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Increased Heart Rate Variability but 
Normal Resting Metabolic Rate in 

Hypocretin/Orexin-deficient Human 
Narcolepsy

We investigated the possible role of abnormalities in autonomic balance 
and resting metabolic rate to explain obesity in hypocretin/orexin-
deficient narcoleptic subjects. 
Resting metabolic rate (RMR) and variability in heart rate and blood 
pressure were determined in the fasted, resting state. Subjects were 15 
untreated, hypocretin-deficient male narcoleptics and 15 male controls 
matched for age and body mass index. 
Spectral power analysis revealed greater heart rate and blood pressure 
variability in hypocretin-deficient male narcoleptic patients (heart rate: 
p=0.01; blood pressure systolic: p=0.02; diastolic: p<0.01). The LF/HF 
ratio was normal (p=0.48). Resting metabolic rate did not differ between 
hypocretin-deficient male patients and controls (controls=1767 ± 226 
kcal/24h, patients: 1766 ± 227 kcal/24h, p=0.99). 
Using indirect calorimetry we did not find a reduced resting metabolic 
rate in hypocretin-deficient narcoleptic men. However, heart rate and 
blood pressure variability was increased, which may point to a reduced 
sympathetic tone. The role of this latter finding in the pathophysiology of 
obesity in narcolepsy remains to be elucidated.  

Introduction

Narcolepsy is a sleep disorder that affects 20-60 per 100,000 in western countries. 
The syndrome is classically characterized by the tetrad of excessive daytime sleepiness, 
cataplexy, sleep paralysis and hypnagogic hallucinations.1 The first report of obesity as 
a metabolic feature of narcoleptic patients dates back as early as the 1930s2, 3 and the 
observation was confirmed repeatedly since.4-11 The identification of hypocretin/orexin 
deficiency as the cause of human narcolepsy with cataplexy and the potential role of 
hypocretin peptides in metabolic control has sparked interest in the pathophysiology 
of the obesity accompanying narcolepsy. Indeed, it not only is a consistent feature of 
human narcolepsy, but also in hypocretin-deficient animal models.12, 13 Furthermore, 
patients suffering from idiopathic hypersomnia who are also suffering from excessive 
daytime sleepiness, but are not hypocretin-deficient, are not obese.11 
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Hypocretin peptides are involved in the control of autonomic nervous system activity, 
food intake and energy balance.14-16 In particular, injection of hypocretins into the 
lateral cerebral ventricle stimulates food intake.15 Accordingly, ablation of hypocretin 
neurons leads to hypophagia in mice13 and narcoleptic humans eat less than age and 
sex matched controls.17 Paradoxically, both in mice and men this is accompanied 
by increased body weight. To reconcile these apparently contradictory corollaries of 
hypocretin deficiency, it may be necessary to consider the effects of hypocretin peptides 
on wakefulness and sympathetic activity. In rats, injection of hypocretins into the lateral 
ventricle also stimulates arousal and activates the sympathetic nervous system to increase 
arterial blood pressure, heart rate, oxygen consumption, body temperature and plasma 
catecholamine levels.18-21 Thus, hypocretin deficiency and daytime sleepiness may reduce 
physical activity, which could diminish energy expenditure. Also, hypocretin deficiency 
might directly reduce sympathetic tone and resting metabolic rate, and thereby induce 
obesity. Moreover, adipose tissue is under neuronal control and is innervated by both 
sympathetic (catabolic) and parasympathetic (anabolic) pathways22 and autonomic 
imbalance could thus lead to fat accumulation.23 

We studied resting metabolic rate and variation in blood pressure and heart rate in 
hypocretin-deficient narcoleptic subjects and healthy controls. We hypothesized that 
sympathetic tone might be diminished and that resting metabolic rate would be reduced 
in narcoleptic subjects. 

Materials and Methods

Subjects
The study was approved by the local medical ethical committee. All narcoleptic patients 
were male and fulfilled the ICSD-2 criteria of narcolepsy with cataplexy.24 They did 
not take any medication and hypocretin/orexin was undetectable in their cerebrospinal 
fluid, as measured by a standard radioimmuno-assay (Phoenix Pharmaceuticals, Inc., 
Belmont, CA). Healthy male controls were recruited using an advertisement in a local 
newspaper. Groups were matched for age and body mass index (BMI). As BMI is a 
very strong confounder of metabolic rate in itself, BMI-matching is mandatory. The 
pathogenesis of obesity is a multifactorial (increased caloric intake, sedentary lifestyle 
and predisposing genetic make-up). However, narcoleptics do not eat more or move less 
than healthy individuals, which led us to hypothesize that a lowered metabolic rate is 
the sole causative factor in narcolepsy. As said above, BMI is a strong determinant of 
metabolic rate by itself. In other words, our hypothesis was that narcoleptic subjects 
have a metabolic rate that is too low for a given BMI. Therefore, we matched the control 
group for BMI. 

Metabolic Measurements
In fifteen patients and fifteen controls metabolic values were measured. Subjects were 
instructed to fast and drink only water from 22.00 hrs the night before until the 
metabolic measurement was performed. Subjects arrived at the hospital at 09.00 hrs and 
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lied down in a supine position for a 30-minute period. Special care was taken to keep 
subjects awake during this period by talking to them. RMR was measured by indirect 
calorimetry25 using a computerized open-circuit ventilated hood system (Oxycon B; 
Jaeger, Breda, The Netherlands).26 Because subjects have to get used to the recording 
circumstances, the first 10 minutes of the test period were discarded. 

Oxygen consumption (VO2, L/min) and carbon dioxide production (VCO2, L/min) 
were used to calculate the respiratory quotient (RQ=VCO2/VO2). Resting metabolic 
rate and carbohydrate (C) and fat (F) combustion were calculated using the Weir 
formula and were expressed as kilocalories per 24h (per kilogram body weight) and 
grams per minute (per kilogram body weight) respectively.27, 28 The following formulas 
were used:

	 RMR (kcal/24h) = (3.9 x VO2) + (1.1 x VCO2) x 1.44

	 C (g/min) = (4.55 x VCO2) – (3.21 x VO2)

	 F (g/min) = (1.67 x VO2) – (1.67 x VCO2)

Autonomic Measurements
Since measurement of autonomic function was added in a later stage, autonomic activity 
was measured in nine patients and nine controls, a subpopulation of the subjects included 
for the metabolic measurements. This was done simultaneously with the metabolic 
measurements. Heart rate was determined by ECG, measured continuously using 
standard Ag-AgCl electrodes. Beat-to-beat arterial blood pressure was noninvasively 
monitored (Finometer, TNO-Biomedical Instruments, The Netherlands). The hand 
used for these finger blood pressure measurements was held in a constant position at 
heart level. The complete last 20 minutes of the actual testing period were used to 
calculate heart rate and blood pressure.

Blood pressure and heart rate calculations were performed using software written in 
MatLab (MatLab v7.0, Mathworks, Massachusetts). Heart Rate Variability (HRV) 
was estimated by calculating the mean and SD of consecutive R-R intervals and with 
spectral analysis performed by interpolating the series of RR intervals by cubic splines, 
resampling the signal at 3 Hz and performing a Fast Fourier Transformation (FFT) 
using a Hamming-window.29 Power was calculated for the following bands: Very Low 
Frequency (VLF, 0-0.04 Hz), Low Frequency (LF, 0.04-0.15 Hz), and High Frequency 
(HF, 0.15-0.4 Hz). Total power was calculated by adding the powers of the VLF, LF and 
HF bands. Increases in total power can be caused by a reduction in sympathetic tone.30, 

31 Furthermore, the LF/HF ratio was calculated. The LF band is usually considered to 
represent the sympathetic part of the baroreceptor reflex, while the HF band, largely 
derived from respiratory influences, mostly concerns parasympathetic activity. The 
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LF/HF ratio is generally used as another measure for the autonomic parasympathetic-
sympathetic balance.32 However, some authors regard it as an indication of sympathetic 
activity.33 Mean systolic (SBP) and diastolic (DBP) blood pressures were calculated and 
the total power in their frequency spectrum (calculated similarly to the HRV spectrum) 
was taken as an estimate of variability. Note that finger blood pressure measurement 
using the aforementioned finometer has a tendency to underestimate blood pressure. 
This can be prevented by calibrating the device using using the Riva-Rocci method.34 
However, blood pressure values were not corrected in this study, since groups were 
compared. 

Statistics 
Differences between groups were calculated using Student’s t-test for unpaired samples. 
Pearson’s correlation coefficient was used to evaluate potential correlations. P-values 
below 0.05 were considered significant.

Results 

Resting Metabolic Rate
Data are shown in Table 8.1. Patients and controls did not differ for age or BMI 
(Figure 8.1a). There were no significant differences in resting metabolic rate (RMR), 
oxygen consumption (VO2), carbodioxide consumption (VCO2), respiratory quotient 
(RQ) and carbohydrate or fat substrate combustion between narcoleptic patients and 
controls. Since the groups were matched for BMI, correcting RMR and carbohydrate or 
fat combustion for bodyweight in kilograms did not influence the results (Table 8.1).
     

Autonomic data
Data are shown in Table 8.2. Patients and controls had similar age and BMI. There 
were no significant differences in mean heart rate (HR), systolic blood pressure (SBP) 
and diastolic blood pressure (DBP). However, heart rate variability (HRV) and blood 
pressure variability differed between the two groups: the total power in the spectrum 
of both the diastolic and systolic blood pressure was significantly higher in patients 
compared to controls (systolic: p < 0.02, diastolic: p < 0.001; Figure 8.1c and 8.1d). 
A respiratory high frequency (HF) peak was seen in the HRV spectra of all subjects 
(Figure 8.2). Total power (p < 0.01), very low frequency (VLF) power (p < 0.03) and low 
frequency (LF) power (p < 0.02) were higher in hypocretin-deficient patients compared 
to controls, while high frequency (HF) power tended to be higher as well (p = 0.05, 
Figure 8.2). In contrast, the ratio between low frequency and high frequency power 
(LF/HF ratio) did not differ between patients and controls (p = 0.48). 
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Table 8.1 Metabolic Measures

Controls 
(N=15)

Narcolepsy  
(N=15) P-value

male/ female 15/0 15/0
Age  (years) 36.3 ± 13.8 35.6 ± 13.8 0.89
BMI (kg/m2) 26.0 ± 2.8 26.8 ± 2.3 0.42
VO2 (ml/min) 250.9 ± 34.2 252.4 ± 33.4 0.91
VCO2 (ml/min) 225.9 ± 24.6 220.3 ± 31.0 0.58
RQ 0.88 ± 0.06 0.86 ± 0.07 0.45
RMR (kcal/24h) 1767.1 ± 226.5 1766.5 ± 226.5 0.99
RMR / kg 19.9 ± 2.0 20.1 ± 2.2 0.77
C (Carbohydrate) (g/min) 222.5 ± 56.9 191.9 ± 95.0 0.29
C / kg 2.5 ± 0.6 2.1 ± 1.0 0.34
C in % of RMR 72.5 ± 18.5 62.6 ± 31.0 0.29
F (Fat) (g/min) 41.7 ± 29.5 53.7 ± 38.9 0.35
F / kg 0.5 ± 0.3 0.6 ± 0.5 0.35
F in % of RMR 30.6 ± 21.6 39.4 ± 28.5 0.35

Values in the table are means ± standard deviation. T-tests were used to assess group differences; no 
significant differences were found. BMI, body mass index; kcal, kilocalories; 24h, per 24 hours; RMR, 
resting metabolic rate; kg, kilograms; RQ, respiratory quotient; VO2, oxygen consumption; VCO2, 
carbon dioxide consumption; g, grams; min, minute. 

Discussion

The pathogenesis of obesity in narcoleptic patients remains unexplained. Obviously, 
eating more or moving less are potential explanations. Hypocretin neuron-ablated 
narcoleptic mice12 and human patients17 were shown to eat less than normal controls 
(total daily food intake, narcoleptic humans: 8,756 ± 2,312 kilojoules; controls: 10,640 ± 
3,129 kJ; p<0.001, data from Lammers et al.),17 which is in accordance with the orexigenic 
qualities of hypocretin peptides. Actigraphy studies showed that although periods of 
activity and inactivity were more scattered in narcoleptic subjects versus controls, the 
total intensity of physical activity did not differ.35, 36 Furthermore, narcoleptic subjects 
are more obese than equally active subjects suffering from idiopathic hypersomnia.11 
Thus, hypocretin deficiency must have other metabolic consequences to explain why 
narcoleptic animals and humans are obese. Since hypocretin peptides were shown to 
activate the sympathetic nervous system and increase oxygen consumption in rat,18-21 we 
hypothesized that hypocretin deficiency would lead to reduction of sympathetic tone 
and resting metabolic rate in patients with narcolepsy. 

In the present study, spectral power analysis of heart rate and blood pressure variability 
revealed an increase in the power across all frequency domains in narcoleptic patients, 
but no differences in the LF/HF ratio for heart rate. These results could point to a 
reduced sympathetic tone in narcoleptic patients. The HF peak is effected almost
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Table 8.2 Autonomic Measures

Controls 
(N=9)

Narcolepsy 
(N=9)

P-value

male/ female 9/0 9/0
Age (years) 29.2 ± 4.1) 32.6 ± 16.2 0.55
BMI (kg/m2) 24.9 ± 2.6) 26.2 ± 2.1 0.31
Total Power in HRV spectrum  x 104 s2/Hz 27.8 ± 14.1 77.4 ± 52.0 0.01*
- VLF (0-0.04 Hz) x 104 s2/Hz 12.6 ± 8.2 30.7 ± 22.0 0.03*
- LF (0.04-0.15 Hz) x 104 s2/Hz 9.7 ± 5.5 30.6 ± 24.2 0.02*
- HF (0.15-0.4 Hz) x 104 s2/Hz 5.6 ± 2.9 16.2 ± 14.9 0.05
LF/HF Ratio 1.9 ± 1.1 2.3 ± 1.2 0.48
Mean Heart Rate (BPM) 59.6 ± 8.8 56.7 ± 5.4 0.42
Mean Diastolic Blood Pressure (DBP, mmHg) 55.8 ± 9.0 52.8 ± 6.9 0.44
Mean Systolic Blood Pressure (SBP, mmHg) 104.0 ± 13.7 99.5 ± 17.6 0.55
Total Power in SBP spectrum x 104 mmHg2/Hz 27.5 ± 11.1 47.7 ± 19.7 0.02*
Total Power in DBP spectrum x 104 mmHg2/Hz 6.8 ± 3.5 16.7 ± 7.9 <0.00*

Values in the table are means ± standard deviation. T-tests were used to assess group differences. 
yrs, years; BMI, body mass index; HRV, heart rate variability; s, seconds; Hz, hertz, VLF, very low 
frequency; LF, low frequency; HF, high frequency; BMP, beats per minute. 

exclusively by the parasympathetic system, so an alteration in sympathetic tone may be 
expected to leave it unchanged. Somewhat unexpectedly, however, an increase in power 
in both the LF and the HF band can result from an exclusive reduction of sympathetic 
tone, as proven by selective sympathetic blockade studies.30, 31 A possible explanation 
could be that diminished sympathetic control may lead to higher fluctuations in blood 
pressure, induced by respiratory or other influences that in turn cause parasympathetic 
heart rate responses. The lack of differences in the LF/HF ratio in our study may 
in part be due to the fact that sympathetic tone contributes to both the LF and HF 
peaks, affecting both elements of the ratio. Sympathetic tone is already low in the 
supine position, so any further decreases are not likely to affect the ratio under these 
circumstances.30, 31 This hampers straightforward interpretation of this ratio.33 The only 
finding that is not readily compatible with decreased sympathetic tone is that mean 
heart rate was not lower in the narcolepsy group.30, 31 

Surprisingly, although sympathetic activity drives resting energy expenditure, at least 
in rodents, resting metabolic rate was similar in narcoleptic patients and controls. 
Accordingly, hypocretin knockout mice have normal RMRs (C.M. Sinton, personal 
communication). However, large cohorts of patients and controls are needed to detect 
small differences in energy expenditure by indirect calorimetry, and even subtle 
reductions of RMR may lead to body weight gain in the long term.37  

What are the potential explanations for the increased variability in blood pressure and 
heart rate in our narcoleptic patients? Firstly, narcoleptic subjects may not have been 
as awake as the control subjects, although special care was taken to keep patients alert 
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during the measurements. Narcolepsy is commonly seen as a loss of state boundary 
control, which means that patients are unable to remain awake steadily.38 A tendency 
to drift into drowsiness could lead to a higher variability in autonomic parameters, as 
autonomic control differs in the various sleep stages. The transition between wakefulness 
and sleep affects the power in both the HF and the LF band.39 A tendency to shift from 
waking to drowsiness frequently might therefore show up as increased HRV. None of 
the subjects was visibly asleep during any test, but we cannot exclude a contribution of 
drowsiness to the higher variability in blood pressure and heart rate in our narcoleptic 
patients. Drowsiness would not only affect autonomic parameters, but might also have 
lead to an underestimation of the RMR in narcoleptic subjects, since RMR is lower 
during sleep.40 However, this would mean that the actual RMR in narcoleptic subjects 
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is higher, which does not explain their obesity. We suggest that further studies should 
take drowsiness into account. Interestingly, when looking at individual data points 
(Figure 8.1), there is a large variation in heart rate and blood pressure variability in 
narcoleptic patients. This was not correlated with BMI. The higher variation might 
explain or perhaps be explained by differences in phenotype, sleepiness or disease 
severity.
       
Alternatively, hypocretin deficiency may directly inhibit sympathetic activity. Various 
studies have shown that the hypocretin system is heavily involved in autonomic control 
and that hypocretins stimulate sympathetic activity.41 Indeed, orexin neuron-ablated 
mice, which grow obese, have lower sympathetic vasoconstrictor outflow.42 There is 
direct innervation of adipose tissue by sympathetic (catabolic) and parasympathetic 
(anabolic) pathways,22 implying that a low sympathetic tone can directly promote fat 
accrual.23

Other authors who have looked at autonomic nervous function in narcoleptic patients 
found no abnormalities during provocations43 and no primary disturbance between 
6 and 8 PM or during sleep.44 An increased LF/HF ratio compared with controls was 
found just before sleep onset, but this was thought to be related to the impairment of 
the sleep-wake cycle in narcolepsy and not to a primary disturbance.44

In conclusion, we did not find abnormalities in resting metabolic rate in narcoleptic 
humans when measured by indirect calorimetry. However, there are signs of 
reduced sympathetic activity, which may lead to fat accrual through direct effects on 
adipocytes. Future studies should directly measure sympathetic tone, for example using 
microneurography. 
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