II. Tissue-specific expression of 14-3-3 isoforms during barley microspore and zygotic embryogenesis

Simone de Faria Maraschin, Jeanine D. Louverse, Gerda E.M. Lamers, Herman P. Spaink, Mei Wang
Abstract

The conserved 14-3-3 proteins have been shown to play regulatory roles in eukaryotic cells, including cell cycle control and differentiation. We were interested in the possible involvement of 14-3-3 proteins in the embryogenic process of barley (Hordeum vulgare L.). Barley microspore-derived embryo development was used as a model system. Immunolocalization of three barley 14-3-3 isoforms, 14-3-3A, 14-3-3B and 14-3-3C were carried out using isoform-specific antibodies. In immature microspore-derived embryos, 14-3-3C was specifically expressed underneath the L₁ layer of the shoot apical meristem and in the scutellum. Comparative studies showed that 14-3-3C was also expressed underneath the L₁ layer of the shoot apical meristem and in the scutellum of immature zygotic embryos. We further demonstrated that 14-3-3C expression is restricted to L₂ layer-derived cells of in vitro shoot meristematic cultures. Our results reveal that 14-3-3C isoform tissue-specific expression is closely related to defined events during differentiation processes in embryogenesis and in vitro meristematic cultures.

Introduction

The 14-3-3 proteins constitute a conserved family of 30 kD proteins present in all eukaryotic organisms studied so far. 14-3-3 dimers bind to phosphorylated motifs in a wide number of target proteins. Several biological functions have been attributed to members of the 14-3-3 protein family, as they are directly involved in the transduction of signals related to stress, cell division and differentiation, activation of transcription and apoptosis, amongst others (Sehnke et al., 2002).

14-3-3 functions in eukaryotic cells are exerted by several isoforms, ranging from 2 in Saccharomyces cerevisiae to 15 in Arabidopsis thaliana (Rosenquist et al., 2001). Though 14-3-3 activity is thought to be conserved among different 14-3-3 isoforms (van Heusden et al., 1996), they appear to be spatially and temporally regulated during development in both plants and animals, suggesting isoform-specific developmental roles. Tissue-specific expression has been described for the 14-3-3ζ isoform during Arabidopsis thaliana development (Daugherty et al., 1996), while the 14-3-3C isoform from barley (Hordeum vulgare L.) is known to be specifically expressed in the scutellum and in the L₂ layer of the shoot apical meristem (SAM) of germinating zygotic barley embryos (Testerink et al., 1999). In barley, 3 isoforms have been cloned so far: 14-3-3A, 14-3-3B and 14-3-3C (GenBank X62388, X93170 and Y14200). The developmentally regulated expression pattern of the 14-
3-3C isoform in the SAM described by Testerink et al. (1999) prompted us to further investigate 14-3-3 isoform-specific patterns prior to embryo maturation, in both in vivo and in vitro embryogenesis. With a set of isoform-specific antibodies, we studied 14-3-3 immunolocalization in immature zygotic embryos and embryo-like structures (ELSs) derived from androgenic microspores. In addition, we have investigated 14-3-3 immunolocalization following cell division of the shoot meristem using in vitro shoot meristematic cultures (SMCs).

Materials and Methods

Androgenesis induction and microspore culture

Barley (Hordeum vulgare L. cv Igri) androgenesis induction and microspore culture were performed according to Hoekstra et al. (1992). Embryo-like structures (ELSs) ranging 0.5-1.0 mm diameter were harvested from media by forceps after 21 days of culture for immunolocalization studies.

Immature zygotic embryos

In vivo developed immature zygotic embryos were dissected under binocular microscope from 21 DAP (days after pollination) seeds for immunolocalization studies.

Shoot meristematic cultures

Shoot meristematic cultures (SMCs) were obtained from mature grains of barley (Hordeum vulgare L. cv. Himalaya) germinated according to Louwerse (2002). The material for immunolocalization was obtained from a 16 month-old culture with high regeneration capacity.

Immunolocalization

Fixation and embedding of 21 days-old ELSs, 21 DAP immature zygotic embryos and 16 month-old SMCs was performed as described by Louwerse (2002). Isoform-specific antibodies raised against the C-terminal part of the 14-3-3A, 14-3-3B and 14-3-3C isoforms were used for in situ immunolocalization (Testerink et al., 1999).
Results

14-3-3 imunolocalization was first studied in 21 DAP immature zygotic embryos and in 21 days-old ELSs. Although 21 DAP immature zygotic embryos were at a further developmental stage compared to in vitro-developed 21 days-old ELSs, both showed similar 14-3-3 isoform-specific expression patterns (Fig. 1). 14-3-3A was immunolocalized in the scutellum, root and shoot meristems, root cap, leaf primordia, mesocotyl and epidermis, while 14-3-3B was found in all embryogenic tissues (data not shown). 14-3-3C expression was markedly different than that of 14-3-3A and 14-3-3B, being restricted to the scutellum, mesocotyl, coleoptile and to one region of the SAM (Fig. 1). Figure 2 shows a magnified view of the 14-3-3 immunolocalization in the SAM. 14-3-3A signal was detected in the leaf primordia and in some of the cells within the SAM, however no defined pattern could be observed (Fig 2a,e). While 14-3-3B was ubiquitously expressed (Fig. 2b,f), 14-3-3C could only be detected in a group of cells underneath the L1 layer of the SAM. No signal was detected in control sections that were incubated only with the secondary antibody (Fig. 2d,h).

L2-layer-specific 14-3-3C expression in the SAM of mature barley embryos has been previously reported (Testerink et al., 1999). Our results suggest that high levels of 14-3-3C are already present underneath the L1 layer of the SAM before L2 layer is morphologically differentiated.

The question raised is whether 14-3-3C specific expression underneath the L1 layer of developing SAMs is restricted to L2 layer formation, or whether it is also a feature of further cell division of the L2 layer during early organogenesis. To answer this question, we studied 14-3-3C immunolocalization in proliferating barley SMCs.
Figure 3a illustrates shoot formation and an adventitious shoot meristem (boxed) in a cross section of a 16 month-old SMC of barley. We observed the presence of L_2-derived cells as a thick differentiated layer underneath L_1 and above the corpus.

![Figure 3a](image1)

While 14-3-3A (Fig. 3b) and 14-3-3B (data not shown) were expressed in all layers within the shoot apical meristem, 14-3-3C expression could mainly be observed in L_2-layer derived cells (Fig. 3c). No 14-3-3 signal was observed when sections were incubated only with the secondary antibody (Fig. 3d).

![Figure 2](image2)

![Figure 3](image3)
Discussion

The developmental programs that lead to embryo formation are thought to be common to both androgenesis and zygotic embryogenesis (Mordhorst et al., 1997). We describe here that 14-3-3 isoform-specific expression patterns are similar during barley zygotic and microspore-derived embryogenesis. Our results are clear evidence for biochemical similarities among these two processes, indicating that the same spatial expression of members of the 14-3-3 family of regulatory proteins might be needed during the formation of barley embryos.

We demonstrate that L2-layer specification and cell division from the L2-layer are both accompanied by specific L2-layer 14-3-3C expression in immature barley embryos and during early organogenesis of SMCs. The L2 layer of the shoot apical meristem contributes probably to mesophyll formation in adult plants (Jenik and Irish, 2000). This expression pattern of the 14-3-3 C isoform in the SMC points out to specific functions for this isoform associated with the differentiation and function of the L2 layer.

In other multicellular organisms, tissue-specific expression of 14-3-3 isoforms during embryogenesis is a known phenomenon. For example, in Drosophila 14-3-3c tissue-specific expression was prior to mitogen-activated protein kinase (MAPK) activation in the same tissue during early embryo development (Tien et al., 1999). 14-3-3c and 14-3-3z have been reported to positively regulate Ras-Raf signaling pathway, leading to MAPK cascade activation in Drosophila (Chang and Rubin, 1997; Kockel et al., 1997). Recently, Pnueli et al. (2001) have reported the specific expression of at least one 14-3-3 isoform in the SAM of tomato seedlings (Lycopersicum esculentum L.). The authors have shown that the same isoform takes part of a signaling system involved in determining SAM vegetative growth potential, a signaling system that is analogous to Raf-1 in animal cells. Further work is needed to address the possible 14-3-3C targets in the L2-layer. In this regard, SMCs seem to be a suitable system to study 14-3-3C interacting proteins in the shoot meristem of barley.

Acknowledgments

We thank Sandra van Bergen and Arnoud van Marion for technical assistance.
References