we show how

we map PPNs onto these platforms. This means that each components of the PPN

must be expressed in terms of the C language, i.e., a source-to-source translation.

These sources can be compiled with the C compiler for the given platform to gener-

ate an executable. We focus on the realization of the FIFO communication, because

it is the most platform dependent implementation that must use the provided com-

munication infrastructure of the target platform as efficiently as possible. Thus, we

indicate the possible mismatch in the PPN model of computation and the target plat-

form. The processes of a PPN are mapped one-to-one onto processing elements. We

do not further elaborate on this. Instead, the reader is referred to [50, 58] for more

details.

FIFO Communication on The Cell

In mapping PPN processes onto processing elements of the Cell BE platform, differ-

ent assignments are possible, i.e., processes can be mapped onto the PPE or onto one

of the SPEs. This results in different types of FIFO communication channels. For

example, in Figure 6.1 processes P1 (producer) and P2 (consumer) are mapped onto

6.2 Realizing FIFO Communication 115

the PPE. Therefore, we say that the FIFO channel connecting them is of PPE-to-PPE

type. If the producer and the consumer is the same process that is mapped onto a SPE

(like process P3 in Figure 6.1), then we refer to that FIFO channel as a SPE-to-self

FIFO channel. Similarly, we identify PPE-to-self, SPEi-to-SPEj , PPE-to-SPE, and

SPE-to-PPE types of FIFO communication channels. It is important to define these

channel types as all of them require different implementations since different compo-

nents of the Cell BE platform are involved. To summarize, we identify the following

classes of FIFO channels, classified by connection type: a) class self (PPE-to-self

and SPE-to-self), b) class intra (PPE-to-PPE), and c) class inter (SPEi-to-SPEj ,

PPE-to-SPE and SPE-to-PPE).

The first two classes of FIFO channels are easy to implement efficiently, as FIFOs

from these classes are realized using just local (for producer and consumer processes)

memories and local synchronization is utilized. In the remainder of this section we

therefore focus on the class inter FIFO channels, which connect the producer and

consumer processes mapped onto two different processing elements. The first issue

to be addressed is where the memory buffer of a FIFO has to reside. The Cell BE

platform provides two memory storages, thus, the buffer can i) reside in global mem-

ory or ii) can be distributed over the local memories of the producer and consumer

processes. The advantage of the former approach is the shared memory that is easily

accessible (in a mutually exclusive way). The disadvantage, however, is a substantial

synchronization overhead. For example, a SPE process with a FIFO channel of type

inter, should not only compete for the memory resource, but also move the data from

the global storage to the local memory prior to computation. The implication of this

is an enormous synchronization overhead and we therefore do not consider this as

an option to implement the FIFO buffers. For the second approach, i.e., when the

memory buffer of a FIFO channel is distributed between local memories, the issue

is how to efficiently implement the FIFO semantics. The issue is that the proces-

sors need to be synchronized to ensure mutually exclusive access to the FIFO buffer.

This processor synchronization is costly and is necessary as the CELL does not pro-

vide hardware support for FIFO communication, i.e., the mismatch between the PPN

model of computation and the target platform as we mentioned earlier.

In our approach to realize FIFO communication on the Cell and to minimize the

number of processor synchronizations, a number of tokens are grouped and send at

once, i.e., token packetizing is used. Packetizing decreases the number of DMA

data transfers and subsequently it also decreases the number of synchronizations.

Determining the packet size is a very important issue, i.e., depending on the process

that initiates the data transfers, deadlocks may occur if the packet size is not chosen

correctly. We have therefore chosen to use a run-time solution that simply transfers

all available generated data. We refer to this solution as the FIFO pull strategy which

we discuss next. The reader is referred to [58] for a discussion on the FIFO push

116 Executing PPNs on Fixed Programmable MPSoC Platforms

strategy and a comparison between the pull and push strategies.

P

Request

Ack 3

CDMA 2

1

Figure 6.3: Pull strategy for class inter FIFO channels.

The FIFO communication between a producer/consumer pair of processes using the

pull strategy, consists of 3 steps as shown in Figure 6.3:

1. Read request (1). The consumer first tries to read from its local buffer. If

it is empty, then it sends a request message to the producer and is blocked on

reading awaiting an acknowledgement message from the producer. The request

message contains the maximum number of tokens the consumer can accept.

2. Data transfer (2). The producer which receives the read request can either

be blocked on writing to its local storage or be busy executing a function. If

it is blocked, it serves other requests immediately. If it is executing then it

immediately serves the request after execution. In either case, the producer

handles the request and transfers all tokens it has available for the consumer as

one packet by means of a DMA transfer.

3. Acknowledgement (3). The producer notifies the consumer after completion of

the data transfer issuing a message containing the total number of tokens which

have been transferred as one packet in the previous step.

Thus, the pull strategy requires two synchronization messages for each DMA data

transfer (step (1) and (3)) and the packetizing of tokens is realized in step (2). For

every read request of a single data token, the producer sends all its available data to

the consumer. Therefore, we refer to this mechanism as dynamic packetizing. The

only way to control the dynamic packetizing is by setting the size of the memory

buffer, i.e., the larger the size, the larger the packet’s size that can be assembled.

FIFO Communication on The Intel IXP

Since the FIFO is such a central element in the IXP, different implementations exist.

We have found that six different FIFO types can be realized on the IXP as shown

in Figure 6.4. The various realizations make a different trade-off between speed,

claimed resources, and size. A short description of the different realizations is given

below:

6.2 Realizing FIFO Communication 117

Scratchpad
memory 64 rings64 rings

Microengine x

SRAM

Local memory

Microengine y

Local memory
Next

Neighbour

16 rings

1

2

3

4 5 6

Direct Xfer register

Figure 6.4: FIFO options on the IXP2400

1. Local memory. Each microengine has a fast accessible local memory of 640

longwords (2Kb) that is shared among all threads running on that microengine.

It can be used to implement a very fast FIFO channel between processes mapped

onto the same microengine.

2. Next-neighbor. Each microengine has 128 next-neighbor registers. They can

be used to implement a very fast, dedicated, FIFO channel between processes

mapped onto a limited set of other microengine that are neighbors. The regis-

ters can be used in three modes: an extra set of general purpose registers, one

FIFO channel of 128 longwords, or as 128 separate registers accessible by the

neighboring microengine.

3. Direct Transfer registers. Each microengine has 128 SRAM and 128 DRAM

registers. They can be used to exchange date with any other process on a

microengine. The direct transfer registers use the standard bus and are slower

than the previously explained communication mechanism.

4. Scratchpad rings. There are 16 sets of special ring registers available on the

scratchpad unit. These ring registers provide hardware support to implement

the head and tail pointers of a FIFO channel located on the scratchpad memory.

5. Scratchpad memory. The ring registers can also be implemented in software

directly. These software ring registers implement the head and tail pointers

of a FIFO channel located on the scratchpad memory. This is much slower

mechanism than the hardware ring register support.

118 Executing PPNs on Fixed Programmable MPSoC Platforms

6. SRAM. SRAM rings are hardware supported FIFO channel implementations.

Each SRAM memory channel has a queue descriptor table which can hold 64

values. Since the IXP2400 has two SRAM memory channels, a total of 128

rings are available.

When very fast FIFO channels are needed, the local memory or next-neighbor reg-

isters should be employed. If this is not possible, the hardware support ring registers

and scratchpad memory should be used. If this is not possible, the software sup-

ported rings should be used. Finally, the SRAM supported FIFO channels should

be used. They are the slowest, but can hold the largest amount of data. We imple-

mented a very simple assignment strategy for the processes and FIFO channels of a

PPN. FIFO channels are assigned in a greedy way to the fastest possible location. If

the FIFO buffer is too large for that location, it is assigned to the next fastest FIFO

location.

6.3 Performance Results

We use the techniques presented in Section 6.2 to execute PPNs on the IXP and Cell.

We measure the performance results and compare them with results on the dedicated

ESPAM platform that is designed to execute PPNs as efficiently as possible.

The Cell

In this section we present several experiments of PPNs mapped onto the Cell plat-

form. The goal is to show the impact of tokens packetizing on synchronization over-

head induced in the class inter FIFO channels using the pull strategy. In addition, we

compare the results of two PPNs mapped onto the Cell with the results for the same

PPNs mapped onto the ESPAM platform. The Cell experiments are carried out on

the Playstation 3 platform, where the program code has been compiled with

IBM’s XLC compiler and the libspe2 library.

In the first experiment we map a JPEG encoder application onto the Cell BE plat-

form. The encoder takes a stream of frames with sizes of 512×512 pixels and applies

the JPEG algorithm on these frames. The corresponding PPN consists of 7 processes

and 15 FIFO channels. We map the computationally intensive processes DCT, Q and

VLE on different SPEs, whereas the other processes are mapped onto the PPE. For

this application, buffer sizes of 1 will give a deadlock free network, which means that

we can observe token packetizing only when the buffer sizes are increased. There-

fore, we run the PPN with four different configurations: we use FIFO buffer sizes of

1, 16, 32 and 48 tokens.

6.3 Performance Results 119

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

DCT Q VLE DCT Q VLE DCT Q VLE DCT Q VLE

Tasks on SPE

D
is

tr
ib

u
ti

o
n

Compute Stall Comm

FIFOs=1 FIFOs=48FIFOs=16 FIFOs=32

Figure 6.5: Distribution of times the DCT, Q and VLE processes of JPEG encoder

spent in computation, stalling and communication for non-packetized and packetized

versions.

All bars in Figure 6.5 depict the distribution of the time the DCT, Q and VLE tasks

spend in computing, stalling and communicating. Each bar shows how much time

processes spend on real computations and thus also how much time is spent in the

communication overhead. While stalling, a process is awaiting the synchronization

messages from other processes, i.e., showing the synchronization overhead. In the

communicating phase, a process is transferring the actual data. The first 3 bars in

Figure 6.5 correspond to the configuration with all buffer sizes set to one token. The

remaining bars show results of configurations with larger buffer sizes illustrating the

effect of token packetizing. We observe a redistribution between computation and

stalling fractions in all tasks: the stalling parts have been decreased, while the com-

putation parts were increased. Thus, the packetizing decreases the synchronization

overhead. In Figure 6.6, the overall performance of the PPN with different buffer

sizes is shown. We observe that the performance increases when the processors spend

less time in synchronization.

In four more experiments, we want to investigate the benefits of packetizing in ap-

plications with different computation-to-communication ratios. For this purpose, we

mapped JPEG2000, MJPEG, Sobel, and Demosaic applications onto the Cell BE.

The first two application have coarse-grained computation tasks, while the latter two

are communication dominant. For each application, we compare the throughput of

the sequential version running on the PPE and two parallel versions: the first one is

with minimum buffer sizes that guarantee deadlock free network, i.e., without pack-

etizing possible, and the second, with buffer sizes which are larger than the previous

version to allow packetizing. The experiments are depicted in Figure 6.7. Note that

the y-axis is a log scale of the throughput in Mbs (mega bits per second).

120 Executing PPNs on Fixed Programmable MPSoC Platforms

0

2

4

6

8

10

12

FIFO=1 FIFO=16 FIFO=32 FIFO=48

FIFO sizes

T
h

ro
u

g
h

p
u

t
(M

b
s

))

Figure 6.6: Throughput of JPEG encoder with different FIFO sizes

0,000

0,001

0,010

0,100

1,000

10,000

JPEG2000 (8/6) MJPEG (7/5) Sobel (5/3) Demosaic

(14/6)

T
h

ro
u

g
h

p
u

t
 M

b
s

 (
lo

g
))

Sequential

Not packetized

Packetized

Figure 6.7: Throughput comparison of sequential, non-packetized and packetized

versions of JPEG2000, MJPEG, Sobel, and Demosaic applications.

For all algorithms, the packetized versions work better than the non-packetized ver-

sion. As the JPEG2000 and MJPEG are characterized by their coarse grain tasks,

the communication overhead is insignificant and we see that the parallel versions are

faster than the sequential version for all, but non-packetized MJPEG algorithms. The

Sobel and the Demosaic kernels have very lightweight tasks. Thus, the introduced

inter-processor communication and overhead are more costly than the computations

themselves. This is the reason the bars in the third and fourth experiments in Fig-

ure 6.7 show a significant slow-down compared to the sequential application. The

6.3 Performance Results 121

conclusion is not to consider parallelization for communication dominant applica-

tions on the Cell BE platform. We, therefore, ignore the Sobel and Demosaic appli-

cations in the comparison of the performance results for applications mapped onto

both the Cell and the ESPAM, i.e., we focus on the JPEG2000 and MJPEG applica-

tions. The measured performance results for the JPEG2000 application on the Cell

and ESPAM are shown in Table 6.1.

Arch. # clock cycles CPU freq. time (sec)

Cell 288 · 106 3.2 Ghz 0.09

ESPAM 60 · 106 100 Mhz 0.6

Table 6.1: Measured Performance Results JPEG2000

We observe that the execution time (i.e., the fourth column) is much smaller on the

Cell than on the ESPAM platform. This result is mainly due to the clock frequency

of the Cell that is a factor of 30 higher than the ESPAM platform. Despite this factor

of 30 in the clock frequency, the execution time is not 30 times better on the Cell,

instead, it is only 7 times better. We observe the same trend for the execution times

of the MJPEG application shown in Table 6.2.

Arch. # clock cycles CPU freq. time (sec)

Cell 1200 · 106 3.2 Ghz 0.375

ESPAM 300 · 106 100 Mhz 3

Table 6.2: Measured Performance Results MJPEG

The execution time of the MJPEG application is roughly 10 times better on the

Cell compared to the ESPAM. Hence, we conclude that the Cell platform is a good

platform to obtain low absolute execution time numbers, but it is not necessarily the

most efficient platform. The reason is that its clock frequency is 30 times higher than

the ESPAM platform (i.e., the Cell is power hungry), but the execution times are not

30 times better. Instead, they are only 10 times better. In other words, the Cell is

faster in terms of execution time, but it is not proportional to its much higher clock

frequency. The reason is that the FIFO primitives are more costly on the Cell than on

the ESPAM platform, i.e., there is more overhead because the Cell communication

infrastructure does not support any FIFO communication with hardware components.

The reason that the ESPAM platform runs at 100 Mhz, is that it is prototyped on

FPGAs. If the ESPAM platform is implemented in ASIC technology as the Cell and

the IXP, then the frequency can be higher. As a result, the ESPAM platform would

become better in terms of performance than the Cell and the IXP running at a lower

frequency, which means that it is also more power efficient.

122 Executing PPNs on Fixed Programmable MPSoC Platforms

The Intel IXP

In the experiments for the IXP processes, we consider the QR matrix decomposition

algorithm. The corresponding PPN consists of 5 nodes and 12 FIFO channels, see

also Figure 5.11. Each process is mapped on a microengine and all FIFO channels are

mapped on hardware assisted scratchpad memory rings, i.e., option 4 in Figure 6.4.

The reason to map all FIFOs using option 4 is that all FIFOs fit in that memory and

that we can actually test the provided hardware support for FIFO communication

of the IXP. Note that despite this hardware support for FIFO communication, there

is a small software interface implementation that takes care of the FIFO read/write

function calls in the read/write phases of the processes. We do not consider the next

neighbor link, i.e., option 1 in Figure 6.4, because only 1 FIFO can be mapped and

the storage space is limited. Furthermore, we chose not to implement the process

functions such that we measure only the FIFO communication in the PPN. Process-

ing a 5x6 version of QR took 40247 cycles on the IXP as shown in the first row of

Table 6.3. Note that this measurement only says something about the FIFO commu-

nication (read and write phase of a process) as no real function is executed.

Arch. # clock cycles CPU freq. time (µs)

IXP 40247 600 Mhz 67

ESPAM: 5 MB 3865 100 Mhz 39

ESPAM: full HW 213 108 Mhz 2

Table 6.3: Measured Performance Results QR

To assess the efficiency of our FIFO implementation on the Intel IXP processor, we

create two ESPAM hardware solutions prototyped on a Xilinx FPGA for the same

QR application and compare the performance numbers. We create a platform with

5 Microblaze microprocessors for each process of the PPN, and connect the proces-

sors with a dedicated crossbar. The other hardware platform that we create does not

use any microprocessors, but all functionality is implemented in hardware, i.e., a full

hardware solution. The measured performance results for these two hardware plat-

forms are respectively shown in row 2 and 3 in Table 6.3. It can be seen that the 5 Mi-

croBlaze microprocessor platform executes the QR application in 3865 cycles, while

the full hardware implementation executes in 213 cycles. If we take into account the

frequencies of the different platforms, i.e., the 3rd column in Table 6.3, then we can

compute the execution times that are shown in the 4rd column. These execution times

allow a comparison of the QR PPN implementation on 3 different platforms. We ob-

serve that the IXP implementation is the slowest, despite the fact that it is running

at the highest frequency. We conclude that the more dedicated the communication

gets, the higher the performance, i.e., there is roughly a factor of 30 between the ex-

6.4 Discussion and Summary 123

tremes: the software solution on the IXP and the ESPAM full hardware solution. In

the IXP we need to share a bus, in the FPGA with MicroBlazes we share a crossbar to

communicate between MicroBlazes, and in the full hardware implementation, only

dedicated FIFO channels are used to communicate between processes. Moreover, in

the IXP there is still some synchronization and control required to handle all FIFO

accesses, while in the hardware platforms the producer/consumer pairs are truly de-

coupled. If we compare the IXP with the 5 MicroBlaze processor ESPAM platform,

then the execution time is almost 2 times worse, while the frequency of the IXP is 6

times higher. Thus, Table 6.3 illustrates the penalty that must be paid for mapping

PPNs onto a platform that does not support the execution of PPN as efficiently as

ESPAM does.

6.4 Discussion and Summary

In this chapter, we showed approaches to execute PPNs on the Cell and IXP plat-

forms, i.e., two commercial-off-the-shelf (COTS), programmable MPSoC platforms.

We compared the measured performance results of PPNs executed on these 2 plat-

forms with the performance results obtained on the ESPAM platform. The Cell, IXP,

and ESPAM platforms can be characterized as follows: the ESPAM is the most ded-

icated regarding the execution of PPNs and is prototyped on a FPGA, the IXP is

dedicated to streaming data, but is not as dedicated in executing PPNs as ESPAM,

and the Cell is the most general purpose compute platform. The platforms run at

different frequencies: the ESPAM platform is prototyped on a FPGA and thus runs

at 100 Mhz, the IXP runs at 600 Mhz, and the Cell at 3.2 Ghz.

In Section 6.3, we have shown experiments of PPNs executed on these 3 different

platforms. Thus, we were able to compare the execution time of the PPNs. From the

experiments in Section 6.3, it becomes clear that the IXP processor is not the best

platform a designer can select if he/she is free to choose any of these 3 platform as

the target platform. Despite the FIFO support in the IXP, the measured execution

times of the PPNs are higher than on the dedicated ESPAM platform, while the IXP’s

clock frequency is 6 times higher than the ESPAM platform. The Cell platform on

the other hand, can be a very good platform candidate. Its very high clock frequency

compensates the lack of the hardware FIFO support and the overhead caused by the

software implemented FIFO communication. However, this overhead makes the Cell

not the most efficient platform. While its frequency is 30 times higher than the ES-

PAM platform, the execution time is only 7 times better. Therefore, we conclude

that the Cell is the best platform to obtain the lowest absolute performance numbers.

However, the Cell is also the most power hungry solution since it runs at 3.2 Ghz.

The frequency of the ESPAM platform can be increased if implemented on the ASIC

124 Executing PPNs on Fixed Programmable MPSoC Platforms

technology like the Cell. Then, the ESPAM platform would not only give the best

absolute performance results, but it would also be more power efficient. In addition,

we remark that PPNs with very light-weight tasks can result in execution times on the

Cell that are worse than the sequential version of the application. Again, the reason

is the expensive software implemented FIFO communication on the Cell platform.

This fact indicates that the designer must carefully take into account the properties

of the PPN and the platform in his decision to choose a particular platform. In any

case, the ESPAM platform is the most efficient one because it is dedicated to execute

PPNs as efficiently as possible.

Chapter7
Conclusions

In this dissertation, we addressed the problem of how to transform a Polyhedral Pro-

cess Network (PPN) in order to meet performance/resource constraints. Transfor-

mations are crucial because deriving PPNs from a sequential program specifications

without performing any transformations does not guarantee that the resource and/or

performance constraints are met. The reason is that the pn compiler creates one pro-

cess in the parallel application specification (PPN) for each program statement in the

sequential program. As a result, the derived PPN and its processes can be highly im-

balanced as some program statements can be much more computationally intensive

than others. Therefore, compile-time analysis of PPNs and transformations should

assist the designer in transforming the PPN when some design constraints are not

met.

The research work presented in this dissertation mainly focused on how the process

splitting and merging transformations should be applied to achieve the best possi-

ble performance results. The process splitting transformation creates more processes

in a given PPN to exploit more data-level parallelism in the application. The pro-

cess merging transformation is used to reduce the number of processes in a PPN.

Before our work presented in this dissertation, i.e., our compile-time approaches to

evaluate the process splitting and merging transformations, the problem was that the

transformations were defined but it was the designer’s responsibility to apply them.

We have shown in this dissertation that it is not trivial for a designer to apply these

transformations. The reason is that there are many possibilities to apply a particular

transformation and many factors influence the final performance results. As a conse-

quence, there can be great differences in the achieved performance results, and they

also can easily get worse than the results of the initial PPN if the transformations are

not applied carefully. To assist the designer in transforming a PPN, we have defined

metrics that are important for the final performance results. Furthermore, we pre-

126 Conclusions

sented compile-time approaches to evaluate these metrics, such that the designer can

select the best possible alternative. For the process splitting transformation discussed

in Chapter 3, the analysis is performed locally on the process, while a throughput

model for PPNs has been introduced for evaluating the process merging transforma-

tion in Chapter 4. Based on the results of the work presented in Chapters 3 and 4, we

draw the following conclusion.

• Conclusion I: by defining all major factors that are important for the process

splitting/merging transformation, and by taking into account the target platform

characteristics, we can, at compile-time, evaluate and correctly predict how the

process splitting/merging transformation should be applied to obtain the best

performance results.

Compile-time hints to transform PPNs in a particular way were missing in the Daedalus

tool-flow, as it could only explore different platform and mapping specifications.

Thus, the research work presented in this dissertation addresses one very important

aspect of the Y-chart approach, i.e., to evaluate and change the application specifica-

tion after performance analysis. With our compile-time approaches, we can evaluate

the process splitting and merging transformations, such that the best option to apply a

transformation can be selected. Changing the application specification was identified

in Chapter 1 as an important step in order to obtain a desired design point.

Besides approaches to help the designer in evaluating and applying the process split-

ting and merging transformations in isolation, we have also devised a holistic ap-

proach in Chapter 5 that combines both transformations. This solved the problem of

ordering the process splitting and merging transformations, which is a difficult prob-

lem as there are many alternatives to apply the transformations one after the other

and with different parameters. Furthermore, we solved the problem of selecting the

processes on which a transformation should be applied.

• Conclusion II: by first splitting up all processes and by subsequently merg-

ing the different process instances into load-balanced compound processes, we

solved the problem of ordering the different transformations and also on which

process a particular transformation should be applied to obtain the largest pos-

itive performance impact.

There are two perspectives to look at our approach to combine the process splitting

and merging transformations. The first one is presented in Chapter 5, i.e., to consider

the combination of transformations as an optimization after the initial PPN has been

derived. The second perspective is to look at this as an approach to derive PPNs

in a different way than currently implemented in the pn compiler. That is, instead

of creating one process for each program statement in the sequential application, a

number of compound processes are created that contain a number of executions of

127

all program statements. Then, the designer will not be confronted with the initial

PPN, but only with the transformed and load-balanced PPN. However, we did not

emphasize on this perspective in this dissertation as this requires more research on the

number of compound processes to be generated. Choosing the number of processes

could be the responsibility of either the designer or the compiler, but the latter is

clearly the preferred option as it may not be straightforward for the designer to decide

when saturation of the performance occurs. For example, cycles in a PPN may, or

may not lead, to sequential execution of the processes involved in the cycle. When the

processes in a cycle execute sequentially, then we refer to it as a true cycle. Splitting

the processes involved in true cycles would only introduce more processes and not

improve the performance, because the processes already execute sequentially as we

have also explained in Chapter 5. On the other hand, when the process executions

in a cycle overlap, then the splitting transformation can result in performance gains.

However, how much can be gained depends on the behavior of that cycle.

• Conclusion III: with our holistic approach that combines the splitting and

merging transformations, we exploit all available data-level parallelism to the

maximum such that our approach gives the best performance results using the

two considered transformations when there is something to be gained, and the

same performance results as the initial PPN when there is nothing to be gained.

In order to know how much can be gained by splitting processes, the behavior of the

(self)-cycles that restrict the data-level parallelism in a certain way must be investi-

gated. We sketched an approach how to detect true cycles, but left the question how

many times a process should be split-up for future research.

In Chapter 6, we have presented two approaches to execute PPNs on commercial

off-the-shelf (COTS), programmable MPSoC platforms, i.e., the Intel IXP network

processor and the Cell platform. While the IXP has hardware support for FIFO com-

munication to some extent, this is completely absent in the Cell platform. Thus, both

the Cell and the IXP platform do not support the operational semantics of the PPN

model of computation as efficiently as the ESPAM platform, which is especially tai-

lored to execute PPNs as efficiently as possible. To make the FIFO communication

more efficient on the Cell, we deployed an approach to transfer multiple data tokens

when only one is requested by a consumer process. Thus, by grouping multiple to-

kens into one package, less FIFO read/write accesses need to be performed during

the execution of a PPN. The execution of PPNs on the Cell and IXP processors en-

abled us to compare the execution times with the ESPAM platform. In Chapter 6, we

showed that the ESPAM platform always gives the lowest cycle count, while the Cell

is better in terms of execution times as a result of its very high clock frequency.

• Conclusion IV: The cycle count for PPNs executed on the ESPAM platform

is always lower compared to the IXP and Cell platforms. It does not provide

128 Conclusions

the fastest execution times since its clock frequency is restricted to 100 Mhz,

only because it is prototyped on an FPGA. With higher clock frequencies (e.g.,

an ASIC implementation, or advances in FPGA technology), the ESPAM plat-

form would not only be the most efficient, but also the best platform to obtain

the lowest execution times.

Thus, the most benefit from executing PPNs onto MPSoC platforms is obtained

when the operational semantics of the PPN model of computation are supported by

the target platform. The IXP processor, for example, runs at 600Mhz which is 6 times

higher than the ESPAM platform. Despite this higher clock frequency, however,

the execution times are worse than for the ESPAM platform. The reason is that

FIFO communication is supported to some extent, but not as efficiently as on the

ESPAM platform. In the Cell platform on the other hand, FIFO communication is

completely implemented in software. This makes the ESPAM platform the most

efficient platform because it is especially tailored to execute PPNs and supports FIFO

communication with hardware components. The Cell’s clock frequency is 30 times

higher than the ESPAM platform, but its performance results are only 10 times better.

The only reason that the ESPAM is restricted to 100 Mhz, is because it is prototyped

on FPGA technology and not in ASIC such as the Cell. If the ESPAM platform is

implemented using ASIC technology, then it would not only be the most efficient,

but also the fastest.

Finally, we remark that it is not beneficial for all applications to be executed as

PPNs on MPSoC platforms. With the experiments in Chapter 6, we showed that

performance results can also get worse compared to the sequential versions of the

applications.

• Conclusion V: for applications with very fine-grain computations, and/or tar-

get platforms with high synchronization and communication costs, the gain of

parallelization can be canceled by the costs for synchronization/communication.

In Chapter 5, we presented an approach to create compound processes by using

the process splitting and merging transformations in combination. In that work, we

assumed that the designer selects the number of compound processes to be created,

which can, for example, be the number of available processors in the target platform.

In our future work, we want to investigate if we can decide at compile-time howmany

compound processes to create before saturation of the system performance occurs.

This optimization could, for example, result in a number of compound processes for

a given PPN that is less than the available processors, which means that the other

processors are available for other applications. Thus, we want to investigate how

the maximum parallelism available in an application can be determined, and how it

129

can be exploited using the minimum number of resources by applying the process

splitting and merging transformations.

130 Conclusions

Bibliography

[1] M. Adiletta, M. Rosenbluth, and D. Bernstein. The next generation of Intel IXP

network processors. Intel Technology Journal, 06(03), 15 aug 2002.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: principles, techniques,

and tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1986.

[3] T. W. Ainsworth and T. M. Pinkston. On characterizing performance of the Cell

Broadband Engine Element Interconnect Bus. In NOCS ’07: Proceedings of

the First International Symposium on Networks-on-Chip, pages 18–29, 2007.

[4] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: To-

ward a complete set of numerical abstractions for the analysis and verification

of hardware and software systems. Sci. Comput. Program., 72(1-2):3–21, 2008.

[5] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and

A. Sangiovanni-Vincentelli. Metropolis: An integrated electronic system de-

sign environment. Computer, 36(4):45–52, 2003.

[6] U. K. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic

Publishers, Norwell, MA, USA, 1988.

[7] C. Bastoul. Code generation in the polyhedral model is easier than you think.

In PACT ’04: Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, pages 7–16, 2004.

[8] S. Bhattacharrya, R. Leupers, J. Takala, and E. Deprettere, editors. Handbook

on signal processing systems, chapter by Verdoolaege, S., Polyhedral process

networks. Springer, 2010.

132 Bibliography

[9] S. S. Bhattacharyya and E. A. Lee. Scheduling synchronous dataflow graphs

for efficient looping. J. VLSI Signal Process. Syst., 6(3):271–288, 1993.

[10] A. Bik, M. Girkar, P. Grey, and X. Tian. Efficient exploitation of parallelism on

Pentium III and Pentium 4 processor-based systems. Intel Technology Journal

Q1 (March) (2001) 1-9, 2001.

[11] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static dataflow.

IEEE Transactions on signal processing, 44(2):397–408, 1996.

[12] W. Blume, R. Eigenmann, K. Faigin, J. Grout, J. Hoeflinger, D. A. Padua, P. Pe-

tersen, W. M. Pottenger, L. Rauchwerger, P. Tu, and S. Weatherford. Polaris:

Improving the effectiveness of parallelizing compilers. In LCPC ’94: Pro-

ceedings of the 7th International Workshop on Languages and Compilers for

Parallel Computing, pages 141–154, 1995.

[13] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A practi-

cal automatic polyhedral parallelizer and locality optimizer. SIGPLAN Not.,

43(6):101–113, 2008.

[14] P. M. Carpenter, A. Ramirez, and E. Ayguade. Mapping stream programs onto

heterogeneous multiprocessor systems. In CASES ’09: Proceedings of the 2009

international conference on Compilers, architecture, and synthesis for embed-

ded systems, pages 57–66, 2009.

[15] J. Ceng, J. Castrillon, W. Sheng, H. Scharwächter, R. Leupers, G. Ascheid,

H. Meyr, T. Isshiki, and H. Kunieda. MAPS: an integrated framework for MP-

SoC application parallelization. In DAC ’08: Proceedings of the 45th annual

Design Automation Conference, pages 754–759, 2008.

[16] S. Chakraborty, S. Kunzli, and L. Thiele. A general framework for analysing

system properties in platform-based embedded system designs. In DATE ’03:

Proceedings of the conference on Design, Automation and Test in Europe, page

10190, Washington, DC, USA, 2003. IEEE Computer Society.

[17] E. Cheung, H. Hsieh, and F. Balarin. Automatic buffer sizing for rate-

constrained KPN applications on multiprocessor system-on-chip. In Proc. of

HLDVT, pages 37–44, 2007.

[18] P. Clauss. Counting solutions to linear and nonlinear constraints through Ehrhart

polynomials: applications to analyze and transform scientific programs. In

ICS ’96: Proceedings of the 10th international conference on Supercomputing,

pages 278–285, 1996.

Bibliography 133

[19] P. Clauss. Handling memory cache policy with integer points counting. In

Euro-Par ’97: Proceedings of the Third International Euro-Par Conference on

Parallel Processing, pages 285–293, 1997.

[20] P. Clauss, V. Loechner, and D. Wilde. Deriving formulae to count solutions to

parameterized linear systems using Ehrhart polynomials: Applications to the

analysis of nested-loop programs, 1997.

[21] R. Dömer, A. Gerstlauer, J. Peng, D. Shin, L. Cai, H. Yu, S. Abdi, and D. D.

Gajski. System-on-chip environment: a SpecC-based framework for heteroge-

neous MPSoC design. EURASIP J. Embedded Syst., 2008:1–13, 2008.

[22] B. K. Dwivedi, A. Kumar, and M. Balakrishnan. Automatic synthesis of sys-

tem on chip multiprocessor architectures for process networks. In Proc. of

CODES+ISSS, pages 60–65, 2004.

[23] J. Falk, J. Keinert, C. Haubelt, J. Teich, and S. S. Bhattacharyya. A general-

ized static data flow clustering algorithm for MPSoC scheduling of multimedia

applications. In Proc. of EMSOFT, pages 189–198, 2008.

[24] P. Feautrier. Parametric integer programming. RAIRO Recherche Opera-

tionnelle, 22, 1988.

[25] P. Feautrier. Dataflow analysis of array and scalar references. International

Journal of Parallel Programming, 20, 1991.

[26] J. A. Fisher. Very long instruction word architectures and the ELI-512. In ISCA

’83: Proceedings of the 10th annual international symposium on Computer

architecture, pages 140–150, 1983.

[27] M. P. Forum. MPI: A Message-Passing Interface standard. Technical report,

1994.

[28] D. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Specification and design of

embedded systems. Prentice-Hall, Inc., 1994.

[29] L. George and M. Blume. Taming the IXP network processor. In PLDI ’03:

Proceedings of the ACM SIGPLAN 2003 conference on Programming language

design and implementation, pages 26–37, 2003.

[30] A. H. Ghamarian, M. C. W. Geilen, T. Basten, and S. Stuijk. Parametric

throughput analysis of synchronous data flow graphs. In Proc. of DATE, pages

116–121, 2008.

134 Bibliography

[31] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,

data, and pipeline parallelism in stream programs. In ASPLOS-XII: Proceedings

of the 12th international conference on Architectural support for programming

languages and operating systems, pages 151–162, 2006.

[32] M. I. Gordon, W. Thies, M. Karczmarek, J. Lin, A. S. Meli, A. A. Lamb,

C. Leger, J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream com-

piler for communication-exposed architectures. In ASPLOS-X: Proceedings of

the 10th international conference on Architectural support for programming

languages and operating systems, pages 291–303, 2002.

[33] K. Grüttner and W. Nebel. Modelling program-state machines in SystemC. In

FDL, pages 7–12, 2008.

[34] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Ya-

mazaki. Synergistic processing in cell’s multicore architecture. IEEE Micro,

26(2):10–24, 2006.

[35] S. Ha, C. Lee, Y. Yi, S. Kwon, and Y.-P. Joo. Hardware-software codesign of

multimedia embedded systems: the PeaCE. In RTCSA ’06: Proceedings of the

12th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, pages 207–214, 2006.

[36] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,

E. Bugnion, and M. S. Lam. Maximizing multiprocessor performance with the

SUIF compiler. Computer, 29(12):84–89, 1996.

[37] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, 1978.

[38] J. Y. Hur, S. Wong, and T. Stefanov. Design trade-offs in customized on-chip

crossbar schedulers. J. Signal Process. Syst., 58(1):69–85, 2010.

[39] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and

D. Shippy. Introduction to the Cell multiprocessor. IBM J. Res. Dev.,

49(4/5):589–604, 2005.

[40] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In

Proc. of the IFIP Congress 74. North-Holland Publishing Co., 1974.

[41] T. Kangas, P. Kukkala, H. Orsila, E. Salminen, M. Hännikäinen, T. D.

Hämäläinen, J. Riihimäki, and K. Kuusilinna. UML-based multiprocessor SoC

design framework. ACM Trans. Embed. Comput. Syst., 5(2):281–320, 2006.

Bibliography 135

[42] J. Keinert, M. Streubuehr, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Te-

ich, and M. Meredith. SystemCoDesigner—an automatic ESL synthesis ap-

proach by design space exploration and behavioral synthesis for streaming ap-

plications. ACM Trans. Des. Autom. Electron. Syst., 14(1):1–23, 2009.

[43] K. Kennedy and J. R. Allen. Optimizing compilers for modern architectures:

a dependence-based approach. Morgan Kaufmann Publishers Inc., San Fran-

cisco, CA, USA, 2002.

[44] B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vissers. A methodology to

design programmable embedded systems - the y-chart approach. In Embedded

Processor Design Challenges: Systems, Architectures, Modeling, and Simula-

tion - SAMOS, pages 18–37, 2002.

[45] A. Kumar, S. Fernando, Y. Ha, B. Mesman, and H. Corporaal. Multiproces-

sor systems synthesis for multiple use-cases of multiple applications on FPGA.

ACM Trans. Des. Autom. Electron. Syst., 13(3):1–27, 2008.

[46] J.-Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic

queuing systems for the internet. Springer-Verlag New York, Inc., New York,

NY, USA, 2001.

[47] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. In Proceedings of

the IEEE, volume 75, pages 1235–1245, September 1987.

[48] C. Lemke. The dual method of solving the linear programming problem. Naval

Research Logistics Quarterly, 1:36 – 47, 1954.

[49] L. Li, B. Huang, J. Dai, and L. Harrison. Automatic multithreading and mul-

tiprocessing of C programs for IXP. In PPoPP ’05: Proceedings of the tenth

ACM SIGPLAN symposium on Principles and practice of parallel program-

ming, pages 132–141, 2005.

[50] S. Meijer, B. Kienhuis, J. Walters, and D. Snuijf. Automatic partitioning and

mapping of stream-based applications onto the Intel IXP network processor. In

SCOPES ’07: Proceedingsof the 10th international workshop on Software &

compilers for embedded systems, pages 23–30, 2007.

[51] S. Meijer, H. Nikolov, and T. Stefanov. On compile-time evaluation of pro-

cess partitioning transformations for Kahn process networks. In CODES+ISSS

’09: Proceedings of the 7th IEEE/ACM international conference on Hard-

ware/software codesign and system synthesis, pages 31–40, 2009.

136 Bibliography

[52] S. Meijer, H. Nikolov, and T. Stefanov. Combining process splitting and merg-

ing transformations for polyhedral process networks. In Proc. of the 8th Int.

IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTIMedia),

pages 97–106, 2010.

[53] S. Meijer, H. Nikolov, and T. Stefanov. Throughput modeling to evaluate pro-

cess merging transformations in polyhedral process networks. In Proceedings

of the conference on Design, automation and test in Europe (DATE’10), pages

747–752, 2010.

[54] B. Meister, A. Leung, N. Vasilache, D. Wohlford, C. Bastoul, and R. Lethin.

Productivity via automatic code generation for PGAS platforms with the R-

Stream compiler. In APGAS’09 Workshop on Asynchrony in the PGAS Pro-

gramming Model, June 2009.

[55] A. Moonen, M. Bekooij, R. v. d. Berg, and J. v. Meerbergen. Practical and

accurate throughput analysis with the cyclo static dataflow model. In Proc. of

MASCOTS, pages 238–245, 2007.

[56] G. E. Moore. Cramming more components onto integrated circuits. Electronics,

38(8):114–117, April 1965.

[57] S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kauf-

mann Publishers, Inc., 1997.

[58] D. Nadezhkin, S. Meijer, T. Stefanov, and E. Deprettere. Realizing FIFO com-

munication when mapping Kahn process networks onto Cell. In SAMOS IX:

International Symposium on Systems, Architectures, MOdeling and Simulation,

2009.

[59] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel program-

ming with CUDA. Queue, 6(2):40–53, 2008.

[60] H. Nikolov, T. Stefanov, and E. Deprettere. Multi-processor system design with

ESPAM. In Proc. of CODES+ISSS, pages 211–216, 2006.

[61] H. Nikolov, T. Stefanov, and E. Deprettere. Systematic and automated multi-

processor system design, programming, and implementation. Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on, 27(3):542–

555, 2008.

[62] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-

sulescu, and E. Deprettere. Daedalus: toward composable multimedia MP-SoC

Bibliography 137

design. In DAC ’08: Proceedings of the 45th annual conference on Design

automation, pages 574–579, 2008.

[63] L. noel Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimiza-

tion in the polyhedral model: Part I, one-dimensional time. In International

Symposium on Code Generation and Optimization (CGO), pages 144 – 156,

2007.

[64] ”OpenCL”. ”the open standard for parallel programming of heterogeneous sys-

tems http://www.khronos.org/opencl/”, 2009.

[65] S. Pakin. Receiver-initiated message passing over RDMA networks. Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium

on, pages 1–12, April 2008.

[66] K. K. Parhi and D. G. Messerschmitt. Static Rate-Optimal Scheduling of It-

erative Data-Flow Programs via Optimum Unfolding. IEEE Transaction on

Computers, 40(2):178–195, Feb. 1991.

[67] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to explor-

ing embedded system architectures at multiple abstraction levels. IEEE Trans.

Comput., 55(2):99–112, 2006.

[68] J. Pino, S. Bhattacharyya, and E. A. Lee. A hierarchical multiprocessor schedul-

ing framework for Synchronous Dataflow Graphs. Technical Report UCB/ERL

M95/36, EECS Department, University of California, Berkeley, 1995.

[69] S. Pop, A. Cohen, C. Bastoul, S. Girbal, G. A. Silber, and N. Vasilache.

Graphite: Loop optimizations based on the polyhedral model for gcc. In Proc.

of the 4th GCC Developper’s Summit, pages 179–198, June 2006.

[70] L.-N. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in

the polyhedral model: part ii, multidimensional time. In PLDI ’08: Proceedings

of the 2008 ACM SIGPLAN conference on Programming language design and

implementation, pages 90–100, 2008.

[71] W. Pugh and D. Wonnacott. An exact method for analysis of value-based ar-

ray data dependences. In Proceedings of the 6th International Workshop on

Languages and Compilers for Parallel Computing, pages 546–566, 1994.

[72] K. H. Rosen. Discrete mathematics and its applications (2nd ed.). McGraw-

Hill, Inc., New York, NY, USA, 1991.

[73] M. S. Schlansker and B. R. Rau. EPIC: Explicitly parallel instruction comput-

ing. Computer, 33(2):37–45, 2000.

138 Bibliography

[74] A. Schrijver. Theory of linear and integer programming. John Wiley & Sons,

Inc., New York, NY, USA, 1986.

[75] N. Shah, W. Plishker, K. Ravindran, and K. Keutzer. Np-click: A productive

software development approach for network processors. IEEEMicro, 24(5):45–

54, 2004.

[76] J. Sjodin, S. Pop, H. Jagasia, T. Grosser, and A. Pop. Design of graphite and

the polyhedral compilation package. 2009.

[77] S. Sriram and S. Bhattacharyya. Embedded Multiprocessors: Scheduling and

Synchronization. Marcel Dekker, Inc., 2000.

[78] T. Stefanov. Converting weakly dynamic programs to equivalent process net-

work specifications, 2004. PhD thesis, Leiden University.

[79] T. Stefanov, B. Kienhuis, and E. Deprettere. Algorithmic transformation tech-

niques for efficient exploration of alternative application instances. In Proc. of

CODES, pages 7–12, 2002.

[80] S. Stuijk, M. Geilen, and T. Basten. Exploring trade-offs in buffer requirements

and throughput constraints for synchronous dataflow graphs. In DAC ’06: Pro-

ceedings of the 43rd annual Design Automation Conference, pages 899–904,

2006.

[81] S. Stuijk, M. Geilen, and T. Basten. Throughput-buffering trade-off exploration

for Cyclo-Static and Synchronous Dataflow Graphs. IEEE Trans. Comput.,

57(10):1331–1345, 2008.

[82] N. N. S. Technologies. http://www.network-speed.com.

[83] J. Teich and L. Thiele. Exact Partitioning of Affine Dependence Algorithms.

Lecture Notes in Computer Science (LNCS), Springer, 2268:133–151, 2002.

[84] L. Thiele, I. Bacivarov, W. Haid, and K. Huang. Mapping applications to tiled

multiprocessor embedded systems. In ACSD ’07: Proceedings of the Sev-

enth International Conference on Application of Concurrency to System Design,

pages 29–40, 2007.

[85] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling

hard real-time systems. In ISCAS, pages 101–104, 2000.

[86] L. Thiele and N. Stoimenov. Modular performance analysis of cyclic dataflow

graphs. In EMSOFT 09: Proceedings of the 9th ACM international conference

on Embedded software, pages 127–136, Grenoble, France, 2009.

Bibliography 139

[87] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for

streaming applications. In CC ’02: Proceedings of the 11th International Con-

ference on Compiler Construction, pages 179–196, 2002.

[88] M. Thompson and A. D. Pimentel. Towards multi-application workload mod-

eling in Sesame for system-level design space exploration. In SAMOS, pages

222–232, 2007.

[89] A. Turjan. Compiling nested loop programs to process networks, 2007. PhD

thesis, Leiden University, The Netherlands.

[90] A. Turjan, B. Kienhuis, and E. Deprettere. Translating affine nested-loop pro-

grams to process networks. In CASES ’04: Proceedings of the 2004 inter-

national conference on Compilers, architecture, and synthesis for embedded

systems, pages 220–229, 2004.

[91] S. van Haastregt and B. Kienhuis. Automated synthesis of streaming C appli-

cations to process networks in hardware. In DATE, pages 890–893, 2009.

[92] S. Verdoolaege. Incremental Loop Transformations and Enumeration of Para-

metric Sets. PhD thesis, Katholieke Universiteit Leuven, 2005.

[93] S. Verdoolaege. An integer set library for program analysis. ACES symposium,

Edegem, 7-8 september, 2009.

[94] S. Verdoolaege, M. Bruynooghe, G. Janssens, and F. Catthoor. Multi-

dimensional incremental loop fusion for data locality. In In Proceedings of the

IEEE International Conference on Application Specific Systems, Architectures,

and Processors, pages 17–27, 2003.

[95] S. Verdoolaege, H. Nikolov, and T. Stefanov. pn: a tool for improved derivation

of process networks. EURASIP J. Embedded Syst., 2007(1):19–19, 2007.

[96] S. Verdoolaege and K. Woods. Counting with rational generating functions. J.

Symb. Comput., 43(2):75–91, 2008.

[97] S. Verdoolaege, K. M. Woods, M. Bruynooghe, and R. Cools. Computation

and manipulation of enumerators of integer projections of parametric poly-

topes. CW Reports CW392, K.U.Leuven, Department of Computer Science,

Mar. 2005.

[98] D. K. Wilde. A library for doing polyhedral operations. Technical Report RR-

2157.

140 Bibliography

[99] X. D. Zhang, Q. J. Li, R. Rabbah, and S. Amarasinghe. A lightweight streaming

layer for multicore execution, http://cag.lcs.mit.edu/commit/papers/07/zhang-

dascmp07.pdf.

Index

affine hyperplane, 17

aggregated FIFO throughput, 76

average production period, 41

Cell platform, 112

communication costs, 38

compound process, 65

computation costs, 38

control overhead, 42

Daedalus, 3

data transfer, 42

execution time of a transformation, 43

FIFO channel throughput, 74

FIFO pull strategy, 116

hyperplane, 17

initial delay, 39

input port domain, 27

Intel IXP network processor, 113

isolated process throughput, 72

lexicographical maximum, 19

lexicographical minimum, 19

lexicographical order, 19

mapping, 28

modulo unfolding, 32

output port domain, 28

parametric integer linear programming,

19

partitioning metrics, 38

plane-cutting, 32

pn compiler, 3

polyhedral model, 21

Polyhedral Process Network (PPN), 24

polytope, 18

process function, 25

process iteration, 27

process iteration domain, 27

process iteration domain size, 27

process merging, 65

process splitting, 33

process throughput, 70

process workload, 26

production period, 40

rank, 20

rational polyhedron, 18

SANLP, 21

scalar product, 17

self-edge, 35

sink process, 25

source process, 25

static affine nested loop program, 21

141

142 INDEX

static control parts (SCoPs), 22

system throuhgput, 67

throughput propagation, 71

Y-chart, 5

Acknowledgments

This dissertation would not have been written without the help, assistance, and ad-

vise of many people. First of all, I would like to thank Alexandru Turjan for intro-

ducing me to the topics of compilation techniques and program analysis. Inviting

me to write my master’s thesis in Philips Research was really the kickstart for my

research work later as a PhD-student. Alex, I learned a lot from your research men-

tality, interest in reading literature, and problem solving skills. It was therefore my

pleasure to work briefly together again when you invited me for a PhD internship at

NXP Semiconductors.

From the LERC group in LIACS, I am most thankful to Todor Stefanov and Hristo

Nikolov. In the ”second half” of my PhD time, when results needed to be produced,

you pushed me and I pushed you. We had many interesting and challenging discus-

sions that led to the fine results that we produced in such a short amount of time.

While I was sometimes rushing, you were always checking and double-checking

things and I really enjoyed working together.

FromACEAssociated Compiler Experts B.V., I would like to thankMarcel Beemster,

Marius Schoorel, Joseph van Vlijmen, and Martijn de Lange for giving me the right

advise during my PhD, which really contributed to the successful second half my

PhD.

The work presented in this dissertation has been supported by the MEDEA+ NEVA

project 2A703. I would like to thank the NEVA project for financially supporting my

research, and I am thankful to Sven Verdoolaege for proof reading this dissertation.

Finally, I would like to thank all my other friends, family, parents for their support.

Wouter Meuleman in particular, since we finished the same bachelor and master stud-

ies, both continued as Phd-students, and thus shared many experiences. And last but

not least, I would like to thank Senny for her understanding and support during my

PhD time, and for her love!

Samenvatting

Deze dissertatie beschrijft methoden en technieken voor het analyseren en program-

meren van multiprocessor systemen die zijn geı̈ntegreerd in een enkele chip. We

richten ons voornamelijk op applicaties voor de verwerking van signalen en beelden

in ingebedde multimedia toepassingen. Deze toepassingen kunnen het best worden

gekarakteriseerd als een verzameling van rekentaken die data uitwisselen in de vorm

van datastromen. In de meeste van deze toepassingen zijn doorstroomsnelheden van

cruciaal belang, waardoor rekentaken snel en, indien mogelijk, gelijktijdig moeten

worden uitgevoerd. Deze eisen leiden vanzelf tot implementatiestructuren die bestaan

uit meerdere, vaak ongelijke, processoren die autonoom rekenen en zijn aangesloten

op een communicatie-, synchronisatie-, en geheugeninfrastructuur voor de uitwissel-

ing van data. De complexiteit van zulke ingebedde multi-processor systemen heeft

een niveau bereikt waardoor het noodzakelijk is geworden om het programmeren van

deze systemen op systematische en automatische wijze uit te voeren.

Voor het efficiënt programmeren van multi-processor systemen heeft het Leiden

Embedded Research Center (LERC) een ontwerpmethodologie ontwikkeld die uit-

gaat van twee principes. Het eerste is gebaseerd op het feit dat toepassingen gespeci-

ficieerd worden in termen van datastroom procesnetwerken, in het bijzonder Poly-

hedral Proces Netwerken (PPN), die goed passen bij de beoogde datastroom appli-

caties. Hierdoor is een ontwerper veel beter in staat, in tegenstelling tot monolitische

en sequentiële applicatiebeschrijvingen, om autonome taken toe te kennen aan ver-

schillende processoren van het multi-processor systeem. Het tweede principe heeft

als doel multi-processor systemen te creëeren die naadloos aansluiten op de eigen-

schappen van de stroomgebaseerde toepassingen, waardoor de applicaties zo efficiënt

mogelijk uitgevoerd kunnen worden. Deze ontwerptechnieken worden volledig on-

dersteund door het vertaalprogramma Daedalus. Dit is een vertaler die drie hoog-

niveau beschrijvingen (de applicatie, het multi-processor systeem, en de toekenning

van applicatietaken aan rekeneenheden van het multi-processor systeem) automatisch

146 Samenvatting

omzet naar een laagniveau beschrijving van het systeem. Dit stelt een ontwerper

in staat om op volledig automatische wijze een applicatie te implementeren op een

multi-processor systeem.

Deze dissertatie richt zich op de beschrijving van applicaties in de vorm van een

Polyhedral Proces Netwerk (PPN), en dan met name op het omvormen van PPNs.

Het probleem is dat PPNs automatisch afgeleid kunnen worden, maar niet noodza-

kelijk tot de gewenste doorstroomsnelheden leiden. Het omvormen van het PPN is

dan noodzakelijk om het gewenste resultaat te bereiken. Het omvormen van een PPN

kan op twee manieren gebeuren: een proces uit het PPN kan opgesplitst worden in

meerdere parallele processen, of meerdere processen kunnen samengevoegd worden

in één samengesteld proces. In het eerste geval, spreken we van de process splitting

transformatie die toegepast wordt om de applicatie te versnellen, en in het tweede

geval spreken we van de process merging transformatie dat toegepast wordt om het

aantal processen in het PPN te verminderen indien nodig. Het probleem bestond eruit

dat beide transformaties wel gedefinieerd waren, maar de ontwerper wist niet pre-

cies hoe deze het best toegepast konden worden. Er zijn namelijk vele verschillende

mogelijkheden waarop een bepaalde transformatie toegepast kan worden, en vele

verschillende factoren spelen een rol in de uiteindelijke doorstroomsnelheden van

applicaties. Om de ontwerper te helpen met het zo efficient mogelijk toepassen van

transformaties, benoemen we in hoofdstuk 3 de factoren die belangrijk zijn voor de

process splitting transformatie, hoe deze geëvalueerd kunnen worden, en een aanpak

voor het kiezen van de beste transformatie. In hoofdstuk 4 doen we hetzelfde, maar

dan voor de process merging transformatie. Deze analyse is wezenlijk anders dan de

process splitting transformatie, omdat het niet lokaal uitgevoerd wordt zoals bij de

process splitting, maar globaal voor het hele PPN. Dat wil zeggen dat we voor het

samenvoegen van processen een model voor de doorstroomsnelheid definiëren. Dit

stelt de ontwerper in staat om een transformatie op een bepaalde manier uit te voeren,

de doorstroomsnelheid te evaluëren, en het beste alternatief te kiezen. Daarnaast pre-

senteren we in hoofdstuk 5 een aanpak die beide transformaties combineert. Hierdoor

lossen we het probleem op dat de transformaties op vele verschillende mogelijkhe-

den achter elkaar toegepast kunnen worden (in verschillende volgordes). Tenslotte

presenteren we in hoofdstuk 6 technieken om PPNs op multi-processor systemen uit

te voeren. We beschrijven technieken voor het afbeelden van de verschillende ele-

menten van PPNs op de Intel IXP network processor en de Cell platform.

Curriculum Vitae

Sjoerd Meijer was born on the 1st of December, 1979, in Leiderdorp, the Nether-

lands. In 1998, he received his VWO, or pre-university, high-school diploma at the

Louise de Coligny Scholengemeenschap, in Leiden, the Netherlands. Sjoerd Meijer

started his studies in computer science at the The Hague University of Applied Sci-

ences and received his bachelor degree in 2002. He continued his studies in computer

science at the Leiden University and wrote his master’s thesis in Philips Research,

Eindhoven. Sjoerd Meijer received his master degree in 2005 and continued the re-

search work as a PhD-student in the Leiden Embedded Research Centre (LERC),

which is part of the Leiden Institute of Advanced Computer Science (LIACS) at Lei-

den University. He was involved in the NEVA project 2A703, Networks on Chips

Design Driven by Video and Distribution Applications, and conducted research in

the area of automatic parallelization of program code, analysis and transformations

for parallel program specifications. The research work culminated in the writing of

this Ph.D. dissertation in 2010. Since June 2010, Sjoerd Meijer is working as a com-

piler engineer in ACE Associated Compiler Experts B.V.

