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1
Introduction

Come, come again, whoever you are, come!

Heathen, fire worshipper or idolatrous, come!

Come even if you broke your penitence a hundred times,

Ours is the portal of hope, come as you are.
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1.1 Background

Cardiovascular diseases (CVD) are the number one cause of death in the western

world. According to the European Heart Network, over 4 million deaths in Europe

and nearly 2 million deaths in the European Union occur due to causes related to

cardiovascular diseases [1]. This accounts for nearly 50% of natural deaths in Eu-

rope. According to the American Heart Association [2], in the U.S.A. CVD was an

underlying or contributing cause of death in an estimated 1.4 million people in the

year 2002, which accounted for 58% of all deaths in that year. Almost 60 million

Americans, i.e. 25% of the population, suffer from some form of heart disease.

Major types of cardiovascular disease are coronary heart disease (CHD), arrhythmia,

acute myocardial infarction (MI or heart attack) and congestive heart failure (CHF).

The next section briefly describes cardiac physiology and function, after which the

above-mentioned types of CVD are explained.

1.2 Cardiac physiology

The heart is a muscular organ with specialized cells for automaticity of contraction

and electrical conduction [3]. It is located in the center of the chest, between the

lungs, and has the size of a closed fist. The apex of the heart - the lower end - is tilted

slightly towards the left. Despite the relatively small size of the heart, 5 to 6 liters of

blood can be pumped per minute.

The heart consists of four chambers (see Fig. 1.1), two atria and two ventricles. De-

oxygenated blood enters the right atrium. When the right atrium is filled, it injects

the blood into the right ventricle, which in turn contracts and pumps the blood into

the pulmonary circulation. In the lungs, carbon dioxide and water are excreted from

the blood and oxygen is absorbed. Oxygenated blood returns to the left atrium and

is injected into the left ventricle through the bicuspid or mitral valve. Next, blood is

pumped into the aorta and the systemic circulation, i.e. the rest of the body.

The cardiac contraction cycle is triggered by an electrical pulse in the sino-atrial

node, which propagates through the heart through a dedicated electrical conduction

system: the His - Purkinje system. This controlled propagation causes an alternating

pattern of phases of diastole and systole of each chamber. In the end-diastolic phase,

the chambers are maximally relaxed and filled with blood. In the end-systolic phase,

the chambers are maximally contracted and most of the blood is ejected. The rate

of the contractions is influenced by neural stimuli and hormones. The coronary sys-

tem supplies the heart muscle itself with oxygen and nutrients, whereas the valves

ensure a unidirectional flow through the different compartments in the heart.

Since the cardiac contraction is an intricate balance of electrical signal propagation,

muscle contraction, muscle perfusion and valves opening and closing, a disturbance

in one of these elements may affect other functions. This may cause the following

main types of cardiac pathologies.
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Figure 1.1: Cross Section of the human heart. ( c© Edwards Lifescienses Corporation)

Coronary heart disease (CHD) is caused by narrowing of the coronary arteries that

perfuse the cardiac muscle. When the coronary arteries are narrowed or clogged by

cholesterol and fat deposits (atherosclerosis), the supply of oxygenated blood to the

heart muscle is insufficient, causing myocardial ischemia, particularly at exercise.

If blood supply to a part of the heart is completely cut off by total blockage of a

coronary artery, a heart attack occurs.

Arrhythmias are abnormalities in the electrical activation of the heartbeat. They can

be caused by several factors such as a previous myocardial infarction, nerve conduc-

tion blocks in the His - Purkinje system, or pulses originating from ectopic locations

outside the sino-atrial node. Examples of arrhythmias are: a too high heart rate due

to re-entrant currents looping around the ventricles (tachycardia), a too low heart

rate due to a conduction block (bradycardia) and an irregular heart rate due to ec-

topic stimulation.

A myocardial infarction (MI) is defined as death (necrosis) of myocardial cells and

occurs due to myocardial ischemia. Ischemia is a result of increased demand for
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and/or decreased delivery of oxygen. An increased myocardial demand for oxygen

may be caused by an extreme physical effort or severe hypertension. Decreased

delivery of oxygenated blood to the myocardium is in general caused by coronary

heart diseases. Ischemia exceeding a critical threshold for an extended period of time

yields irreversible myocardial cell damage or death.

Valve dysfunction may cause retrograde flow in the heart, which reduces the effec-

tiveness of the cardiac contraction. Also, the increased pressure on the atria during

systole may cause structural changes in the heart, and eventually even heart failure.

Valve dysfunction may be caused by e.g. stenoses, inflammation or tumor growth.

Congestive heart failure (CHF) reflects the inefficiency of the cardiac function due to

a complex of causes, such as hypertension or combinations of the aforementioned

conditions. In CHF patients, the cardiac output is decreased, i.e. the heart is not

effective in pumping sufficient oxygenated blood to meet the metabolistic demand.

1.3 Relevant clinical parameters

There is an increasing demand for a quantitative assessment of cardiac function, and

several indicators are considered relevant in the analysis of cardiac function. These

parameters can be divided in two categories: local and global parameters. Local

parameters refer to a pathology that occurs in a specific region of the myocardium,

whereas global parameters describe overall cardiac function. As described above,

blood is pumped into the systemic circulation by the left ventricle of the heart. There-

fore, the left ventricle is most important for cardiac function and the parameters that

are described below are related to the left ventricle. Examples of global parameters

are the following:

The end-diastolic (ED) and end-systolic (ES) volumes are the ventricular volumes when

the ventricle is maximally filled with blood and when the ventricle is maximally

contracted, respectively. The Stroke Volume (SV) is defined as the difference between

the ED and ES volumes of the ventricle. The Ejection Fraction (EF) is the relative

difference in volumes in end-diastolic and end-systolic phases and one of the most

frequently used clinical parameters in cardiac function analysis. Peak ejection rate is

the steepest downward slope in the volume curve, and represents the effectiveness

of the contraction, i.e. the systolic function. Peak filling rate is the steepest slope

upward in the volume curve, and describes the diastolic function of the ventricles

(Fig. 1.2).

The following parameters describe cardiac function in a specific region: Wall thick-

ness is the thickness of the cardiac muscle (myocardium). Figure 1.3 shows an MR

image of the cardiac left ventricle. The endocardial border is the inside wall of the

ventricle and the epicardial border is the outside edge of the ventricle. The muscle

between the endo- and epicardial borders is the myocardium. The wall thickness

parameter describes the thickness of the cardiac muscle in a specific region. Wall

thickening is the difference between end-systolic and end-diastolic wall thickness.
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Figure 1.2: Volume curve of left ventricle. The PER and PFR are annotated.

This expresses the ability of the myocardial muscle to contract in a specific region.

The value of this parameter is reduced at the site of an infarction. The wall motion

is a robust indicator of cardiac function. When necrosis exists in a specific region

of the myocardium, no contraction of the cardiac muscle occurs and therefore, the

cardiac wall in this region does not move as seen in healthy subjects. Little residual

motion can be observed in the infarcted area due to the contraction of the healthy

myocardium. Wall motion can be classified as hypo-functional (less than normal),

hyper-functional (more than normal), a-functional (no motion) and dysfunctional

(in the opposite direction of the rest of the myocardium) motion. The infarct trans-

murality is the extent of necrosis through the myocardial wall; this is an important

indicator of the viability of the damaged cardiac muscle. A transmural MI is char-

acterized by necrosis of the full thickness of the myocardial segment(s), extending

from the endocardium through the myocardium towards the epicardium. In case of

a non-transmural MI, the area of ischemic necrosis does not extend through the full

thickness of the myocardial wall. An infarcted wall segment with a transmurality

less than 50% of the myocardial wall thickness is clinically considered as viable, i.e.

the effects of the MI are reversible.

1.4 Cardiac magnetic resonance imaging

One of the most versatile and accurate methods to quantitatively assess cardiac func-

tion is Magnetic Resonance Imaging (MRI). MRI was clinically introduced in the

early 1980’s, and is based on the fact that biological tissues mainly consists of water

molecules, which contain protons. When a subject is placed in a strong magnetic

field, the small magnetic fields caused by the proton spins, which are distributed

randomly, align with the applied magnetic field. They align both parallel and anti-

parallel to the magnetic field, with a slight surplus anti-parallel, resulting in a net

magnetization in the order of one per million, according to Boltzmann statistics for

the difference in energy between the parallel and anti-parallel states.
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Figure 1.3: Short axis MR image of the left ventricle. The endo- and epicardial contours of the

left ventricle and the right ventricular contour are shown.

By applying pulses in the radio-frequency (RF) range, the alignment of the protons

is disturbed. During relaxation, the precession of the net magnetization in the static

field generates signals that can be measured externally, from which images can be

reconstructed. The relaxation time and amplitude of the signals depend on the tissue

type, and are different for e.g. fat, muscular tissue, etc. By altering the timing of the

applied pulses, different tissue types and structures can be emphasized, and imaged

with high quality. A major advantage of MRI over other imaging modalities is the

possibility of visualizing soft tissues, e.g. the heart, the brain, kidneys, lungs, etc. A

more detailed account of the physics of MRI can be found in [4].

MRI enables acquisition of two-dimensional sectional images under any orientation

(short axis view, long axis view, sagittal, transversal, coronal, etc), three-dimensional

volumetric images and four-dimensional images representing spatial-spectral distri-

butions. Unlike CT, where radiation is transmitted through the subject’s body (trans-

mission tomography), MRI is a form of emission tomography, i.e. the signals ori-

ginate from within the subject. Contrary to other emission tomography techniques

such as PET and SPECT, which require the injection of radioactive isotopes into the

subject, magnetic resonance images are reconstructed from signals that are in the

radio-frequency (RF) range. MRI is therefore a non-invasive imaging modality, i.e.

injection of contrast media is not needed for the standard acquisition procedures and

ionizing radiation is not involved in the image acquisition. Therefore, no harmful

side effects are associated with this technique during or after image acquisition.

Due to cardiac motion, image blurring occurs when acquisition requires more than

50 ms in systole and more than 200 ms in diastole phase of the cardiac cycle. Ac-

quiring a complete image in these time frames is only possible with ultra-fast MR

techniques. To minimize motion artifacts, generally cardiac gating is applied in the

acquisition of cardiac MR images. Using gating, the MR acquisition can be timed to

cardiac physiological motion, by synchronizing the beginning of the relaxation of the
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proton spins with a cardiac trigger, which is obtained by means of an ECG. This way,

a limited number of lines in k-space is acquired per cardiac cycle and image informa-

tion is accumulated over multiple cardiac cycles for imaging one cardiac phase. This

enables 4D image acquisition, i.e. Cine MRI, which allows for a temporal analysis of

cardiac function. More details on cardiac MR protocols can be found in [5].

MRI enables imaging and visualization of cardiac anatomy and morphology, from

which information about cardiac function and physiology can be derived. Both the

global and regional parameters elaborated above can be determined with cardiac

MRI, therefore in recent years MRI has developed into one of the most accurate and

reliable imaging modalities for quantitative cardiac analysis.

1.5 Model-based segmentation

MR images are intrinsically acquired three-dimensionally. Acquisition is performed

slice by slice and the tissue is sampled into voxels (volume elements). Volumetric

imaging modalities such as MRI and CT produce large amounts of patient data; a

typical acquisition consists of ±1000 images. However, both anatomical and func-

tional information can be obtained this way.

Imaging and visualization only, however, are not sufficient to quantitate cardiac

function. Image processing is needed to perform measurements in the images. Speci-

fically in case of cardiac function analysis, contours of the myocardium are required

to determine the above described clinically relevant parameters. In general, the con-

tours are drawn manually and due to the large size of the datasets, this is a time-

consuming, tedious and also subjective task.

One of the goals of medical image processing is to provide tools and methods for

automation of measurement in digital images, to increase understanding of medical

images and to classify and detect abnormalities. Important criteria for evaluation

of these tools are accuracy, degree of automation, robustness, reproducibility and

objectivity. Low-level image processing techniques, such as thresholding and re-

gion growing, generally do not meet the above-mentioned criteria. In the medical

domain, prior knowledge about the organ of interest is often essential to reach the

robustness required for clinical practice. This can be knowledge about the organ

shape, intensity, but also the specific motion of the heart.

This thesis investigates different methods for automatic segmentation of cardiac con-

tours in volumetric image datasets. It builds upon a previously developed method

to integrate such prior knowledge into the segmentation: the so-called Active Ap-

pearance Models (AAMs). These models were introduced by Cootes et al. [6, 7]

and have been applied to a variety of image segmentation problems, such as facial

recognition. AAMs are statistical models, built upon the Point Distribution Models

(PDMs) and Active Shape Models (ASMs), which were introduced by Cootes in [8].

PDMs describe statistical variations seen in the location of landmark points and no

information of the underlying image data is modeled. The ASM is an extension of
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the point distribution model, as it also takes into account the distribution of grey val-

ues surrounding landmark points, which are sampled on scanlines perpendicular to

the contours. ASMs are successful in finding strong edges, however, because little

information on the grey values is used, ASMs may lock onto false edges and are not

sufficiently robust. In case of the AAM, a solid intensity patch within and surround-

ing a shape is modeled. Furthermore, artificial images can be generated with AAMs,

which resemble real images. The least squares error between the images generated

by the model and the real images can be used as a measure of goodness of fit. Be-

cause AAMs are trained on a dataset containing example images and contours, they

intrinsically incorporate prior knowledge about shape and texture, making AAMs

more robust for finding weak edges. They have shown to be very useful in medical

image processing [9, 10].

However, Active Appearance Models have two distinct limitations. Traditionally,

AAMs use Principal Component Analysis (PCA) to describe the shape variations in

the training dataset. PCA finds a set of basis vectors - eigenvectors - along which the

variance is maximal. These eigenvectors are used to describe the variation as seen

in the examples. As a consequence of variance maximization, eigenvectors corres-

ponding to high eigenvalues describe more information and the amount of informa-

tion described by each eigenvector decreases for decreasing eigenvalues. Eigenvec-

tors with lowest eigenvalues describe noise. This way, a dimension reduction can

be achieved by discarding the eigenvectors that describe noise and the variation in

the data can be mapped to a more compact space. However, as the goal of PCA is

to achieve maximum compactness, the resulting eigenvectors describe global shape

changes, especially when a relatively small number of examples is available. There-

fore, AAMs are able to yield globally good segmentations; however local segmenta-

tion inaccuracies may occur, because the model does not cover the localized shape

details. Furthermore, AAMs are less suitable for segmentation of the full cardiac cy-

cle. The main reason for this is the fact that a large training dataset is required, with

expert drawn manual annotations. Due to the large amount of contours required

to construct such a sufficiently representative model, application to the full cardiac

cycle is impractical.

1.6 Scope of thesis

As mentioned above, AAMs have shown great potential for medical image segmen-

tation tasks, however, they have a few limitations. In this thesis, we explore different

ways to improve the AAM framework, and to develop segmentation methods for

application on cardiac image sequences. The goal of the research described in this

thesis is threefold:

• Improvement of the local segmentation accuracy of AAMs by exploring alter-

native, locally more accurate decompositions of the training data
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• Increasing the segmentation robustness by integrating redundant and comple-

mentary information from different views and time frames

• Developing a less training-intensive segmentation algorithm for time-continu-

ous segmentation of the full cardiac cycle

In this thesis, we focused on cardiac MR imaging; however, many of the concepts

presented here are applicable to other cardiac imaging modalities. Also, this the-

sis mainly deals with the left cardiac ventricle, although there are no fundamental

obstacles for application of the developed methods to other cardiac structures.

1.7 Thesis outline

This thesis consists of seven chapters, five of which are based on articles that have

been published in international journals and conference proceedings. Each chapter

is self-contained and therefore, some overlap between chapters may exist. This thesis

is further organized as follows.

Chapter 2 explores the use of Independent Component Analysis for describing shape

variations in Statistical Shape Models. The focus of this chapter is on the evaluation

of several methods for computing ICA and presents a comparison of these methods.

Principal Component Analysis results in an ordered set of eigenvectors, in which

vectors describing more information are placed first and vectors describing noise

are placed last. ICA, however, results in Independent Components, which cannot be

sorted in the same way as eigenvectors. In this chapter several sorting criteria are

evaluated to address this problem.

Chapter 3 describes the implementation of ICA in the Active Appearance Model

framework. A sorting method based on the local nature of shape variations ob-

tained with ICA is introduced and an extensive comparison of the segmentation

performance of PCA and ICA is presented.

Chapter 4 explores the use of model parameters for diagnosis of cardiac motion ab-

normalities. An ICA based shape model was trained on healthy subjects and the

corresponding model parameters were stored. When images of patients and healthy

subjects are mapped onto the model vectors, the patients can be separated by view-

ing the model parameters. Sorting the Independent Components according to the

location of shape variations that they describe enabled also the localization of the

infarcted regions.

Chapter 5 presents a method for extending the Active Appearance Models by in-

cluding information from different views. In this chapter, a method is proposed to

enable rapid on-line assessment of relevant clinical parameters, such as end-diastolic

and end-systolic volumes and ejection fractions. Images from 2- and 4-chamber long

axis views in end-diastolic and end-systolic phases were coupled and an AAM was

trained on the combination of these two views and two time frames. Experimental

results from 59 patients are presented, demonstrating the potential of the Multi-view
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Active Appearance Model for rapid evaluation of cardiac function from standard-

ized MR views.

Chapter 6 describes time-continuous segmentation of a full cycle of 3-D cardiac short

axis MR images using Multi-dimensional Dynamic Programming. In this chapter

also an application of the presented method is shown for time-continuous track-

ing of the aorta to perform flow measurements. Results of quantitative experiments

on 20 patients and qualitative experiments on one healthy subject are presented to

demonstrate the applicability of this method for both time-continuous left ventricu-

lar volume calculation and aorta tracking.

Finally, in Chapter 7 conclusions and directions for further research are presented.
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Abstract

Statistical shape models generally use Principal Component Analysis (PCA) to de-

scribe the main directions of shape variation in a training set of example shapes.

However, PCA assumes a number of restrictions on the data that do not always hold.

In this paper we explore the use of an alternative shape decomposition, Independent

Component Analysis (ICA), which does not assume a Gaussian distribution of the

input data. Several different methods for performing ICA are available. Three most

frequently used methods were tested in order to evaluate their effect on the result-

ing vectors. In statistical shape models, generally not all the eigenvectors that result

from the PCA are used. Vectors describing noise are discarded to obtain a compact

description of the dataset. The selection of these vectors is based on the natural or-

dering of the vectors according to the variance in that direction, which is inherent

to PCA. With ICA, however, there is no natural ordering of the vectors. Four meth-

ods for sorting the ICA vectors are investigated. The different ICA-methods yielded

highly similar yet not identical results. Vectors obtained with ICA showed local-

ized shape variations, whereas eigenvectors obtained with PCA show global shape

variations. From the results of the ordering methods can be seen that PCA is better

suited for dimensionality reduction. Of the ordering methods that were tested, the

best results were obtained with the ordering according to the locality of the shape

variations.

2.1 Introduction

Statistical shape models such as Active Shape Models (ASM) [1] or Active Appear-

ance Models (AAM) [2] have shown great potential in image recognition and seg-

mentation tasks [3, 4, 5]. Such models generally use Principal Component Analysis

to describe the main directions of shape variation in a training set of example shapes.

However, PCA assumes that the data is normally distributed, which frequently is not

the case. This may lead to a wrong description of the dataset and result in shapes that

are not plausible and in some cases cannot generate shapes that are desired. We have

investigated the use of an alternative shape decomposition technique, Independent

Component Analysis, which does not assume a Gaussian distribution of the input

data, and therefore potentially resolves these problems.

Independent Component Analysis produces statistically independent non-Gaussian

components by de-correlating higher order moments in addition to the first- and

second-order moments of the statistical distribution. Several different methods for

calculating ICA exist, such as e.g. the FastICA [6], the InfoMax [7] and the JADE [8]

algorithm. These methods differ in the optimized contrast function to achieve decor-

relation. The above mentioned methods were tested in order to make a comparison,

which is independent of the method that is used.

In classical PCA, one is able to define a natural ordering of the eigenvectors accord-

ing to the associated eigenvalues (variances). Therefore, it is possible to obtain a
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compact description of the shape set by discarding the eigenshapes describing the

least variance (noisy components). In Independent Component Analysis however,

the directions are known to be descriptive of independent factors but the method it-

self does not rank the components. This makes it difficult to achieve dimensionality

reduction unless, as customarily, one first performs PCA [11].

In this work, we have developed and evaluated several methods for ordering the

independent components according to intuitive criteria. The main contribution of

this work is the application of Independent Component Analysis on several sets of

shapes, the comparison of different ICA-methods and the analysis of various meth-

ods for ordering the independent components.

This chapter is organized as follows. In Section 2 a summary of statistical shape mod-

els, such as the Point Distribution Models is given. In Section 3, Independent Com-

ponent Analysis methods will be explained, as well as the different sorting methods

that were considered. In Section 4 the results obtained with the different optimiza-

tion methods for ICA and results of the comparison between different sorting meth-

ods is presented, followed by a discussion and conclusions in Section 5.

2.2 Point Distribution Models

Statistical Models for image processing, such as the Active Shape Model and the Ac-

tive Appearance Model were introduced by Cootes et al. [1, 2], and can be applied

to image segmentation in various domains [3, 4, 5]. These models describe statis-

tical variations as seen in a set of example images, in which corresponding land-

mark points are annotated. The shapes, which are spanned by the landmarks, are

aligned using Procrustes analysis to compensate for translation, rotation and scaling

differences between the shape samples by minimizing the squared distance between

corresponding points in the shape samples. The mean shape of this set of aligned

shapes is calculated, and modes of shape variation are computed using PCA.

Each shape sample can then be expressed by means of a set of shape coefficients bs

as follows:

x ≈ x̄ + Qs · bs (2.1)

where x is a generated shape sample, x̄ the mean shape, Qs is the matrix with eigen-

vectors describing the modes of shape variation in the training set and bs is the vector

that contains the coefficients weighting those eigenvectors.

As mentioned in the previous section, Principal Component Analysis is used to de-

rive the main directions of variation in the dataset. PCA assumes that the input data

is drawn from a multidimensional Gaussian distribution, which in practice tends to

be an oversimplification. Therefore, we have investigated the use of ICA to this end:

ICA does not impose normality assumptions in the training data and also takes into

account higher order moments of the distribution, e.g. skewness and kurtosis. In
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this way, we expect to give a more accurate description of the training dataset and

achieve better matching results.

2.3 Independent Component Analysis

2.3.1 ICA

Independent Component Analysis, which is also known as Blind Source Separation

(BSS) [9], is a widely used method for separation of mixed signals. This concept can

be illustrated as follows. Let X be a shape vector which is assumed to come from a

mixture of signals of the form

X = A · S (2.2)

where A is a matrix containing mixing parameters and S is a matrix containing the

source signals/shapes. The goal of Blind Source Separation is to calculate the origi-

nal source signals from the mixture. Thus, to find the de-mixing matrix U that gives

the following:

Ŝ = U · X (2.3)

This method is called blind, because little information is available, i.e. both the mix-

ing matrix A and the matrix containing the sources S are unknown. ICA can be

defined as a method that finds a linear transformation, which maximizes the non-

Gaussianity of the ŝi. The de-mixing matrix U is found by optimizing a cost func-

tion. Several different cost functions can be used for performing ICA, e.g. kurtosis,

neg-entropy, etc. Therefore, different methods exist to calculate U . Three of the most

frequently used ICA-methods are explained in the following sections.

2.3.2 ICA-methods

FastICA

The FastICA method is an iterative fixed-point algorithm that was developed by

Hyvärinen et al. [6]. It is an alternative to gradient-based methods for maximizing

non-Gaussianity and shows fast (cubic) convergence. This method can be used for

optimizing different types of cost functions, such as kurtosis or neg-entropy. Con-

trary to gradient-based methods, the Fast-ICA method does not have a learning rate

or other adjustable parameters. This is a great advantage, because in general, a bad

choice of learning rate may destroy convergence.
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InfoMax

This method is based on maximizing the output entropy (or information flow), of

a neural network with nonlinear outputs and therefore is called InfoMax [7]. The

non-linearities in the transfer function are able to pick up higher-order moments of

the input distribution and perform redundancy reduction. This enables the neural

network to separate statistically independent components in the input data. It can

be shown that this method is equivalent to the Maximum Likelihood method [9].

JADE

The Joint Approximated Diagonalization of Eigenmatrices (JADE) [8] is an algorithm

based on the joint diagonalization of the cumulant matrices. All cumulants of order 2

and 4 are involved and a joint diagonalization is performed with a Jacobi technique.

The JADE algorithm also does not have any adjustable parameters, and therefore is

a robust method. This method is computationally quite intensive, however, because

all of the cumulant matrices are diagonalized at once.

2.3.3 Ordering of Independent Components

PCA results in a natural ordering of the vectors according to their variance, because

the goal of PCA is to find orthogonal directions along which the projections of the

shapes have maximal variance. Eigenvectors with highest variance are placed first

and those with low variance are placed last. With ICA such an ordering is not ob-

tained automatically. However, this ordering is essential in PCA for determining

which and how many vectors will be used to give an accurate description of the

training dataset: some vectors describe noise effects and are undesired in the shape

model. To select the Independent Components (ICs) that describe most relevant in-

dependent directions within the training dataset, a sorting method for ICA is re-

quired. This question is still open in the literature. Several intuitive criteria consid-

ered for sorting the independent components, which could be applicable to ASMs,

are explained in the following sections.

Variance of the histogram

This method for ordering the Independent Components is a similar scheme as the

one followed in PCA, i.e. the variance can be considered as a measure of energy of

the ICs. In this method all of the shapes are projected onto each of the ICs. A his-

togram of these projections is made and a Gaussian curve is fitted to this histogram.

The variance of this Gaussian function is estimated for each of the ICs. A large vari-

ation describes a large range of shapes. The IC with small variance describes noise

and outliers in the input dataset. Therefore, the ICs are ordered from largest variance

to smallest.
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Non-Gaussianity

Independent components are calculated by maximizing non-Gaussianity of the sam-

ple projections on the component. The ordering according to non-Gaussianity is

based on statistical testing for Gaussianity of the sample projections. The Shapiro-

Wilk test for normality [10] was implemented to this end. This test is based on the

following hypotheses:

• H0: Data values are a random sample from a normal distribution

• H1: Data values are not a random sample from a normal distribution

The Shapiro-Wilk test provides two values, i.e. W ( the Shapiro-Wilk statistic) and

the associated p-value (the probability PR < W ). If the p-value is less than the

chosen level of significance (e.g. 0.05 for a significance level of 95%), the null hy-

pothesis can be rejected at that level and this can be taken as evidence support-

ing non-Gaussianity. The components are ordered from maximally non-Gaussian

to Gaussian. This measure aims at utilizing one of the implicit characteristics: ICA

produces directions along which the shape space is maximally non-Gaussian. The

ICs are ordered according to increasing p-values.

Alignment of Shapes with IC

Independent Components are vectors that span a shape space in order to describe the

input dataset. Each of the ICs points in a direction, along which the projections of the

shapes are maximally non-Gaussian. In shape space, the shapes can be considered

as vectors that point in a specific direction (Fig. 2.1). This ordering method is based

on ranking each IC according to how well it is aligned with respect to the rest of

the training set. Therefore, the mean angle α between each IC and the shape set is

calculated. The smaller the mean angle is, the more the shape set is aligned with the

Independent Component. The ICs are sorted with increasing mean angle.

Figure 2.1: Mean angle between IC and shapes
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Locality of Shape Variation

Vectors obtained with PCA describe global shape variations, and more localized

variations are eliminated. Segmenting with a description of the dataset obtained

with PCA shows results that are globally good. However, locally the correct contours

cannot be found in some cases, because local deformations are not accommodated

by the model. Also, information about the locality and amplitude of the shape vari-

ations can be very useful for diagnostic purposes. In this way for example, areas of

myocardial malfunctioning may be discovered by analyzing the corresponding ICs.

Therefore, an ordering of the ICs according to locality and amplitude of the shape

variation is designed as follows.

When the corresponding weight factor of an Independent Component is varied, the

IC shows a variation with respect to the mean with certain amplitude. For noisy

modes, these variations are relatively small and not localized. For modes that de-

scribe examples as seen in the training data, these variations are localized and have

large amplitudes.

To quantify the locality of the shape variations and their amplitudes, first the shapes

are projected onto each IC. Of these projections a histogram is computed. The width

of this histogram, W , is calculated as a measure of variation of the Independent

Component. Here, W plays a role similar to the variance in PCA but it is less de-

pendent on the presence of outliers or non-Gaussian shape of the histogram. Then,

the shape parameters are varied between limits −W/2 and +W/2. The width of the

histogram, W , was determined as follows. First the median value of the histogram

is calculated. Parting from this value, the surface of the histogram is determined by

adding the corresponding bin values. To discard outliers, the bin values are summed

until 90% of the total surface of the histogram is reached. The coordinates spanning

90% of the total surface are used to determine the histogram width.

Figure 2.2: Example of shape variation with maximum peak (M) and surface of peaks that are

taken into account (grey)
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After weighing the IC with the corresponding histogram widths, the maximum am-

plitude of the peaks is determined. Subsequently, to eliminate the effect of noisy

peaks, the peaks whose amplitude is larger than 50% of the maximum peak are se-

lected (Fig. 2.2). The total surface O of these peaks is calculated. The ICs are now

ordered according to the following criterion:

C = W · M ·
O

F
(2.4)

where C is the criterion used for ordering, W is the width of the histogram, M is

the maximum amplitude of the largest peak, O is the total surface of the peaks that

are larger than 50% of the largest peak and F the ratio between the shape points

spanning the peaks and the total number of points in the shape. In this criterion,

information about the number of shapes described is included by means of W , the

significance of the peak is denoted by M and the ratio (O/F ) gives information about

the locality of the ICs. Noisy ICs show variations that have small amplitudes and that

occur along the entire shape, therefore for these ICs the fraction (O/F ) will be small

and thus the criterion value will be lower. Sorting is performed with decreasing

value of C.

2.4 Results

2.4.1 Data Sets

To compare the different ICA and sorting methods, the following datasets were

available:

• Set I: 51 expert drawn contours from 2-chamber long-axis MR images of the

end-diastolic phase of the left ventricle, consisting of 64 landmark points each

• Set II: 89 expert drawn contours of the cardiac left ventricle as seen in X-ray

angiography images, each consisting of 60 landmark points

• Set III: 150 expert drawn shapes of the cardiac left and right ventricle as seen

in short-axis MR images of the end-diastolic phase, consisting of 105 landmark

points each

2.4.2 Comparison between ICA-methods

To evaluate the effect of the different cost optimization functions on the Independent

Component Analysis results, the FastICA, InfoMax and the JADE methods for ICA

were tested on the above mentioned datasets. Visual inspection showed that these

methods yielded highly similar, yet not identical Independent Components. For

example the locations of the main variations in the ICs seemed equal; however, the

shape and size were slightly different. Also, the small peaks differed in location

between several ICA-methods.
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The vectors that result from ICA showed localized variations, whereas Principal

Component Analysis yields vectors that show global variations. Figure 2.3 shows

the difference between the modes of variation that are obtained with PCA and with

ICA.

The FastICA method has very fast convergence and can handle high dimensional

signals. However, this method has a random initialization phase and therefore, the

computed ICs were not identical when the algorithm was run several times. This un-

dermines the reproducibility of the results and this method was thus not preferred.

The InfoMax method is a gradient-based method and has a learning rate and other

adjustable parameters. In some cases, especially in the case of the dataset consist-

ing of 150 short-axis cardiac shapes, this method did not converge. For the order-

ing method comparison, we have selected the JADE algorithm, because this method

does not have a random initialization and also does not have any tunable parameters

and therefore is more robust. However, this method is computationally intensive.

Since our calculations are performed off-line and the training of the ASM has to be

done only once, this does not pose any serious problems.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.3: Left: modes of variation obtained with ICA and right: modes of variation obtained

with PCA for respectively long-axis MRI (above), long-axis angiography (middle) and short-

axis MRI (below) shapes of the heart. These images show the variation of the IC (left) and

the variation of the eigenvectors obtained with PCA (right) when the corresponding weight

factors are varied between −W/2 and +W/2, and −3σ and +3σ respectively.
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(a)

(b)

(c)

Figure 2.4: Cumulative variance curves for ICs of long-axis MRI shapes (a), long-axis an-

giography shapes (b) and short-axis MRI shapes (c) according to different ordering methods

(dashed: variance, dotted: non-Gaussianity, dash-dot: alignment, solid: locality), compared

to PCA (bold)
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2.4.3 Results of Ordering Methods

No golden standard was available for evaluating the results of the different ordering

schemes. Therefore, the results were evaluated visually according to criteria that

were intuitively expected, e.g. the property that noisy ICs show small variations,

which are not localized. Also the cumulative variance was considered by means of

the half-width of the histograms of the shape projections onto the ICs (see Fig. 2.4).

2.5 Discussion & Conclusions

The Principle Component Analysis gives a representation of the training dataset,

which consists of vectors that describe global deformations, whereas the vectors that

are obtained with Independent Component Analysis describe local deformations.

Furthermore, PCA assumes that the training data is from a Gaussian distribution,

which is not needed for ICA. However, the vectors given by PCA are ordered, which

is not the case with ICA.

As can be seen from Fig. 2.4, dimensionality reduction with ICA is not as good as

with PCA. It is inherent to the PCA method to find directions along which the vari-

ance is the greatest and, in this sense, PCA is known to be optimal. Consequently,

the first few modes explain most of the shape variations, whereas the later modes are

less significant. The ICA method however, maximizes the independence between

the vectors and therefore each Independent Component describes an almost equal

amount of variance.

With regard to compression, the ordering method according to the variance of the

projections comes the closest to PCA, because the ordering criterion is similar to

the natural ordering in PCA. However, the variance proved to be a poor measure

for ordering the Independent Components, because in order to obtain the variance,

Gaussian curves had to be fitted to the histograms of the projections of the shape set

onto each IC. Because ICA finds directions in shape-space along which the projec-

tions of the shape set are maximally non-Gaussian, the histograms of the projections

of the shapes onto the IC were also non-Gaussian. This resulted in a high ranking of

modes that described noise or outliers.

To exploit the inherent property of ICA, that it maximizes non-Gaussianity, a sta-

tistical testing method (the Shapiro-Wilk W-statistic [10]) was implemented to ob-

tain a measure for sorting the ICs. However, statistical testing methods for non-

Gaussianity, such as the Shapiro-Wilk method, could distinguish between Gaussian

and non-Gaussian distributions only and were not able to give a gradual measure of

non-Gaussianity, which is needed for sorting the Independent Components. If the

p-value is lower than the threshold, the null hypothesis can be rejected and there is

evidence for non-Gaussianity. However, our experiments have shown that a lower

p-value does not necessarily imply that a sample is drawn from a more non-Gaussian

distribution.

Next, sorting according to the mean angle between the shape set and the ICs was
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tested. The resulting mean angles were all close to 90o. Because the vectors are in

a high-dimensional space, they can point in many different directions and therefore

do not have to be aligned with the Independent Components. Ordering according

to this method resulted in a high ranking for modes describing noise artifacts and

therefore, ordering according to this method did not yield good results.

Finally, the ordering according to the locality of the modes was investigated. From

Fig. 2.4 it can be seen that the cumulative variance curves for this ordering method

are flatter than for e.g. ordering according to the variance of the histograms. How-

ever, this method resulted in giving modes that showed localized and large varia-

tions a high ranking, whereas modes that described noisy effects were placed later.

From the methods that were tested, the results obtained from this ordering technique

were the best, because they agreed with what was intuitively expected.

As mentioned earlier, no golden standard for evaluating the results of the order-

ing method is available and therefore the results were mainly interpreted according

to what was intuitively expected. In the nearby future these methods will be im-

plemented in the AAM segmentation software for testing and selecting the order-

ing method that performs best according to segmentation errors. We believe that

this task-based metric will more clearly elucidate the pros and cons of the proposed

ranking schemes.
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Abstract

Statistical shape models generally use Principal Component Analysis (PCA) to de-

scribe the main directions of shape variation in a training set of example shapes.

However, PCA has the restriction that the input data must be drawn from a Gaus-

sian distribution and is only able to describe global shape variations. In this paper

we evaluate the use of an alternative shape decomposition, Independent Component

Analysis (ICA), for two reasons. ICA does not require a Gaussian distribution of the

input data and is able to describe localized shape variations. However, with ICA the

resulting vectors are not ordered, therefore, a method for ordering the Independent

Components is presented in this paper.

To evaluate ICA-based Active Appearance Models (AAMs), 44 leave-3-out models

were trained on a set of 132 short-axis cardiac MR Images with PCA-based as well

as ICA-based AAMs. Both models showed comparable segmentation accuracy. A

subspace analysis showed that the PCA and ICA subspaces describe nearly the same

amount of variance in the dataset. Also, the local nature of independent components

may be counteracted by the final PCA in the appearance model. Experiments with

Active Shape Models are ongoing to further explore the locality properties of ICA.

3.1 Introduction

Statistical shape models such as Active Shape Models (ASM) [1] or Active Appear-

ance Models (AAM) [2] are widely used in different image segmentation and recog-

nition domains [3, 4, 5]. These models have shown to be powerful in medical image

analysis, mainly because of their capability to include expert knowledge. Statistical

shape models are trained from a set of images, in which contours have been drawn

by experts. These models generally use Principal Component Analysis to describe

the main directions of shape variation in the training set of example shapes. How-

ever, PCA is a method that fits a Gaussian hyper-ellipsoid to the data and therefore

assumes that the data is normally distributed, which frequently is not the case. This

assumption follows from the fact that PCA only takes into account the first (mean)

and second (variance) order moments of the distribution of the input data. This

may lead to an incorrect statistical description of the dataset and to the generation of

implausible shapes. Furthermore, PCA results in eigenvectors that describe global

variations, i.e. the entire shape deforms when a parameter corresponding to a vector

is changed. This fact usually hampers achieving a locally accurate segmentation.

A number of alternatives have been proposed to extend the formulations of ASMs

and AAMs to other types of statistical shape decompositions. Sozou et al. [16] pro-

posed a method using polynomial regression to fit high order polynomials to the

non-linear axis of the training set. However, this method does not adequately com-

pensate for higher order non-linearity, such as the smaller modes of variation that

describe high frequency oscillations. Furthermore, the order of the polynomial to

be used must be selected and the fitting process is time consuming. Davatzikos et
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al. [17] presented hierarchical active shape models using the wavelet transform. In

this approach, the shapes were divided into small pieces and a PCA was performed

on each piece separately. With this method global and local shape variations can be

described and the performance of the proposed method is better than standard ASM

when a small number of training samples is available. However, when the training

dataset is sufficiently large, the performance of the hierarchical ASM is comparable

to standard ASM.

In this paper, we investigate and evaluate the use of an alternative decomposition

technique, Independent Component Analysis (ICA), which does not make the above

mentioned assumptions on the distribution of the input data and also takes into ac-

count higher order moments of the distribution, such as the skewness (3rd order)

and kurtosis (4th order). The goal of ICA is to maximize the independence between

the vectors that describe the variation as seen in the dataset. ICA has been success-

fully applied in various image-related domains. In [18], ICA is used for detection of

facial components in video sequences. In [19], an ICA-based method for watermark

detection is presented. Calhoun et al. [20] use ICA for analyzing functional MRI

of the brain. Bartlett et al. [21] have proposed a method for face recognition based

on ICA and Bressan et al. [22] have investigated the use of ICA in Point Distribu-

tion Models. In previous work [12], we have demonstrated that ICA yields vectors

that describe localized shape variations, whereas PCA vectors describe global shape

variations. Segmentation results obtained with PCA-based statistical shape models

are globally good, however, there are local errors because the model cannot deform

locally. Many researchers have tried to resolve this by using a subsequent constraint

relaxation or additional post-processing of the model generated segmentation, e.g.

[15, 24, 25]. However, segmentation results obtained with an ICA-based AAM may

be more accurate because of increased local control with ICA.

The main contribution of this paper is the evaluation of Independent Component

Analysis for medical image segmentation using Active Appearance Models. To en-

able the use of ICA in statistical shape modeling, vectors describing the shape vari-

ation in the training dataset need to be separated from vectors describing noise. In

classical PCA, the eigenvectors are ordered automatically according to the associated

eigenvalues (variances). In Independent Component Analysis, however, the result-

ing vectors are not naturally ordered. Therefore, a novel method for sorting the inde-

pendent components is introduced to distinguish between vectors describing actual

shape variations and those describing noise. In addition, we present a quantitative

comparison between conventional PCA-based models and our ICA approach.

This chapter is further organized as follows. In Section 2 Active Appearance Models

are briefly explained. Section 3 introduces Independent Component Analysis. In

section 4, the evaluation of ICA versus PCA and the results are presented. Section 5

discusses the evaluation results and the chapter ends with conclusions.
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3.2 Active Appearance Models

Active Shape Models and Active Appearance Models were introduced by Cootes et

al. [1, 2], and can be applied to image segmentation in various domains [3, 4]. Since

introduction, several successful applications of AAMs in medical image segmenta-

tion have been presented. Initially, Cootes has demonstrated the application of 2D

AAMs on finding structures in brain MR images [6], and knee cartilage in MR im-

ages [7]. In 2D cardiac MR images, Mitchell et al. successfully applied AAMs to

segment the left and right ventricle [4]. Thodberg applies a 2D AAM to reconstruct

bones in hand radiographs [8]. Bosch et al. applied 2D + time AAMs to segment

endocardial borders in echocardiography [9], introducing a correction method to

compensate for non-Gaussian intensity distributions in echo-cardiographic images.

Beichel et al. describe a semi-3D AAM extension applied to segmentation of the dia-

phragm dome in 3D CT data [10]. Mitchell et al. describe a full 3D AAM extension,

and apply it to 3D cardiac MR data and 2D + time echocardiograms [5]. In many

of the applications mentioned here, Active Appearance Models have been shown to

outperform other segmentation approaches for two reasons:

• They combine correlated intensity and shape knowledge, thus maximally inte-

grating a-priori knowledge, resulting in highly robust performance

• They model the relationship between expert contours and underlying image

data, and are therefore capable of reproducing expert contour drawing behav-

ior

AAMs describe statistical variations as seen in a set of example images, in which cor-

responding landmark points are annotated. The shapes, which are spanned by the

landmarks, are first aligned using Procrustes analysis to compensate for translation,

rotation and scaling differences between the shape samples. Next, the mean shape of

this set of aligned shapes is calculated and modes of shape variation are computed

by applying PCA on the sample covariance matrix. Each shape sample can then be

expressed by means of a set of shape coefficients~bs as follows:

~x ≈ ~̄x + Qs ·~bs (3.1)

where ~x is a shape sample, ~̄x the mean shape, Qs is the matrix describing the modes

of shape variation in the training set and ~bs is the vector containing the coefficients

weighing those eigenvectors. After warping the gray values in the images onto the

mean shape, they are sampled in an intensity vector ~g. Similar to the shape model,

modes of gray value variation are calculated by performing a PCA. Each gray value

patch can then be expressed by means of a set of gray value coefficients~bg as follows:

~g ≈ ~̄g + Qg ·~bg (3.2)

where ~g is a gray value patch, ~̄g the mean gray value patch, Qg is the matrix describ-

ing the modes of variation of the gray values and~bg the vector of weight coefficients.
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The shape and texture of a shape sample can be described by the parameters~bs and
~bg respectively. Because shape and gray values are correlated, the shape and gray

value models can be combined as follows:

~b =

(

Ws
~bs

~bg

)

(3.3)

Where Ws is a diagonal matrix of weight factors for the shape parameters. A PCA

can now be performed on the combined vectors ~b and the appearance can be ex-

pressed by means of a set of appearance parameters~ba as follows:

~a ≈ ~̄a + Qa ·~ba (3.4)

where ~a is an appearance, ~̄a the mean appearance, Qa a matrix describing the modes

of appearance variation and~ba the vector of appearance weight parameters.

Matching the model to an unseen image is performed by minimizing the root mean

square error between the model generated image and the target image, within the

boundaries of statistically plausible model limits. To drive the model matching it-

erations, the parameter update steps are computed from the residual images δg0 =

gs − gm, where gs denotes the target image, and gm the model synthesized image.

As mentioned above, PCA is used to derive the main directions of shape variation

in the dataset. PCA assumes that the input data is drawn from a multidimensional

Gaussian distribution, which in practice tends to be an oversimplification. There-

fore, we have investigated the use of ICA to find the main directions of shape varia-

tion: ICA does not impose normality assumptions in the training data and takes into

account higher order moments of the distribution, such as skewness and kurtosis.

This way, we expect to give a more accurate description of the training dataset and

achieve better matching results.

3.3 Independent Component Analysis

3.3.1 Background

Independent Component Analysis, also known as Blind Source Separation (BSS) [13,

14], is a widely used method for separation of mixed signals. This concept can be

illustrated as follows. Let X be a shape vector, which is assumed to come from a

mixture of signals of the form

X = A · S (3.5)

where A is a matrix containing mixing parameters and S a matrix containing the

source signals/shapes. The goal of Blind Source Separation is to calculate the origi-
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nal source signals from the mixture. Thus, to estimate the de-mixing matrix U that

gives the following:

Ŝ = U · X (3.6)

This method is called blind, because little information is available, i.e. both the mix-

ing matrix A and the matrix containing the sources S are unknown. The de-mixing

matrix U is found by optimizing a cost function. Several different cost functions

can be used for performing ICA, e.g. kurtosis, neg-entropy, etc. Therefore, different

methods exist to calculate U . In previous work, the effect of these methods on the re-

sulting vectors was evaluated [12]. Based on this evaluation, we have chosen to use

the JADE method for performing ICA, because this method was found to be robust

and free of tunable parameters.

In the application of ICA to shapes, the rows ~xi of the mixed signals X represent the

shape samples. The rows of S are the independent components and the rows ~ai of A

contain the corresponding weight factors. A shape sample can be reconstructed as

follows:

~xi = ~̄x + ~ai · S (3.7)

3.3.2 Ordering Independent Components

PCA results in a natural ordering of the vectors according to their variance, because

the goal of PCA is to find orthogonal directions along which the projections of the

shapes have maximal variance. Eigenvectors with highest variance are placed first

and those with low variance are placed last. With ICA, such an ordering is not

obtained automatically. However, this ordering is essential for determining which

and how many vectors shall be used to give an accurate description of the training

dataset: some vectors describe noise effects and are undesired in the shape model.

To select the Independent Components that describe most relevant independent di-

rections within the training dataset, a sorting method for ICA is required. In [12], a

number of sorting methods were evaluated. The method that was found to perform

best is explained in the following paragraphs.

When the corresponding weight factor of an IC is varied, the IC shows a variation

with respect to the mean with certain amplitude. For ICs describing noise, these

variations are relatively small and occur along the entire contour. ICs that describe

shape variations as seen in the training data, typically involve prominent variations,

which are localized and have relatively large amplitudes (see Fig. 3.1).

The above-mentioned property can be used to distinguish the ICs that describe noise

from those that describe actual shape variations. To determine the locality of the

variations, the point-to-point distances of the amplitudes of the shape variations are

determined as follows. Let ~̂xi be a generated shape variation with the i-th compo-

nent:
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(a) (b)

Figure 3.1: Independent Component describing a mode of actual shape variation (left) and

Independent Component describing noise (right). The variation of the ICs between the two

extremes when the corresponding weight factor is varied, is shown.

~̂xi = ~̄x + ~Φ · ~a (3.8)

where 1 ≤ i ≤ p, ai = 1 and aj = 0 for j 6= i. The distance vector ~di ∈ R
m describes

the distance of each landmark of ~̂xi to the mean shape and is defined as follows:

~d
(j)
i =

√

√

√

√

2j
∑

k=2j−1

(

~̂x
(k)
i − ~̄x(k)

)2

(3.9)

where j = 1, 2, , m. The width of the shape variations is determined by constructing

a bank of Gaussian filters with varying width and determining the normalized cross-

correlation between each kernel and the distance plot as follows. Consider two series

x(i) and y(i) where i = 0, 1, 2, . . . , N −1. The normalized cross-correlation r at delay

t is defined as:

r(t) =

∑

i [(x(i) − µx) ∗ (y(i − t) − µy)]
√

∑

i (x(i) − µx)2
√

∑

i (y(i − t) − µy)2
(3.10)

where r(t) is the correlation rate at delay t, µx the mean of series x(i) and µy the

mean of series y(i). The value of r(t) varies between −1 and 1, negative when the

two signals are in anti-phase. The closer the value of r(t) is to −1 or 1, the more the

two signals are correlated.

ICs that describe noise show small shape variations that occur along the entire shape,

whereas ICs describing real shape variation show localized shape variations with

large amplitude. Figure 3.2 shows the differences in cross-correlation response for a

noise component and for a component that describes shape variation. ICs describ-

ing actual shape variations show a maximum in the cross-correlation response at a
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Figure 3.2: Responses from cross-correlation of Independent Component with Gaussian fil-

ter banks with width varying between 3 and 22 pixels. Independent Component describing

actual shape variation has a maximum, IC describing noise has no maximum.

certain width of the Gaussian filter bank. This way the landmark where the maxi-

mum response occurs can be determined and the shape variations can be localized.

The noise ICs, however, show no peak in the cross-correlation response and correlate

best with the widest Gaussian filter. This way, they can be detected and filtered out

automatically.

3.3.3 Integration of ICA into AAM-framework

As explained in section 3.2, the AAM consists of 3 parts, e.g. the shape part, the

gray value part and the appearance part (see Fig. 3.3). The Independent Component

Analysis is only performed on the shape part of the AAM. The modes of gray value

variation are computed with PCA. ICA is not performed on the intensity patches,

because we are mainly interested in obtaining a more accurate shape description,

and not a detailed intensity model. The gray value variations only serve as a means

to constitute the matching criterion, whereas the shape variations define the allowed

deformations. Therefore, the shape part of the model asserts the most critical influ-

ence on border localization accuracy.

An appearance model was constructed by combining the principal components of

the gray value model with the independent components of the shape model and

performing a PCA on this combination. The appearance model was restricted be-

tween −3σ and +3σ with the σ resulting from the final appearance PCA.
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Figure 3.3: Parts constituting the AAM, ICA is applied only to the shape part of the model.

3.4 Evaluation of ICA vs. PCA

3.4.1 Data

To evaluate the segmentation results obtained with the ICA-based AAM, a set of 132

routinely acquired multislice multiphase short-axis midventricular MR images of

the cardiac left and right ventricle in the end-diastolic phase was used. Images were

collected from 44 subjects, and the three mid-ventricular slices per subject were used

for model training and evaluation. The images had a resolution of 2562 pixels, a field

of view of 400 – 450 mm and pixel sizes of 1.56 – 1.75 mm. In each image left- and

right-ventricular endo- and epicardial contours were drawn by experts, and were

resampled to 105 corresponding landmarks.

3.4.2 Evaluation Criteria

The ICA-based and PCA-based Active Appearance Models were compared using

the following criteria:

• The reconstruction error describes the generative power of the statistical method,

i.e. the ability of the method to regenerate the shape samples of the dataset after

dimensionality reduction.

• The average point-to-point error is a measure for the segmentation accuracy. This

average is calculated over all landmarks, of which a contour consists.

• The maximum point-to-point error gives information on the local nature of the

segmentation errors.

• The sensitivity to initialization is tested by initializing the model with several

offsets from the optimal position.
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3.4.3 Results

Reconstruction Error

Using the eigenvectors computed with PCA or the Independent Components result-

ing from the ICA, the original shapes from the training dataset can be reconstructed

with eq. (3.1) in the PCA case and eq. (3.7) in the ICA case. The shapes cannot

be reconstructed exactly, because of the approximations made and small errors are

present between the original expert drawn shapes and the reconstructed shapes.

The reconstruction error of PCA and ICA is compared to evaluate the model perfor-

mance and determine which method approximates best the original shapes in the

training dataset. To this end, models were generated with PCA and ICA consisting

of 5 to 50 vectors describing shape variation. The entire shape set was reconstructed

with these models and the reconstruction error was calculated by determining the

overall average point-to-point distance between the expert drawn and reconstructed

shapes. Figure 3.4 shows the reconstruction error of both models.

Figure 3.4: Comparison of reconstruction error between ICA and PCA for increasing number

of modes used.

Segmentation performance

The ICA-based appearance models were calculated using 35 independent compo-

nents for shape variation for each model. Subsequently, the ICA modes were sorted

using the cross-correlation sorting described earlier and noise ICs were eliminated.

In addition, intensity models were constructed following the approach based on

PCA. For these models, 98% of the total variation was retained. The computation

of the intensity and appearance parts was identical for both approaches.

To quantitatively evaluate the ICA-based AAM segmentation, 44 leave-3-out models

were trained. This way, 3 samples (1 subject) were left out and a model was trained
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on the remaining 129 samples; this was repeated 44 times by leaving out different

samples. The performance of the models was tested on the left-out samples.

For each test, the model search was started with the mean model at positions dis-

placed from the known optimal position by ±10 pixels, following the approach in

[9]. The segmentation results were compared on the basis of the average and maxi-

mum point-to-point errors between the hand-labeled and the automatically detected

contour points (see Table 3.1).

Table 3.1: Comparison of average and maximum point-to-point errors obtained with PCA-

and ICA-based Active Appearance Models

Average Point-to-Point Error Maximum Point-to-Point Error

(Pixels) (Pixels)

No Offset Offset No Offset Offset

AAM type Median 90%-ile Median 90%-ile Median 90%-ile Median 90%-ile

PCA-based 1.62 2.61 3.10 6.23 4.55 8.13 7.89 13.84

ICA-based 1.71 2.76 2.89 5.29 4.70 8.12 7.27 12.62

3.5 Discussion

The segmentation accuracy of ICA-based AAMs was compared to the accuracy ob-

tained with PCA-based AAMs for contour detection in cardiac short axis images.

Because of the local nature of the shape variations described by the independent

components, ICA-based AAMs were expected to yield better segmentation results

than PCA-based AAMs.

The reconstruction error for the ICA and PCA models was slightly better for the

PCA models in case a small number of modes was selected (< 10). For higher model

dimensionality, the ability of both models to reconstruct the training samples was

nearly identical.

The segmentation performance of the ICA-based AAM was also comparable to the

performance of the classical PCA-based AAM. In case of initialization at the known

optimal positions, PCA shows slightly better results and in the case of model ini-

tialization with an offset from the optimal position, ICA based AAMs show slightly

better results. However, the differences were not statistically significant.

As the average reconstruction and segmentation errors were comparable over all

landmarks and shapes, a local error analysis was performed to investigate whether

the distribution of the segmentation errors was different for the ICA-based AAMs

compared to the PCA-based AAMs. ICA-based segmentations were expected to

yield more uniformly distributed landmark errors, whereas PCA-based segmenta-

tions were expected to result in locally varying landmark errors. The point cloud of

error distributions per landmark over all segmentations was considered and ellipses
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were fit, describing local error distributions. Figure 3.5 shows the distribution of the

errors per landmark in case of PCA (left) and ICA (right).

(a) (b)

Figure 3.5: Distribution of errors per landmark in case of PCA (a) and ICA (b).

As can be seen from Fig. 3.5, the distribution of the errors is highly similar for both

methods. In case of ICA the distributions in the apex of the right ventricle are slightly

more circular, whereas in case of PCA the distributions were slightly elliptical. How-

ever, differences in error distributions were small.

To understand the highly similar reconstruction errors, segmentation performance

and error distributions of ICA and PCA based AAMs, a subspace analysis was per-

formed. Since both ICA and PCA are used for dimension reduction, the high-dimen-

sional data is mapped onto a lower dimensional subspace. A potential explanation

for the comparable performance is the fact that if the intersection of the PCA and

ICA subspaces shows a large overlap, both decomposition methods explain approx-

imately the same variation in the dataset. This showed to be the case (see Fig. 3.6):

while retaining 35 PCA and ICA modes, the intersection subspace contains 12 vec-

tors, which describe nearly the same amount of variance as the first 12 high-energy

PCA modes. This strongly suggests that these intersection vectors actually describe

a similar shape range, where PCA gives a global description and ICA a local descrip-

tion.

From this subspace analysis we can conclude that although ICA yields localized

shape variations, it does not give a better description of the variations as seen in the

training dataset. ICA results in a different representation of the same information,

which in case of segmentation performance is an equivalent representation to PCA.

However, we have shown in other work [23] that for disease classification purposes,

the localized ICA shape variations enable an intuitive ordering along the contour,

which has the advantage that population differences can be localized and intuitively

interpreted. For data compression applications however, the variance packing of

PCA in the first few modes is an advantage over ICA.
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(a) (b)

Figure 3.6: Amount of variance explained by high-energy PCA modes and by vectors in the

intersection subspace (a). When 35 modes of ICA and PCA are retained, the intersection sub-

space contains 12 vectors. These vectors describe nearly the same amount of variance as the

12 high-energy PCA eigenvectors (b).

3.6 Conclusions

In this chapter, we evaluate the use of an alternative shape decomposition to PCA,

Independent Component Analysis (ICA), for application in statistical shape model-

ing. To this end, we introduce a novel method for ordering the Independent Com-

ponents. We have compared the reconstruction error and the segmentation perfor-

mance of ICA based Active Appearance Models (AAMs) with PCA-based AAMs

in an evaluation study on 132 short-axis cardiac MR Images. Both models showed

comparable reconstruction errors, segmentation errors and local error distributions.

A subspace analysis showed that the PCA and ICA subspaces describe nearly the

same amount of variance in the dataset, indicating that there is a high degree of

equivalence between ICA and PCA in segmentation applications.
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Abstract

Regional myocardial motion analysis is used in clinical routine to inspect cardiac

contraction in myocardial diseases such as infarction or hypertrophy. Physicians or

radiologists can recognize abnormal cardiac motion because they have knowledge

about normal heart contraction. This paper explores the potential of Independent

Component Analysis (ICA) to extract local myocardial contractility patterns and to

use them for the automatic detection of regional abnormalities. A qualitative eva-

luation was performed using 42 healthy volunteers to train the ICA model and 6

infarct patients to test the detection and localization. This experiment shows that

the evaluation results correlate very well to the clinical gold standard: delayed-

enhancement MR images.

4.1 Introduction

Identification of reversible myocardial ischemic injury is a crucial assessment before

coronary revascularization. Myocardial infarction is characterized by the presence

of hypo-kinetic regions. MRI images have been used widely to diagnose myocardial

infarction, especially recently with the delayed-enhancement MRI [1].

The effect of coronary artery occlusion is an abnormal myocardial contraction, par-

ticularly in the infarcted regions. Figure 4.1 shows two examples of MRI images from

a healthy volunteer and an infarct patient, both at end-systole. Note that the inferior

region (indicated by a white arrow) of the infarct heart does not contract, and has a

reduced wall thickness.

(a) healthy volunteer (b) infarct patient

Figure 4.1: MRI images of a healthy volunteer and an infarct patient at end-systole. The white

arrow points to the infarcted tissue.

The goal of this work is to automate the detection of abnormal cardiac motion from

short-axis MRI images. This is achieved by deriving a statistical model of normal

heart contraction and its local contractility patterns. In this paper, ICA is used to

model the normal heart contraction and to detect and localize regions of the abnor-

mal contraction in a patient. The contributions of this paper are threefold:
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• We propose a geometry-based sorting method of independent components,

providing an intuitive anatomical interpretation of the ICA modes.

• We demonstrate the potential of ICA in cardiac shape modeling to detect local

contraction abnormalities.

• We present a qualitative evaluation of the detection and localization of myocar-

dial infarctions. Results are compared with the corresponding ”gold-standard”

delayed-enhancement MRI images.

Section 4.2 describes shape modeling with ICA, the new sorting method for inde-

pendent components and the method to detect local abnormalities. In Section 4.3,

qualitative evaluation results are presented, followed by a discussion in Section 4.4.

4.2 Methodology

4.2.1 ICA modeling of the normal cardiac contraction

ICA is originally used for finding source signals from a mixture of unknown signals

without prior knowledge other than the number of sources. In machine learning,

ICA has been applied for feature extraction [2] and face recognition [3]. ICA can

be applied to statistical shape modeling to extract independent components of the

shape variation [4].

ICA is a linear generative model, where every training shape can be approximated

by a linear combination of its components.

Let ~x = (x1, y1, . . . , xm, ym)T be a shape vector, consisting of m pairs of (x, y) coor-

dinates of landmark points. The linear generative model is formulated as follows:

~x ≈ ~̄x + ~Φ~b . (4.1)

The matrix ~Φ ∈ R
2m×p defines the independent components (ICs) and ~b ∈ R

p is the

weight coefficient vector. The mean shape, ~̄x, is defined by

~̄x =
1

n

n
∑

i=1

~xi . (4.2)

where n is the number of shapes and p is the number of retained components.

The goal of ICA is to find a matrix, ~Ψ, such that

~b = ~Ψ
(

~x − ~̄x
)

(4.3)

with a constraint that columns of ~Ψ correspond to statistically independent direc-

tions. Thus the independent components are given by ~Φ = ~Ψ−1. The matrix ~Ψ is

estimated by an optimisation algorithm (see [5] for survey of ICA).
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Some pre-processing steps are necessarily performed before the ICA computation.

The training shapes must be aligned, such that all shapes are invariant under Eu-

clidean similarity transformations (rotation, translation and scaling). Procrustes ana-

lysis [6] is used for the shape alignment. Point correspondence between shapes is

usually obtained by taking landmark points with the same anatomical interpreta-

tion. The resulting training shapes are zero mean, unit variance and all points are

registered between shapes.

In this application, the observed data are left ventricular (LV) myocardial contours

from short-axis cardiac MRI images at end-diastole (ED) and end-systole (ES) phases.

To model the contractility pattern, contours for each subject are combined serially

into one shape vector in the following order: endocardium contour at ED, epicar-

dium contour at ED, endocardium contour at ES and epicardium contour at ES.

ED ES

(a) ICA mode

ESED

(b) PCA mode

Figure 4.2: Examples of modes from ICA and PCA models. The mean shape is drawn with a

dashed line. The mode is drawn with a solid line. The shape variations are drawn with ±3σ

of the weight matrix distribution from the mean shape.

Figure 4.2(a) shows one example of an ICA derived shape variation mode. For com-

parison, the first mode of shape variation with PCA from the same data is shown

in Fig. 4.2(b). ICA modes have a general shape of a local ”bump”, whereas the re-

mainder of the shape is unaffected. This is an important property of ICA, which can

be used to detect local shape anomalies. In contrast, PCA modes give global shape

variations, distributed over the entire contour. A comparison study of ICA and PCA

in cardiac shape modeling is given in [4].

4.2.2 Geometry-based sorting of independent components

In our study, ICA is used to detect regional abnormalities, which are extracted from

local shape variations. It would give a benefit in this case, if the position of each IC

can be determined. Thus ICs are ordered based on their positions along the whole

contour, giving an anatomically meaningful interpretation.

Let ~̂xi be a shape vector from the i-th component

~̂xi = ~̄x + ~Φ~a (4.4)

where 1 ≤ i ≤ p, ai = 1 and aj = 0 for j 6= i. A displacement vector is defined as the
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distance of each element of ~̂xi to the mean shape

~d
(j)
i =

√

√

√

√

2j
∑

k=2j−1

(

~̂x
(k)
i − ~̄x(k)

)2

where j = 1, 2, . . . , m . (4.5)

To determine the position of an independent component, a normalized circular cross-

correlation is performed to each contour from the displacement vector with a bank of

Gaussian filters. The parameter of the Gaussian filter giving the maximum response

is stored for each component. The center of this filter defines the position of the

component. Figure 4.3(a) shows an example of the cross-correlation response from a

component.

There is an advantage of this sorting mechanism, that noise components can be de-

tected. Noise components have a global wrinkled shape variation along the whole

contour, which correlates best with the widest Gaussian filter. Figure 4.3(b) shows an

example of the cross-correlation response for a noise component. Noise components

are thus easily eliminated.

Figure 4.4 shows an example of the first four ICA modes after the geometry-based

sorting mechanism. Note that the local shape variations are orderded clockwise.

4.2.3 Determining the number of independent components

One important parameter to determine is the number of independent components

to estimate during the computation of ICA. Predicting this number with PCA may

not always be a good idea, because PCA has a risk to eliminate ”weak” ICs in the

reduced data [7]. In shape modeling, this parameter affects appearance of the shape

variations. As the number of computed ICs increases, the components represent

more localized shape variations. If this parameter is too small, then the component

gives global shape variation, much like PCA modes.

The determination of the optimal number of computed ICs is therefore task-specific.

In this application to detect local abnormalities, we need sufficient regional seg-
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(a) A non-noise IC.
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(b) A noise IC.

Figure 4.3: Cross-correlation responses from two ICs.
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Mode 1 Mode 2 Mode 3 Mode 4

Figure 4.4: The first four sorted ICA modes.

ments. Too few segments will give an inaccurate localization. More segments will

improve the detection resolution, but this is constrained by the computation time

and the number of available shapes to avoid overlearning [8].

Figure 4.5 shows the number of segments as a function of the number of computed

ICs from 42 shapes of normal hearts. From this, we took 40 as the number of com-

puted ICs in our experiment, as it gives enough segments per contour.
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Figure 4.5: A plot of the number of ICs per contour as a function of the number of computed

Independent Components.

4.2.4 Detection of abnormal contractility patterns

Let ~y ∈ R
2m be a shape vector, fitted onto the mean shape of the model using the

Procrustes fit [6]. The weight vector of the sample ~y is given by

~by = ~Φ−1
(

~y − ~̄x
)

(4.6)

which represents the parameters approximating the patient shape. Patient anomalies

are estimated by elements in the weight vector that lie outside the distribution of

parameters of the ICA model.
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We have made a statistical test to test the gaussianity for the distribution of coeffi-

cient values for each component. We can assume that all components have normal

distribution.

We define the anomaly at the i-th component q
(i)
y as a value that falls beyond ±3σi

(99.7%), to make sure that the anomaly is an outlier. Thus the anomaly vector qy is

defined by taking the outlier components, normalized by their standard deviation.

Each element of qy is defined by

q(i)
y =











0 if −3σi ≤ b
(i)
y ≤ 3σi

b
(i)
y

σi

otherwise
for i = 1, . . . , p (4.7)

The anomaly vector (4.7) is mapped to a shape vector to facilitate a more intuitive re-

gional interpretation. From the sorted ICs, the corresponding Gaussian filters giving

the maximum responses for each IC are known. These Gaussian filters are generated

to model the local bumps, resulting in a mixture of Gaussian functions. The regional

sum of the Gaussian mixture gives a shape vector that indicates regional abnormal

heart contraction of a patient.

4.3 Experimental Results

An ICA model was constructed from 42 healthy volunteers. The mid-ventricular

level from short-axis MRI was taken from each subject. Contours were drawn man-

ually and resampled to 40 landmarks defined by equi-angular sampling, starting

from the intersection between left and right ventricle. The calculation of ICA was

performed using the JADE algorithm [9], implemented in Matlab. The optimal num-

ber of computed ICs with minimum of 7 segments per contour is 40 (see Fig. 4.5).

To evaluate the infarct detection and localization of our method, MRI data of 6 pa-

tients with all necrotic infarcts were investigated. Mid-ventricular short-axis (SA)

MRI images and the corresponding delayed-enhancement (DE) MRI images with the

same orientation and the distance only < 1 mm were acquired. Regional abnormal

contraction was compared visually with the corresponding DE-MRI. The myocar-

dial infarct regions in the DE-MRI are demonstrated by signal hyperenhancement,

corresponding to myocardial necrosis [1].

Six representative evaluation results are presented in Fig. 4.6. The anomaly vectors

of patients were projected to the corresponding myocardial regions. The contrac-

tion patterns are also shown in the plot of ED contours (solid line) and ES contours

(dashed line). It is clearly seen from Fig. 4.6, that the dark areas have a reduced con-

traction. The corresponding DE-MRI are given in the right side where the infarction

regions are depicted by hyperintensity regions.
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(a) Weight vectors (solid lines) of patients with the distribution of the ICA model (er-

ror bars). The dotted lines are the boundary of the normal contraction (±3σi for i =

1, . . . , p).

(b) Infarction in the inferior wall. (c) Infarction in the septal wall.

(d) Multiple infarctions. (e) Infarction in the inferior wall.

(f) Infarction in the septal wall. (g) Infarction in the septal wall.

Figure 4.6: Qualitative evaluation results. The top row figure shows projection of 6 patients

to the ICA model of a normal heart. Their abnormalities are shown below in the myocardial

regions (ED=solid, ES=dashed). Dark areas have high abnormality value, whereas white areas

are normal. The corresponding DE-MRI images are shown at the right side.
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4.4 Discussion

This study shows the potential of ICA as an analysis tool for extracting local shape

deformation. Using ICA to train a model of normal cardiac contraction, both global

and regional motions are captured. To this end, we can automatically distinguish

between abnormal and healthy cardiac motion.

An intuitive anatomical interpretation of the normal contraction model is achieved

by ordering the ICs of the model geometrically along the whole contour. From this,

anatomical shape information can be inferred, providing a method to localize the

motion abnormalities.

In the qualitative comparison for 6 patients, the hypo-kinetic regions show an excel-

lent correspondence to the hyperintensity regions of the ”gold standard” DE-MRI.

This demonstrates that the ICA-based infarct detection and localization from short-

axis MRI images is a promising technique for computer aided infarct localization.
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Abstract

Long-axis cardiac MR views enable a rapid, online evaluation of cardiac function

from only two views. This paper aims to evaluate a model-based method for si-

multaneous detection of 2- and 4-chamber endocardial and epicardial contours in

end-diastolic and end-systolic phases of MR Images.

This paper introduces Multi-View Active Appearance Models for the automated seg-

mentation of long axis cardiac MR images of the left ventricle. Two modes of initial-

ization were used to test the accuracy of the model with minimal user interaction and

the best obtainable accuracy with this model. The segmentation was initialized by

annotating two points in the base and one in the apex. The method’s performance

was tested by comparing the point-to curve errors, ejection fractions and bi-plane

area-length volumes calculated with the automatically detected contours to those

calculated from contours that were annotated manually by experts. Leave-one-out

experiments were performed with 2- and 4-chamber long axis MR images of 59 sub-

jects in end-diastolic and end-systolic phases.

When initializing in all four frames, 97% of the segmentations were successful and

the standard deviation in the volume-errors with respect to the average manually-

identified volume was 9.0% for the end-diastolic volumes and 15% for the end-

systolic volumes. When the method was initialized in the end-systolic frames only,

92% of the segmentations were successful and the standard deviation in the errors

in the volumes with respect to the average manually-identified volume was 13.3%

for the end-diastolic volumes and 16.7% for the end-systolic volumes. Blant-Altman

plots showed that the errors were distributed randomly around 0 and a paired t-test

comparing manual and computer determined volumes showed that the volume dif-

ferences were not significant. Simultaneous detection of the endocardial and epicar-

dial contours in 2- and 4-chamber views and end-diastolic and end-systolic phases

for one subject takes approximately 3 seconds.

The accuracy of the reported method is comparable with the interobserver variabili-

ty for initialization in all frames and slightly worse than the interobserver variability

with initialization in the end-systolic frames only. However, in both cases the errors

were not significant. Initialization in end-systolic frames only leads to a statistically

insignificant lower model accuracy, however, requires only half the user interaction.

Therefore, we can conclude that this method enables rapid analysis of the cardiac

left ventricular function with little user interaction.

5.1 Introduction

In recent years, imaging modalities such as MRI and CT are frequently applied to the

analysis of cardiac function [16, 17, 18]. These modalities enable the acquisition of

3-dimensional (3D) and 4-dimensional (3D + time) images of the heart, from which

detailed diagnostic information can be derived. However, these modalities generate
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large amounts of data: 4D cardiac MR studies e.g. may easily consist of 200-500 im-

ages and a 4D CT study may even consist of 3000 images or more. In clinical practice

first a 2-chamber and a 4-chamber long-axis view are acquired to plan the short-axis

image acquisition, which is commonly used to evaluate global and regional cardiac

function. However, the quantitative analysis of short-axis acquisitions is time con-

suming, because a short-axis acquisition consists of approximately 10-15 slices. To

obtain an estimate of cardiac function parameters, contours in all slices in at least

end-diastolic and end-systolic phases need to be drawn. Alternatively, from the 2-

and 4-chamber long-axis acquisitions in end-diastolic and end-systolic phases, i.e. 4

images only, clinically relevant global functional parameters, such as ejection frac-

tion (EF) and stroke volume, can be derived. Though bi-plane MRI is subject to the

limitations of geometric assumptions and therefore is less suitable for regional func-

tion analysis, it still is attractive, because it only requires two views. This enables a

rapid, online (while the patient is still in the scanner) way of assessing global cardiac

function. Short-axis images are less suitable to this end: though short-axis views

are regarded as a gold-standard for global and regional analysis, the large amount

of data to process for computing global functional parameters is a bottleneck for

on-line application. Furthermore, in long-axis acquisitions the base and apex are

defined more accurately, which is not the case in short-axis acquisitions.

Previous studies have shown that in most cases there are no significant differences

in the volumes calculated with volumetric MRI, which is calculated from a stack

of short-axis MR images, and bi-plane MRI, which is calculated from the 2- and 4-

chamber long-axis MR images [10, 11, 12]. Though this is still an open debate in the

clinical community, considering this previous work, we assume that bi-plane MR

acquisition is a valid protocol for establishing volume estimates.

The goal of this work is the development of a semi-automatic contour detection

method for rapid evaluation of global cardiac function using routinely acquired 2-

and 4-chamber long-axis cardiac MR images. It was not our aim to demonstrate a

correlation between long-axis bi-plane MR volumes and volumes determined from

short-axis MR stacks since this has been evidenced by several others [10, 11, 12].

Therefore, we have limited ourselves to rapid analysis of global function parame-

ters, because long-axis MR acquisitions are less suitable for determination of regional

abnormalities than short-axis MR scans.

The method introduced in this work, Multi-view Active Appearance Models incor-

porates prior knowledge about shape and gray values in images as well as informa-

tion about the correlation between different views. Previously, several model-driven

segmentation methods have been developed for automatic contour detection of the

heart in various image modalities, e.g. based on deformable models [1, 2, 3, 4], Ac-

tive Shape Models [8] and Active Appearance Models [5, 6]. However, these meth-

ods have been applied only to cardiac MR short-axis views. Also the computational

burden of these methods is currently too high for online application (3-5 minutes

computation time).
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This work represents the first study towards methods for performing automated

analysis of cardiac function using cardiac MR long-axis views, potentially enabling

online global function quantification.

5.2 Materials and Methods

5.2.1 Active Appearance Models

Model generation

Active Appearance Models (AAM), introduced by Cootes et al. [7], incorporate prior

knowledge about shape and gray values in images. Mainly because of this inte-

gration of shape and gray value knowledge, AAMs have shown good performance

on face recognition problems and have demonstrated high robustness for detect-

ing contours of the left ventricle of the heart in static short-axis cardiac MR [5] and

echocardiographic images [8, 9].

AAMs describe statistical variations of shape and gray value and are trained from a

set of example images, in which corresponding landmark points are annotated. The

shapes, which are spanned by the landmarks, are aligned using Procrustes analysis

to compensate for translation, rotation and scaling differences between the shape

samples by minimizing the squared distance between corresponding points in the

shape samples. Of this set of aligned shapes, the mean shape is calculated, and

modes of shape variation are computed using Principal Component Analysis (PCA).

In addition, the gray values inside the shapes are sampled, warped onto the mean

shape and subsequently intensity normalized. Again, a mean intensity patch and

its characteristic principal components are computed for the set of example images.

Each shape sample is subsequently expressed as a set of shape coefficients bs and

intensity coefficients bi: the total appearance of an object can then be represented

with an appearance coefficient vector ba, which is defined in the following manner:

ba =

(

Wsbs

bi

)

(5.1)

where weighting matrix W is a diagonal matrix that relates the different units of

shape and gray level intensity coefficients.

By applying a PCA to the set of ba vectors for the complete training set, new appear-

ance samples a can be synthesized as follows:

a = ā + Qa · ba (5.2)

where ba is the vector that contains the coefficients weighing the appearance eigen-

vectors Qa.
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Model search

The model described in the previous section represents a compact description of the

variation over the training set, and such a model can (re-) generate any likely shape

and/or appearance by varying the eigenvector coefficients. By comparing a real,

unseen image with such a synthetically generated image and iteratively adapting

the model pose and eigenvector coefficients using a gradient descent approach, an

approximation of the shape in this image can be found fully automatically.

To perform model search on an unseen example, a sample image is generated by

choosing appropriate model coefficients ba. The similarity measure for model gener-

ated and target images is the root mean square (RMS) grey value difference between

the generated image and the unseen example. Minimizing this similarity measure

is a multi-dimensional optimization problem; the dimensionality is determined by

the number of modes retained in the model. With the pre-computed derivative ma-

trix, the required parameter updates for the AAM can be estimated, such that the

difference between the model and the unseen image is minimized. After updating

the parameters, a new image is generated and this process is iterated until a conver-

gence criterion is reached, i.e. when there is no more improvement in the RMS grey

value error between the generated sample and the unseen image.

A high dimensional optimization method as used for our model matching technique

is inherently sensitive to local minima. Therefore, it is important to initialize the

model matching in a position close to the final solution.

5.2.2 Multi-view AAMs

In Multi-view AAMs, a-priori information about the correlation between different

phases, e.g. end-diastolic and end-systolic, and views, e.g. 2-chamber and 4-cham-

ber, is incorporated in the model. All frames from the different views and phases are

first aligned separately for each view and phase using Procrustes alignment. After

the alignment, the shape vectors xi from the N different views and phases from one

subject are concatenated in one shape vector:

x = (xT
1 , xT

2 , xT
3 , ..., xT

N ) (5.3)

where x is the shape vector containing the coupled views and phases and N is the

total number of views and phases. A PCA is performed on the concatenated shape

vectors to find the main directions of shape variation. Analogous to the shape part

of the model, the aligned grey values from the N views and phases from one subject

are concatenated in one grey value vector:

g = (gT
1 , gT

2 , gT
3 , ..., gT

N ) (5.4)

and a PCA is performed on the concatenated grey value vectors to find the main

directions of grey value variation. This way, the shape and grey value variations are
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correlated for the different views and phases. The training of the appearance model

is similar to the AAM for single frames. Figure 5.1 shows the coupled variation

of the 2-chamber end-diastolic (top) and end-systolic (bottom) frames when corres-

ponding weights are varied between −2σ (left) and +2σ (right). The variations for

end-diastolic and end-systolic 4-chamber views are also coupled to these variations.

5.3 Evaluation

The model described in the previous section enables a simultaneous contour detec-

tion in multiple views and phases of the cardiac cycle. The models used for the

evaluation consisted of 4 frames, i.e. 2-chamber and 4-chamber cardiac MR views in

end-diastolic and end-systolic phases.

5.3.1 Data

To investigate the clinical potential of the Multi-View AAM for segmentation of car-

diac MR long-axis views, studies were collected from 59 subjects. To prove the gene-

ral applicability of the method, patients with a range of pathologies were selected:

32 subjects were diagnosed with older, stabilized infarcts, 13 with acute myocardial

infarcts, 12 with mitral valve regurgitation (confirmed with echocardiography) and

2 were healthy subjects. Two clinically standardized views (i.e. the 2-chamber and 4-

chamber views) from cine studies were used, which were acquired using a Balanced

FFE protocol on a 1.5T Philips Gyroscan Intera scanner (Philips Medical Systems,

Best, The Netherlands) using the following parameter settings: TE = 1.41 ms, TR =

2.82 ms and flip angle = 50 degrees. In Fig. 5.2, example images are shown. Ima-

ges were acquired with slice thickness of 8 mm, a resolution of 2562 pixels and field

of view ranging from 350 to 480 mm, i.e. pixel sizes varied from 1.37 to 1.88 mm.

The end-systolic and end-diastolic images of the 2-chamber and 4-chamber views

were used for the training and evaluation of the model. Endocardial and epicardial

contours were manually drawn by a radiologist with over three years cardiac MR

experience . The contours were drawn in all phases and slices using the MASS soft-

ware package (Medis medical imaging systems, Leiden, The Netherlands). Contours

were resampled to 80 landmarks, i.e. 40 endocardial and 40 epicardial landmarks.

5.3.2 Leave-one-out validation

A leave-one-out approach was used to validate the Multi-view AAM algorithm.

Models were trained on the contour and image data of 58 subjects and the matching

performance was evaluated on the one left out subject. This process was repeated

59 times, always leaving out a different subject, which was then used for validation.

In the model generation, the number of modes was determined automatically by

retaining 98% of both shape and grey value variances.
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(a) (b) (c) (d) (e)

Figure 5.1: First eigenvariation of the multiview AAM. Variation between −2σ (a) and +2σ

(e) of the eigenvector is shown for 2-chamber end-diastolic (top) and end-systolic (bottom).

Eigenvariations of the 4-chamber views are also coupled to the shown eigenmode

5.3.3 Matching

Modeling and matching was performed for 4 views simultaneously: ED and ES for

the 2-chamber and 4-chamber views. The model was initialized manually by anno-

tating three points, i.e. 2 points in the base and the apex location of the cardiac left

ventricle. Our objective for the evaluation was twofold - to quantify the optimal ac-

curacy with the Multi-View AAM and to quantify the accuracy of the model with

minimal user interaction. Therefore, two types of initialization were evaluated; an-

notating points in all frames and in only the 2- and 4-chamber end-systolic frames.

Epicardial and endocardial contours in all frames were detected simultaneously in

an iterative process. Iterations stopped when the quadratic image intensity error

was not minimized any further. The detected final contours were compared to the

manually defined independent standard.

5.3.4 Qualitative evaluation

After completing the model match to automatically detect the endocardial and epi-

cardial contours in all frames, the segmentation results were visually inspected. The

results of the visual inspection were divided into three categories:

1. no frames failed

2. 1 frame failed

3. multiple frames failed

Subjects, for which segmentation failed in multiple frames, were reported and dis-

carded from quantitative analysis. Also when contour detection for a certain subject

failed in only 1 frame, this subject was excluded from further quantitative evalua-

tion, although the other frames might have been segmented correctly.
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(a) (b)

(c) (d)

Figure 5.2: Long-axis images of end-diastolic (left) and end-systolic (right) phases of the 2-

chamber (top) and 4-chamber (bottom) views. Expert-drawn endocardial and epicardial con-

tours are denoted

5.3.5 Quantitative evaluation

To quantify the matching accuracy of the model, the automatically detected contours

were compared with the manually defined expert contours on the basis of the point-

to-curve border positioning errors, the bi-plane area length volume and the EF. The

point-to-curve errors are defined as the shortest distance between an automatically

detected landmark and the manually drawn contour, i.e. the distance along the nor-

mal to the manually drawn curve. The bi-plane area length volume of the cardiac

left ventricle is defined as follows [10]:

V =
8

3π
·
A2ch · A4ch

Lmin

(5.5)

where V denotes the bi-plane area length volume, A2ch the area of the endocardial

contour of the 2-chamber view, A4ch the area of the endocardial contour of the 4-

chamber view and Lmin the smallest distance between the apex and the base for the

2 views. The ejection fraction is defined as follows:

EF =
VED − VES

VED

(5.6)

where EF is the ejection fraction, VED the bi-plane area length volume in end-

diastolic phase and VES the bi-plane area length volume in end-systolic phase.
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5.3.6 Statistical Analysis

To quantify the point-to-curve border positioning errors, the median and the 90-

percentile were calculated for all views and phases over all accepted matches. Using

the areas of the endocardial contours and the lengths of the long-axis of the 2- and

4-chamber views, bi-plane area length volumes were calculated for the end-diastolic

and end-systolic phases. A linear regression was performed to find the correlation

between the volumes of the manually drawn and the automatically detected con-

tours. Bland-Altman plots were generated to quantify the errors in the volumes and

to check for any systematic errors or trends. Finally, paired t-tests were performed

to check if the errors were statistically significant. A p-value < 0.05 was considered

as statistically significant.

5.4 Results

The leave-one-out validation resulted in 59 automatically detected segmentation re-

sults, in which the epicardial and endocardial contours of the left ventricle of the

heart are depicted in end-diastolic and end-systolic phases of the heart cycle. Figures

5.3 and 5.4 show examples of automatically detected contours. The segmentation

was performed simultaneously on 2- and 4-chamber, end-diastolic and end-systolic

frames.

(a) (b)

(c) (d)

Figure 5.3: Representative example of automatically generated contours in (a) 2-chamber

end-diastolic, (b) 2-chamber end-systolic, (c) 4-chamber end-diastolic, and (d) 4-chamber end-

systolic long-axis MR images of the left ventricle of the heart. Contours were detected simul-

taneously in all frames
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(a) (b)

(c) (d)

Figure 5.4: Representative example of automatically generated contours in (a) 2-chamber

end-diastolic, (b) 2-chamber end-systolic, (c) 4-chamber end-diastolic, and (d) 4-chamber end-

systolic long-axis MR images of the left ventricle of the heart. Contours were detected simul-

taneously in all frames

For the leave-one-out tests with full initialization, i.e. annotating twelve points in

total for all frames, for 57 out of 59 cases (97 %) visually correct segmentation results

were obtained in a semi-automatic manner.

In 2 cases visually incorrect results were obtained in one frame, i.e. the 4-chamber

end-systolic frame. With initialization for the end-systolic frames only, i.e. anno-

tating six points in total, for 54 out of 59 cases (92 %) visually correct segmentation

results were obtained. In five cases segmentation failed in multiple frames. In to-

tal, 236 frames were segmented. The model matching converged in approximately

8 iterations. Simultaneous detection of endocardial and epicardial contours in four

frames takes approximately three seconds; this enables an online cardiac function

analysis. After leaving out the visually incorrect matches, the point-to-curve border

positioning errors for both types of initialization were computed (Table 5.1)

The bi-plane area length volumes for the manual and automatically detected con-

tours are shown in Table 5.2. This table shows that by initializing in the end-systolic

frames only, the standard deviations of the errors for both end-diastolic and end-

systolic volumes increase slightly.

The results of the linear regression fits for the bi-plane area length volumes are

shown in Table 5.3. In general, the regression fits are good. However, the regres-

sion fits for the ejection fractions are less accurate, which is caused by the fact that
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the errors in both end-diastolic volumes and end-systolic volumes are accumulated

in the calculation of the EF .

Table 5.1: Point-to-Curve border positioning errors for 2- and 4-chamber views in end-

diastolic and end-systolic phases

Error

2-Chamber 4-Chamber

Initialization Phase Median (mm) 90%-ile Median (mm) 90%-ile

All frames End-diastolic 1.66 2.86 1.77 2.94

(n=57) End-systolic 2.12 3.62 2.07 3.25

ES frames End-diastolic 1.89 2.94 1.98 3.79

(n=54) End-systolic 2.09 3.27 2.00 3.30

When initializing in all frames, 3 outliers were discarded and when initializing in ES frames only,

6 outliers were discarded in the error computation.

Table 5.2: Bi-plane area-length volumes. Difference between volumes calculated from manu-

ally drawn and automatically detected contours and the results of the T-test

Manual Automatic Error

Average SD Average SD Average SD

Initialization Phase (mL) (mL) (mL) (mL) (mL) (mL) P Value

All frames ED 89.85 30.42 89.78 29.65 0.06 8.07 0.95

(n=57) ES 49.17 29.28 48.27 26.47 0.90 7.38 0.36

ES frames ED 91.87 30.73 91.25 34.86 0.62 12.22 0.71

(n=54) ES 52.01 29.73 51.22 29.41 0.80 8.69 0.50

The difference in the average volumes calculated from manually drawn contours for both types of initialization

is caused by the fact that in both cases a different number of subjects were left out.

The ejection fractions for the 2 types of initialization were compared. Table 5.4 shows

the average EFs calculated from manually drawn contours, from automatically de-

tected contours and the errors that were made by the Multi-view AAM method.

Bland-Altman plots in Figures 5.5 and 5.6 show the errors of the EFs from the au-

tomatically detected contours compared to the expert drawn contours. These fig-

ures show that there is no systematic over- or underestimation as the errors are dis-

tributed randomly around 0.

5.5 Discussion

The results of the validation study presented in this work show the potential for an

automated analysis of global cardiac function from bi-plane long-axis cardiac MR

images. When initializing in all frames, good results were obtained in more than
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Table 5.3: Linear regression fits for bi-plane area-length volumes in end-diastolic, end-systolic

volumes and for ejection fractions

Initialization Volume/Ejection Fraction Regression Fit R2

All frames End-diastolic (mL) y = 0.94x + 5.34 0.93

(n=57) End-systolic (mL) y = 0.88x + 5.15 0.94

Ejection Fraction (%) y = 0.81x + 9.42 0.82

ES frames End-diastolic (mL) y = 1.06x − 6.55 0.88

(n=54) End-systolic (mL) y = 0.95x + 1.99 0.92

Ejection Fraction (%) y = 0.70x + 14.39 0.72

Table 5.4: Comparison of ejection fractions (EFs) for initialization in all frames and in end-

systolic (ES) frames only

Manual EF Automatic EF Error

Initialization Average (%) SD Average (%) SD Average (%) SD P Value

All frames (n=57) 47.09 16.70 47.58 14.99 -0.49 7.18 0.60

ES frames (n=54) 45.12 15.94 45.93 13.14 -0.82 8.44 0.48

96% of the subjects. The errors between manually annotated and automatically de-

tected contours were not statistically significant. With minimal user interaction, i.e.

initializing in the end-systolic frames only, the Multi-view AAM method performed

well in more than 92% of the subjects on the simultaneous segmentation of 2- and 4-

chamber views in end-diastolic and end-systolic phases of the cardiac cycle. Though

there are more outliers, initializing only in the end-systolic frames leads to a slightly

less accurate result; however, this requires half the user interaction.

The accuracy of the Multi-view AAM was compared to the variation between mul-

tiple observers. In [10] the interobserver variability was determined by having mul-

tiple observers draw contours for 2- and 4-chamber long axis MR images and cal-

culating the bi-plane area length volumes from these contours. Reported interob-

server variabilities for bi-plane MRI volume calculations are 9.4% for end-diastolic

volumes and 12.5% for end-systolic volumes. In the bi-plane area length volumes

obtained with initialization in all frames, the standard deviation of the errors with

respect to the average volume is 9.0% for end-diastolic volumes and 15.0% for end-

systolic volumes. In case of initialization in end-systolic frames only, the standard

deviation of the errors with respect to the average volume is 13.3% for end-diastolic

volumes and 16.7% for end-systolic volumes. With initialization in all frames, the

variability of the proposed method is comparable to the interobserver variabilities

reported. With initialization in end-systolic frames only, the error increases. This is

due to the fact that the initial position in the end-diastolic phase is further from the

optimal position. Hence, the model is more sensitive for locking in local minima.
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Figure 5.5: Bland-Altman plot for manual versus automatic ejection fractions with initializa-

tion in all frames.

Figure 5.6: Bland-Altman plot for manual versus automatic ejection fractions with initializa-

tion in end-systolic frames only.
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However, when initializing in end-systolic frames only, minimal user interaction is

required for initialization.

Also, from the P-values in Table 5.2 can be seen that the errors in the bi-plane area

length volumes are not significant, as all P-values are greater than 0.05. For the

ejection fractions, the average error and the standard deviation in the errors were

relatively small compared to the average manual ejection fraction. The respective

P-values were 0.60 and 0.48 for initialization in all frames and in ES frames only,

indicating that the differences between the manually and automatically determined

ejection fractions are not statistically significant. In [10] the standard deviation in the

differences in left ventricular ejection fractions between various observers is reported

as 5.9%. For both types of initialization the standard deviations for the presented

method are comparable to this interobserver variability. In [5] the reported point-

to-curve border positioning errors for segmentations of 2D cardiac short axis MR

images in end-diastolic phase were 1.71 ± 0.82 mm for endocardial contours and

1.75 ± 0.83 mm for epicardial contours. The border positioning errors for cardiac

long-axis MR images presented in Table 5.1 show excellent correspondence to the

accuracy presented in literature.

As can be seen from the results, the segmentation results are globally very good.

However, in some cases the contour detection results in local errors. Figure 5.7 shows

an example, where the contours are globally segmented very accurately, however the

edges near the apex were not detected correctly. These local errors are due to the fact

that a principle component analysis is used in the AAM. The PCA results in global

shape descriptions and therefore the AAM cannot describe local shape variations

very accurately. However, this may be resolved by applying a subsequent post-

processing step to the segmentation result. Using a local or hybrid AAM would not

solve these kinds of errors, as these methods also are based on PCA as proposed

in [5]. Other sources of error may be a large intensity gradient due to the use of

a surface coil during image acquisition. Also, the occurrence of non-representative

pathological cases in the dataset (i.e. rare cases not included in the training set), may

adversely influence the performance of the proposed method.

Previously, automatic segmentation methods have been presented for the analysis

of cardiac function. Also software is commercially available to this end. However,

these methods are only applicable to short-axis images of the heart. For instance,

in [13] the ARGUS A1.5 from Siemens Medical Systems was used for comparing

the automatically determined LV mass with the true LV mass in dogs and pigs. In

[14] and [6] automatic methods for segmentation of the cardiac left ventricle were

presented. However, these tools and methods were developed for short-axis image

segmentation and are computationally intensive and time-consuming, though with

the increase of computer speed and fast MR protocols [15], this issue may become

less important. However, as yet, analysis of cardiac function using these methods is

performed off-line. Short-axis acquisitions are still considered as the gold standard

for global and regional analysis of cardiac function; however, the method presented

in this paper offers an alternative for rapidly assessing information about global car-
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Figure 5.7: Example of local segmentation errors. A 4-chamber end-diastolic frame is shown,

where overall contours are very accurate; however, locally the apex is not segmented correctly.

diac function, while the patient is still in the scanner.

To our knowledge no prior method has been presented for the analysis of LV vol-

ume and EF with bi-plane MR images of the 2- and 4-chamber cardiac long axis.

The method presented in this paper performs very well compared to interobserver

reproducibilities as reported in literature [10]. Initializing in the end-systolic frames

only does not lead to substantially greater errors, the regression fits for the bi-plane

area length volumes are still good and the errors in the volumes are not significant.

These findings support the conclusion that using Multi-view AAMs, rapid analysis

of cardiac function can be performed. Including all user interaction, global parame-

ters such as EF, stroke volume and cardiac output can be obtained within 20 seconds,

enabling online global cardiac function analysis.

The presented method is highly suitable for rapid online quantification of global

cardiac function with minimal user interaction. Our method can be generalized to-

wards short-axis MR acquisitions. The combination of both long- and short-axis ac-

quisitions will enable an optimal quantification of both global and regional cardiac

function.



68 Chapter 5. Multi-view AAM for Cardiac MRI

References

[1] Staib L, Duncan JS. “Model-based Deformable Surface Finding for Medical Ima-

ges”, IEEE Transactions on Medical Imaging, 1996; 15(5):720–731

[2] McInerney T, Terzopoulos D. “Deformable Models in Medical Image Analysis:

A Survey”, Medical Image Analysis, 1996; 1(2):91–108

[3] Tagare HD, “Deformable 2-D template matching using orthogonal curves”,

IEEE Transactions on Medical Imaging, 1997; 16:108–117

[4] Lötjönen J, Magnin IE, Reinhardt L, et al. “Model Extraction from Magnetic Re-

sonance Volume Data Using the Deformable Pyramid”, Medical Image Analy-

sis, 1999; 3:387–406

[5] Mitchell SC, Lelieveldt BPF, Van der Geest RJ, et al. “Multistage Hybrid Active

Appearance Model Matching: Segmentation of Left and Right Cardiac Ven-

tricles in Cardiac MR Images”, IEEE Transactions on Medical Imaging, 2001;

20(5):415–423

[6] Mitchell SC, Bosch JG, Lelieveldt BPF, et al. “3-D Active Appearance Models:

Segmentation of Cardiac MR and Ultrasound Images”, IEEE Transaction on

Medical Imaging, 2002; 21:1167–1178

[7] Cootes TF, Edwards GJ, Taylor CJ. “Active Appearance Models”, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2001; 23(6):681–685

[8] Cootes TF, Hill A, Taylor CJ, et al. “The Use of Active Shape Models for Locating

Structures in Medical Images”, Image and Vision Computing, 1994; 12(1):47–59

[9] Bosch JG, Mitchell SC, Lelieveldt BPF, et al. “Automatic Segmentation of

Echocardiographic Sequences by Active Appearance Motion Models”, IEEE

Transactions on Medical Imaging, 2002; 21:1374–1383

[10] Chuang ML, Hibberd MG, Salton CJ, et al. “Importance of Imaging Method over

Imaging Modality in Noninvasive Determination of Left Ventricular Volumes

and Ejection Fraction”, Journal of the American College of Cardiology, 2000;

35(2):477–484

[11] Dulce MC, Mostbeck GH, Friese KK, et al. “Quantification of the Left Ventricu-

lar Volumes and Function with Cine MR Imaging: Comparison of Geometric

Models with Three Dimensional Data”, Radiology, 1993; 188:371–376

[12] Van Pol P, Foster R, Davis N, et al. “Optimal Clinical Evaluation of Left Ventri-

cular Function Using MRI”, Circulation, 1997; 96 Suppl. I:I-514

[13] Francois CJ, Fieno DS, Shors SM, et al. “Left Ventricular Mass: Manual and Au-

tomatic Segmentation of True FISP and FLASH Cine MR Images in Dogs and

Pigs”, Radiology, 2004; 230:389–395

[14] Aladl UE, Hurwitz GA, Dey D, et al. “Automated Image Registration of Gated

Cardiac Single-Photon Emission Computed Tomography and Magnetic Reso-

nance Imaging”, Journal of Magnetic Resonance Imaging, 2004; 19:283–290



5.5. Discussion 69

[15] Spuentrup E, Mahnken AH, Kuhl HP, et al. “Fast interactive real-time mag-

netic resonance imaging of cardiac masses using spiral gradient echo and radial

steady-state free precession sequences”, Invest Radiol. 2003; 38:288–292

[16] Fenchel M, Kramer U, Helber U, et al. “Semiquantitative Assessment of Myocar-

dial Perfusion Using Magnetic Resonance Imaging: Evaluation of Appropriate

Thresholds and Segmentation Models”, Invest Radiol. 2004; 39:572–581

[17] Mahnken AH, Henzler D, Klotz E, et al. “Determination of Cardiac Output With

Multislice Spiral Computed Tomography: A Validation Study”, Invest Radiol.

2004; 39: 451–454

[18] Dewey M, Kaufels N, Laule M, et al. “Magnetic Resonance Imaging of Myocar-

dial Perfusion and Viability using a Blood Pool Contrast Agent”, Invest Radiol.

2004; 39:498–505



70 Chapter 5. Multi-view AAM for Cardiac MRI



6
Time Continuous Tracking and

Segmentation of Cardiovascular

Magnetic Resonance Images

Using Multidimensional

Dynamic Programming

In modesty and humility be like earth

This chapter was adapted from:

Time Continuous Tracking and Segmentation of Cardiovascular Magnetic Resonance Images

using Multidimensional Dynamic Programming
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Abstract

In this chapter, we propose a semi-automatic method for time-continuous contour

detection in all phases of the cardiac cycle in magnetic resonance sequences. The

method is based on multidimensional dynamic programming. After shape parame-

terization, cost hypercubes are filled with image-feature derived cost function val-

ues. Using multidimensional dynamic programming, an optimal path is sought

through the sequence of hypercubes. Constraints can be imposed by setting limits

to the parameter changes between subsequent hypercubes. Quantitative evaluation

was performed on 20 subjects. Average border positioning error all slices, all phases

and all studies, was 1.77 ± 0.57 mm for epicardial and 1.86 ± 0.59 mm for endocar-

dial contours. The average error in end-diastolic and end systolic volumes over all

studies was small: 4.24 ± 4.62 mL and -4.36 ± 3.01 mL, respectively. The average er-

ror in ejection fraction was 4.82 ± 3.01%. The reported results compare favorable to

the best-reported results in recent literature, underlining the potential of this method

for application in daily clinical practice

6.1 Introduction

For quantitative analysis of cardiac function, clinical parameters such as end-diasto-

lic (ED) and end-systolic (ES) volume, Ejection Fraction (EF) and ventricular wall

motion are relevant. These parameters are usually estimated from short axis acqui-

sitions consisting of 200 to 300 images. To quantitatively analyze global and regional

cardiac function, endo- and epicardial contours of the cardiac left ventricle are re-

quired. Recently, several (semi-) automatic methods were developed for detecting

the contours of the myocardium. Van Assen et al. [1] and Lötjönen et al. [2] have

proposed 3-dimensional (3-D) Active Shape Models for automatic segmentation of

the human cardiac left ventricle. Kaus et al. [3] have developed deformable mod-

els constrained by prior knowledge for automatic segmentation of the left ventricle.

Sanchez-Ortiz et al. [4] propose a multi-scale fuzzy clustering based segmentation

algorithm for contour detection in 3-D cardiac echocardiographic images. However,

many of the proposed methods are suitable for segmentation in end-diastolic and

end-systolic phases only, e.g. [5, 6, 7]. Lorenzo-Valdés et al. [8] have developed

a 4-D probabilistic atlas for the 4-D (3-D+time) segmentation of the left ventricle

based on an expectation maximization method. This method yields segmentations

over the full cardiac cycle. However, many manually segmented images are needed

for building the atlas and the structures are segmented independently in each time

frame. Bosch et al. [9] and Van der Geest et al. [10] have demonstrated that active ap-

pearance motion models are able to yield time continuous segmentation results for

2-D echocardiographic and cardiac MR image sequences respectively. This method

however, needs to be trained on a training set consisting of several cardiac MR scans

with manually annotated contours in all slices and all frames.
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For a complete overview of recent developments in cardiac segmentation techniques,

see the study by Frangi et al. [11]

The mentioned methods here either do not yield time continuous segmentation re-

sults over the full cardiac cycle, or require extensive manually annotated datasets

for training. The goal of this work is to develop a method for time continuous seg-

mentation of the full cardiac cycle that does not require an extensive training set. To

accomplish this, we propose an extension of the well-known 2-D dynamic program-

ming to higher dimensions. By expressing a shape with a limited number of parame-

ters, cost hypercubes are constructed, where each axis represents a parameter range.

Each node in a hypercube represents a shape instantiation, and a connective path

through a sequence of hypercubes represents a changing shape in a time sequence

of images. Constraints such as temporal or spatial continuity are imposed by setting

limits to the parameter changes for each axis between subsequent hypercubes. This

makes the method robust in the presence of artifacts or missing image information

in individual frames. By including information from all frames in the segmentation,

we expect the method to yield more robust and consistent contours in ED and ES

frames, which are generally used for deriving the parameters that are needed for

quantitative analysis of the cardiac left ventricle. Furthermore, other clinically rele-

vant time dependent parameters can be derived from the segmented full cycle, such

as regional wall motion, rate of wall thickening and peak ejection/filling rate. The

proposed method does not require training on large datasets and prior knowledge

on global shape or position dynamics is not needed.

6.2 Materials and Methods

6.2.1 Background

Dynamic Programming (DP) [12] is a method for solving variational problems by

successively selecting the locally optimal solutions. The Dijkstra algorithm [13] is

one of the best known dynamic programming algorithms and is used for solving

shortest path problems, i.e. finding the optimal path from one node to another node

in a weighted and directed graph. Each node has an associated weight or cost and

the optimal path is the path for which the sum of the costs is minimal. An example

is shown in Fig. 6.1.

Dynamic programming has been used widely in medical image segmentation, but

mainly to enforce spatial continuity. For instance, DP has been widely applied in

X-ray left ventricular angiography and coronary angiography [14]. Xu et al. [15]

have used DP for automated lung nodule segmentation in Computed Tomography

images. Optimal 2-D contours are extracted from all slices using dynamic program-

ming with shape-based constraints. These 2-D contours are stacked to obtain 3-D

surfaces of the nodules. Yamada et al. [16] have presented a 2-D dynamic program-

ming based matching method for kidney glomerulus recognition. In this approach,

a parameterization of the shape of the glomerulus is made and constraints on the
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Figure 6.1: Example of dynamic programming. In the cost matrix on the left, each element

represents a node with a given cost, which is derived from an image-related cost function.

Using back-propagation, an optimal path is sought from the bottom row to the top row. In

the matrix on the right side, the minimal cumulative costs are shown and the optimal path

(elements in gray) connects minimal cumulative costs per row, resulting in a globally optimal

path.

range of parameters are imposed using dynamic programming. Amini et al. [17] and

Geiger et al. [18] have used dynamic programming to find globally optimal solu-

tions to variational problems in energy minimization and to allow direct and natural

enforcement of constraints on deformable models.

The approaches described here were all used in static images and typically search for

a one-dimensional path through a 2-D graph. Little work has been described toward

extending DP to higher dimensions. Sonka et al. [19] have proposed an extension

of 2-D dynamic programming by constructing a cost cube from two perpendicular

edge images, one for each coronary edge. In this graph, each node corresponds to a

combination of possible positions of the left and right coronary borders simultane-

ously. The optimal path through this graph results in a segmentation, where shape

changes in both coronary edges are coupled.

Thedens et al. [20] have developed a graph searching method for finding the optimal

surface through a 3-D cost cube. Their approach is based on a data transformation

of a 3-D lattice into an intermediate 2-D graph enabling application of traditional

graph searching techniques. To make this approach computationally feasible, they

introduce a heuristic search approach potentially yielding sub-optimal solutions. Li

et al. [21] propose a computationally feasible solution for finding a surface through

a 3-D graph lattice by computing a minimum s-t cut through a 3-D directed graph.

6.2.2 Multi-dimensional parametric dynamic programming

As mentioned before, higher dimensional extensions of dynamic programming have

been described for finding either a surface through a 3-D volume, or finding a path
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through a 3-D volume. In this work, we extend the classic dynamic programming

method to higher dimensions, similar to Sonka’s approach [19]. An overview of the

general method is represented in Fig. 6.2, whereas details on the concrete imple-

mentation of two tracking problems are described in the next section. Instead of

applying dynamic programming directly to image data, we first define a parametric

shape model, expressing the shape with N parameters. An N -dimensional space can

be constructed, where the axes are spanned by the N parameters. A given shape, is

represented by a point in this parameter space. Thus, a given combination of the N

parameters represents a shape instantiation. By discretizing each parameter axis in

a limited parameter range, an N -dimensional hypercube is constructed which is the

N -dimensional equivalent of a cost matrix such as shown in Fig. 6.1. For each frame

in a time sequence of images, such a cost hypercube is calculated.

For all possible combinations of the model parameters, i.e. all voxels in the hyper-

cubes, cost values are calculated using a cost function based on image features that

expresses the ”goodness of fit” of the model instantiation to the image data. This can

be for instance the cumulative image gradient along a contour or cross correlation

values between two regions of interest: the choice of the most suitable cost function

depends on the application and the selected parameterization. Constraints on tem-

poral or spatial continuity are imposed by setting limits to the allowed parameter

changes between subsequent hypercubes for each axis. Subsequently, the optimal

path is sought using dynamic programming by connecting the nodes with mini-

mal cost from all hypercubes with each other within these connectivity constraints.

This path is a curve in N -dimensional space. The nodes with minimal cost from cost

cubes corresponding to different time frames are connected, where a connective path

through a sequence of hypercubes represents a changing shape in a time sequence

(see Fig. 6.2). This way, depending on the type of parameterization, spatial and/or

temporal continuity can be enforced to ensure smooth motion between frames.

The concrete implementation of the shape parameterization depends on the inten-

ded application. In the next section, two types of applications with corresponding

parameterizations are elaborated.

6.3 Validation Studies

To investigate the performance and accuracy of the proposed method, two studies

were conducted. The first experiment was performed to investigate the accuracy of

the DP method in segmentation of short-axis MR images of the cardiac left ventricle

and the effect of imposing time continuity constraints on the robustness of the seg-

mentation results. The second experiment involves a case study to demonstrate the

method’s efficacy in a higher dimensional case: tracking of the aorta in full cycle MR

images using a 6-dimensional parametric representation.
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Figure 6.2: General outline of the N-dimensional dynamic programming.

6.3.1 Data material

Cardiac MRI examinations were performed in 18 cardiac patients and 2 healthy vol-

unteers. The patients suffered from several pathologies including heart failure (n =

8), hypertrophic cardiomyopathy (n = 4), transplant follow-up (n = 3), chest pain or

angina (n = 3).

Short-axis images of the cardiac left ventricle were scanned using the TrueFISP pro-

tocol on a 1.5-T Siemens MR system (Sonata, Siemens Medical Systems, Erlangen,

Germany) with a resolution of 2562 pixels and a field of view ranging from 340 to

420 mm, which resulted in a pixel size varying between 1.33 and 1.64 mm. The

inter-slice gap was 2 mm, the slice thickness was 8 mm and the following acquisition

parameters were used: TR = 3.1 ms, TE = 1.6 ms, flip angle = 55◦ and receiver band-

width = 930 Hz/pixel. In these images, epi- and endocardial contours were drawn

by experts in all slices and all phases following the conventions put forward in [23].
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To investigate the applicability of the method to higher dimensional tracking prob-

lems, an additional velocity encoded aorta flow scan was acquired in a patient with

congenital cardiac abnormalities. Images were acquired in an image plane perpen-

dicular to the ascending aorta on a Philips Gyroscan 1.5 T MR system using a phase

contrast sequence with a VENC of 3 m/s, field of view 300×253 mm, scan matrix

128×108 reconstructed to 256×256 pixels, pixel size 1.17×1.17 mm (reconstructed)

and a slice thickness of 8 mm. The full cardiac cycle was imaged in 30 phases, with

TR 14 ms, TE 5.2 ms, flip angle 20◦ with 2 signal averages.

6.3.2 Short-Axis Cardiac MR Segmentation

An elaborate quantitative evaluation was performed in a study on full-cycle con-

tour detection in short-axis cardiac MR images. During the cardiac cycle, the endo-

and epicardial borders undergo small deformations from frame to frame; this makes

the proposed dynamic programming very suitable for imposing constraints on the

maximally allowed deformations between frames of the border positions, possibly

yielding better segmentation results.

Using the proposed dynamic programming approach, the optimal contour set for the

cardiac cycle can be found as follows (see the flow chart in Fig. 6.3 for an overview).

After initializing manually by drawing a contour in one phase, the contour is resam-

pled to 32 equi-angularly sampled landmarks. Each landmark is parameterized by

its coordinates (x,y) (Because the papillary muscles were not included in the man-

ual drawing conform clinical standards, 32 landmarks provided sufficient detail to

accurately describe the approximately circular contour shapes.). Each landmark is

tracked separately over time by defining a mask in each landmark, and a search

space around each landmark by setting limits to the displacement parameters dx

and dy, which are the allowed shifts for the center of the mask in x and y directions.

The mask is positioned onto all allowed positions in the defined search space and

a cross-correlation coefficient is calculated for each position with the mask in the

reference frame.

Subsequently, for each landmark, the cost hypercubes are filled with the cost values

associated with all shifts of the center of the mask. A 3-D search space is created by

combining these cost matrices, obtaining a 3-D graph. The first and last frames of

the graph are the matrices corresponding to the frame with the manually annotated

landmarks, i.e. the initialization frame. For the cost matrix corresponding to the

landmarks in the initialization frame the center value is set to zero and all other

values are set to high values, as to leave this landmark position unchanged. To find

the optimal solution, a connective path is sought through the 3-D graph, starting at

the zero element in the first slice and crossing each layer of the graph in only one

point.



78 Chapter 6. Multidimensional Dynamic Programming

Figure 6.3: Overview of cardiac left ventricle segmentation using multidimensional dynamic

programming.
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Each path through the graph is a possible solution. The total cost of a path is the

sum of the costs of all the nodes constituting the path. The optimal solution is the

path with minimal total cost. This optimal path yields translation vectors for each

landmark with respect to the manually annotated landmark in the reference frame,

thus giving the optimal positions for all landmarks over the full cycle.

While searching the optimal path through the graph, hard constraints can be im-

posed, e.g. a continuity constraint allowing a maximum side step. Because the sam-

pling rate of the full cycle images is sufficiently high, the inter-frame movement of

the borders does not exceed two pixels. Therefore, a maximal side step of two pix-

els was allowed to obtain time continuity between frames. To assess the effect of

the constraints on the side-step parameter, experiments were repeated without side-

step constraints. Initialization was performed manually in a mid-systolic phase to

enable automatic detection of both end-diastolic and end-systolic frames. This way

an automatic calculation of ejection fraction was possible without introducing a bias

towards either the ED or ES frame. In all slices between apex and base, endo- and

epicardial contours were available for the initialization frame.

Parameter Selection

Several parameters influence the performance of the method and a brute-force search

was performed to systematically select a parameter combination yielding good seg-

mentation results. The parameters involved in the brute force search were:

• Type of cost function: two types of cost functions were considered. First, cross-

correlation of the mask in the current frame with the mask in the reference

frame was considered. The cross-correlation coefficients were considered as

costs, i.e. the higher the correlations, the lower the cost. Second, the sum of

absolute gray value differences between the masks was used. Here, a smaller

difference corresponds to a lower cost value.

• Mask size: The mask size and shape define the region of interest around each

landmark and the amount of information involved in the calculation of the

costs. The mask must contain sufficient structure for the cost values to be ac-

curate. However, a too large mask may include papillary muscles or other

structures, which are not present in every frame, potentially resulting in wrong

landmark positions in some frames. In the detection of endocardial contours,

mask clipping was applied. Because in apical slices the endocardial contours

may become very small, the mask size is adapted to half of the radius of the

endocardial contour in the initialization frame.

• Mask shape: The shape of the mask is varied from an ellipse tangent to the con-

tour to a circular shape to an ellipse perpendicular to the contour by changing

the parameter value between − 1
2 , 0 and + 1

2 (see Fig. 6.4).
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• Physical dimensions of the search space: The parameter limits of the search space

were defined by the maximally allowed displacements in x- and y-directions.

The size of the search space should be large enough to follow the movement of

the myocardium between end-diastolic and end-systolic phases.

Figure 6.4: Possible settings for the shape of the mask: ellipsoid perpendicular to contour(− 1

2
),

circular mask (0) and ellipsoid tangent to contour (+ 1

2
).

The first parameter involves the selection of cost function, and is the only intensity

feature dependent choice. The other parameters describe geometric and kinematic

properties of the contracting heart. Therefore, we expect the parameter selection to

be largely independent of the scanning protocol, therefore generalizing well towards

other cardiac MR acquisition protocols not tested here.

Evaluation Indices

To quantify the matching accuracy of the model, the automatically detected contours

were compared with the manually defined expert contours on the basis of the point-

to-curve border positioning errors, the ED and ES volumes and the EF. The point-to-

curve errors were defined as the shortest distance between an automatically detected

landmark and the manually drawn contour, i.e. the distance along the normal to

the manually drawn curve. Average and maximum border positioning errors were

measured. The ED and ES volumes were calculated as follows. In each slice the

surface of the endocardial border, i.e. the blood pool, was calculated and multiplied

with the slice thickness. The sum of all slice volumes was calculated to determine

the 3-D volume of the cardiac left ventricle. Using the volumes in ED and ES phases

of the cardiac cycle, the ejection fraction (EF) was calculated as follows:

EF =
VED − VES

VED

(6.1)

where EF is the ejection fraction, VED the cardiac left ventricular volume in end-

diastolic phase and VES the volume in end-systolic phase. Paired sample T-tests

were performed to determine if the errors in border positioning, volumes and ejec-

tion fractions were significant. P-values smaller than 0.05 were considered signifi-

cant.
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6.3.3 Aorta Tracking

An additional experiment was performed to investigate the potential of multi-di-

mensional dynamic programming applied to higher dimensional cases. The area of

the aorta was tracked over time to measure the flow [22] in images of a specific slice

of the aorta, which are used to measure flow volume. In a time sequence of images,

translation and deformation of the aorta occurs.

To this end, the shape of the aorta was parameterized with six parameters (center

coordinates [x,y] and four radii r1 - r4) as shown in Fig. 6.5. In sequential images,

the center coordinates were varied as well as the four radii. A spline was fitted

to the endpoints of the radii to obtain an ellipse. With this parameterization a 6-

dimensional cost hypercube was constructed. The costs associated with each instan-

tiation of the aorta shape was defined as the cumulative image gradient along the

model contour. Ranges were defined for all combinations of the above-mentioned

parameters, i.e. all shape instantiations. The associated costs were calculated and

stored in the corresponding positions in the hypercube. Next, using conventional

backtracking, an optimal path with minimal total cost within time-continuity con-

straints was sought through the hypercubes.

Figure 6.5: Six-dimensional parameterization of a region around the aorta with center coordi-

nates (x,y) and 4 radii r1, r2, r3, r4.

The optimal path yielded translation vectors for the center coordinates and defor-

mation vectors for the radii with respect to the reference frame. The results of the

experiments were evaluated visually.
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6.4 Results

6.4.1 Parameter Settings

The parameters computed in the parameter selection process are given in Table 6.1.

For detection of both endocardial and epicardial contours the cross-correlation based

cost function was found to give more accurate results than the cost function based

on the sum of absolute differences.

Table 6.1: Optimal settings for parameters obtained with a brute-force search. Mask shape 0

corresponds to a circular mask (see Fig. 6.3) and −1/2 corresponds to ellipsoid. Results for

endocardial and epicardial contours are shown.

Dx Dy Mask Size

Contour (pixels) (pixels) (pixels) Mask Shape

Epicardial 4 4 15 0

Endocardial 7 7 19 −1/2

6.4.2 Segmentation Results

Epicardial and endocardial contours were detected separately. With parameter set-

tings as shown in Table 6.1, the average border positioning error (BPE) over all slices,

all phases and all studies was 1.77 ± 0.57 mm (average maximum BPE was 5.21 mm)

for epicardial contours and 1.86 ± 0.59 mm (average maximum BPE was 4.51 mm)

for endocardial contours. In Table 6.2, the errors in volumes and ejection fractions

are shown. From the fitted functions (Table 6.3) can be seen that for the ED and ES

volumes there is a very good correlation between the volumes calculated from man-

ually drawn and automatically detected contours. Figure 6.7 shows Bland-Altman

plots for ED and ES volumes and ejection fractions.

Table 6.2: Average manual ED and ES volumes and ejection fractions, with average errors

made by an automatic dynamic programming based method

Average manual Average Error P-value

ED volume (mL) 171.68 ± 91.10 4.24 ± 4.62 6.14E-4

ES volume (mL) 103.96 ± 95.64 -4.36 ± 4.26 2.05E-4

Ejection Fraction (%) 47.73 ± 19.20 4.82 ± 3.01 8.48E-7

Figure 6.8 shows that if no time continuity constraints are imposed, the segmenta-

tions deteriorate and large inter-frame discontinuities and border positioning errors

are introduced. As can be seen from the bottom row of Fig. 6.8, single landmarks can

make large excursions and lock onto false positions, resulting in bad segmentation

results.
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Table 6.3: Equations of regression fits for ED and ES volumes and ejection fractions

Regression Fit R2

ED volumes y = 0.99x − 2.21 0.998

ES volumes y = 0.98x + 6.55 0.998

Ejection Fractions y = 0.89x + 0.34 0.984

Typical computation times for full-cycle segmentation of a 3-D short-axis cardiac

MR scan (8-12 slices, 20-25 frames) amounted to 4 minutes on a desktop PC with an

AMD Athlon 1.8 GHz processor.

6.4.3 Tracking Results

Figure 6.6 shows the result of tracking the aorta in 30 sequential time frames using a

shape parameterization with 4 radii and 2 center coordinates.

Figure 6.6: Sequential timeframes in an aortic flow scan, in which the motion and deformation

of the aorta is tracked over the cardiac cycle. Note the smooth transitions between frames,

which is a result of the imposed time continuity.
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(a)

(b)

(c)

Figure 6.7: Bland-Altman plots for end-diastolic volumes (a), end-systolic volumes (b) and

ejection fractions (c). The errors are the differences between manually annotated data and

automatically detected contours (manual - auto).
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Figure 6.8: The top row shows segmentation results obtained with time-continuity constraint

in 3 successive frames. In the bottom row, the same frames segmented without imposing

time-continuity are shown.

6.5 Discussion & Conclusions

A dynamic programming based method for time continuous segmentation of endo-

and epicardial contours was presented. Conventional 2-D dynamic programming

was extended to higher dimensions and applied to two substantially different track-

ing and segmentation problems to illustrate the method’s performance in multiple

dimensions.

In the quantitative evaluation, segmentations were performed in 20 studies in all

phases and all slices. Contour detection was successful in all included imaging slices

and the average border positioning error (BPE) was very good (1.86 mm and 1.77

mm for endo- and epicardial BPE, which corresponds to ±1 pixel), although slightly

less accurate as inter-observer BPE reported in [1]: (1.27 mm and 1.14 mm for endo-

and epicardial BPE respectivly). Lötjönen et al. [2] report an average segmentation

error of 2.57 mm using the probabilistic atlas based method. The method presented

by Kaus et al. [3] has a mean deviation from manual segmentations of 2.45 mm in

end-diastolic phase and 2.84 mm in end-systolic phase, whereas Van Assen et al. [1]

report 2.24 mm and 2.84 mm errors for endo- and epicardium respectively. Lorenzo-

Valdés et al. [8] report an average segmentation error of 2.21 mm for the three middle

slices of the left ventricle over all time frames. Also the maximum BPE for endo- and

epicardial contours (4.51 mm and 5.21 mm respectively) compares highly favorable

to the other automated methods (11-15 pixels as reported in [1, 3]), and compares

well to inter-observer maximum errors in [1] (4.34 and 3.93 maximum BPE for endo-

and epicard respectively). Therefore, we can conclude that border positioning errors

presented in this paper compare favorable to these other results reported in recent
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literature, and approach inter-observer variabilities due to manual contour draw-

ing. Of these methods, only Lorenzo-Valdés reports full cycle contour detection. The

other approaches report results in ED and ES phases only. An important criterion

for any automated border detection method for cardiac MR images, is that if mor-

phology is important, accurate regional measurements require the border detection

to yield errors at least as good as the inter-observer variability due to manual con-

tour drawing, because a small error can already have a significant impact on regional

measurements such as wall thickness and wall thickening. Of the algorithms com-

pared here, the proposed method best approaches this inter-observer BPE.

The automatically determined end-diastolic and end-systolic volumes showed near-

perfect correlations with the volumes derived from manual contours. Also, the ejec-

tion fractions of automatically segmented and manually drawn studies correlated

very well. This is a direct consequence of the small border positioning errors, but

although the volume errors are small, they are statistically significant (P-values <

0.05). Bland-Altman plots reveal a slight systematic underestimation of the ED vol-

umes and a slight systematic overestimation of the ES volumes. This, of course, has

a negative influence on the ejection fraction estimates. The systematic over- and un-

derestimations are most probably caused by a bias towards the reference frame. Cur-

rently, a rectangular search space around the landmarks is used (dx=dy). Defining

a different search space shape, e.g. allowing more radial movement, might resolve

the systematic bias. The errors, however, are small and not clinically relevant: they

are in the same range as inter-observer variations in ventricular volumes and ejec-

tion fractions [23], comparing measurements from manually drawn contours from

different observers

As can be seen in Table 6.1, a larger search space and mask need to be defined for

endocardial contour detection than for epicardial contour detection. Also the bor-

der positioning errors are slightly larger for endocardial contours. This is caused

by the fact that during the cardiac cycle the movement of the endocardial border

has larger amplitude than the epicardial border. Therefore, the texture in the masks

used for tracking the endocardial borders demonstrates relatively more changes be-

tween end-diastolic and end-systolic phases. Also the fusion of the papillary muscles

with the myocardium in end-systolic phases substantially changes the mask texture.

These effects deteriorate the cross correlation values, i.e. the cost function outcomes.

The proposed method may possibly be further improved, e.g. by blurring the ima-

ges before contour detection. Blurring the images reduces noise and better cross

correlation values can be obtained. Another improvement might be smoothing of

the contours after detection. Currently, all landmarks are detected independently

and are connected with each other by straight lines. This in general gives a slight

underestimation of the volumes. The underestimation is larger in basal slices and

also in end-diastolic images, because the sampling of the contours is less dense in

these images. Smoothing the contours after connecting the landmarks might give a

better estimate of the volumes, although landmark positions remain unchanged.

Experiments have shown that adding a time constraint to the conventional dynamic
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programming approach substantially improved the segmentation results. Without

this constraint, single landmarks showed large inter-frame displacements, which led

to locking on false edges. Imposing a maximal inter-frame displacement by means

of a time constraint, resolved these errors.

In the current approach, endo- and epicardial contours are detected separately. How-

ever, the locations of both contours are strongly correlated. Therefore, combining

both contours and detecting them simultaneously might yield still more robust re-

sults.

For each landmark separate cost matrices are calculated for each time frame and the

optimal positions of the landmarks are determined independently from its neighbor-

ing landmarks. In some cases this leads to crossing landmarks and spatial disconti-

nuities in the segmentations (see Fig. 6.9).

Figure 6.9: Spatial discontinuity caused by crossing landmarks in endo-cardial contour.

These artifacts may be resolved by following the approach in [20] and coupling

neighboring landmarks, preventing landmarks from crossing each other. This way,

not only time-continuous, but also spatially continuous segmentations can be ob-

tained, which may also lead to a further improvement of the border positioning er-

rors, the volume estimations and ejection fraction calculations.

In our current approach, segmentations were performed on a slice-per-slice basis.

Time continuous segmentation results can be obtained for each slice in this man-

ner. However, inter-slice continuity is not guaranteed. By coupling landmarks from

neighboring slices with the proposed approach, inter-slice continuity may be ob-

tained as well.

The parameter selection procedure involved systematically deriving a good parame-

ter combination, where most of the parameters were related to geometry and cardiac

kinematics, which are independent of the applied scanning protocol. Highest accu-

racy was obtained with the presented values for the parameters in the tested image

sets. However, we expect similar performance in other MR datasets and protocols

due to the protocol independence of the tuned parameters.
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The aorta tracking experiments have demonstrated the power of the proposed me-

thod in a 6-dimensional case study. The proposed approach was used for automatic

tracking of the aorta in a time sequence of images and visual inspection showed

that a time continuous result was obtained. This example showed that there are no

theoretical obstacles for the expansion of the proposed method to high dimensions;

however, further evaluation is required to quantitate the performance of dynamic

programming in such higher dimensional cases.

The main limitation of the proposed method is its computational complexity, which

increases exponentially with the number of parameter dimensions. Finding the op-

timal path through cost hypercubes is fast; however filling the cost hypercubes may

become time consuming. This obviously depends on the dimension of the hyper-

cubes and the type of cost function, e.g. sum of absolute differences, cross-correlation

values, etc. In the experiments that were performed, typical computing times in the

order of 3-5 minutes per study (on average 20 phases and 10 slices) were found. As

the analysis is performed offline and with increasing computer power, this does not

impose a major limitation on clinical applicability. In addition, by pruning the search

space, substantial additional performance gains can be achieved.

In conclusion, the proposed method has shown great utility in tracking and segmen-

tation of cardiac MR time sequences. The Multi-dimensional Dynamic Programming

allows for direct and natural enforcement of constraints, e.g. shape-based constraints

or time-continuity constraints. It is not iterative and therefore it is exact and sta-

ble. With dynamic programming global optimality of the solution is ensured and

multi-dimensional dynamic programming enables detection of time evolution and

full cycle time continuous segmentation in a series of images. The reported results

compare favorable to the best-reported results in recent literature, underlining the

potential of this method for application in daily clinical practice.
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7.1 Summary

Cardiovascular diseases are highly prevalent in the western world. With the aging of

the population, the number of people suffering from CVD is still increasing. There-

fore, the amount of diagnostic assessments and thus, the number of image acquisi-

tions will increase accordingly. Considering the high quantities of data produced by

3D and 4D imaging modalities, such as CT and MRI, manual contouring and diag-

nosis currently require much time and attention of the radiologists and cardiologists.

This justifies the need for (semi-) automatic segmentation methods; developing these

was the focus of the research presented in this thesis. In chapter 1 the goals for this

thesis were set as follows:

1. Improvement of local segmentation accuracy by exploring other statistical de-

composition methods

2. Increasing segmentation robustness by integrating information from different

views and time frames

3. Developing a method for time-continuous segmentation over the full cardiac

cycle

The following sections are summaries of chapters 2 - 6 and show that the research

presented in this thesis has yielded methods that perform equal to or better than

existing techniques.

In chapter 2, the use of ICA instead of PCA for describing statistical variations in the

dataset in Active Appearance Models was investigated. It was demonstrated that

ICA yields localized shape variations, whereas PCA results in global shape varia-

tions. However, the vectors given by PCA are ordered, which was not the case with

ICA. Furthermore, PCA yields more compact models than ICA. It is inherent to the

PCA method to find directions along which the variance is the greatest and, in this

sense, PCA is known to be optimal. Consequently, the first few modes explain most

of the shape variations, whereas the later modes are less significant. The ICA method

however, maximizes the independence between de vectors and therefore each Inde-

pendent Component describes an almost equal amount of variance.

Three different datasets were used to evaluate the different methods for calculat-

ing and sorting the Independent Components. The first set consisted of 51 expert-

drawn contours from 2-chamber long-axis MR images, consisting of 64 landmarks

each. The second set consisted of 89 expert drawn contours from cardiac left ven-

tricular X-ray angiography images, each consisting of 60 landmarks. The final set

consisted of 150 expert drawn contours from cardiac left and right ventricles as seen

in short-axis MR images. This way, the ICA method was tested on different shapes

and modalities. The different algorithms for performing ICA that were investigated

yielded localized shape variations. However, small differences were noted in size

and location of the shape variations between the algorithms. The JADE method for

calculating the Independent Components was selected for further implementation

in the AAM framework as this method was not initialized randomly and yielded
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robust and reproducible results. In addition, several methods for ordering the In-

dependent Components were investigated, as the IC’s are not sorted intrinsically.

Ordering the IC’s according to locality was selected as the best way of sorting, as the

results agreed most with what was expected intuitively. Because no golden standard

for evaluating the results of the ordering method exists, the results were interpreted

visually.

In chapter 3, the accuracy of PCA- and ICA-based AAM segmentations for cardiac

short-axis MR images was evaluated. A dataset consisting of 132 routinely acquired

short-axis mid-ventricular MR images of the left and right ventricle collected from 44

subjects was used for quantitative evaluation. From this dataset, 44 leave-three-out

models were trained. Three images from one patient were left out and a model was

trained on the remaining 129 images from 43 patients. The model was then tested

on the omitted samples. Both methods showed comparable segmentation accuracy.

In case of initialization at the known optimal positions, PCA showed slightly bet-

ter results and in the case of applying offsets in the initialization, ICA based AAMs

showed slightly better results. However, the differences were not statistically sig-

nificant. A subspace analysis, which was performed to understand the comparable

performance of both models, showed that the vectors in the intersection subspace of

PCA and ICA describe nearly the same amount of variance as the high-energy PCA

modes.

Chapter 4 illustrates the potential of ICA as an analysis tool for extracting local shape

deformation. It was demonstrated that the ICA-based infarct detection and local-

ization from short-axis MRI images is a promising technique for computer aided

infarct localization. An ICA model was trained on mid-ventricular short-axis MR

images from 42 healthy volunteers using the JADE algorithm. Qualitative evalua-

tion was performed on MR images of 6 infarct patients. From these subjects, also

delayed-enhancement MR images (DE-MRI) were acquired. Results obtained with

the ICA model were compared visually with the DE-MRI acquisitions. In the quali-

tative comparison for 6 patients, the hypo-kinetic regions showed an excellent cor-

respondence to the hyper-intensity regions of the ”gold standard” DE-MRI.

Chapter 5 demonstrates the potential for an automated analysis of global cardiac

function from bi-plane long-axis cardiac MR images. Multiview Active Appear-

ance Models were introduced, combining information from different views and time

frames to achieve a robust simultaneous segmentation in the 2- and 4-chamber views

in end-diastolic and end-systolic phases of the cardiac cycle. Long-axis MR acqui-

sitions from 59 subjects, including patients diagnosed with different pathologies,

were used for a leave-one-out validation. Quantitative evaluation of the model per-

formance was realized by comparing the bi-plane area length volumes and ejection

fractions of the automatically determined contours and the manually annotated con-

tours. Two types of model initialization were investigated. Initialization in all frames

yielded good results in more than 96% of the subjects. The errors between manu-

ally annotated and automatically detected contours were not statistically significant.

When initializing in the end-systolic frames only, the Multi-View AAM method per-
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formed well in more than 92% of the subjects. Though there are more outliers, ini-

tializing in the end-systolic frames leads to only a slightly less accurate result; how-

ever, this requires half the user interaction. The accuracy of the Multi-View AAM

was compared to the variation between multiple observers. With initialization in all

frames, the variability of the proposed method is comparable to the interobserver

variabilities reported. When initializing in the end-systolic frames only, the error

increases slightly due to the fact that the initial position in the end-diastolic phase

is further away from the optimal position. This way, however, minimal user inter-

action is required for initialization. The errors in the bi-plane area length volumes

were not significant. For the ejection fractions, the average error and the standard

deviation in the errors were relatively small compared to the average manual ejec-

tion fraction. The border positioning errors for cardiac long-axis MR images, show

excellent correspondence to the accuracy presented in literature. Analysis of cardiac

function using present methods is performed off-line. Short-axis acquisitions are

still considered as the gold standard for global and regional analysis of cardiac func-

tion; however, the method presented in this chapter offers an alternative for rapidly

assessing information about global cardiac function, while the patient is still in the

scanner. Including all user interaction, global parameters such as EF, stroke volume

and cardiac output can be obtained within 20 seconds, enabling online global cardiac

function analysis. The proposed method can be generalized towards short-axis MR

acquisitions. The combination of both long- and short-axis acquisitions will enable

an optimal quantification of both global and regional cardiac function.

In chapter 6 a multi-dimensional dynamic programming based method for semi-

automatic time continuous segmentation of endocardial and epicardial contours was

presented. Conventional 2D dynamic programming was extended to higher dimen-

sions and applied to two substantially different tracking and segmentation problems

to illustrate the methods performance in multiple dimensions. A dataset of 20 stu-

dies was available for quantitative analysis of the proposed method for segmenta-

tion of the full cardiac cycle. The dataset consisted of short-axis MR images of the

left ventricle of 2 healthy volunteers and 18 subjects that were diagnosed with dif-

ferent pathologies. Contours were drawn by experts in all slices and time frames

of this dataset. Furthermore, a velocity-encoded aorta flow scan was acquired in

one patient with congenital cardiac abnormalities to investigate the applicability of

the dynamic programming based method to high dimensional tracking problems.

The segmentation was successful in all included image slices and the average bor-

der positioning error was very small. The automatically determined end-diastolic

and end-systolic volumes showed near-perfect correlations with the volumes de-

rived from manual contours. Also, the ejection fractions of automatically segmented

and manually drawn studies correlated very well. The errors between automati-

cally determined and manually calculated volumes and ejection fractions were small

and not clinically relevant. Adding a time continuity constraint to the conventional

dynamic programming approach substantially improved the segmentation results.

Without this constraint, single landmarks showed large inter-frame displacements,



7.2. Conclusions and future work 95

which led to locking on false edges. Imposing a maximal inter-frame displacement

by means of a time continuity constraint, resolved these errors. An additional ex-

periment was performed to demonstrate the power of multi-dimensional dynamic

programming in a 6-dimensional case study. The proposed approach was used for

automatic tracking of the aorta in a time sequence of images and visual inspection

showed that a time continuous result was obtained. This example showed that there

are no theoretical obstacles for the expansion of the proposed method to high dimen-

sions. The proposed method has shown great utility in tracking and segmentation

of cardiac MR time sequences. The Multi-dimensional Dynamic Programming al-

lows for direct and natural enforcement of constraints, e.g. shape-based constraints

or time-continuity constraints. It is not iterative and therefore it is exact and sta-

ble. With dynamic programming, global optimality of the solution is ensured and

multi-dimensional dynamic programming enables detection of time evolution and

full cycle time continuous segmentation in a series of images.

7.2 Conclusions and future work

The results presented in this thesis represent a substantial improvement of the auto-

matic segmentation of cardiac MR image sequences. The goals set in the introduction

are achieved to a great extend. The use of Independent Component Analysis as an

alternative shape decomposition technique did not improve segmentation accuracy,

because the information described by the independent components was similar to

the variation explained by the largest eigenvectors obtained with Principal Com-

ponent Analysis. However, the use of ICA did enable automatic infarct detection

and localization. In a qualitative comparison, ICA showed great promise for use in

Computer Aided Diagnosis, however further research is needed to quantitate these

results.

Semi-automatic full cycle time-continuous segmentation of the cardiac left ventricle

is achieved by using a multi-dimensional dynamic programming based method. At

present, this method needs initialization in one time frame of the cardiac cycle, i.e.

contours in all slices in this time frame need to be drawn manually by experts. Fully

automatic segmentation of the cardiac cycle could be achieved by combining the

Active Appearance Model with the multi-dimensional dynamic programming based

method. This way, the latter method can be initialized by performing an AAM based

segmentation in one time frame to detect contours in all slices. Thereafter, these

contours can be propagated to all other time frames by using the multi-dimensional

dynamic programming based approach.

To demonstrate the robustness of the multi-dimensional dynamic programming ba-

sed method, the parameters used for segmentation were determined over a wide

variety of normal subjects and subjects with different pathologies. Similar to train-

ing different Active Appearance Models for different groups of subjects, segmenta-

tion accuracy could be increased by finding the parameters for this model separately
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for each group of subjects. However, the decrease in generality versus the gain in

accuracy should be investigated.

Semi-automatic segmentation using the multi-dimensional dynamic programming

based method has been applied to the detection of contours of the cardiac left ven-

tricle as seen in MR image sequences. However, no theoretical obstacles exist for

applying this method to the right ventricle or cardiac image sequences from other

modalities such as CT or ultrasound. Further research in this direction will enable

fully automated time-continuous segmentation of the cardiac cycle.

All automated segmentation methods are prone to errors to some extent. With the

Active Appearance Models presented in this thesis, these errors can be quantified

and reported. In each iteration, the model generates artificial images resembling

the image to be segmented. During matching the least squares error between the

generated and real images is calculated and used as a measure for the goodness of

fit. In case the matching fails, this value exceeds a certain goodness of fit thresh-

old, which can be used as an indicator for a failed segmentation. Slices in which

segmentation was unsuccessful can be indicated in the user interface, such that the

user can correct these manually. The same method should be investigated in case

of segmentation using the multi-dimensional dynamic programming based method.

This method is based on the optimization of a (multi-dimensional) cost function. At

present the total value of the penalty over all slices and phases is optimized. To en-

able automatic error detection in this method, the value of the cost function should

be evaluated and stored per slice and phase in the cardiac cycle. This way, a correla-

tion between the segmentation result and the value of the cost function per slice and

phase could be found. Similar to the AAM, slices in which segmentation failed can

then be indicated to the user.

Cardiac MR segmentation algorithms also greatly benefit from the rapid progress in

Cardiac MR image acquisition; the scanning protocols are improving, and more and

more hospitals have scanners with a magnetic field strength of 3 Tesla. These devel-

opments result in images with higher contrast and resolution. The increasing image

quality will aid in achieving better segmentation results with the presented methods;

therefore, it can be expected that this improved image quality, in combination with

knowledge driven algorithms such as the ones developed in this thesis, will enable

a robust, fast, and near-fully automatic quantification of cardiac function from MR

imaging in the near future.



8
Samenvatting en Conclusies

Either exist as you are or be as you look
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8.1 Samenvatting

Cardiovasculaire ziekten komen veel voor in de westerse wereld, en met de toene-

mende vergrijzing van de bevolking en het toenemende overgewicht stijgt het aan-

tal mensen dat eraan lijdt gestaag. Daarom zal het aantal diagnoses en als gevolg

daarvan het aantal beeldacquisities van het hart ook stijgen. Vanwege het grote aan-

tal beelden dat door 3D en 4D beeldvormende technieken zoals CT en MRI wordt

gegenereerd, is het handmatig tekenen van de contouren tijdrovend en kost het

kwantitatief meten van de hartfunctie veel tijd en aandacht van radiologen en car-

diologen. Dit heeft een behoefte gecreëerd voor (semi-) automatische segmentatie

methoden om de diagnose te ondersteunen. Dit proefschrift richt zich op de ont-

wikkeling van dergelijke automatische segmentatiemethoden. In Hoofdstuk 1 zijn

de doelstellingen voor dit proefschrift als volgt vastgesteld:

1. Het verbeteren van de lokale segmentatie nauwkeurigheid door middel van

nieuwe statistische vormdecomposities

2. Het verbeteren van de segmentatie robuustheid door informatie uit meerdere

aanzichten en tijdpunten te integreren in de segmentatie

3. De ontwikkeling van een methode voor tijd-continue segmenatie van de volle-

dige hartcyclus

De volgende paragrafen vatten de hoofdstukken 2 tot en met 6 samen, en onder-

strepen dat het in dit proefschrift bescheven onderzoek een aantal methoden heeft

opgeleverd, die gelijk aan of beter dan bestaande technieken presteren.

In hoofdstuk 2 is het gebruik van ICA in plaats van PCA onderzocht voor het be-

schrijven van de statistische variaties in de datasets, zoals die gebruikt worden voor

Active Appearance Models. Dit hoofdstuk toont aan dat met ICA lokale vorm-

variaties verkregen worden, waar PCA in globale vorm-variaties resulteert. Echter,

de vectoren die door PCA worden gegenereerd zijn geordend, hetgeen niet het geval

is met ICA. Bovendien resulteert PCA in compactere modellen dan ICA. De inhe-

rente eigenschap van de PCA methode is dat het richtingen vindt, waarlangs de

variantie het grootst is en in dat aspect is PCA optimaal. De eigenvectoren met de

hoogste eigenwaarden beschrijven de meest significante vormvariaties, terwijl de

lager geordende eigenvectoren ruis beschrijven. ICA daarentegen, maximaliseert de

onafhankelijkheid tussen de vectoren en daarom beschrijft elke Independent Com-

ponent een vrijwel gelijke variantie.

Drie datasets zijn gebruikt om verschillende methoden voor het berekenen en or-

denen van de Independent Components te evalueren. De eerste set bestond uit

51 contouren die door experts getekend waren op 2-kamer lange-as MR beelden.

De tweede set bestond uit 89 expert-contouren getekend op röntgenbeelden van

het linker-ventrikel van het hart. De derde set bestond uit 150 door experts gete-

kende contouren op korte as MR beelden van de linker en rechter ventrikels van

het hart. Op deze manier is de ICA methode getest op verschillende vormen en

beelden van verschillende modaliteiten. Meerdere algoritmen voor het berekenen



8.1. Samenvatting 99

van ICA zijn onderzocht, die allen resulteerden in gelokaliseerde vormvariaties.

Echter, kleine verschillen in grootte en positie van de vormvariaties werden geob-

serveerd. De JADE methode voor het berekenen van de Independent Components

is gekozen voor verdere implementatie in het AAM framework, omdat deze me-

thode niet random geı̈nitialiseerd wordt en robuuste en reproduceerbare resultaten

levert. Ook zijn enkele sorteermethoden onderzocht voor de Independent Compo-

nents, aangezien de IC’s intrinsiek niet gesorteerd zijn. De beste manier van sorteren

bleek het sorteren op lokaliteit, omdat die resultaten het best overeenkwamen met

hetgeen intuı̈tief verwacht werd. Omdat er geen gouden standaard voor het evalu-

eren van de resultaten bestaat, zijn de resultaten visueel geı̈nterpreteerd.

In hoofstuk 3 zijn de nauwkeurigheden van de PCA- en ICA-gebaseerde segmen-

taties voor korte-as MR opnamen van het hart geëvalueerd. De verwachting was

dat met ICA wellicht een hogere segmentatie nauwkeurigheid kon worden bewerk-

stelligd door het lokale karakter van ICA variaties. Om dit te onderzoeken is een

dataset bestaande uit 132 routinematig geacquireerde korte-as mid-ventriculaire MR

beelden van het linker- en rechterventrikel van 44 patiënten gebruikt voor een kwan-

titatieve evaluatie. Daarbij zijn 3 beelden van één patient weggelaten en is het model

getraind op de overige 129 beelden van 43 patiënten. Het model is vervolgens getest

op de geëxcludeerde beelden. Tegen de verwachting in resulteerden beide methoden

in vergelijkbare segmentatie resultaten. In het geval van initialisatie op de bekende

optimale posities was het PCA-gebaseerde model iets nauwkeuriger. Echter, de ver-

schillen waren statistisch niet significant. Een subspace-analyse, die is uitgevoerd

om de vergelijkbare resultaten van de PCA en ICA modellen te verklaren, liet zien

dat de vectoren in de overlappende subspace van PCA en ICA nagenoeg dezelfde

variantie in de dataset beschrijven als de hoge energie PCA modes. Dit verklaart de

vrijwel gelijke segmentatie nauwkeurigheid van beide methoden.

Hoofdstuk 4 illustreert de toegevoegde waarde van ICA boven PCA bij het extra-

heren van lokale vervormingen. Dit hoofdstuk laat zien dat de ICA gebaseerde

infarct herkenning en lokalisatie in korte-as MR beelden een veelbelovende tech-

niek is voor computer gestuurde infarct lokalisatie. Een ICA model is getraind

op mid-ventriculaire korte-as MR beelden van 42 gezonde vrijwilligers met behulp

van het JADE algoritme. Een kwalitatieve evaluatie is uitgevoerd op MR beelden

van 6 infarct-patiënten. Van deze patiënten is ook een delayed-enhancement MRI

opname (DE-MRI) gemaakt. De resultaten verkregen met het ICA model zijn vi-

sueel vergeleken met de DE-MRI acquisities. Bij de kwalitatieve vergelijking voor 6

patiënten bleek een uitstekende correspondentie tussen de hypo-kinetische regio’s,

bepaald met behulp van de ICA methode, en de regio’s met verhoogde intensiteit in

de DE-MRI beelden.

Hoofdstuk 5 beschrijft een automatische analysetechniek voor de bepaling van de

globale hartfunctie uit bi-plane lange-as MR beelden. In dit hoofdstuk worden Mul-

tiview Active Appearance Modellen geı̈ntroduceerd, die informatie uit verschillende

aanzichten en tijdpunten combineren, zodat een robuuste simultane segmentatie

wordt verkregen in 2-kamer en 4-kamer aanzichten in eind-diastole en eind-systole
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fasen van de hartcyclus. Lange-as MRI acquisities van 59 personen, waaronder

patiënten met verschillende hartziekten, zijn gebruikt voor een leave-one-out vali-

datie. Kwantitatieve evaluatie van de werking van het model is uitgevoerd door het

vergelijken van de bi-plane area length volumes en ejectie fracties van de automa-

tisch bepaalde contouren en de handmatig getekende contouren. Hierbij zijn twee

typen model-initialisaties onderzocht. Initialisatie in alle beelden leverde goede re-

sultaten in meer dan 96% van de gevallen. De afwijkingen tussen handmatig ge-

tekende en automatisch bepaalde contouren waren niet statistisch significant. Bij

initialisatie in de eind-systole fase alleen, presteerde de Multi-view AAM metho-

de goed in meer dan 92% van de gevallen. Hoewel er meer outliers waren, leidt

het initialiseren in eind-systole fasen slechts tot een iets minder nauwkeurig re-

sultaat; echter, hierbij is slechts de helft van de gebruikers-interactie nodig. De

nauwkeurigheid van het Multi-view AAM is vergeleken met de variatie in de con-

touren die door verschillende personen handmatig getekend zijn. Bij initialisatie

in alle beelden was de variabiliteit van de voorgestelde methode vergelijkbaar met

de interobserver variabiliteit zoals gerapporteerd in de literatuur. Bij initialisatie

in eind-systole beelden alleen neemt de afwijking iets toe vanwege het feit dat de

initiële posities in de eind-diastole fasen verder verwijderd zijn van de optimale

positie. Echter, deze laatste techniek behoeft slechts een minimale interactie van

de gebruiker voor de model-initialisatie. De fouten in de bi-plane area length vol-

umes waren niet significant. De gemiddelde fout en de standaardafwijking in de

fouten bij de ejectie fracties waren relatief klein vergeleken met de ejectie fracties be-

rekend uit de handmatig getekende contouren. De fouten in de contourposities voor

lange-as MR beelden van het hart corresponderen zeer goed met de in de literatuur

gepubliceerde waarden.

De analyse van globale hartfunctie met behulp van de in dit hoofdstuk gepresen-

teerde methode wordt off-line gedaan. Korte-as acquisities worden nog altijd gezien

als de gouden standaard voor globale en regionale analyse van het functioneren van

het hart. Echter, de methode gepresenteerd in dit hoofdstuk biedt een alternatief om

op een snelle manier informatie over het globale functioneren van het hart te ver-

krijgen, terwijl de patient nog in de MRI scanner ligt. Inclusief alle interactie van de

gebruikers, kunnen globale parameters zoals de ejectie fractie, stroke volume en car-

diac output verkregen worden binnen 20 seconden, hetgeen een on-line analyse van

het globale functioneren van het hart mogelijk maakt. De voorgestelde methode kan

gegeneraliseerd worden naar toepassing op korte as MRI acquisities. De combinatie

van zowel lange als korte as acquisities zal een optimale quantificatie van de globale

en regionale hartfunctie mogelijk maken.

Hoofdstuk 6 beschrijft een op multi-dimensionaal dynamisch programmeren geba-

seerde methode voor semi-automatische tijd-continue segmentatie van endocardiale

en epicardiale contouren. Het conventionele 2D dynamisch programmeren is uitge-

breid naar hogere dimensies en toegepast op 2 substantieel verschillende tracking en

segmentatie problemen. Een dataset van 20 studies was beschikbaar voor een kwan-

titatieve analyse van de voorgestelde methode voor segmentatie van de volledige
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hartcyclus. Deze dataset bestond uit korte as MR beelden van het linker-ventrikel

van 2 gezonde vrijwilligers en 18 patiënten die gediagnosticeerd waren met ver-

schillende pathologieën. Door experts waren contouren getekend in alle doorsne-

den en tijdpunten in deze dataset. Bovendien was een fase-contrast aorta flow scan

geacquireerd van één patient met een congenitale hartafwijking, zodat de toepas-

baarheid van de methode kon worden onderzocht in hoger dimensionale tracking

problemen. De segmentatie was succesvol voor alle geı̈ncludeerde beelden en de

gemiddelde contour nauwkeurigheid was zeer goed. De automatisch bepaalde eind-

diastole en eind-systole volumes lieten een nagenoeg perfecte correlatie zien met de

volumes berekend uit handmatig getekende contouren. Bovendien correleerden de

ejectie fracties van de automatisch gesegmenteerde en handmatig getekende con-

touren zeer goed. De afwijkingen tussen de automatisch bepaalde en handmatig

berekende volumes en ejectie fracties waren klein en klinisch niet relevant. Het

toevoegen van een tijdcontinuı̈teit randvoorwaarde aan dynamisch programmeren

verbeterde de segmentatieresultaten aanzienlijk. Zonder deze randvoorwaarde wa-

ren er grote verschillen in de positie van een landmark tussen de opeenvolgende

beelden, doordat contourpunten convergeerden naar een foutieve locatie. Het op-

leggen van een maximale verplaatsing van een contourpunt tussen twee beelden

door middel van een tijdcontinuı̈teits-voorwaarde voorkwam deze fouten. De ont-

wikkelde methode is daarnaast gebuikt voor het automatisch volgen van de aorta

in een tijdserie van beelden. Voor de aorta tracking is 6-dimensionale vormpara-

metrisatie gekozen, en een visuele inspectie liet zien dat een tijdcontinu resultaat

hiermede werd bereikt.

Dit voorbeeld illustreert dat er geen theoretische obstakels zijn voor de uitbreiding

van deze methode naar meerdere dimensies. Hiermee werd aangetoond dat de

beschreven methode toepasbaar is om op een directe manier randvoorwaarden op te

leggen gebaseerd op continuiteit in de tijd. Het is een niet-iteratieve methode en het

is daarom exact en stabiel. Globale optimaliteit van de oplossing is gegarandeerd

met dynamisch programmeren en multi-dimensionaal dynamisch programmeren

maakt herkenning van vervormingen in een tijd sequentie en een tijd-continue seg-

mentatie in een serie van beelden mogelijk.

8.2 Conclusies en aanbevelingen

De in dit proefschrift gepresenteerde resultaten representeren een substantiële ver-

betering van de automatische segmentatie van series van MR beelden van het hart.

De doelstellingen die in de inleiding waren gesteld, zijn in grote mate gehaald. Het

gebruik van Independent Component Analysis als een alternatieve manier van be-

schrijven van vormvariaties verbeterde de segmentatie nauwkeurigheid niet, omdat

de informatie beschreven door de independent components vergelijkbaar was met

de informatie verklaard door de eerste eigenvectoren verkregen met Principal Com-

ponents Analysis. Echter, het gebruik van ICA maakte automatische lokalisatie en
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detectie van infarcten mogelijk. In een kwalitatieve evaluatie bleek ICA veelbelo-

vend in Computer Aided Diagnosis, hoewel verder onderzoek gedaan zal moeten

worden naar kwantitatieve resultaten.

Semi-automatische tijd-continue segmentatie van het linker-ventrikel in de volledige

hartcyclus is bereikt met behulp van een op multi-dimensionaal dynamisch prog-

rammeren gebaseerde methode. Deze methode moet in één fase van de hartcyc-

lus geı̈nitialiseerd worden, dat wil zeggen dat contouren in alle beelden in deze

fase handmatig getekend moeten worden door experts. Volledig automatische seg-

mentatie van de hartcyclus zou mogelijk gemaakt kunnen worden door de Active

Appearance Models uit hoofdstuk 5 te combineren met het multi-dimensionaal dy-

namisch programmeren uit hoofdstuk 6. Zo zou de laatste methode geı̈nitialiseerd

kunnen worden door eerst een segmentatie met een AAM uit te voeren in één fase

om contouren in alle vlakken te detecteren. Vervolgens kunnen deze contouren ge-

propageerd worden naar de andere fasen van de hartcyclus door gebruik te maken

van de multi-dimensionaal dynamisch programmeren gebaseerde methode.

Om de robuustheid van het multi-dimensionaal dynamisch programmeren te ver-

groten, zijn de parameterwaarden voor een optimale werking bepaald voor een grote

variëteit van gezonde vrijwilligers en personen gediagnosticeerd met verschillende

pathologieën. Analoog aan het trainen van verschillende Active Appearance Mo-

dellen voor verschillende pathologieën, zou de segmentatie nauwkeurigheid verbe-

terd kunnen worden door aparte model parameters te bepalen voor verschillende

groepen individuen. Echter, de afname in generaliteit versus de toename van de

nauwkeurigheid zal onderzocht moeten worden.

Semi-automatische segmentatie gebaseerd op multi-dimensionaal dynamisch prog-

rammeren is toegepast om de contouren van het linker ventrikel van het hart in MR

beelden te detecteren. Er zijn echter geen theoretische obstakels om deze methode

toe te passen op contourdetectie van het rechter-ventrikel of op beeldseries van an-

dere modaliteiten zoals CT of ultrasound. Verder onderzoek in deze richting zal naar

verwachting volledig automatische tijd-continue segmentatie van de hartcyclus mo-

gelijk maken.

In alle automatische segmentatiemethoden kunnen fouten optreden. Bij de Active

Appearance Modellen zoals gepresenteerd in Hoofdstuk 5, worden deze fouten ge-

kwantificeerd en gerapporteerd. In elke iteratie genereert het model kunstmatige

beelden die lijken op het originele beeld dat gesegmenteerd dient te worden. Ge-

durende het matchen wordt het verschil tussen het gegenereerde en originele beeld

berekend en gebruikt als een maat voor de nauwkeurigheid van de segmentatie.

Bij een incorrect segmentatieresultaat komt de waarde van deze foutmaat boven

een tevoren bepaalde drempel, hetgeen kan worden gebruikt om een foutieve seg-

mentatie automatisch te identificeren. De beelden waarin de segmentatie niet suc-

cesvol is verlopen, kunnen op deze manier ter correctie aan de gebruiker worden

voorgelegd. Verder onderzoek is nodig om een vergelijkbare foutendetectie mo-

gelijk te maken in het geval van segmentatie met behulp van multi-dimensionaal

dynamisch programmeren. Deze methode is gebaseerd op de optimalisatie van een
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kostenfunctie, waar nu de totale waarde van de kostenfunctie over alle vlakken en

fasen wordt geoptimaliseerd. Om automatische foutdetectie mogelijk te maken bij

deze methode, zou de waarde van de kostenfunctie geëvalueerd en bewaard moeten

worden per vlak en fase van de hartcyclus. Op deze manier kan een correlatie tussen

het segmentatieresultaat en de waarde van de kostenfunctie per vlak en fase gevon-

den worden. Analoog aan het AAM, kunnen zo beelden waarin de segmentatie niet

als gewenst is verlopen, aan de gebruiker worden voorgelegd.

Algoritmen voor segmentatie van MR beelden van het hart profiteren sterk van de

snelle vooruitgang in de MRI acquisitie methoden. Protocollen voor het scannen

worden verbeterd en steeds meer ziekenhuizen hebben MRI scanners met een mag-

neetveldsterkte van 3 Tesla. Deze ontwikkelingen resulteren in beelden met een

hoger contrast en resolutie. Het ligt in de lijn der verwachting dat de verbeterde

beeldkwaliteit in combinatie met kennisgestuurde algoritmen zoals beschreven in

dit proefschrift, een robuuste, snelle en vrijwel automatische kwantificatie van de

hartfunctie uit MR beelden in de nabije toekomst mogelijk zal maken.
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