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Abstract

Myocardial infarction triggers reparative inflammatory processes programmed to
repair damaged tissue. However, often additional injury to the myocardium occurs
through the course of this inflammatory process, which ultimately can lead to heart
failure. The potential beneficial effects of cell therapy in treating cardiac ischemic
disease, the number one cause of death worldwide, are being studied extensively, both
in clinical trials using adult stem cells as well as in fundamental research on cardiac
stem cells and regenerative biology. This review summarizes the current knowledge
on molecular and cellular processes implicated in post-infarction inflammation and
discusses the potential beneficial role cell therapy might play in this process. Due
to its immunomodulatory properties, the mesenchymal stromal cell is a candidate
to reverse the disease progression of the infarcted heart towards heart failure, and
therefore emphasized in this review.



Introduction

Ischemic heart disease including myocardial infarction (MI) is the number one
cause of death worldwide (1). MI typically results from a (thrombotic) occlusion of a
coronary artery leading to myocardial ischemia (2). Typically, after diagnosis of MI
primary percutaneous coronary intervention (PCI) of the infarct related coronary
artery is performed to achieve reperfusion, limit tissue necrosis and improve the
clinical outcome. Additionally, reperfusion triggers the immune system to initiate an
essentially regenerative signaling cascade programmed to repair the damaged tissue
after removal of dead cells and matrix debris (3). However, this immune-mediated
response needs to be tightly regulated to prevent additional myocardial tissue damage
which may invoke congestive heart failure (4, 5). Although PCI limits tissue damage
inflicted by myocardial ischemia, this intervention typically does not halt or even
reverse the loss of functional myocardium (6).

To limit (additional) damage to the myocardium after MI, novel therapeutic
interventions involving cell-based therapies have emerged in order to increase our
arsenal for treating ischemic heart disease (7). In this review we systematically
summarize the current state of knowledge on the inflammatory response involved in
post-MI inflammation and discuss how cell therapy may attenuate certain deleterious
aspects of this response and may improve cardiac function after MI.

The post-infarction inflammatory response

Myocardial ischemia results in cell death, initiating an inflammatory response
ultimately resulting in scar formation (8). This process of myocardial infarct healing
occurs through three successive phases: the inflammatory phase, the proliferative
phase and finally the maturation phase (9, 10).

The inflammatory phase. The immune system comprises an innate and adaptive system.
The innate immune system regulates the non-specificimmediate response against invading
pathogens and injury, whereas the adaptive immune system involves specific recognition
of foreign antigens and progresses with a delay as it requires prior activation by innate
immune cells.

As a consequence, the first phase of the reparative process after MI is mediated by
the innate immune system (10). Initially platelets are activated upon myocardial injury
to prevent bleeding. Platelets aggregate locally to form a fibrin-rich matrix and release
important growth factors such as platelet-derived growth factor (PDGF) and Platelet-
Factor 4 that aid the repair process (11). In parallel, platelets produce platelet activating
factor thereby stimulating the influx and adhesion of neutrophilic granulocytes to the
site of injury (12). Neutrophils are among the first innate immune cells to enter the
myocardium, which occurs within hours after the ischemic event. Their recruitment is
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stimulated by Reactive Oxygen Species (ROS) produced by activated cardiac myocytes
and vascular endothelial cells (10). ROS (including hydrogen peroxides, superoxide
anions and hydroxy radicals) are formed by the incomplete reduction of molecular
oxygen and activate the chemotactic cytokine interleukin (IL)-8 / chemokine (CXC
motif) ligand 8 as well as the endothelial surface molecule intercellular adhesion
molecule-1 (ICAM-1), together coordinating neutrophil recruitment.

Upon arrival, neutrophils secrete proteolytic enzymes that clear the infarct from
dead cells and debris (10, 13). However, the activated neutrophils also contribute to the
production of ROS which react directly with cellular lipids, proteins and DNA released
from the damaged cells. In this context ROS act as signaling intermediates that activate
the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) resulting in the production of pro-inflammatory cytokines and chemokines,
but also of growth factors important for tissue repair such as Transforming Growth
factor-beta (TGF-b) (10, 14, 15). Tissue damage inflicted by ROS needs to be limited as
early as possible as demonstrated in a study of MI in dogs using free radical scavenging
catalase and the anti-oxidant enzyme superoxide dismutase-1. In this study it was
shown that infarct size was reduced only when the treatment was given prior to
coronary occlusion (16).

It is however difficult to denote the exact role of neutrophils in myocardial
repair. Smaller infarcts were observed upon myocardial reperfusion in experimental
animals depleted of neutrophils, suggesting that neutrophils have a deleterious effect
in myocardial injury followed by reperfusion (17). However, infarct sizes were not
altered when neutrophil recruitment was prohibited in mice deficient for ICAM-1
and P-selectin, despite a reduction in neutrophil trafficking (18). Initial neutrophil
influx is followed by the recruitment of monocytes, which is mainly mediated by the
chemokine monocyte chemo attractant protein-1 (MCP-1)/ chemokine (C-C motif)
ligand 2. In a study in MCP-1 deficient mice, it was shown that the absence of MCP-1
did not alter infarct size, but attenuated ventricular remodeling, reduced and delayed
monocyte/macrophage recruitment and delayed replacement of cardiomyocytes with
granulation tissue and diminished myofibroblast accumulation (19). Phenotypically
monocytes can be distinguished in different subsets and numerous studies have tried
to attribute different roles to distinct subsets as monocytes appear to be involved in
both pathogenic as well as reparative inflammatory responses. In mice, monocytes
that express high levels of the molecule lymphocyte antigen 6¢ (Ly-6C) are regarded as
pro-inflammatory monocytes. In mouse MI studies these pro-inflammatory Ly-6Chi"
monocytes are recruited from the bone marrow to the infarcted heart expressing the
C-C chemokine receptor 2 (CCR2), where they remain in high numbers until three
days after MI, scavenging debris and secreting inflammatory cytokines and matrix
degrading proteases (20, 21).

The recruitment of neutrophils and monocytes is thus crucial for the initiation of
the repair process, but their contribution is determined by the actual signaling cascades



that are activated. Intracellular components released from necrotic cardiomyocytes are
sensed by innate immune cells that become activated upon tissue entry (22). The most
prominent pathways by which the innate immune system initiates a post-infarction
inflammatory response are: 1) The Toll-like receptor (TLR)-mediated pathway;
2) The complement cascade and; 3) The earlier mentioned ROS. These three pathways
all converge to activate NF-kB, a transcription factor that drives the expression of
numerous genes. In a resting cell the NF-kB dimer is sequestered in the cytoplasm
as an inactive protein bound by the inhibitor of kB, IkB. Upon activation of the
NF-kB pathway, the IkB protein is degraded, releasing the NF-kB dimer which then
translocates to the nucleus where it regulates gene expression by binding specific
promoter sequences. Since NF-kB regulates so many different genes ranging from
pro-inflammatory cytokines, chemokines, matrix metalloproteinase (MMP) as well
as genes involved in cell survival and proliferation, (23)(24) it is considered as one of
the most important players throughout the whole process of tissue repair. A recent
review summarizes several studies highlighting the participation of NF-kB in post-MI
inflammation (24). A reduction of myocardial infarct size was observed after ischemia-
reperfusion in an experimental model where NF-«B activity was blocked by prohibiting
DNA-binding using decoy oligodeoxynucleotides, whereas a recent report by Hamid et
al. reported that prolonged activity of NF-«B in myocardial tissue results in a chronic
inflammatory state with detrimental consequences for infarct healing (25). Both studies
underscore the role of NF-kB in post-MI inflammation (26).

TLRs are a family of heterodimeric transmembrane pattern recognition receptors
that recognize and bind antigens derived from pathogens or damaged tissues, the so
called damage-associated molecular patterns (DAMPs). Upon ligand binding most
TLRs activate NF-kB leading to the expression of pro-inflammatory cytokines such
as tumor necrosis factor-a (TNF-a), pro IL-1b and interferons. Among the TLRs
identified, TLR1, 2, 4-6 and 11 are expressed on the cell surface, whilst TLR3 and 7-9
are expressed in intracellular vesicles, mostly endosomes. TLRs are pre-assembled
as low-affinity dimers which undergo a conformational change upon ligand binding.
Although initially described as receptors that recognize pathogen-derived molecules,
several non-pathogenic endogenous molecules have been identified to bind and activate
TLRs. For instance TLR4 binds not only to lipopolysaccharide but also to certain
heat shock proteins and extracellular matrix (ECM) remnants such as hyaluronan
and fibronectin (27) suggesting a broad role for TLR4 in tissue injury and repair. It
has been observed that TLR4 is upregulated in injured myocardium of both humans
and mice (28). Also, in TLR4 deficient mice, MI induced hearts were characterized
by reduced left ventricular remodeling with preserved systolic function, but without
affecting the infarct size. The infarcted area showed increased collagen density with
fewer macrophages and reduced cytokine levels and MMP activity, identifying TLR4
as an important component of the post-MI remodeling process (29).

Next to TLR activation, the release of DAMPs also triggers the complement cascade.
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The complement system is a network of soluble and surface bound proteins able of
recognizing, tagging and eliminating microbial intruders and foreign cells via initiation
of the immune response. The complement cascade consist of three main pathways
which are all involved in immunopathological diseases (30). In a rat model of MI it was
shown that ischemic myocardial injury activates the complement cascade, and mRNA
and proteins of the complement pathway are upregulated in areas of MI (31)(32-34).
The importance of complement pathway activation in mononuclear cell recruitment
was shown in a canine model of cardiac ischemia in which upon cardiac reperfusion,
the complement pathway induced migration of monocytes into the myocardium (35).
Studies have been performed in which certain elements of the complement cascade
have been inhibited using cobra venom or soluble human complement receptor to
antagonize complement signaling. These studies showed a reduction in myocardial
necrosis and a decrease in infarct size suggesting a role for the complement pathways
in myocardial injury (36, 37).

In conclusion, all actions combined result in recruitment of leucocytes to the
infarcted area, the clearance of dead cells and debris and the activation of signaling
cascades leading to the production of a variety of essential growth factors for repair
of the infarcted area, and the transition towards the proliferative phase (38).

The proliferative phase. At this stage neutrophils, mononuclear cells, endothelial cells
and pericytes all work together to resolve the initial inflammatory reaction and direct
it towards a healing process. Short-lived neutrophils become apoptotic and release
mediators such as annexin Al and lactoferrin that suppress further neutrophil recruitment
(39). The Ly-6Chigh monocytes express the orphan nuclear hormone receptor, nuclear
receptor subfamily 4, group a, member 1 (Nr4al) which reduces the CCR2 dependent
recruitment of Ly-6Che" monocytes towards the infarct. In addition, Ly-6Ch# monocytes
differentiate into Ly-6C"" macrophages in the local cardiac tissue. Ly-6C"** macrophages
clear the apoptotic neutrophils and are associated with an increased presence of the
anti-inflammatory factors IL-10, TGF-f and vascular endothelial growth factor (VEGF)
countering the inflammatory response by recruitment of myofibroblasts for scar tissue
formation and thereby contributing to infarct healing (40, 41). A recent study performed
by Hilgendorf et al. indicated another important anti-inflammatory role for Nr4al, as
cardiac macrophages in Nr4al-deficient mice showed a more inflammatory profileand asa
result these animals had a decreased cardiac function and increased cardiac remodeling in
contrast to wildtype controls following MI (41). Whilst Ly-6C"&* monocyte levels decrease,
Ly-6C"" monocytes, resident in the cardiac tissue, peak 7 days after MI and afterwards
also decrease. Ly-6C*" monocytes are also Nr4al dependent, as Nr4al-deficient animals
had no Ly-6C"" monocytes in either the cardiac tissue or the peripheral circulation.
The role of Ly6C"" monocytes is still under investigation, but they are important in the
inflammatory process by the clearance of endothelial necrotic cells via TLR-7 activation
(42). A recent study showed a similar monocyte pattern in post-mortem tissue of human



MI patients as mainly CD14*CD16- monocytes were present in the cardiac infarct tissue in
the inflammatory phase after MI, while in the proliferative phase both CD14*CD16" and
CD14*CD16* monocytes were observed (43). Since CD14*CD16” monocytes in humans are
comparable to Ly6C"" monocytes in mice (21, 44), this indicates the monocyte response
is comparable between species.

The uptake of apoptotic cells by macrophages induces the release of anti-
inflammatory factors such as IL-10 and TGF-b, and lipid mediators such as lipoxins
and resolvins which further stimulate the removal of inflammatory leukocytes (23, 45).

After MI, IL-10 becomes highly expressed, mainly by activated T lymphocytes and
monocytes as described above. As IL-10 inhibits the secretion of IL-1a, IL-1b, TNF-a,
IL-6 and IL-8, it suppresses the ongoing inflammation process (5, 23). In addition, IL-10
induces the production of a group of peptidases involved in ECM degradation called
tissue inhibitor of metalloproteinases (TIMPs), thereby promoting ECM remodeling
(10, 46, 47). IL-10 deficient mice showed an increased mortality concomitant with an
enhanced immune response during myocardial ischemia followed by reperfusion, as
measured by a higher neutrophil recruitment, elevated plasma TNF-a and a higher
expression of ICAM-1 (48). In a similar study elevated mRNA levels of TNF-a and
MCP-1 were also observed in the infarcted heart of IL-10 deficient mice. However, in
this study mortality rates were similar to wild type mice due to the variable effects of
IL-10, affecting the production of a numerous cytokines such as IL-1 and IL-6 (49).
Both IL-1a and IL-1b are upregulated in experimental models of MI and promote the
inflammatory reaction by the induction of cytokine and chemokine production (10).
In contrast, IL-6 appears to have a beneficial role in tissue repair (11). IL-6 protects
cardiomyocytes against apoptosis and induces cardiomyocyte hypertrophy. IL-6
expression is induced in the healing infarct, and can be produced by mononuclear
cells, cardiomyocytes and fibroblasts within the ischemic myocardium (10, 50, 51).

TGE-b is upregulated in experimental models of MI and initiates the transition
from inflammation to fibrosis by pro-inflammatory cytokine suppression (38). The
secretion of TGF-B will initiate fibroblast growth as well as angiogenesis, whereas
MMPs and TIMPs produced by the activated macrophages aid in the extracellular
remodeling of the regenerating cardiac tissue (5, 10). Angiogenesis is crucial to provide
oxygen to the injured tissue and maintain cell metabolism (10). One of the most
important angiogenic factors during the proliferative phase is hypoxia-inducible
factor 1, expressed early after myocardial ischemia, which upregulates the chemokine
stromal cell-derived factor 1-a (SDF-1) and its receptors CXCR4 and CXCR?7 (52) and
activates the release of VEGF, one of the key growth factors in neoangiogenesis (53).
After SDF-1 is expressed, hematopoietic stem cells and endothelial progenitor cells are
recruited to the ischemic myocardium where they improve angiogenesis as has been
demonstrated by several studies (52, 54-58). PDGF signaling induces maturation of
the neovessels via the formation of a mural coat of pericytes surrounding the vessel.
Withdrawal of PDGF from this process leads to apoptosis of the endothelial cells (59).
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Inhibition of TGF-b during the early inflammatory phase after myocardial injury
results in a significant increase in mortality and an exacerbated left ventricular
dilatation via enhanced cytokine synthesis in mice (60) Moreover, TGF-b inhibits
immune cell proliferation and stimulates fibroblasts to produce ECM proteins such
as collagens, fibronectin, tenascin and proteoglycans and ultimately suppresses
matrix degradation via inhibition of proteinases such as plasminogen activators and
collagenases while stimulating production of proteinase inhibitors such as plasminogen
activator inhibitor-1 and TIMPs (61-63). Resident cardiac fibroblasts entering the
infarcted tissue differentiate to myofibroblasts that express contractile proteins such as
a-smooth muscle actin. Myofibroblast differentiation is induced by mechanical stress,
TGF-B/mothers against decapentaplegic homolog 3 (Smad3) signaling and alterations
in the composition of the ECM such as upregulation of ED-A fibronectin (64, 65).
These myofibroblasts are predominantly present in the infarct border zone and have a
high proliferative capacity (10, 66). They are the main source of ECM proteins needed
to generate a collagen scar (67). Induction of the pro-inflammatory cytokine TNF-a
diminishes ECM collagen synthesis followed by an increase of the MMP activity of
cardiac fibroblasts (10, 68). However, TNF-a deficient mice are protected from cardiac
rupture and chronic dysfunction following infarction (69), indicating the pleiotropic
role of the cytokine.

One of the important ECM constituents is hyaluronan, a high molecular weight
polymer under physiologic conditions, which becomes degraded upon tissue injury.
Hyaluronan fragments stimulate endothelial cells and macrophages to secrete pro-
inflammatory cytokines and chemokines and clearance of these fragments precedes
the resolution of the inflammatory phase (10, 70, 71). Finally, there is an accumulation
of mast cells during cell proliferation and fibrosis (72). The exact role of mast cells in
the process of cardiac inflammation and repair is still under investigation, but one
function of mast cells might be the regulation of fibrosis by the secretion of MMPs
(73), thereby inducing tissue remodeling. The summation of these processes finally
leads to the formation of highly vascularized granulation tissue and abolition of the
pro-inflammatory environment enabling repair.

The maturation phase. The formation of the scar, initiated during the proliferative phase,
is followed by its maturation when endothelial cells have proliferated to form an extensive
microvascular network. Only a part of these vessels mature through the mural wall
formation by pericytes and myofibroblasts. These mature vessels aid scar stabilization by
providing oxygen and nutrients (23). However, the remainder of neovessels do not mature
and undergo apoptosis together with the remaining myofibroblasts (64). The highly-
vascularized granulation tissue formed during the inflammatory phase, is finally replaced
by a collagen-rich scar, completing the process of infarct healing (10). The site of coronary
occlusion, duration of ischemia and timing of reperfusion all influence the inflammatory
process and therefore the time course of infarct healing will vary between individuals.



After completion of the reparative response, some fibroblasts remain in the non-
infarcted myocardium and may become activated via increased wall stress where
they contribute to ventricular remodeling and ventricular dysfunction by producing
matrix proteins and proteases (64). Increasing the number of myofibroblasts as well
as the number of capillaries by blocking frizzled signaling via the proto-oncogene
protein Wnt3a and protein Wnt5a antagonizing peptides reduced infarct size and
increased infarct thickness in a mouse model of MI, suggesting that preservation
of cardiac function after MI can (amongst others) be influenced by modulation of
myofibroblasts (74).

In conclusion, inflammatory processes play a crucial role initially clearing the
debris of apoptotic cells but also regulating essential repair mechanisms to form
mature scar tissue. However, an elaborate immune response clearing as much damaged
cellular tissue as possible also induces undesirable collateral damage to surrounding
healthy tissue.

Therapeutic approaches targeting cardiac inflammation and ischemia-reperfusion
injury after myocardial ischemia. The progress made in understanding cardiac
inflammation initiated experimental studies aiming to modulate the unwanted cardiac
tissue injury induced by post-MI inflammation and reperfusion therapy. Initial studies
targeting pathways of oxidation, inflammation, sodium-hydrogen exchange, nitric oxide
metabolism and metabolic pathways showed positive results on clinical parameters such
as reduction of infarct size; however these results need confirmation in large trials (75,
76). The purine analogue acadesine, which increases adenosine levels in energy-deprived
tissues, has been studied as a pharmalogical intervention in an ischemia-reperfusion setting
(77). A meta-analysis summarizing all studies that have tested acadesine in 4043 patients
undergoing coronary artery bypass grafting (CABG) surgery, suggested a 27% reduction
of the perioperative occurrence of MI (3.6% vs 4.9%, P=0.02) and a 26% decrease in the
combined outcome of stroke/MI/cardiac death (7.6% vs 4.6%, P=0.04) (78). However, the
largest trial performed called the Reduction in cardiovascular Events by acaDesine trial in
subjects undergoing CABG surgery (RED-CABG), was stopped after 3080 of the originally
projected 7500 study participants were randomized because of a low expectancy to obtain
statistically significant differences. This underscores that beneficial effects are variable.

One of the earliest results of pharmacological intervention to inhibit the inflammatory
response after MI was described by Roberts et al. who infused multiple doses of the
anti-inflammatory drug methylprednisolone in patients with MI and reported an
augmentation of the infarct size and accentuation of malignant arrhythmias. These
catastrophic results of the methylprednisolone study made clear that an absolute
suppression of the immune system after MI is not desirable for it also interferes with
the reparative aspects of the immune response (23, 79).

A growing number of alternative promising therapeutic interventions targeting the
cardiac inflammation process, including ischemic pre- or post-ischemic conditioning,
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has been proposed and in part already investigated in patients or is about to be
examined in clinical trials (80-82). Recently, Padfield et al. determined the effects
of etanercept, a TNF-a antagonist, in patients after MI. Whereas, they observed a
modest anti-inflammatory effect possibly through a decrease in neutrophil recruitment
and IL-6 concentrations, TNF-a levels were increased as were platelet activators
and aggregators, making it less suitable as a therapeutic candidate to treat MI (83).
In another study MI patients were treated with intravenous immunoglobulin after
PCI, however without any beneficial effect on either cardiac function or remodeling
(84). A large trial investigating the effects of pexelizumab, an antibody binding the
C5 component of complement, did not influence mortality or development of heart
failure in cardiac patients (85).

Other promising therapeutic interventions showed contrasting results. The
immunosuppressive drug cyclosporine that inhibits the opening of mitochondrial
permeability-transition pores caused smaller infarct sizes and attenuated left
ventricular remodeling in initial clinical trials when administered after primary PCI
(86, 87). However this was not reproduced in a more recent trial where cyclosporine
was injected before thromobolytic treatment (88). Blockade of the IL-1 receptor by
anakinra attenuated cardiac remodeling in a first small pilot study in MI patients (89).
A second study however, did not confirm these results (90).

So far, the effects of different anti-inflammatory therapies are incongruent and their
clinical applicability remains unclear. More importantly, this therapeutic approach
will only attenuate the results of the inflammation process itself, among which the
remodeling process. Here lies a role for the still emerging field of cell-based therapy, as
this may influence the post-MI inflammation process, but also potentially regenerate
the infarcted tissue (91).

Cell-based therapy

While the amount of therapeutic strategies to treat ischemic events has increased
dramatically the past decade, patients are often still prone to develop heart failure,
since there are no therapeutic options available to reverse the loss of functional
myocardium. Therapeutic cell therapy has the advantage that it can be delivered locally
into infarcted tissue, either as a cell suspension or on a supportive scaffold. Additionally,
genetic modification allows for cells to be custom-tailored to improve results.
Moreover, certain stem cell populations such as mesenchymal stromal cells (MSCs)
have the additional advantage of diminishing the deleterious eftects of the inflammatory
response that accompanies repair by secretion of different paracrine factors acting
on several immune cell populations (92, 93). However, the potential of cell therapy
to influence post-MI inflammation has not been studied extensively yet, leaving for
the moment a gap in our knowledge about the effect and capacity cell therapy might
have in modulating post-MI inflammation. The field of stem cell transplantation



was accelerated a decade ago by a preclinical study that reported improved cardiac
regeneration upon infusion of bone marrow-derived cells into a cardiac ischemic
mouse heart (94). These results initiated a new area of research, exploring the potential
of cell therapy to regenerate the diseased heart and clinical trials quickly followed.

The ideal cardiac regenerative therapy involves a cell type that is easily accessible,
produces the optimal combination of paracrine factors, is able to engraft in the injured
cardiac tissue niche, can possibly even differentiate into a cardiomyocyte or other
desired cardiac cell types, and can be delivered via a safe and minimally invasive
procedure. In search for this cell type, a variety of cell populations are being studied, all
initially aimed toward regenerating cardiac tissues, each having their own advantages
and limitations (95).

Transplantation of various cell types such as hematopoietic and non-hematopoietic
bone marrow-derived stem cells as well as MSCs and other adult stem cells has
been performed in experimental and clinical studies with the purpose to stimulate
neoangiogenesis (96). It is reported that therapeutic cell therapies can regulate tissue
inflammation through paracrine mechanisms acting on angiogenesis, apoptosis and
scar formation and are able to potentiate recruitment of endogenous stem cells to the
site of injury (91, 93). In addition, there are cell types that have proven to be able to
form de novo cardiomyocytes, such as embryonic stem cells (ES), induced pluripotent
stem cells (iPS) and cardiac progenitor cells (CPCs) (97). The CPCs can be isolated
from the adult heart and show spontaneous electrical activity and action potentials
upon appropriate in vitro differentiation (98).

In the cardiac field, the effect of cell therapy has been studied in different animal
models, but studying inflammation has not been a main focus in these studies (Table 1).

Mesenchymal stromal cells

Over the last years many studies have focused on the therapeutic potential of MSCs
in different diseases in animals and humans, due to their versatile nature which
includes their immunomodulatory capacities. This cell type was first described
by Friedenstein et al. in 1968 and has already been studied in clinical trials (99).
The MSC is a rare population of multipotent cells, present in bone marrow and
other mesenchymal tissues like adipose tissue. MSCs are poorly defined but ex vivo
expanded MSC populations are traditionally characterized by the presence of surface
antigens CD90, CD73, CD105 and major histocompatibility complex (MHC)-I and
the absence of characteristic hematopoietic cell surface antigens such as CD45,
CD34, CD80 and MHC-II. MSCs are capable to differentiate into multiple mature
cell lineages including chondrocytes, osteoblasts and adipocytes. Due to its limited
plasticity and restricted lifespan the MSC has a major theoretic advantage regarding
safety compared to the ES and IPS cell, with a reduced risk of tumorigenicity, a major
concern of therapeutic cell products. Whilst most cell populations are studied for
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their potential to regenerate damaged tissues, the MSC is additionally capable of
dampening deleterious aspects of the immune response that accompanies injury.
Inhibition of undesired immune responses by MSC infusion has been observed in
experimental animal models for various diseases and underscores the potential of
MSC:s for clinical immune regulation (100). The clinical applicability of MSCs for
immunological disease was initially shown in patients with graft-versus-host disease
(GvHD) after bone marrow transplantation (101) . In a successive phase II study it
was found that MSC administration improved the manifestations of GvHD in the
majority of patients (102). These positive results of MSC therapy led to MSCs entering
various clinical trials. Notwithstanding the positive effects of MSCs, the cellular and
molecular mechanisms responsible are complex, probably multifactorial in nature
and poorly understood.

MSCs are immunosuppressive in vitro, evidenced by their ability to suppress the
proliferation of T cells and their effect on cytokine profiles (103-105). Furthermore,
MSCs are able to induce the formation of CD4+CD25+FOXP3+ regulatory T cells (106)
and interfere with the differentiation, maturation and function of antigen presenting
dendritic cells, thereby directly affecting processes such as immunity and tolerance
(107). Huang et al. showed that neither infusion of allogenic nor syngeneic MSCs after
MTI in rats elicited a significant immune response, confirming the lack of immunogenic
surface antigen expression or expression of antigens in an immunoregulatory fashion
on such MSCs. Syngeneic MSC therapy improved cardiac function up to 6 months
after infusion when compared to controls, whereas allogeneic MSC therapy improved
cardiac function up to 3 months only. However, in vitro treatment before infusion of
MSCs with 5-azacytidine, VEGF or TGF-f in an effort to stimulate differentiation
towards myogenesis, endothelial cells or smooth muscle cells respectively, altered the
immunogenic surface antigen expression profile of these cells, potentially triggering
an immune response in vivo after allogeneic MSC infusion (108).

We recently demonstrated that MSCs act on monocyte differentiation, promoting
the formation of anti-inflammatory IL-10 producing cells with low antigen presenting
capacity (109). MSCs have also been reported to inhibit the proliferation of B lymphocytes
upon anti-Ig antibody, soluble CD40 ligand or cytokine-mediated activation (110) and
have been suggested to inhibit IL-2- and IL-15-induced natural killer-cell proliferation
(111). In summary, these studies demonstrate the immunomodulatory capacities of
MSCs in vitro, however the biological relevance of these findings in vivo is still largely
unknown (112).

The first in vivo results were obtained in an experimental model of GVHD in which
systemically infused MSC improved survival of mice transplanted with haplo-identical
hematopoietic stem cell grafts (113, 114). However, in another study injection of a
single dose of MSCs did not ameliorate GVHD (115). In the cardiac field, MSC infusion
has been studied in different animal models. MSC transplantation after MI in a rat
model showed an attenuation of the decline in cardiac function and the remodeling



process, which may be explained by the anti-inflammatory properties of MSCs as the
expression of TNF-a, IL-1p and IL-6 was reduced in these animals (116). Infusion of
MSCs in a rat MI model using a langendorff apparatus also resulted in the highest
preservation of cardiac function when compared to controls, most likely by a decrease
of the pro-inflammatory cytokines TNF-a, IL-1 and IL-6. In addition, apoptosis was
reduced, suggesting a beneficial role for MSC in apoptotic signaling, possibly via a
signal transducer and activator of transcription 3 pathway (117). This decrease in the
pro-inflammatory cytokines TNF-a, IL-1 and IL-6 was also observed after injecting
MSCs combined with either atorvastatin (118) or simvastatin, in a Chinese swine MI
model (119). Herrmann et al. showed that infusion of MSCs, both naive cells and cells
pretreated with TGF-a decreased infarct size and preserved cardiac function, possibly
through lowering of the TNF-a, IL-1f and IL-6 expression and increasing VEGF
expression in a rat MI model (120). The increased expression of VEGF by MSC therapy
was also demonstrated after application of MSC/silk fibroin/hyaluronic acid patches in
an MImodel in rats, in addition to a decreased inflammatory response as demonstrated
by reduced CD 68 expression (121). Kim et al. showed preservation of cardiac function
by infusion of MSCs as well, with enhanced MSC engraftment and cardiac function
preservation after TNF-a stimulation (122). Lee et al. infused MSCs in an experimental
MI mouse model where cells were afterwards entrapped in the lungs forming micro-
emboli (123). Subsequently, signals from the injured heart induced MSCs to secrete the
anti-inflammatory protein tumor necrosis factor-inducible gene (TSG)-6 protein which
suppresses the excessive and thereby deleterious inflammatory response involved in
cardiac ischemia. This limited the protease release by macrophages and neutrophils,
decreasing the damage to cardiomyocytes. Ultimately, an improvement of cardiac
function and a decrease in scar formation of the left ventricle was observed. TSG-6,
secreted by MSCs, has been shown to be a key anti-inflammatory factor in many other
experimental disease models such as bleomyocin-induced lung injury, sterile cornea
injury, and zymosan-induced peritonitis (124-127).

The importance of the SDF-1 release by MSCs in the process of cardiac repair of
MI was recently demonstrated in novel MI model in conditional cardiac myocyte
CXCR4 null mice (128). In absence of CXCR4, the SDF-1 receptor, preservation of
cardiac function by MSCs is no longer observed, possibly due to a decrease in the
recruitment of stem cells or an increase in apoptosis. An earlier study injected MSCs
that over-expressed SDF-1, which resulted in increased angiogenesis through VEGF
expression and subsequently preservation of cardiac function (129).

Dayan et al. showed that MSC therapy after MI in a mouse model decreased the
number of monocytes and pro-inflammatory M1 phenotype macrophages. Also, in
vitro and in vivo data demonstrated that the amount of M2 phenotype macrophages,
which are associated with an anti-inflammatory phenotype, was increased, which was
thought to be mediated by MSC secretion of the anti-inflammatory factor IL-10 (130).
This MSC-mediated switch from M1 phenotype to M2 phenotype macrophages was
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recently confirmed by another group (131). In vitro experiments proposed that the
modulation of macrophages may be dependent on cell-to-cell contact, as the secretion
of reparative cytokines was highest in cultures of MSCs mixed with macrophages (131).

While the therapeutic effectiveness of MSCs has been shown in a number of studies
as described above, the mechanisms through which MSCs act remain still unknown.
Purported beneficial immunomodulatory factors derived from MSCs in addition to
TSG-6, include inducible nitric oxide synthase, indoleamine dioxygenase, CCL2,
SDF-1, IL-10 and prostaglandin E2. In addition, immunomodulatory effects may rely
on pathways acting on specific immune cell populations or via cell-cell contact with
dendritic cells, macrophages or other cells of the immune system (91, 92, 112, 131-133).
Clearly this must be studied more intensively and much progress will be made when
the in vivo fate of MSCs can be determined to clarify the cellular interactions that are
made during the initiation and ongoing process of repair.

Clinical trials of MSCs. MSC therapy is at present being studied in various clinical trials
for their efficacy in inflammatory and degenerative disorders. However, when entering
the clinical arena potential risks have to be taken into account: the immunogenicity of
the cells, the biosafety of medium components, the risk of ectopic tissue formation and
potential in vitro transformation of cells during expansion (134).

The ClinicalTrials.gov web-based resource, supervised by the NIH has summarized
a large number of clinical trials that involve MSC therapy targeted against various
diseases.

One of the key clinical trials performed is a phase II trial in which fifty-five patients
with steroid resistant acute GvHD were treated with MSCs (102). In the sixty months
follow up, infusion of in vitro expanded MSCs was considered a possibly effective
therapy for this specific patient group. The mode of action of MSCs in GvHD seems
highly related to their immunomodulatory properties.

In the cardiac field MSC therapy has also been evaluated in numerous studies (135).
In 2004 a study of autologous bone marrow-derived MSC infusion in patients with
acute MI was performed (136). In sixty-nine patients undergoing PCI after acute MI
significant improvements in left ventricular function were found, which were assessed
by echocardiographic monitoring. The first phase-I, randomized, double blind, placebo-
controlled, dose-escalation study of intravenous allogeneic adult MSCs in patients
with acute MI was completed in 2009, suggesting it was safe to use allogeneic MSCs in
patients after acute MI (137). The same group reported in 2012 a direct comparison of
autologous versus allogeneic bone marrow-derived MSCs in ischemic cardiomyopathy
patients showing low rates of treatment-emergent serious adverse events, including
immunologic reactions. A recent trial in ischemic cardiomyopathy patients showed
no adverse effects of MSC injection and encouraging beneficial results, though the
study size was small (138). Injection of MSCs in chronic ischemic cardiomyopathy
patients during CABG surgery showed a promising improvement of cardiac function



and decreased scar size, however due to lack of placebo and small study size results
were not conclusive (139). Our group recently reported that intramyocardial injection
of autologous MSCs using the NOGA injection system in acute MI patients was safe
up to 5 years after injection, and was associated with improved cardiac function as
compared to baseline (140). In aggregate, the MSC injection favorably affected patient
functional capacity, quality of life, and ventricular remodeling (141).

The current experimental and clinical data available indicate that MSC therapy is
feasible and safe, and neither early toxicity nor later side effects have been found to
date. However, long-term follow up studies in larger patient cohorts are warranted to
give definitive answers whether long-term adverse events may occur (142). The latest
findings suggest that patients receiving cell therapy mainly experience beneficial results
on clinical outcomes instead of objective parameters regarding cardiac function (135).
At present it is not clear whether the beneficial effect of MSCs in cardiac patients is
also caused by a beneficial effect on post-MI inflammation, or by other mechanisms.
More research is needed to address this issue.

Summary and future perspectives

This review describes the role of the immune system in the healing processes
following an acute ischemic event. The inflammatory response that occurs after MI
is a precarious balance, since it is indispensable in the clearance of cell debris and
ultimately the formation of a collagen scar but the pathways necessary for a timely
initiation, suppression, resolution, and containment of the inflammatory response can
also cause additional injury to the heart. When certain aspects of this inflammatory
process triggered by cardiac injury are excessive, ultimately infarct expansion and
adverse remodeling of the infarcted heart can occur (143, 144). However, it is not fully
known if suppression of the detrimental part of the inflammatory response would
prevent the adverse remodeling and concomitant worse outcome in patients with
MI and if this therapeutic goal can be reached clinically. Modulating the immune
response after myocardial damage is a road less travelled that might be a promising
therapeutic option for cardiac disease. Of all cell types, the MSC currently seems a
suitable candidate for this specific goal, based on the proven immunomodulatory
properties, in addition to the ability to secrete angiogenic factors such as VEGF (145),
important for neoangiogenesis (146). Infusing MSCs in the ischemic myocardium
therefore might not only improve cardiac function via dampening excessive immune
responses but also induce growth of new vasculature. Recapitulating the studies on the
physiologic function of MSCs in regulating the immune system in the hematopoietic
niche and their ability to modulate immunity in cardiac disease might be a feasible
option to move forward (147-149).
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