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ABSTRACT
Radiotherapy is one of the treatment options for locally or regionally advanced prostate cancer, but radiore-

sistance of prostate cancer cells is a practical limitation of radiotherapy. The identification of molecular tar-

gets of radioresistance in prostate cancer is important to improve therapeutic intervention. The aim of this 

review is to give more biological insight into some well known processes involved in radioresistance of pros-

tate cancer especially Apoptotic pathway; DNA damage response; and NF-kB signaling pathway. This review 

integrates salient, published, research findings with underlying molecular mechanisms, preclinical efficacy, 

and potential clinical applications of combining radiotherapy with these molecular targeted agents for the 

treatment of prostate cancer.

INTRODUCTION
The standard treatment regimen for clinically localized disease in prostate cancer is either radical prostatec-

tomy or radiation therapy through external beam irradiation or local radioactive seed implants (brachyther-

apy) (1). A major reason for failure to eradicate local disease in prostate cancer and other solid tumors by 

radiotherapy (RT) is the radioresistance (2). Generally, there are two types of radioresistance in solid tu-

mors: External mediated by interactions with microenvironment (Cell-cell and cell-matrix interactions (3) and 

local paracrine signaling), and internal (mediated by the general survival pathways like mutated p53) (4), am-

plification of DNA repair genes, overexpression of anti-apoptotic genes, increased levels of reactive oxygen 

species scavengers, activation of prosurvival/poor prognosis oncogenes such as Epidermal growth factor 

receptor (EGFR) (5,6) or c-MET(also known as hepatocyte growth factor receptor) (7,8). Molecular targeting 

of these survival mechanisms is now becoming a reality with new treatments designed to target processes 

that are thought to be tumor specific, or where there are quantitative differences in target expression be-

tween cancer and normal cells. The relative tumor-specificity of most molecular targeted agents may offer a 

theoretical advantage over chemotherapy, as overlapping toxicity with RT on normal tissue is potentially mini-

mized. Furthermore, the intrinsic radiosensitivity of certain tumors may be modified by agents that target spe-

cific gene and protein expression. An illustrative example of this advantage is the targeting of EGFR expres-

sion to reduce proliferation of head and neck cancer cells without affecting the repopulation of normal muco-

sal epithelial cells required for healing during radiotherapy (9-11). This fundamental information has, in turn, 

suggested that targeting such radio response regulatory molecules can serve as a strategy for developing 

radiation sensitizers.

OVERCOMING RADIORESISTANCE IN PROSTATE CANCER BY 
TARGETING APOPTOSIS

Irradiation-induced tumor apoptosis can be enhanced by targeting of apoptotic machinery that involves a sys-

tem of messengers.The challenge of apoptosis-targeting, as in all therapies, is to selectively target pathways 

operational in tumor cells over those operational in normal cells.
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FIGURE 1.Schematic model showing the activation of different pathways leading to apoptosis in the prostate cancer cell lines (LNCaP/PC3). 
Pro-apoptotic signaling is activated via upregulation of p53, release of ceramide (e.g., by sphingomyelinase (SMase) due to XRT or by vari-
ous cytokines like TNF- alpha. Ceramide is metabolized by a ceramidase to generate sphingosine. Sphingosine is phosphorylated by sphin-
gosine kinase to form Sphingosine-1-Phosphate (S-1P). S-1P antagonizes ceramide-mediated apoptosis. All signals are integrated at the 
level of mitochondria by activation or upregulation of pro-apoptotic molecules belonging to the pro-apoptotic Bcl-2 family (Bax, Bak, Puma, 
Noxa). The relative level of pro and anti-apoptotic Bcl-2 molecules is the key decision point regarding cell death induction. In case of relative 
overweight of pro-apoptotic Bcl-2 members, cytochrome c is released from mitochondria and triggers execution of apoptosis by activation of 
caspase-9 and secondary caspases that cleave intracellular substrates, thereby inducing the apoptotic phenotype, including nuclear chroma-
tin condensation and fragmentation. XIAP and survivin which belongs to the class of IAP (Inhibitor of apoptosis) proteins, inhibit the activation 
of the caspase cascade leading to the radioresistance. 

Abbreviations: Smase: sphingomyelinase; SM: sphingomyelin; CS: ceramide synthase; C: Cytokine; CR: Cytokine Receptor; DMS: N,N-
Dimethyl sphingosine 1. Smase 2. Ceramidase 3. sphingosine kinase; 4.Sphingosine N-methyl transferase



By Targeting Sphingomyelin-Ceramide Pathways
Radiation targets either the cell membrane or the nucleus to activate different apoptotic pathways (12-14). 

Sphingomyelin-Ceramide apoptotic pathway (Fig. 1) is initiated by hydrolysis of sphingomyelin through acti-

vated sphingomyelin-specific forms of phospholipase C, termed sphingomyelinases (SMases) that leads to 

generation of ceramide (12-14). Ceramide, in turn, can activate several pathways important for the induction 

of apoptosis (14). Also, Ceramide is further metabolized by ceramidase to generate sphingosine (Fig. 1), 

which in turn, can be phosphorylated by sphingosine kinase (Sphk) to form Sphingosine-1-phosphate (S-1P) 

(15,16). Conversely, S-1P has been implicated as a signaling molecule that antagonizes ceramide-mediated 

apoptosis (17). The modulation of ceramidase, sphingosine kinase, and S-1P phosphatase activities play a 

pivotal role in the regulation of apoptosis by regulating the intracellular ratio between ceramide, sphingosine, 

and S- 1P (17). Furthermore, Sphk1/S1P pathway has been linked to oncogenic transformation and cancer 

progression via increased rate of cell proliferation, and apoptotic resistance (18-20). Sphk1 is highly ex-

pressed in various human tumor tissues (21,22) and has been shown to be associated with poor prognosis 

in gastric cancer (23), glioma (24) and breast cancer (25). Radioresistance of Prostate cancer has been re-

ported to be linked to sustained sphingokinase- 1(Sphk-1) activity (26). Recently, a new sphingosine ana-

logue FTY720 (Finglimod) has been shown to induce radiosensitization and inhibition of tumor growth in in 

vitro and in vivo models (27).

Various in vitro studies (outlined in Table 1) have shown that the Sphingomyelin-Ceramide pathway is a very 

attractive target for radio-sensitization in prostate cancer. After critically analyzing all these in vitro studies it 

can be hypothesized that ceramide generation is a critical component of radiation-induced apoptosis in hu-

man prostate cancer cells and blockage of ceramide generation may provide a selective advantage in the 

development of radioresistance of prostate tumors. Because of the central role of Sphingomyelin-Ceramide 

pathway in radiation induced apoptosis, pharmacologic manipulation of the intracellular ceramide levels in 

conjunction with radiation could offer significant improvement to the clinical treatment of prostate cancer.

By Targeting Anti-apoptotic Bcl-2 Family of Proteins
Antiapoptotic Bcl-2 (B-cell lymphoma 2) protein is overexpressed in a variety of human cancers, including 

prostate cancer (28,29). Bcl-2 overexpression is frequently found in both primary and metastatic human pros-

tate cancers (30,31). It is observed to be overexpressed in 30% to 60% of prostate cancer at diagnosis and 

in nearly 100% of hormone-refractory prostate cancers (31). Also, Bcl-xL (B-cell lymphoma-extra large) is 

found to be overexpressed in 80% to 100% of hormone-refractory prostate cancers, where it is associated 

with bad prognosis, shortened survival and advanced disease (32). Bcl-2/Bcl-xL overexpression decreases 

the pro-apoptotic response to such cellular insults as irradiation, chemotherapy, and androgen withdrawal, 

leading to resistance to treatment (33). Primary prostate tumors overexpressing Bcl-2 exhibit a high Gleason 

score and a high rate of cancer recurrence after radical prostatectomy (30,31). The most definitive evidence 

supporting a positive correlation between Bcl-2 and prostate cancer progression is that Bcl-2 overexpression 

leads to metastatic and chemo- or radioresistant phenotypes (34,35). Reversal of prostate cancer cell ra-

dioresistance in vitro has been achieved by downregulating Bcl-2 (36,37). Bcl-2 and Bcl-xL represent an at-

tractive target for the development of new anti-prostate cancer agents that have either direct cytotoxic ef-

fects on prostate cancer cells or improve the efficacy of conventional radio- or chemotherapy by sensitizing 
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prostate cancer cells (Fig. 1). Various in vitro studies as shown in (Table 1) provide firm evidence, that target-

ing antiapoptotic Bcl-2 family of proteins represents an attractive target for prostate cancer  radiosensitiza-

tion.

Targeting the IAP (Inhibitor of Apoptosis) Member of  Proteins
IAPs represent a class of apoptosis regulatory proteins consisting  of eight family members: Neuronal apop-

tosis inhibitory protein (NAIP; also known as BIRC1), cellular IAP1 (c-IAP1; also known as BIRC2), cellular 

IAP2  (c-IAP2; also known as BIRC3), X chromosome-linked IAP (XIAP; also known as BIRC4), survivin 

(BIRC5), ubiquitin-conjugating BIR domain enzyme apollon (also known as BIRC6), melanoma IAP (ML-IAP; 

also known as BIRC7),  and IAP-like protein 2 (ILP2; also known as BIRC8) (38,39). Among all human IAP 

proteins, XIAP and survivin have been reported to have the most prominent and strongest antiapoptotic func-

tion (40,41). IAPs function as potent endogenous apoptosis inhibitor (Fig. 1) due to their ability to bind and 

effectively inhibit two effector caspases (-3 and -7) and one initiator caspase-9 (42). A notable exception is-

survivin which only inhibits active caspase 9 after binding to its cofactor hepatitis B-X-interacting protein 

(HBXIP) (43). Additionally, it has been shown that anti-apoptotic action of survivin could be mediated by its 

interaction with XIAP leading to increased stability of XIAP (44). IAPs suppress apoptosis against a variety of 
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TABLE 1. Shows preclinical studies, which demonstrate the potential of targeting Sphingomyelin-Ceramide pathway, Bcl-2 antiapoptotic  and 
IAP family of proteins for prostate cancer radio-sensitization.

TARGET     APPROACH CELL LINE MECHANISM          REF. 

SPHINGOSINE 
CERAMIDE 
PATHWAY 

TNF- alpha + irradiation LNCaP Intracellular ceramide levels    Enhanced activation of the 
intrinsic mitochondrial 
 apoptosis pathway. 

Sphingosine  and   SPP levels. 

          115 

Exogenous C2 ceramide+ 
irradiation 

LNCaP Intracellular ceramide levels    enhanced activation of the 
intrinsic mitochondrial  

                  apoptosis pathway 

          116 

Exogenous sphingosine + 
irradiation 

LNCaP Sphingosine levels    enhanced apoptosis of the        
radiation resistant prostate cancer cells. 

          26 

Sphingosine kinase 
inhibitor (N,N-DMS) + 

Irradiation. 

LNCaP Sphingosine levels    enhanced apoptosis of the   
radiation resistant prostate cancer cells. 

          26 

TPA +irrradiation LNCaP  Ceramide synthase activity    ceramide levels  
   (in- Vivo pathway)     enhanced apoptosis 

        115 

TARGETING 
ANTIAPOPTOTIC 

BcL-2 FAMILY 

(-)Gossypol+ irrradiation - PC-3 
- PC-3 xenograft 

Blocks heterodimerization of Bcl-xL with Bax, Bad and Bim    
 enhanced response to 

 radiation therapy. 

       115 

Antisense BcL-2+ 
irrradiation 

-PC-3 
-LNcaP 

Reduction in Bcl-2 protein levels and a significant   reduction in 
clonogenic survival. 

      117 

HA14 -1+ irrradiation -PC-3 
-LNcaP 

HA14 –1 is an organic Bcl-2 inhibitor   enhanced  
response to radiation. 

     118 

Curcumin+ irrradiation PC-3 Downregulation of endogenous and radiation Induced Bcl-2 
protein expression    enhanced   radiation induced 

apoptosis. 

      37 

TARGETING 
IAP MEMBER OF 

PROTEINS 

Smac mimetic SH-130 DU-145 Functional blocking of IAPs     enhanced radiation 
induced apoptosis. 

      53 

Embelin PC-3 Inhibits XIAP   enhanced radiation induced apoptosis            54 



apoptotic stimuli, which include radiation, chemotherapy and immunotherapy in cancer cells (38). Specifi-

cally, radiation triggers release of mitochondrial proteins (Smac, cytochrome-c and survivin) into the cyto-

plasm (41,45). Consequently the released Smac binds to XIAP and other IAP proteins, thus abolishing their 

anti-apoptotic function (45). It has been shown that IAPs are highly expressed in many types of cancer in-

cluding prostate cancer (39,42,46,47). Expression of cIAP1, cIAP2, XIAP, survivin, and NAIP has been exam-

ined in the NCI -60 human tumor cell line panel, which revealed widespread expression of cIAP1, XIAP, and 

survivin in tumor lines of diverse tissue origins (48). Genome wide analysis has confirmed the differential ex-

pression of survivin in tumors versus normal tissues (49). Survivin has been shown to be overexpressed in 

prostate cancer cell lines, aggressive prostate cancers with higher gleason grades, lymph node and distant 

metastasis (50-52). Because IAPs suppress apoptosis against a variety of apoptotic stimuli, including radia-

tion, strategies targeting IAPs may prove to be highly effective in overcoming radiation resistance (Fig. 1). 

Against this background a number of different strategies have been developed to antagonize aberrant IAP 

protein function and/or expression in human prostate cancers as to overcome radioresistance (53,54). Some 

of these strategies are briefly outlined in the (Table 1).

TARGETING DNA DAMAGE RESPONSE PATHWAYS
Ionizing radiation (IR) leads to the formation of DNA single or double-strand breaks, altered or lost DNA 

bases and DNA-DNA or DNA protein cross-links (55). The DNA-damage response pathway begins with ‘sen-

sor’ proteins that sense the DNA damage and/or chromatin alterations that occur after induction of DNA dam-

age (56). These ‘sensor’ proteins convey the damage signal to transducers which in turn transmit it to numer-

ous downstream effectors(56). The DNA-double strand breaks (dsbs) are first recognized by the (Telomere 

binding protein) TRF2 and Mre11– Rad50– Nbs1 (MRN) sensor complex. The MRN sensor complex is the 

most important sensor complex (Fig. 2) comprising the nuclease Mre11, the structural maintenance of chro-

mosomes protein Rad50 and the protein Nbs1 (57,58). The transducers consist of a group of conserved nu-

clear protein kinases (59) and the ‘phosphatidylinositol-3-OH kinase (PI (3) K)-related protein kinases’ 

(PIKKs), which consists further of the DNA-dependent protein kinase (DNA-PK), ataxia-telangiectasia-

mutated (ATM), the ATM and Rad3-related (ATR) protein and hSMG-1 (60,61). Current evidence suggest 

that the MRE11–RAD50–NBS1 complex (MRN complex) is the primary DSB sensor that recruits ATM to the 

DNA-dsbs (62). Another early step in the response to a DSB involves phosphorylation of the H2A histone 

family, member X, H2AX, which is redundantly carried out by ATM or DNA-dependent protein kinase (DNA-

PK)(63). Phosphorylation of H2AFX produces discrete, microscopically detectable foci (64). The MRE-11 

and H2AFX proteins further recruit DNA repair complexes and cell cycle checkpoint proteins (e.g. tumor pro-

tein 53 binding protein 1 (TP53BP1), mediator of DNA damage checkpoint 1 (MDC1), breast cancer 1, early 

onset (BRCA1), and check point kinase 2 (CHK2) (65). After initial sensing and activation of downstream 

pathways, parallel activation of human DNA-double strand break repair pathways homologous recombina-

tion (HR) and non-homologous recombination takes place, which can both interact or compete with each 

other during cell cycle transitions (66).

Cell cycle checkpoints or DNA repair pathways are commonly altered during the process of prostate cancer 

(66). Tumors having these genetic alterations are hypothetically sensitive to radiation upon further disruption 

of remaining checkpoint functions or remaining DNA repair pathways. The most important DNA-dsb damage
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FIGURE 2. Showing schematic outline of DNA damage response pathway and possible therapeutic strategies for radiosensitization in the pros-
tate cancer. For more information refer to the (Table 2).
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-response genes associated with prostate cancer risk includes the ATM-p53 signalling axis, such as ATM, 

p53, and CHK2 (67). It has been shown that ATM expression is higher in the high gleason score prostate 

tumors, when compared to the normal tissues (68). Prostate cancer specimens have been shown to harbor 

p53 mutations that have been documented to be associated with androgen independence, metastasis, de-

creased disease free survival and radioresistance (59,69). Keeping this background in mind, ATM has been 

targeted in prostate cancer using specific antisense or siRNA approaches resulting in radiosensitization 

(70).Small molecular inhibitors or peptides have been generated to bind to mutant forms of p53 and revert-

ing them to wild type conformation and leading to cell cycle arrest and apoptosis (69). Malignant prostate 

cancer cell lines express higher levels of RAD51, XRCC3, RAD52 and RAD54 genes involved in homolo-

gous recombination in comparison to normal prostate epithelial cells (71). Strategies that target DNA repair 

increase radiosensitization in vitro and in vivo after treating prostate, glioma and lung cancer cells with 

siRNA to RAD51 (72,73). Prostate cancer arising in BRCA2 mutation carriers display an aggressive tumor 

phenotype and present more poorly differentiated tumors when compared with non-carrier prostate cancer 

controls (74-76). It has been shown that cells defective in BRCA1 and BRCA-2 proteins exhibit reduced 

RAD51 activity and foci formation and show increased sensitivity to ionizing radiation (77,78). Furthermore, 

It has been observed that BRCA1 and BRCA2 deficiency sensitizes cells to the inhibition of Poly (ADP-
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TABLE 2. Showing various pre-clinical studies which have showed the potential of targeting DNA damage response pathway for prostate cancer 
radiosensitization.

TARGET  AGENT USED    MODEL USED            MECHANISM        REF. 

ATM – P53 –
MDM2 

PATHWAY 

Adenoviral mediated P53gene 
expression + XRT 

-P53 defficient PC3 line 
-P53 wild type LNCAP 

cell line 

Restoration/enhancement of normal 
p53 function Enhancement of 

apoptosis. 

 119 

Antisense MDM2+AD+XRT P53 wild type LNCAP cell 
line 

- MDM2 expression and P53 and 
p21 expression. 

- Apoptosis and clonogenic 
survival. 

120 

siRNA mediated attenuation of the 
ATM, ATR expression 

 + XRT 

- DU 145 
- PC-3 

Post-transfection levels of the ATM, 
ATR proteins   decreased 

clonogenic survival 

114 

HR REPAIR 
PATHWAY 

Genetically engineered PARP 
mutant, expressing dominant 

negative mutant of PARP in tumor 
cells+ XRT 

Tumor xenograft - PARP is required for the efficient 
repair of DNA singlestrand breaks 
(SSBs) during base excision repair  

and PARP inhibition leads to 
persistent singlestrand gaps in 

DNAthese gaps are encountered by 
a replication fork, leading to arrest, 

and the single-strand gaps may 
degenerate into DSBs. 

 
- In the absence of BRCA1 or BRCA2, 
the replication fork cannot be restarted 

and collapse , causing persistent 
chromatid breaks  Repair of these 

breaks by alternative error prone DSB 
repair mechanisms would cause large 

numbers of chromatid breaks and 
aberrations, leading to loss of viability. 

    121-126 

siRNA /antisense /Ribozyme 
minigene mediate attenuation of 

RAD51 

LNCaP      Downregulation of RAD 51      127 



Ribose) Polymerase (PARP) enzymatic activity, which consequently leads to chromosomal instability, cell 

cycle arrest and apoptosis (79). PARP-1 (accounting for 80% of total PARP cellular activity) binds to both 

single and double strand DNA breaks and is involved in DNA single strand break (ssb) repair and break exci-

sion repair (80,81). It has been documented that inhibition of PARP increases the level of unrepaired DNA 

double strand breaks by a variety of mechanisms.Based on these principles, Ashworth and colleagues 

adopted an siRNA approach and observed an increased sensitivity to PARP inhibition in a variety of cells 

which were made deficient in proteins in HR or Fanconi’s anemia pathway (like RAD51, RAD54, DSS1, 

RPA1, NBS1, ATR, ATM, CHK1, CHK2, FANCD2, FANCA or FANCC) (83). Targeting cancer cells harboring 

a specific DNA repair defect by inhibiting a second repair pathway is a representation of synergistic lethality 

(84), and this approach is rapidly being translated into effective treatments for hereditary BRCA1 or BRCA2 

deficient cancers or with tumors harboring defects in HR repair pathways (85). Utilizing this principle, spe-

cific and potent inhibitors of PARP inhibitors (Fig. 2) have been developed that are very effective tumor radio-

sensitizers in in-vitro and in-vivo (84). 

The various preclinical studies which have demonstrated the potential of targeting these pathways for pros-

tate cancer radiosensitization are outlined in (Table 2). These studies support the concept that the predeter-

mination of the repair capacity of tumor cells may help to select appropriate agents for use in combination 

with radiotherapy in prostate cancer.

BY TARGETING RADIATION INDUCED RADIOADAPTIVE NF- kB 
PATHWAY

Radio-adaptive response is assumed to be induced by activation of the specific prosurvival signaling net-

work in irradiated mammalian cells leading to reduced cell sensitivity to a subsequent higher challenging 

dose when a smaller inducing radiation dose had been already applied (86). The earliest response of mam-

malian cells to ionizing irradiation consists of activation of transcription factors, like AP-1, p53 (also known as 

TP53), and NF-kB (87,88). Out of all these, NF-kB has served as a model system for inducible transcription 

in a broad range of physiological and medical effects. The mammalian NF-kB family of proteins consists of 

five members: RelA, RelB, c-Rel, p50 (NF-kB1) and p52 (NF-kB2) (89). All members of the NF-kB family pos-

ses a Rel-homology domain (RHD) containing a NLS (nuclear localization sequence), which is important for 

dimerization, DNA binding and its interaction with IkB proteins (most important inhibitors of NF-kB activa-

tion). In the majority of circumstances NF-kB is found in the cytoplasm where it is negatively regulated by its 

interaction with the IkB family of proteins. These IkB family of proteins possesses multiple ankyrin repeats 

which bind to the RHD and masks NLS of NF-kB (90). There are various stimuli that activate NF-kB, which 

results in the regulation of a myriad NF-kB target genes. The majority of proteins encoded by NF-kB target 

genes participate in the host immune response (91,92), cell adhesion and stress response (91), apoptosis 

regulators (93), growth factors (94), cell cycle regulators (95) and inflammatory cytokines (96).In cancer 

cells, it regulates the expression of many anti-apoptotic proteins (IAP1, IAP2, XIAP,cFLIP and BclxL). It also 

regulates the progression of the cell cycle by positively regulating the expresson of various cyclins (D1,D2, 

D3, and E) and c-myc (97). NF-kB is also known to stimulate invasion and angiogenesis by regulating the 
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expression of different matrix metalloproteinases (MMP-2, MMP-9) (98) and various angiogenic factors (IL-8 

and VEGF) (94,96).

Moreover, the activation of NF-kB is considered to be the most important factor, involved in the inflammatory 

response generated by irradiation (99,100). It has been shown that increased basal NF- kB activity in certain 

cancers has been associated with tumor resistance to radiation and chemotherapy (101). NF-kB is activated 

after phosphorylation of IkB at two serine residues (Ser-32 and Ser-36) by IkB kinases, which is later polyu-

biquitinated, and then degraded by 26S proteasome (Fig. 3). The free NF-kB translocates to the nucleus and 

activates its target genetic programs (102) including manganese superoxide dismutase (MnSOD), an en-

zyme that catalyses the conversions of toxic superoxide radicals to hydrogen peroxide and molecular oxy-

gen (103-105). The radioadaptive response mediated by the NF-kB members increases the expression of 

MnSOD leading to protection of tumor cells (106,107). NF-kB also modulates the apoptotic signals at vari-

ous levels. The best example is found in the TNF receptor I signaling pathway (108). (Fig. 3) provides the 

schematic representation of NF-kB signaling network in radiation induced adaptive radioresistance in pros-

tate cancer. 

Numerous studies have demonstrated the importance of the NF- kB pathway and its role as a cause of ra-

dioresistance in prostate cancer cell lines:

a). Josson and colleagues demonstrated that, constitutive nuclear level of RelB are significantly higher in 

PC-3 compared to LNCaP cells. They also showed that PC3 cells have a higher basal levels of MnSOD as 

compared to the LNCaP cells. These results suggest that comparatively higher levels of nuclear RelB and 

MnSOD protein may be responsible for the intrinsic radiation resistance of PC-3 cells (109). Selective inhibi-

tion of RelB decreased the levels of MnSOD leading to increase in the sensitivity of prostate cancer cells to 

radiation treatment (109). Xu and colleagues showed that interaction of 1-alpha, 25-dihydroxyvitamin D3 (1al-

pha, 25-(OH) 2D3) with the Vitamin D receptor (VDR) enhanced the radiosensitivity of prostate cancer cell 

lines at clinically relevant radiation doses. The radiosensitization effect of 1-alpha, 25-(OH)2D3 is partly medi-

ated by selectively suppressing IR-mediated RelB activation, leading to decreased expression of manga-

nese superoxide dismutase (MnSOD), suggesting that suppression of MnSOD is a mechanism by which 1-

alpha, 25-(OH) 2D3 exerts its radiosensitization effect. Therefore,   1-alpha, 25-(OH) 2D3 is a high potential 

effective pharmacologic agent for selectively sensitizing prostate carcinoma cells to irradiation via suppres-

sion of antioxidant responses in mitochondria (110). Yulan Sun and colleagues showed that inhibition of NF-

kB pathway is also a common mechanism for the radiosensitization effect of parthenolide in prostate cancer 

cells LNCaP, DU145, and PC3 (111). Radiation-induced NF-kappaB DNA-binding activity is inhibited by par-

thenolide leading to the decreased transcription of the sod2 gene, the gene coding for an important antiapop-

totic and antioxidant enzyme (manganese superoxide dismutase) in the three prostate cancer cell lines 

(111). Using immunohistochemical studies, Lessard and colleagues demonstrated that all the members of 

the NF-kB family were expressed in normal prostate tissues, prostatic intraepithelial neoplasia and prostate 

cancer. However, only the nuclear localization of RelB correlated with the prostate cancer patient’s Gleason 

scores (112), suggesting that the level of RelB is associated with prostate cancer progression. These studies 

provide us convincing evidence that RelB plays an important role in redox regulation of the cell and protects 
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aggressive prostate cancer cells against radiation-induced cell death. Thus, inhibition of RelB could be a 

novel mechanism to radiosensitize prostate cancer.

b). Damodaran and colleagues demonstrated using p53 deficient PC3 cell line, that radiation also causes an 

induction of TNF- alpha protein expression, NF-kB activity and Bcl-2 upregulation (37). They also showed 

that radiation-induced NF-kB activity depends on radiation induced expression of TNF-alpha. Curcumin in 

combination with programs (102) including manganese superoxide dismutase (MnSOD), an enzyme that ca-

talyses the conversions of toxic superoxide radicals to hydrogen peroxide and molecular oxygen (103-105). 

The radioadaptive response mediated by the NF-kB members increases the expression of MnSOD leading 

to protection of tumor cells (106,107). NF-kB also modulates the apoptotic signals at various levels. The best 

example is found in the TNF receptor I signaling pathway (108). (Fig. 3) provides the schematic representa-

tion of NF-kB signaling network in radiation induced adaptive radioresistance in prostate cancer. 

Numerous studies have demonstrated the importance of the NF- kB pathway and its role as a cause of ra-

dioresistance in prostate cancer cell lines:

a). Josson and colleagues demonstrated that, constitutive nuclear level of RelB are significantly higher in 

PC-3 compared to LNCaP cells. They also showed that PC3 cells have a higher basal levels of MnSOD as 

compared to the LNCaP cells. These results suggest that comparatively higher levels of nuclear RelB and 

MnSOD protein may be responsible for the intrinsic radiation resistance of PC-3 cells [109]. Selective inhibi-

tion of RelB decreased the levels of MnSOD leading to increase in the sensitivity of prostate cancer cells to 

radiation treatment [109]. Xu and colleagues showed that interaction of 1- alpha, 25-dihydroxyvitamin D3 (1 

alpha, 25-(OH) 2D3) with the Vitamin D 

receptor (VDR) enhanced the radiosensitivity of Prostate Cancer cell lines at clinically relevant radiation 

doses. The

radiosensitization effect of 1-alpha ,25-(OH)2D3 is partly mediated by selectively suppressing IR-mediated 

RelB activation, leading to decreased expression of manganese superoxide dismutase (MnSOD), suggest-

ing that suppression of MnSOD is a mechanism by which 1-alpha , 25-(OH) 2D3 exerts its radiosensitization 

effect. Therefore, 1-alpha, 25-(OH) 2D3 is a high potential effective pharmacologic agent for selectively sen-

sitizing prostate carcinoma cells to irradiation via suppression of antioxidant responses in mitochondria 

[110]. Yulan Sun and colleagues

showed that inhibition of NF-kB pathway is also a common mechanism for the radiosensitization effect of 

parthenolide in prostate cancer cells LNCaP, DU145, and PC3 [111]. Radiation-induced NF-kappa B DNA-

binding activity is inhibited by parthenolide leading to the decreased transcription of the sod2 gene, the gene 

coding for an important antiapoptotic and antioxidant enzyme (manganese superoxide dismutase) in the 

three prostate cancer cell lines [111]. Using immunohistochemical studies, Lessard and colleagues demon-

strated that all the members of the NF-kB family were expressed in normal prostate tissues, prostatic intra-

epithelial neoplasia and prostate cancer. However, only the nuclear localization of RelB correlated with the 

prostate cancer patient’s Gleason scores [112], suggesting that the level of RelB is associated with prostate 

cancer progression. These studies provide us
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aggressive prostate cancer cells against radiation-induced cell death. Thus, inhibition of RelB could be a 

novel mechanism to radiosensitize prostate cancer.

b). Damodaran and colleagues demonstrated using p53 deficient PC-3 cell line, that radiation also causes 

an induction of TNF- alpha protein expression, NF-kB activity and Bcl-2 upregulation (37). They also showed 

that radiation-induced NF-kB activity depends on radiation induced expression of TNF-alpha. Curcumin in 

combination with radiation caused inhibition of TNF- alpha - mediated NF-kB activity resulting in downregula-

tion of bcl-2 protein leading to the enhanced radiation-induced clonogenic inhibition and radiation-induced 

apoptosis in p53 deficient PC-3 cells (113). Curcumin inhibits NF-kB activation by inhibiting phosphorylation 

of IkB-alpha, which is required to export NF-kB from cytosol to nucleus as to activate its target genes (113). 

Together, these mechanisms strongly suggest that the natural compound Curcumin is a potent radiosensi-

tizer, and that it acts by overcoming the effects of radiation-induced prosurvival gene expression in prostate 

cancer.

c). Julian and colleagues showed that Genistein (4', 5,7 trihydroxyisoflavone) combined with radiation 

causes greater inhibition in PC-3 colony formation compared to genistein or radiation alone due to the strong 

inhibition of the NF-kB activity (113). Their findings support the novel strategy of combining genistein with 

radiation for the treatment of prostate cancer. All these studies demonstrate the role of NF-kB as a stress 

factor in prostate cancer cells. NF-kB is a crucial element of the cell’s protective response to radiation and 

represents therefore an attractive target in new therapeutic approaches to fight prostate cancer. Inhibition of 

NF-kB is expected to increase the therapeutic efficiency of radiation.

CONCLUSIONS AND REMAINING QUESTIONS
The identification of molecular targets of radioresistance in prostate cancer cells is very important to improve 

therapeutic intervention in prostate cancer. Anyhow, an ideal molecular targeting agent should improve the 

therapeutic efficacy of radiotherapy by targeting specific pathway(s), in practice, but this may be difficult to 

achieve with predictability because of the complex molecular cross-talk between signaling pathways (113). 

The most challenging part for a clinical investigator is to interpret this large amount of preclinical data and, 

then to select the most promising molecular targeting agent suitable for human clinical trials. Moreover, there 

are other challenges that are faced during the designing of the early clinical trials for molecular targeted 

agents. It is unknown whether expression of the molecular target can adequately predict clinical response to 

molecular agents (55). There are also several issues in studying radiosensitizers at the molecular level using 

prostate cancer cell lines, including their heterogeneity, different growth properties, hormone responsive-

ness, originated from metastatic tissue,etc. Nevertheless, these cellular models have provided considerable 

understanding of the biology of prostate cancer and are important for the initial investigation process. Moreo-

ver, our current knowledge of radiation-induced pathways is incomplete, and it does not provide direct proof 

for improving the efficacy of radiation therapy. In this context, the advent of RNA interference technology 

(114) can provide us a better insight into the radiation induced biomolecular pathways by virtue of its high 

selectivity for molecular targets. Functional genomic studies utilizing siRNA high throughput libraries can pro-

duce unbiased information regarding the molecules involved in the prostate cancer radioresistance. This ge-
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nome wide approach will reveal new molecules involved in prostate cancer radioresistance, and it will lead 

to the development of new molecular targeted radiosensitizing strategies in prostate cancer.
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