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CHAPTER 6
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DISSEMINATION AND FORMATION
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ABSTRACT

The receptor tyrosine kinase, MST1R has been implicated in prostate cancer growth and angiogenesis and,
in this context; an important role has been attributed to MST1R expressed on tumor-associated macro-
phages. Here, we observed that MST1R expression in human prostate cancer cell lines correlates with
androgen-independency and metastatic capacity. We expressed MST1R shRNAs in androgen-independent,
metastatic PC3 cells. Bulk selected stable populations showed ~50% reduction in MST1R mRNA and pro-
tein surface expression. As a consequence, cell scattering in 2D and invasive outgrowth in 3D collagen matri-
ces was attenuated, which could be restored by HGF stimulation of the MST1R-related MET receptor.
PC3shMST1R cells were also blocked in their ability to disseminate in a zebrafish embryo xenotransplanta-
tion model. Furthermore, RNAI targeting MST1R prevented the formation of bone metastases following in-
tracardiac inoculation in mice. Together, these findings demonstrate that down regulation of MST1R can in-

hibit prostate cancer invasion, dissemination and metastatic colonization.

INTRODUCTION

The macrophage stimulating 1 receptor (MST1R; RON; Met-related tyrosine kinase) is a receptor tyrosine
kinase that has been implicated in various epithelial malignancies including breast, colon, ovarian, liver, and
head and neck cancers (1-11). MST1R is also overexpressed in primary prostate cancer and at metastatic
prostate cancer sites (12). Experiments using MST1R kinase-deficient mice have established a role for
MST1R in prostate tumor growth and angiogenesis (13). Interestingly, this can be explained at least in part
by a critical role for MST1R expression on macrophages in the tumor microenvironment (14). MST1R trans-
gene expression in prostate epithelium and findings from in vitro experiments indicate that MST1R ex-
pressed on prostate cancer cells could contribute to tumor cell survival, production of angiogenic chemoki-
nes, and tumor growth (12, 15). Importantly, while localized prostate cancer has an almost 100% survival
rate, the occurrence of metastases in bone and other distant sites lowers 5-year survival to ~30%(16).
MST1R has not been implicated in prostate cancer progression. The MST1R-related MET receptor stimu-
lates tumor growth and lymph node metastasis in a xenograft model using human PC3 prostate cancer cells
(17) and HGF-MET signaling is an important target in prostate cancer progression (18). In this study, we
took an RNAi-based approach to investigate the role of MST1R in several aspects of the prostate cancer

metastatic cascade including cell migration, invasion, dissemination, and formation of bone metastases.

MATERIALS AND METHODS

Prostate cancer cell lines were obtained from ATCC and cultured according to the standard protocol. PC3-
M-Prodluc cells have been described previously (19). Lentiviral shRNA constructs targeting MST1R
(TRCN000012148; TRCN000012150) were obtained from the MISSION library (Sigma-Aldrich). Stable
shRNA expressing PC3 and PC3-M-Pro4luc cells were bulk selected by puromycin. Generation of extracellu-
lar matrix (ECM)-embedded tumor cell spheroids was performed as previously described (20). Spheroid out-
growth and collagen invasion was quantified using an automated Image pro 7-based plugin to calculate sur-
face area of the spheroid, number of cells migrating into the collagen, and mean cumulative distance (MCD)
travelled by these cells. Recombinant hepatocyte growth factor (HGF; Sigma) was used at 5 ng/ml. For ze-

brafish xenograft assays, CMDil-labeled PC3 cells were injected in the yolk of 2-day-old fli-EGFP-casper em-



bryos and fixed 6 days post-implantation as described previously (21). The automated process for collection
of confocal image stacks, generation of in-focus composite images, alignment and orientation of the images,
and subsequent quantification of tumor cell dissemination was done as described previously (21). Dissemina-
tion is described as mean cumulative distance (MCD) reflecting cumulative distance from the primary injec-
tion site of all tumor cells in each embryo, averaged over all embryos. Experimental bone metastasis in mice
was analyzed by ~weekly whole body bioluminescent imaging (BLI) of nude mice following intracardiac injec-
tion with PC3-M-Pro4luc cells as described (19). Metastatic lesions in bone were identified by immunohisto-
chemistry. FACS and Western blot experiments were performed as described previously (22) using MET
phospho-Tyr1349 (Cell Signaling) and tubulin (Sigma) antibodies. Data for all experiments are presented as
mean + SEM of at least 2 independent biological replicates. Student's t test (two-tailed) was used to com-

pare groups.
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FIGURE 1. MST1R expression on human prostate cancer cells. A: MST1R mRNA expression determined by qPCR in panel of human
prostate cancer cell lines. AD, androgen-dependent; Al, androgen independent. B: Immuno-histochemical staining showing MST1R
expression in PC3 cells. Right panel shows zoom-in of area marked by dotted line in left panel. Adapted from www.proteinatlas.org. C:
MST1R RNA expression determined by gPCR in series of human prostate cancer xenograft models.

RESULTS AND DISCUSSION

We evaluated MST1R mRNA expression in a panel of prostate cancer cell lines. MST1R levels in cells re-
ported to be androgen-independent and metastatic in mice, including PC3 cells were 2-8 fold higher than
levels found in androgen-dependent non-metastatic cells (Fig 1A). MST1R protein expression was also de-
tected in PC3 cells (Fig 1B). Likewise, in a series of human prostate cancer xenografts representing various
aspects of human prostate cancer progression (23), MST1R mRNA levels were higher in most androgen-

independent xenografts as compared to androgen-dependent xenografts (Fig 1C).

Based on these expression data, we asked if MST1R plays a role in aspects of prostate cancer progression.
To address this question, MST1R expression in PC3 cells was silenced using lentiviral shRNAs. In bulk
puromycin-selected stable PC3 shRNA populations, two distinct shRNAs caused ~50% silencing MST1R
expression (Fig 2A).
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FIGURE 2.MST1R expression supports invasive growth of human prostate cancer cells. A: Relative MST1R mRNA expression determined by
gPCR in PC3 cells bulk puromycin selected for expression of indicated lentiviral sShRNAs. B: FACS analysis of MST1R surface expression on
PC3 cells expressing indicated lentiviral shRNAs. MFI, mean fluorescence intesity. C: Microphotographs of 2D cultures of PC3 cells expressing
indicated lentiviral shRNAs. Dotted circles indicate cell islands observed in PC3shMST1R cells. D,E: Representative images (D) and
quantification (E) of spheroid outgrowth and ECM invasion (mean cummulative distance from spheroid center of migrating cells, MCD) for
Phalloidin-stained PC3 cells expressing indicated shRNAs 6 days post-injection in collagen gels. F: Microphotographs of 3D collagen-
embedded spheroids 6 days post-injection for PC3shctrl (upper) and PC3shMST1R cells in absence (lower, left) or presence of HGF (lower,
right). G: Western blot showing MET phospho-Tyr1349 levels and tubulin (tub) loading control in PC3 cells expressing indicated shRNAs in
absence or presence of HGF. Data are presented as mean + s.e.m.; *p<0.05, ***p<0.001.

FACS analysis confirmed downregulation at the level of MST1R cell surface expression (Fig 2B). Interest-
ingly, reduced expression of MST1R caused a conversion from a completely scattered phenotype to more
cohesive growth in 2D culture with formation of multicellular islands (Fig 2C). Moreover, when these cells
were grown as spheroids in 3D collagen matrices, wild type- and PC3shctr cells were invasive whereas the
number of cells migrating into the collagen was strongly reduced in PC3shMST1R cells (Fig 2D). Quantifica-
tion of spheroid area and cell migration in Phalloidin-stained 3D cultures demonstrated that MST1R silencing

significantly inhibited expansion of spheroids and invasion of cells into the collagen (Fig 2E).
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FIGURE 3. MST1R expression on human prostate cancer cells supports dissemination in zebrafish xenotransplantation model. A: Confocal
microscopy images showing dissemination of PC3 cells expressing indicated MST1R shRNAs 6 days post implantation in yolk of Fli-GFP-
Casper zebrafish embryos. Red, CM-Dil-labeled tumor cells; green, GFP-marked endothelial cells. Arrow heads indicate PC3 cells
disseminated to tail region. B: Scatter plot representation of dissemination of PC3 cells expressing indicated MST1R shRNAs. Colors represent
individual embryos. N=number of injected embryos from 2 biological replicates. C: Mean cumulative distance (MCD) determined from data
represented in B. Data are presented as mean + s.e.m. *p<0.05, ***p<0.001.

Scattering and invasion are stimulated by HGF binding to the MST1R-related MET receptor and this signal-
ing axis is a candidate drug target to halt prostate cancer progression (18). Cross talk between MST1R and
MET has been shown to support the transforming potential of oncogenic MET mutants (24). To test if the at-
tenuated invasion caused by MST1R downregulation was due to inactivation of MET signaling
PC3shMST1R were treated with HGF. HGF treatment could restore invasion of PC3shMST1R cells (Fig 2F).
In agreement, MST1R silencing did not prevent MET phosphorylation in response to HGF (Fig 2G). To-
gether, this indicates that the level of downregulation of MST1R in PC3shMST1R cells attenuates invasion

without compromising HGF-MET signaling.
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FIGURE 4. MST1R expression on human prostate cancer cells supports metastatic colonization in mouse experimental bone metastasis
model. A: Relative MST1R RNA expression determined by gPCR in PC3-M-Pro4luc cells bulk puromycin selected for expression of indicated
lentiviral shRNAs. B: Number of bone metastases per mouse determined by immunohistochemistry 40 days post intracardiac injection of
100,000 PC3-M-Pro4luc cells expressing indicated lentiviral shRNAs. C: Total tumor burden determined by whole body BLI at indicated time
points post intracardiac injection of 100,000 PC3-M-Pro4luc cells expressing indicated lentiviral shRNAs. Inset shows tumor burden during the
first 20 days. N=number of injected mice. Data are presented as mean * s.e.m. *p<0.05, **p<0.005.

These in vitro results indicated that enhanced levels of MST1R as observed in prostate cancer cells not only
regulate tumor growth but also stimulate cell migration/invasion of prostate cancer cells in extracellular ma-
trix. To study effects on cell migration in vivo, we made use of zebrafish embryo xenografts. Here, a primary
tumor is formed at the injection site and subsequent dissemination throughout the embryo is assessed 6
days post-injection. The small size and optical transparency of zebrafish embryos and the use of transgenic
strains with a fluorescently marked vasculature allows automated confocal imaging and image analysis to

quantify dissemination in large numbers of embryos (21). Injected PC3 cells and PC3 cells expressing con-



trol shRNA disseminated throughout the embryo with multiple tumor cell foci in the tail region (Fig 3A,B). By
contrast, in agreement with the observed effect in PC3 migration/invasion in vitro, PC3shMST1R mostly re-
mained close to the area of injection and very few tumor cell foci were observed in the tail. In two independ-
ent shMST1R lines, reduced expression of MST1R significantly impaired dissemination in this model (Fig
3A-C). Subsequently, we assessed if MST1R plays a role in later stages of prostate cancer metastasis that
involve extravasation and homing and expanding in bone lesions. For this purpose, we silenced MST1R in
the PC3-derived PC3-Pro4-luc cells (19) and analyzed stable bulk-selected shMST1R populations that had
~70% reduction in MST1R expression (Fig 4A) in a preclinical mouse model for bone metastasis (19). Fol-
lowing intracardiac injection of control or shMST1R cells whole animal BLI was used to measure outgrowth
of metastatic lesions over time and immunohistochemistry of bone sections at the end of the experiment
was used to determine the number of metastases. Mice injected with PC3 cells expressing a control shRNA
showed on average ~ 2 bone metastases whereas very few metastatic lesions were detected in the bone of
mice injected with PC3shMST1R cells (Fig 4B). In agreement, the total metastatic tumor burden determined

by BLI was strongly suppressed as a consequence of the reduction in MST1R expression (Fig 4C,D).

In summary, our findings in 3D in vitro and preclinical in vivo models show that MST1R expression in human
prostate cancer cells can support local invasion, dissemination, and formation of bone metastases. These
results significantly extend earlier findings on the role of MST1R in prostate cancer formation. It has been
previously established that MST1R supports prostate tumor growth and angiogenesis and this can involve
MST1R expressed on prostate cancer cells as well as MST1R expressed on cells in the tumor microenviron-
ment (13-15). Our current report also implicates MST1R expressed on prostate cancer cells in aspects of
prostate cancer metastasis. Altogether, the data from several studies indicate that MST1R represents an at-

tractive potential drug target for molecular targeted therapy.
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