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Chapter 1
Introduction

Get your facts first, then you can distort them as you please.1

1.1 Summary

The uninterrupted increase of the capacity of silicon has resulted in radical changes in the
level of applications which an embedded system has to support as well as in the system’s level
of complexity. The consumer-electronics industry now comprises many electronic gadgets
consisting of a single chip with various functions embedded: a radio transceiver, a network
interface, multimedia functions, security functions. In addition, the chip contains the ”glue”
needed to hold it together along with a design which allows the hardware and software to be
reconfigured for future applications. In conclusion, today’s embedded systems are integrated
on a single chip instead of their previous implementation asa standard microprocessor-based
board.

As a result, such Systems-on-Chip (SoC) are heterogeneous.That is, they are embedding
different types of processing units (programmable, reconfigurable, dedicated), and differ-
ent types of communication networks (buses, cross-bar switches, shared and dedicated net-
works). Not only has the once inflexible hardwired system become ”soft”, but the solid border
between software and hardware is rapidly fading away [1]. This ”softening” creates problems
for SoC-based systems because they are becoming extremely complex. To illustrate the SoC
design problems, we quote a few statements by Chris Rowen (Tensilica) [2]: (i) Design com-
plexity vs. designer productivity: A well-recognized SoC design-gap, which lies between the
growth in the chip complexity (58% for 5 year period) and productivity growth (21% for 5
year period) in logic design tools, widens every year. (ii) Application complexity: Standard

1A quote of Samuel Langhorne Clemens, better known by the pen name Mark Twain (1835 A.D.-1910 A.D.),
American humorist, satirist, writer, and lecturer. By manyAmerican experts regarded as ”the father of American
literature”.
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communication protocols are rapidly increasing in complexity. (iii) Hardware and software
validation: All embedded systems now contain significant amounts of software. (iv) Design-
bugs: SoC design-bugs can literary kill a company.This was confirmed to an extent at the
Transaction-Level Modeling panel (TLM) [3], where designers said that more effort at the
system-level - to cut ”time-to-market” - is urgently needed. We agree and claim that a sound
mapping exploration strategy can give some reassurance in this developing situation.

To master the complexity of the exploration of various mapping alternatives, it is essential
that higher levels of abstraction are included in the designhierarchy and that all relevant ap-
plications/architectures are effectively and efficientlycaptured in the models that are used
at these levels. The models must be generic enough (at least for the application domain
considered) to encompass the various features that go with different mappings. Moreover,
although at high levels of abstraction, application and architecture models are coarse grained
and parametrized, it is imperative that architecture components should be Intellectual Prop-
erties (IPs) wherever possible. This may imply that input and output data types in application
model tasks and architecture model processing units are quite different. Mapping should still
be straightforward in such cases. To the best of our knowledge, no mapping approaches offer
such facilities.

This chapter focuses on explaining research-background and related work needed to under-
stand our application, architecture, and mapping modelingapproach as detailed in this thesis.
We focus on the parallelism and heterogeneity of architecture, the abstraction level needed to
efficiently explore such architectures, and the existing system-level methods and approaches.

1.2 Embedded Systems: Definitions, Design, and Exploration

Embedded systems have become a highly significant part of everyone’s daily lives. They are
literally everywhere: from the various electronic gadgetssuch as personal-digital assistants,
mobile-phones, MP3-players, i-Pod-devices, identification and banking smart-cards, through
television & entertainment sets, gaming devices, to various measurement and acquisition in-
struments - all different in scale and size. Embedded systems extend to telecommunication,
military and space-exploration equipment. Hence, it is difficult to arrive at a single coher-
ent definition of embedded systems. Obviously, there appears to be no size, area, cost or
similar restriction when speaking about embedded systems.Yet, one special characteristic
distinguishes them from other types of systems: they are alltightly connected to their envi-
ronment.

Embedded Systems.Embedded systems are digital computer-based systems that embed
their functionality into environments they operate, and due to their tight-relation to these
environments, they differentiate from any other category of digital computer-based systems.⋄

The operation of an embedded system can be easily described by the following sequence: (1)
acquire the inputs from the environment using sensors, keyboards, on-off triggers, analog-to-
digital converters or any other input converters; (2) process these inputs using the embedded
functionality to produce the corresponding results; and (3) convey those results to the envi-
ronments using primitive light-and-sound outputs, actuators such as relays or robotic arms,
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networks, digital-to-analog conversion, audio output, video output or any other output de-
vice or format. Although the sequence is a simple one, meeting the functional requirements
needed for any of today’s embedded systems is not simple at all.

Embedded systems are reactive, often real-time systems. According to [4], a real-time system
must satisfy explicit (bounded) response-time constraints or it risks erroneous behavior, in-
cluding failure. Embedded systems also must meet required performance constraints or they
risk failure of the embedding system or loss of Quality-of-Service (QoS); An MP3 player will
not produce the required audio-quality if performance requirements are not met; a Set-Top-
Box (STB) will not be able to descramble scrambled digital-video data; a data stream will not
be acquired properly by a Digital Acquisition System; a robot hand will not react on time;
parameters indicating the failure of some other digital hardware will not be processed in time.
Hence, we can say that embedded systems are a special sub-group of real-time systems.

High performance requirement is particularly challenged by: (1) the high volume of data
going into and out of an embedded system, (2) varying data rates of inputs, and finally, (3) the
power hungry behaviors (algorithms) built into the system.These aspects may be considered
to be an ill-affordable system cost which may conflict with performance requirements.

However, performance requirements are not the only concern. For mobile devices, size,
weight, and power consumption are equally important. Additionally, integrity and privacy
may play such an important role that security constraints may become dominant [5]. Finally,
for devices whose configuration (structure and topology) may change when activated the
reconfigurability is the most important [6].

All these factors make the understanding of embedded systems patently difficult. To help both
designers and scientists in their understanding, analysis, exploration and design of newer and
better embedded systems, a specialization of embedded systems towards specific applicability
domains is made.

Domain Specific Embedded Systems.If a group of embedded systems shares a certain com-
monality, such as e.g. application domain, and due to this commonality they can interchange
or re-use parts of their implementations among themselves,these systems are called domain
specific embedded systems.⋄

Designing domain specific embedded systems makes life easier; there is no real need to be
concerned about text processors and Graphical User Interfaces (GUI) in an STB, but the
task of decoding the MPEG-2(4) stream must be performed perfectly. Conversely, some
word-processor applications and GUIs are expected on hand-held Personal Assistant (PA)
gadgets, but there is no need for extreme decoding and streamprocessing features. In this
way, reducing (removing) unnecessary embedded tasks makesit possible to save both silicon
real estate and limited resources. However, even though domain specific applications do
not require General Purpose Platforms (GPP) (such as are used in high-level CPUs), today’s
domain specific applications are still hungry for performance (resources) and this implies that
modern domain specific embedded systems need multiple processing resources.

Multiprocessor Embedded Systems.If an embedded system comprises multiple processing
components which operate in parallel, then the embedded system is called a multiprocessor
embedded system. Moreover, the components may be differenttypes in which case the system



4 Introduction

is called heterogeneous.⋄

1.2.1 Embedded Systems Design

Embedded systems design has become far more complex than in the early days when they
were simple micro-controller-on-PCB2 designs. Thead-hocdesign approach that was com-
mon then is no longer possible. As quoted in Section 1.1: ”SoCdesign-bugs can literary kill a
company.” Modern embedded system design requires thoroughsimulation verification of an
SoC before it is delivered to production-lines because the Non-Recurring Engineering costs
(NRE) are too high. Moreover, non-functional behaviors such as power dissipation, Quality-
of-Service (QoS), integrity and Real-Time (RT) constraints are now of primary importance.
Therefore, the major goal of embedded system design is to cope with both functional and
non-functional aspects. In addition to that, design and implementation costs must not grow
with system complexity. This in itself demands a foresighted design paradigm which avoids
prototyping by relying on abstract model-based and exploration-based designs.

1.2.2 Design Space Exploration

Given (user) requirements and constraints, there are - in principle - many systems that can
implement these demands. All these systems constitute points in a ’performance-cost’ design
space. Design Space Exploration (DSE) is a method aiming at identifying those points that
are optimal in some way or another.

Approaching this search for optimal points by considering each and every point in the space
is not feasible. Instead, one has to find a strategy that guides the search in the path from
requirements and constraints to optimal implementation candidates by pruning the design
space while proceeding. This approach, which is a real paradigm shift, was introduced in [7]
and called theAbstraction Pyramidview. This view is reproduced here in Figure 1.1 for
convenience.

The base of the pyramid represents the complete design spacefor the application domain.
This space is, at least in principle, reachable from user requirements and constraints that are
at the top of the pyramid. Specification, exploration and design then proceeds at discrete
levels of abstraction as represented by the parallel cuts. At each level, level-specific models
are used to explore the system instances (also referred to asplatforminstances) with levels of
confidence that are within pre-defined bounds. Selected instances narrow down the reachable
design space, as illustrated by the inner pyramids in Figure1.1. Transition from one level of
abstraction to the next one down implies a number of refinements of both the parameters and
the accuracy measures. The cost of model construction and evaluation is higher at the more
detailed levels of abstraction whilst the opportunities toexplore alternatives are significantly
greater at the higher levels of abstraction. Exploration and design at higher levels of abstrac-
tion is called system-level3 exploration and design. At the system-level, parametrization and
concurrency are typically coarse-grained, and performance/cost measures are coarse metrics

2Printed Circuit Board.
3System-level is〈application, architecture, mapping〉.
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as well. For example, a processor unit is characterized by a latency and a throughput value,
parallelism is at the level of tasks, and performance and cost are measured in terms of, say,
throughput and the number of processing units.

We now describe briefly the levels of abstraction in Figure 1.1.

Top level - Level of specifications and requirements

This level of abstraction is essentially an expert level or so calledback of the envelope spec-
ification (user requirements and constraints). The system is seen as specified by the user
without any technology or implementation hints. In software engineering it is also known as
level zero(L0) requirements.

Level of behavioral models

This is an entry point to a design process. The models at this level areexecutable. The sys-
tem being modeled is still decoupled from time and resource-constraints, so that the numbers
obtained from the executions are rather ’qualitative’ (amount of messages communicated and
amount of abstract operations executed) than ’quantitative’ (system performance). Never-
theless, the behavior can be expressed in some high level parallel language. At this level,
performance is purely functional.
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Level of approximate performance models

The level of ”approximate-accuracy”4 provides more opportunities to the designer to ex-
plore alternative solutions, anticipating the transformation from executable behavioral (un-
timed[8]) models and cycle-accurate models. In [10] this level ofabstraction is introduced
as an ultimate way to avoid the so-called “guru approach,” where the embedded system de-
signer jumps from the conceptual or behavioral model straight to the cycle-accurate model.
In contrast, an incremental narrowing of the design-space reduces the risk of landing on non-
optimal points.

In this thesis we claim that before going down to lower levelsof abstraction, the designer
should perform a thorough exploration at the level of approximate performance abstraction.
This exploration prunes the design space in such a way that the designer will then have only
to focus on a significantly reduced set of design possibilities when moving down to the next
level of abstraction.

Level of cycle-accurate models

The level of cycle-accurate models is also known as a bus-cycle accurate level. At this level,
communication between system components and computationswithin components are eval-
uated on a scale of Register Transfer Bus Cycles5.

While this approach level of exploration provides a great deal of confidence, the processing
power that is required to run exploration simulations in thecase of complex and demanding
applications is overwhelming [11]. Therefore, we argue in this thesis that the designer should
use models at this level only after he has significantly pruned the design space at the upper
abstraction levels.

Level of synthesizable models

This level of abstraction is the ”ultimate” implementationspecification level. Almost all
consumer-electronics products today are designed taking only cycle-accurate and synthesiz-
able levels into account. These are the levels where a traditional designer feels comfortable
and becomes sufficiently confident with the obtained performance numbers. Raising the lev-
els of abstraction leads to new challenges in dealing with the conversion of specifications and
exploration on higher levels of abstraction to specifications at synthesizable level.

Now that we have introduced the Abstraction Pyramid paradigm, it remains to decide whether
(and on what levels) we should rely onanalyticalor simulations exploration methods.

4It is sometimes calledtime-approximatelevel [8] or evenperformance modellevel [9].
5In Computer Architecture this is known as RTL.
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1.2.3 Analytical Exploration Methods

As indicated earlier, modern embedded systems are increasingly complex. Aspects related to
resource sharing, communication buffering and timing constraints are fairly complicated to
deal with when it comes to modeling and to evaluating them.

One can deal with these aspects by using analytical modelingand quantification methods.
These are based on Network Calculus Theory [12]. In this approach, data is modeled in
terms of data characteristics; resources are modeled as black-boxes that transform data to
data and transform available capacity to remaining capacity. The analysis then solves a set of
equations that confirm or deny the attainment of the pre-defined objectives.

A quite different usage of analytical exploration is illustrated in theDesign Trotter
framework [13]. There, a designer can establish ’metrics’ to guide the embedded design and
synthesis tools towards an efficient application architecture matching. The metrics are com-
puted through data and control dependency analysis on: local-and-global data transfers, on
data-processing, and on control operations at all abstraction levels. The application specifica-
tion 6 is parsed into a Hierarchical Control Data Flow Graph (HCDFG), which consists of the
lower-level Control Data Flow Graphs (CDFG), which again consists of so-called elementary
nodes (the aforementioned representations are equivalentto CDFGs defined in Chapter 2).
Once the HCDFG hierarchy is createdaverage parallelism metrics, memory orientation met-
rics andcontrol orientation metricsare calculated in a bottom-up manner, from the lowest
level of hierarchy to the highest level of hierarchy. The results form the application charac-
terization, and hence they help to direct the SoC design for this application. This approach is
known as Multi-Granularity Metrics.

Analytical methods are very efficient when the component black-box relations between input
quantities and output quantities (service costs, availability, etc.) can be expressed in terms of
relatively simple, say linear, equations. Because of theseassumptions, analytical methods are
only feasible at high levels of abstractions where the objective is to ’estimate’ performance
and cost before a more detailed exploration of the estimation-based pruned design space can
be addressed.

1.2.4 Simulation-based Exploration Methods

Analytical methods have their limitations. In particular,when going down the abstraction
levels, analytical methods may have to rely on simulation toget more detailed information
about the component’s input-output capacity (see [12]). Thus, analytical methods are not
feasible at all levels of abstraction. Sooner or later, simulation is mandatory. Of course,
simulation at the lower levels of abstraction is costly. Therefore, simulation can be conceived
at the approximate-performance level.

In this thesis we focus on a simulation-based exploration method which is compliant with the
so-calledY-chartapproach to a system exploration [14]. In the Y-chart approach, a system
(model) comprises an application (model), an architecture(model) and mapping transfor-
mations which associate the application (model) and the architecture (model) together. See

6This is usually a C-code functional specification.
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Figure 1.2. The application (model) is purely transformable, i.e., it only expresses functional
behavior. The architecture (model) is purely reactive i.e., it only expresses non-functional
behavior which includes latency and throughput, resource availability, power consumption,
etc. The Y-chart, then, takes the parameters from the two models and the transformation
set to conduct a quantitative performance/cost analysis. The numbers that are returned by
the analysis may be used to tune application and architecture models and to make mapping
transformations.

Applications

Performance
Numbers

Performance
Analysis

Mapping
Architecture

Figure 1.2: The Y-chart approach (Kienhuis): adesign space explorationprocess.

This approach permits multiple applications to be mapped onto a candidate architecture as
well as to map an application onto a variety of architectures. In a framework in which the
Y-chart approach is implemented, the top three boxes in Figure 1.2 appear as applications
layer, mapping layer and architecture layer, respectively. The mapping layer translatesrep-
resentationsof components in the application model torepresentationsof components in
the architecture model. For example, a mapping transformation may convert communication
semantics in the application model to communication semantics in the architecture model.

1.3 System Modeling

The Y-chart model7 is applicable at each and every level of abstraction [15]. Itwas originally
introduced by Gajski [15] as a generalization for design-for-synthesis. See Figure 1.3.

In Gajski’s approach, ’system’ is defined using various abstraction levels, where each level
contains objects common for that abstraction level and where higher level objects are hier-
archically composed out of lower level ones. At each abstraction level the design can be
described in the form of either a behavioral or structural model and both models are defined
by the number of details at that abstraction level. In the Y-chart model, design is the process

7It is worth noting that we distinguish betweenY-chart modelandY-chart approach.
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StructureBehavior

Register
Transfer

Gate
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System
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Specification Architecture

synthesis
Computation Communication

synthesis

Figure 1.3: The Y-chart (Gajski): a generalization of asynthesisprocess.

of moving from a behavioral model to a structural model undera set of constraints and where
structural objects are each designed at the next lower level. This is why this approach is
sometimes called synthesis Y-chart.

The application and architecture models are independentlychosen, yet they should match in
the sense that applications should be specified in parallel language when the architectures are
parallel architectures. In any case, both the application and the architecture can be conve-
niently modeled in terms of so-calledModels of Computation.

1.3.1 Models of Computation

According to the National Institute of Standards and Technology (NIST):

”Models of Computation (MoC) are formal, abstract definitions of a computer. Using a model
one can more easily analyse the intrinsic execution time or memory space of an algorithm
while ignoring many implementation issues. There are many models of computation which
differ in computing power (that is, some models can perform computations which are not
possible in other models) and differ in the cost of various operations.”

From the above we derive our own definition for Models of Computation.

Models of Computation. Models of Computation give a formal semantics concerning the
way computations communicate between or follow each other.They allow for reasoning - to
answer ’what-if ’ questions. They may also be used for abstract specifications of computa-
tions.[16]⋄

Models of Computation that are relevant for our needs are listed below.

Finite-State Machines

Finite-State Machines (FSM) are graphs, the nodes of which represent states and may perform
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computations on input events, and the arcs of which represent transitions between states. The
number of states and possible state-transitions isfinite. Finite-State Machines may become
intractable when the number of states grows large.

Parallel Models of Computation

Parallel models of computation are graphs of nodes that perform computation and arcs that
exchange data between the nodes. Computation nodes are either (mathematical) functions or
sequential processes. The various models differ in the way nodes communicate data among
each other.

Process Network Models (PN)

A PN is a network of processes that mutually exchanges data using some sort of synchroniza-
tion. An example of a fairly general PN is the Communicating Sequential Processes MoC
(CSP) [17] which uses the ’rendezvous’ or synchronous message passing synchronization
method. The CSP model is non-deterministic, and is usually event-driven. Since today’s het-
erogeneous embedded systems are not purely data-driven butalso control-driven, the MoC’s
such as the CSP model are important as well.

An example of deterministic PN is the Kahn Process Networks (KPN) MoC [18] in which
the processes operate autonomously and concurrently and communicate through unidirec-
tional Point-to-Point (PtP) channels that buffer data in unbounded First-In-First-Out (FIFO)
queues. Processes synchronize by means of blocking reads, i.e., a process read blocks when
attempting to read from an empty channel. Each process can compute data in its own lo-
cal memory, allowing the overlapping of process executions- this is usually described as
globally-asynchronous, locally-synchronous.

Many MoCs have been proposed in the literature that are special cases of the KPN model.
They can be classified in two groups: (1) Data-Flow Process Networks [19], and (2) Data-
Flow Graphs (DFG) [20]. In a DFG, the processes are actually (mathematical) functions,
called actors, that have well-defined firing rules which dictate token consumption and pro-
duction conditions. The most well known DFG is the Synchronous Data-Flow (SDF) [21], in
which every actor consumes a fixed number of tokens from its input channels and produces a
fixed number of tokens for its output channels. A global schedule and FIFO channel sizes can
be decided at compile-time - ’bounded buffer-size execution’ [22]. More expressive DFGs
have been proposed, namely Boolean Data-Flow (BDF) [23], Integer Data-Flow (IDF) [24],
and Data-Flow combined STAte machine controlled Reconfiguration (DF*) [25]. With these
FGs, there is a trade-off between expressiveness and compile-time analysis opportunities. In
Data-Flow Process Networks, the processes are characterized by a repetitive invocation of ac-
tor functions. KPNs and their special cases aredata-driven, and are typicallydata-streaming
oriented.
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Concurrent FSM Models

Opposed to the streaming data-driven applications are thecontrol-drivenapplications. The
control-driven applications can be modeled by the FSM model, yet this model may become
intractable, unless a concurrent FSM model is introduced. Concurrent FSMs communicate
by sending data availability signals. Examples are: (1) State-charts and ROOM-charts, orig-
inating from the real-time software design, and (2) Co-Designed FSMs, originating from the
digital signal processing design.

State-charts [26] is a broad extension of conventional formalism of FSM. State-charts are
relevant for large and complex discrete event systems, suchas multi-computer real-time sys-
tems, communication protocols, and digital-control units- all of them commonly known as
reactive systems. In state-charts states and transitions are described in a modular fashion, al-
lowing for: clustering (generating super-states), orthogonality (i.e., concurrency) and refine-
ment (i.e. ’zoom’ capabilities). Due to these features, state-charts allow for bothtop-down
andbottom-updesign approaches. The communication in state-charts is based onbroadcast
communication mechanism. That is, one state generates an event and all other states sense
it, acting in response if specified. This is unlike the MoC CSP, where an explicit rendezvous
channel has to be established, with a single sender and a single receiver. Therefore, state-
charts are more efficient for describing ’interrupt-driven’ behavior than any other parallel
MoC. Finally, state-charts can be easily extended or integrated with the other representations.
For instance, incorporating Temporal Logic (TL) [27] into state-charts allows for verification.

ROOM-charts [28] are an integral part of the wider methodology used for modeling of real-
time systems, called Real-time Object Oriented Modeling (ROOM). ROOM-charts are in-
spired by the state-charts formalism. Yet, ROOM-charts contain more formalisms to describe
real-time constraints of a system than state-charts. Additionally, ROOM-chart models use the
so-called “principle of separating internal control from function”, and due to this, ROOM-
charts are very convenient for modeling today’s heterogeneous embedded systems as well.
Finally, the ROOM-charts model is aimed at Object-OrientedLanguage code-synthesis (e.g.,
C++ code). Therefore, the parts and features of the ROOM-charts are strongly typed, and the
ultimate goal is either an executable model of the system (Simulation-based Exploration) or
the final real-time software image (the final product).

Co-Designed Finite State Machine (CDFSM) representation is introduced to embedded sys-
tem designers by thePolis method [29]. A CDFSM is a specialized FSM that incorporates
the unbounded delay assumption: for a classic FSM only the idle phase can have any du-
ration between zero and infinity. The other phases all have a duration zero. An FSM also
instantaneously reacts on input events. In CDFSM, the transition phase can have any du-
ration between one time unit and infinity - all other phases can have any duration between
zero and infinity. A CDFSM also takes a non-zero unbounded time to perform its tasks. The
CDFSM MoC is also described as globally-asynchronous, locally-synchronous. The system
is modeled as a network of interacting CDFSMs communicatingthrough events: 1) receiving
an event is analogous to blocking, 2) sending an event is analogous to not blocking, and 3)
the events are broadcast to all connected CDFSMs.
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1.3.2 System-Level Modeling Terminology

In Section 1.3.1 we have introduced models of computation that are appropriate for abstract
modeling of system behavior. In this subsection we present in more detail the terminology
and concepts of system-level modeling. Recall that a system(model) is conceived as consist-
ing of an application (model), an architecture (model), anda set of (mapping) transformations
that associate the two models together. The mapping transformations convert application rep-
resentations to architecture representations. The application and architecture representations
can be conveniently modeled using Transaction-Level Models (TLMs).

Transactions and Transaction-Level Models.A transaction refers to a data or event ex-
change between two architecture components. As a result, models of architecture components
which are involved in transactions are said to be modeled as Transaction-Level Models. Com-
munication among components is modeled by channels and its details are separated from the
details of computation and the cost of various operations.[3]⋄

In TLM, application representation primitives are converted to architecture level primitives.
For example, a process in an application model may be represented as a sequence orread,
execute, andwrite abstract instructions. A processor in the architecture model onto
which that process is mapped may be represented as a sequenceof check-data, load-
data,signal-room,execute f0,executef1,executefn,check-room,store-
data,signal-data (see [30]). Different architecture models may interpretread,execu-
te andwrite application primitives in different ways (see Chapter 3). The TLM is aware
of these alternative architecture primitives and takes care of the appropriate conversions.

The TLM components significantly reduce the amount of detailin an architecture model. For
example, in Chapter 3 we rely strongly on the TLM concept, andas a result of using TLM in
our model, when two (or more) components need to communicatethey communicate nothing
else but events. A real data item is neither processed nor communicated in our architecture
model, and hence, no additional simulation-time costs by processing or communicating data
are introduced. The architecture model processes only newly generated delay and synchro-
nization events. A delay event appears when an architecturetransaction delay expires.

To explain transaction delays, we first have to introduce a new concept - a concept of Plat-
forms.

Platforms. A platform is a parametrized architecture that is a composition of library com-
ponents. The library provides component types and rules to interconnect components. It also
provides software to manage the composition of components.⋄

Obviously, introducing platforms not only provides a levelof abstraction where we can easily
make comparisons to other platforms, but it also allows us todistinguish between environ-
mental characteristics such as technology, flexibility, and tooling. A familiarity with the
similarities and differences between platforms helps us tomake time-to-market predictions
and explore the accuracy of the predictions.

Platforms can be hardware platforms and software platforms.

Hardware Platform. A hardware platform consists of a set of computation units and a com-
munication, synchronization, and storage infrastructure. Roughly speaking, a hardware plat-
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form is a parametrized hardware architecture in which the parameters are typically number
and type of units, communication and synchronization primitives and protocols, and storage
methods.⋄

Software Platform. A software platform consists of a set of computation services, such
as: inter-process communication, memory management, process scheduling, file system and
input/output services. A software platform provides applications with unified and hardware
independent interfaces, maintains a system state coherency, and supervises the execution of
applications. A software platform may be: (1) an operating system, (2) a virtual machine, or
(3) a micro kernel. In all three cases a software platform is amultiprogramming paradigm
for an embedded multiprocessor system.⋄

Roughly speaking, a software platform is an abstraction of the underlying hardware platform
for the cases when the hardware platform is programmable or reconfigurable in time8.

In this thesis, we are interested in the mapping of stream-based applications9 onto multi-
processor architectures. Applications are modeled as KahnProcess Networks (or specialized
versions) and architectures are modeled as parametrized architecture templates. The software
platform: (1) provides soft real-time services, (2) supports the chosen programming model,
(3) copes with the schedules that maximize the overall value/performance and (4) supports
system-calls that can cope with the high-bandwidth requirements of stream-based applica-
tions [31]. A particular model of such an operating system ispresented in Chapter 3.

1.4 Problem Statement

Now that we have introduced the concepts of system-level, transaction-level, and platform-
based modeling, it remains to clarify why we rely on these concepts and how we do so.

Why

Next generation (embedded) systems on a chip will be multi-processor systems. These are
systems that comprise of a set of heterogeneous processing units that operate concurrently and
communicate over some communication, synchronization andstorage infrastructure. These
systems are too complex to be specified by an expert designer and designed by state-of-the-art
design methodologies. This approach is so error-prone thatthe non-recurrent costs (prototyp-
ing, debugging, re-design) would block any form of return oninvestment (see Section 1.2.1).
To overcome this problem we abstract the applications and the architectures. In addition, we
also abstract the way that the applications associate with the architecture - that is, we abstract
their association. As a consequence, the exploration of thedesign space is at abstract levels
too. In the Y-chart model this is called system-level and in Figure 1.3 it is indicated by the
bold solid arrow-headed lines.

8As opposed to ’reconfigurability in time’, a hardware platform can be reconfigurable in space - as FPGA de-
vices are. From the viewpoint of this thesis, reconfigurability in space is modeled purely as a feature of hardware-
platforms.

9Stream-based applications are sometimes also calledcontinuous media applications.
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How

Due to us having to deal with abstract, parametrized system models, we choose to distinguish
between issues as proposed in the Y-chart approach - issues which are further refined in the
computation models where a distinction is made between computation and communication as
well. In the scope of this thesis the architecture models areconsidered to be at the transaction
level (see above). At this level we can abstract the internals of the computation units and
focus on transactions among units (the communication, synchronization, and storage infras-
tructure). Similarly, we have to provide a model of the applications so that we can specify
them at the level of abstraction where we will be dealing withthem. We emphasise that the
application is irrespective of any specific hardware architecture, though the application and
hardware architecture models must match in the sense that they can be easily related. How-
ever, because the application model should be irrespectiveof any specific hardware archi-
tecture, the matching between application model and hardware architecture model will never
be perfect. As a consequence, the relating of application models and hardware architecture
models requires transformations which take application model representation primitives to
architecture model representation primitives. These transformations constitute what we call
the mapping process.

1.4.1 Objectives and Research Topics

The main objective of this thesis is to develop models and methods that lead to fast and
accurate, abstract, design-space exploration multiprocessor systems-on-chip which are used
in high-throughput, streaming applications. Central to these models is a Y-chart, with three
clearly separated entities: Architecture, Applications and Mapping (see Figure 1.2). Relat-
ing these three means determining their models and representations, as well as the required
transformations to overcome differences between the primitives of the entities. Hence, we
identify Models, Representations and Transformations as the main research subjects for this
thesis. That is:

• Models - Applications and architectures are modeled independently. However, they
should be compatible in the sense that applications are modeled in a parallel language
when architectures are parallel architectures. The question is: What are these models?

• Representations - Applications and architectures are associated with each other. This
requires that application and architecture components arerepresented in such a way that
the application model can drive the architecture model. Thequestion here is:What are
these representations?

• Transformations - Because application models and architecture models do not neces-
sarily match, transformations should be provided to translate application representa-
tions to architecture representations. The question here is: What are these transforma-
tions?

Given Application/Architecture models and Mapping representations and transformations, a
Performance/Cost Analysis Method must be provided such that a subsequent design-space
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exploration can be built on it in a fast and accurate way. Thus, we end thus subsection with
the final question:What is that Method?

1.5 Solution Approach

The approach to the solution in this thesis is depicted in Figure 1.4. We explain it in this
section.
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Figure 1.4: The Symbolic Program approach (SP approach) [11, 32]. This approach allows
designers (1) to perform design-steps as in the case of detailed design (indicated as Transfor-
mation Steps), (2) to run fast simulations of architecturesbeing explored, and (3) to reuse the
same application and architecture representations irrespective of the supplied data input (one
of the ideas of the Y-chart approach [14].

Because we target streaming application systems, we believe that the KPN MoC is an appeal-
ing model for specifying the functional behavior of the system. We call this the application
model, which is purely transformative. The architecture part of the system is modeled as an
admissible composition of components taken from a library of components. These compo-
nents only model the ’cost’ of the application’s workload interms of resources, transaction
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delays, throughput, service availability, etc. We associate application and architecture models
together by letting the application components generate Symbolic Programs as well as Con-
trol Traces that provide information regarding the outcomeof data-set dependent conditions
for a given input stream. The idea of recovering or preserving the control flow and data-
dependencies from the original application representation by means of Symbolic Programs
(SP) has been introduced in [32].

Our architecture model components are executable and interpret the combined symbolic pro-
grams and control traces in terms of non-functional behavior. However, because the architec-
ture model does not necessarily match the application model, symbolic programs and control
traces may have to be transformed to yield information whichthe architecture components
are able to interpret. They combine information from transformed symbolic programs and in-
formation from transformed control traces to data-specificSymbolic Introduction traces, and
interpret the incoming instructions in terms of performance and cost of services (modules)
that are internal to the components. The ideas of modeling and exploring architectures by
interpreting symbolic program representations has been introduced in [11,32].

To conclude, our approach to the solution is directed at Models, Representations and Trans-
formations. We do not discuss Performance Analysis in this thesis.

1.6 Related work

Several design-space exploration methods at abstract levels have been proposed in the liter-
ature. The approaches mentioned below are closely related to the approach presented in this
thesis.

1.6.1 Spade

TheSpademethodology [7], [33] is a System-level Performance Analysis and Design-space
Exploration methodology. TheSpademethodology follows the Y-chart approach introduced
in Figure 1.2. TheSpade design flow is illustrated in Figure 1.5. In this flow, we recognize
the application modeling, architecture modeling, mappingand performance analysis. We
now briefly comment on the various parts in Figure 1.5.

Spade uses KPN MoC [18] to model the functional behavior of an application. The ap-
plication model represents the workload that is imposed on an architecture. The workload
consists of two parts: communication workload (read andwrite) and computation work-
load (execute). The architecture model inSpade is component based. It qualifies aspects
of non-functional behavior, such as delays and throughput.

Spade supports an explicit mapping step, where application processes and channels are
mapped on architecture components. For the purpose of performance/cost analysisSpade
performs a co-simulation of application and architecture.In Spade methodology this is
called Trace-Driven Execution (TDE). The application model generates traces of Symbolic
Instructions (SI). These traces are, hence, representations of the processes in the application
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Figure 1.5: The SPADE design flow

model. The application SI traces are translated to architecture SI traces by an explicit TDE
simulation-time transformation engine. Then, the architecture SI traces are interpreted by the
architecture, which returns performance numbers.

Spade models have two major disadvantages: (1) SI traces do not preserve dependencies
between instructions (loss of information), and (2) the architecture model is too close to the
application model (loss of generality).

1.6.2 Sesame

Sesame [34] is a successor ofSpade. Like Spade, Sesame models the applications as
KPNs and represents a KPN process as a trace of abstract instructions. In contrast toSpade,
Sesame uses an even-driven simulator [35], which is much faster than a bus-cycle accurate
simulator. Moreover, an architecture inSesame is defined by thePearlmodeling language
and that makes the architecture modeling more flexible than alibrary-based approach (such
asSpade).

In order to partially recover data-dependencies from theSpade-like SI traces,Sesame re-
lies on the Integer Data Flow graph (IDF) representation [36]. Sesame replaced the TDE
type of mapping with the so-called ”virtual processor representation”, which is the IDF im-
plementation of ideas in [30]. Hence, the task of a virtual processor is to refineread,
execute, andwriteSI traces into a partially ordered trace ofcheck-data,load-data,
signal-room,execute f0, execute f1, execute fn, check-room,store-data,
signal-data instructions.

Sesame uses evolutionary algorithms to find Pareto optimal architectures [37]. In this way
Sesame provides a method to steer DSE towards a simulated solution.

Our approach differs from theSpade andSesame approaches in that we represent the ap-
plication process and the architecture processor as symbolic programs rather than as sym-
bolic instruction traces. Symbolic programs can fully separate data-dependent and data-
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independent information while symbolic instruction traces cannot. See Figure 1.4. In the
SP-approach, data-dependent information (e.g., variation of data input contents and of data
format) is isolated in a control trace, while data-independent information (such as the ap-
plication process structure in terms of control-and-data dependencies) is isolated in a sym-
bolic program. On the contrary, a symbolic instruction trace combines data-dependent and
data-independent information. Hence, a variation of inputdata implies various TDEs (in the
Spade case) or various IDFs (in theSesame case) for a single application process. To avoid
that, symbolic-instruction based methodologies imply more severe restrictions than model-
ing architectures and application-on-architecture mappings. On the contrary, the SP approach
can cope with any architecture, as long as it is a compositionlibrary component. If there is
no applicable composition in the SP component library, thenadditional SP components can
be added10. Therefore,Spade andSesame components are dealing with the effects of par-
ticular behavior (traces of application execution) instead of with the source of behavior (pure
application representation). Due to this, theSesame cannot cope with general mapping (see
Sections 3.6.2 and 4.6).

1.6.3 MTG-DF*

MTG-DF* is a modeling methodology which combines the Multi-Thread Graph (MTG) ap-
proach [38] with the Data-Flow combine STAte machine controlled Reconfiguration (DF*)
model [25].

The DF* model is an extension of SDF [21] so that: (1) each process has multiple states
which are executed in a fixed sequential order, (2) each statehas its own producer/consumer
conditions and implementation, (3) transitions and producer/consumer communication ap-
pear only when state-conditions are satisfied, and (4) the last state is either followed by the
first state (cyclo-static execution order) or some other state. In principle, DF* states can ex-
ecute in parallel. We see the value of the DF* model more at theIntra-task level than at the
Task-level (See Chapter 2). We acknowledge that the DF* model had some influence when
creating our symbolic programs.

The MTG representation models embedded software as a graph of multiple threads of exe-
cution. Therefore, the MTG representation is a parallel application representation too. How-
ever, unlike in the cases where the representations are originating from the Kahn model and
where inter-process communication is based on unbounded FIFO channels, the inter-process
communication in MTG is split between synchronization via semaphores and data commu-
nication via shared memory. These are explicitly visible and their non-deterministic nature is
fully exposed. This is also why the MTG representation is less abstract than our symbolic pro-
gram representation (see in Section 2.4), orSpade-trace representation [7]. Due to the level
of details the MTG representations are regarded as so-called gray-boxrepresentations, where
black-boxrepresentations stay for fully abstracted representations of application sources and
wherewhite-boxrepresentations stay for to-the-last detail synthesizable representations of
application sources.

10Resolving the missing behaviors by enlarging the library contents is a common practise forSesame, too. The
only difference is that newly addedSesame components still miss the proper separation of representation of data-
dependent vs. data-independent information, while SP-components do not miss this.
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The MTG-DF* approach is synthesis-driven and hence, it is too detailed for simulation-based
DSE of MPSoCs. Additionally, the main goal of this approach is software which immediately
excludes the DSE of the all-in-hardware architectures. Therefore, we refer to the MTG-DF*
from the point of view of thegraphrepresentations it uses rather than anything else11.

1.6.4 Ptolemy

ThePtolemyframework provides methods and tools for the modeling, simulation, and design
of complex computational systems [39]. It has been developed by the University of California
at Berkeley. It focuses on heterogeneous system design using MoCs for modeling both hard-
ware and software. Important features are the ability to construct a single system model using
multiple MoCs which are interoperable, and, the introduction of disciplined interactions be-
tween components, where each of them is governed by a MoC. Theinteroperability between
different MoCs is based ondomain polymorphism, which means that components can in-
teract with other components within a wide variety of domains (MoCs). Also, the Ptolemy
methodology does not have the objective to describe existing interactions, but rather imposes
structure on interactions that are being designed. Components do not need to have rigid in-
terfaces, but they are designed to interact in a possible number of ways. Particularly, instead
of verifying that a particular protocol in a single port-to-port interaction can not deadlock,
Ptolemy tends to focus on whether an assemblage of components can deadlock. Designers
are supposed to think about an overall pattern of interactions, and to trade off expressiveness
for uniformity.

The Ptolemy work and the work presented in this thesis connect at the part of modeling het-
erogeneous systems: (1) Both promote interoperability of MoCs - the complex architecture
behaviours are modeled using different models of computation which interact over rigid in-
terfaces, and (2) both are kind-of Component-based Design (CbD) approaches - the particular
system instances are built as assembles of smaller components, each of which contributes in
the particular aspect of the system architecture.

1.6.5 Some Additional DSE Methods

The work of this thesis dates to the period between the years 2000 and 2004, and, hence, it is
clear that more development has happened between that time and Today. We feel a responsi-
bility to mention the new activities in the field of DSE and Modeling for DSE-purposes. The
DSE methods we mention in this section are based on the DSE methods overview paper of
Matthias Gries [40]. This overview paper recognizes two kind of methods in a way how they
relate to the Y-chart in Figure 1.2:

1. Methods that deal withthe evaluation of a single design, represented by the perfor-
mance analysis step in the chart. These methods range from purely analytical methods
to cycle-accurate and RTL simulations. To shorten the DSE runs and to be able to focus

11There is a similarity in the way how the MTG-DF* representation is used to describe an embedded software
application and the way how SP-architecture modules are described. However, the purpose/aim and the origin of
these approaches are different.
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on the resource utilization, these methods sometimes assume correct-by-construction
synthesis steps prior to simulations. Examples of such methods and/or frameworks
are the earlier mentionedSpade andPtolemy, but alsoMESH, StepNP andSEAS
which also use the abstract architecture models. The formeruses HLLs to describe
architecture model components, while the later two use ISSsand HDLs (respectively)
for the same purpose.

Some of the analytical approaches are also falling into thiscategory, e.g. the ap-
proach [41] where computation and communication system events (symbolic instruc-
tions) are first augmented and then simulated, or the approach [42] which uses the four
event stream models (periodic, jitter, burst, and sporadic) to model internal compo-
nent scheduling and then through their transformations create the formal analysis of
the global system-scheduling and buffer memory of the heterogeneous system being
modeled.

2. Methods forthe coverage of the design spaceby (more or less) systematically modify-
ing the mapping and the analysis to the mapping and architecture in the chart. These
methods only slightly alter an application representation, just enough to adopt or refine
it in order to match the facilities of the architecture representations. These alterations
are usually required to establish a feasible mapping. On theother hand, while DSE
run only the workload (so-called input data sets) changes while the application func-
tionalities do not change. Examples of such methods and/or frameworks are the earlier
MTG-DF* andSesamewhich search for Pareto-optimality [37], but also someMILAN
which has different tools for DSE pruning (see later in this section).

The paper [40] deals with in-depth of all commonly-known (modern and/or legacy) DSE
methods. We, however, focus here on system-level simulations and abstract performance
models only. Hence, we will mention only small subset of the methods and frameworks
available. In addition, we decided to focus on the approaches that somehow (either via MoC
and modeling choices or via simulation-techniques) link tothe work we present in this thesis.

StepNP

StepNPstands for SysTem-level Exploration Platform for Network Processing. StepNP has
been developed by STMicroelectronics in collaboration with a couple of universities. It tar-
gets a system-level exploration of streaming applications, multiprocessor network-processing
architectures, and SoC tools [43]. It provides well-definedinterfaces between multi-processor
architecture components in terms of interconnects (functional channels, NoCs), processors
(simple RISC), memories and coprocessors. It also has a custom Operating System (OS)
that provides support for concurrency and multi-threading, so the existing Instruction Set
Simulators (ISS) can be integrated via additional wrappers. The targeted applications should
be described using the MIT Click modeling paradigm [44], originally intended for building
flexible and configurable routers. Thus, the application is assembled from packet process-
ing elements where each individual element implements simple router functions like packet
classification, queuing, scheduling, and interfacing. Complete application representations are
then built by connecting elements into a graph which models packet. StepNP uses synthesiz-
ableSystemC models to provide path to the hardware [40].
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SEAS

SEASstands for a System for Early Analysis of SoCs. This is an IBM framework that allows
for the composition of high-abstraction level virtual components with the aim to estimate the
performance, area, and power dissipation of the resulting SoC [45].

Early analysis begins with a designer specifying a system-level description of the SoC design.
The designer needs first to identify the SoC components. The components, including buses
and power-management circuitry, are selected from a given technology library of cores. The
core library components include the necessary performance, power, and physical information.
As a result of this step, each virtual component has a real-design linked to it. The second step
for the designer is to describe interconnecting of the components. Describing the connections
between the chip interface and the constituent cores is a complex task that requires extensive
knowledge of a bus architecture and each core in order to understand how each pin should
be connected. Support is usually provided by automating this process as much as possible.
Finally, the designer needs to describe clock domains. Thisis especially required since clocks
have to be considered during floor-planning and power dissipation modeling. The evaluation
in terms of speed and power is done by means ofSystemC simulation.

MILAN

MILAN is a model-based, extensible simulation framework that combines tools for DSE prun-
ing with the simulators at different levels of abstractions(Matlab,SystemC, C, SimpleScalar
Assembly, etc.). It provides a unified environment capable of modeling a large class of em-
bedded systems and applications, seamlessly integrating different widely-used simulators into
a single framework [46]. The simulators include various Trace-Driven as well as Task-Level
performance evaluation tools, but also the third party engines. The application are specified
at the high-abstraction level by means of hierarchical dataflow graphs, where each graph
node is represented according to the level and specification-language of the simulation target.
The two very important additional MILAN’s features are: (1)its capability to enable rapid
evaluation of different performance metrics such as power,latency, and throughput, and (2)
its support for rapid evaluation of a large design space.

MESH

MESHis Carnegie Mellow University a performance DSE framework [47]. In MESH, hard-
ware building blocks, software, and schedulers/protocolsare seen as three abstraction levels
that are modeled by software threads on the simulation host.Hardware modeling threads
are running periodically why software and scheduler modeling threads are running sporadi-
cally. The software threads are delivering load (time budgets) to the hardware threads; these
budgets are estimated through the application specification profiling.

The abstract performance architecture modeling is at the concept level very similar with the
Models of Architecture (MoA) we present in this thesis (see Chapter 3).
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SPW

SPWis the Signal Processing Worksystem created by CoWare Inc. It allows hierarchical
compositions of components written with respect to either Synchronous Data-Flow (SDF)
or Dynamic Data-Flow (DDF) MoC formalisms. Components are available either as parts
of design-libraries or explicitly coded FSM rules using HLL(Matlab, C++, SystemC) or
HDL (VHDL, Verilog). The DSE flow is based on iterative refinement of modeling and
simulation at different abstraction levels.

The approach we present here also employs FSM based architecture models (see Chapter 3),
as well as the exploration flow through modeling and simulations iterative refinement (see
Chapter 4).



Chapter 2
Symbolic Programs

Today’s scientists have substituted mathematics for experiments, and they wander off through
equation after equation, and eventually build a structure which has no relation to reality.1

2.1 Summary

The aim of this chapter is to provide representations of component behaviors in a KPN ap-
plication model that are suitable to drive an architecture model in a Y-chart design-space
exploration approach. KPN process behaviors can be represented in various ways. These
ways are shown in Figure 2.1.

One way is to generate atrace of the Application Programming Interface (API)process, in
whichReading, ExecutingandWriting actions appear asread,execute, andwriteSym-
bolic Instructions (SI). This is the waySpade andSesame represent process behaviors. The
representation model is rather poor, because it cannot copewith data-dependent expressive-
ness of the process behavior. A representation that overcomes this problem is the Control
Data Flow Graph representation model (CDFG). However, a CDFG representation contains
all low-level details of an application process and, hence,it is not the best choice for abstract
design-space exploration.

The main differences between these representations are in terms ofcompletenessand ab-
straction. The SI representation is easy to use because it abstracts application details quite
well, and focuses designer’s attention on the actual application computation and communi-
cation sequences. This is convenient for Design Space Exploration (DSE - see Chapter 1,
Section 1.2.2) of complex application-onto-architectures mappings. However, the SI repre-

1These words were taken from ”Form of Modern Mechanics and Inventions,” printed in July, 1934 A.D. The
words belong to Nikola Tesla -Nikola Tesla - (1856 A.D.-1943 A.D.), Serbian scientist, inventor and engineer.
In honor to him in 1960 A.D. the tesla (symbolT) was accepted as the SI derived unit of magnetic flux density (or
magnetic induction) and defines the intensity (density) of amagnetic field.
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Figure 2.1: The Symbolic Program approach vs. SIT & CDFG approaches.

sentation also leads to inaccuracies in performance estimations due to a lack of completeness
- the SI representation is static and reflects the sequentialexecution of a process in its totally
ordered Symbolic Instruction trace.

CDFG representations, on the other hand, lead to complete and synthesizable representations.
This is desirable from an accuracy point of view. However, deriving and maintaining CDFG
representations is time consuming and too detailed for efficient and fast abstract-level DSE2.
Data-Flow Graph (DFG) representations are less detailed and partially ordered. Due to these
qualities they are used in the Sesame framework as intermediate representations. But - these
representations are inadequate because they do not, conveniently at least, model conditional
constructs [48].

In this chapter, we introduce a novel representation of process behaviors, which we call Sym-
bolic Programs. Asymbolic programis an abstract non-executable CDFG, plus acontrol
tracewhich memorizes the outcomes of data-dependent constructs. We claim that Symbolic
Program representations are both abstract and complete, and therefore, preferable to DFG,
CDFG, and SI representations. See Table 2.1.

2The whole point of a DSE method is to steer designer’s decisions by depicting the pros and cons of particular
choices. As such, the method must not be too time consuming nor extremely complex - otherwise it stops to be a
DSE method and becomes a design method.
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Abstraction→
Completeness↓ NO YES

YES CDFG code Symbolic Program
NO DFG code Symbolic Instruction Trace

Table 2.1: Process representations compared in terms of completeness and abstraction. The
completenessmeans that a representation contains both control and data-flow elements, while
abstractionmeans that element details are hidden-or-removed.

2.2 Introduction

Because we advocate the Y-chart approach, we have to find a wayto associate an application
model with an architecture model. Both models consist essentially of computation, commu-
nication and storage components. In the application model,these are processes with FIFO
buffered channels between the processes. In the architecture model, they are computation
units, communication units, synchronization units and storage units (See Chapter 3). These
two models are linked to each other by means of a functional behavior representation of
the application model components which drive the architecture model components. This is
done in such a way that the architecture model components caninterpret the application’s
functional behavior representation as far as non-functional aspects such as delays, through-
put, service cost and availability are concerned. In this chapter we propose to represent the
functional behavior of application components as SymbolicPrograms (SP). These are ab-
stract non-executable CDFGs that can be converted to Symbolic Instruction Traces (SIT), by
merging the SP representation with a Control Trace that memorizes the outcomes of data-
dependent constructs.

The remainder of this chapter is organized as follows. Firstly, in Section 2.3, we introduce
entities used by symbolic programs in a top-down manner, starting with the highest level pos-
sible - i.e. the application network - and ending with the lowest level possible - the smallest
details used by symbolic programs. Then, in Section 2.4 we explain the details of symbolic
programs, their syntax and semantics. Finally, in Section 2.5, we provide briefly those sym-
bolic program transformations used prior to and during the mapping process (See Chapter 4).

2.3 Definitions and Terminology

This section provides a glossary of terms found in this thesis. To begin, we interchangeably
use terms application model components and processes.

Process. A process is a computational component of a concurrent (parallel) application
model, particularly a KPN model, that performs a certain behavior, expressed via an ordered
graph of repetitive Read, Execute and Write statements. Itsbehavior has a representation
that can be interpreted, possibly after transformations, by architecture model components. A
process has its own exclusive memory space which is not visible to other processes belonging
to the same application representation⋄
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The applications in this thesis are modeled by means of application representations.

Application Representation. An application representation is an abstract view of the be-
havior of application model components and their communication interfaces.⋄

When two or more processes need to communicate, they use inter process communication.

Inter Process Communication.Inter process communication (IPC) is a well-defined proto-
col that processes have to adhere to when they exchange data.The protocol is wrapped into
globally accessible interfaces, which must guarantee: (1)exclusivity of the internal process
memories, and (2) atomicity of the accesses to the global IPCinformation⋄

The process representations and the IPC representations are important because they drive the
mapping process and the exploration process. Thus, the better we represent them the better
(easier, more accurate, more beneficial) the mapping and exploration will be. Particularly,
the application KPN consists of application processes and application FIFO channels. We
opt for usage of control and data intermediate representations to represent processes and
specially tailoredread andwrite symbolic instructions to represent the IPC interfaces.

Intermediate Representation.An intermediate representation is a program for an abstract
machine which has three important properties: (1) it is easyto produce, (2) it is easy to
translate into the target-machine program and (3) it supports its purpose (e.g. transforma-
tion). [49] ⋄

Intermediate representations can appear in a variety of forms. Most of them use basic-blocks
and control-points to capture information about the application behavior given by the appli-
cation model.

Basic Block. A basic block is a sequence of consecutive statements in which a flow of con-
trols (dependencies) enters at the beginning and leaves at the end without halt or possible
branching, except at the end. ⋄

This is illustrated in Figure 2.2.

The left part of Figure 2.2 shows a part of the Zig-Zag routine3 in the JPEG still image codec
standard [50]. Figure 2.2 illustrates a basic block as we seeit. The DFG of this basic block
is shown on the right in Figure 2.2. It is worth noting that it expresses a partial order of the
operations within the basic block.

The DFG in Figure 2.2 is acyclic due to its basic block features: no control flow nodes are
allowed. Symbolic programs do rely on control point annotation - the control points form an
obligatory part of this application representation as we will see in Section 2.4.

Control Points - Unconditional & Conditional. A node in an intermediate representation
of an application program is said to be a control point if its purpose is to direct the control
flow in the program. When directing is done independently of any input data, the control
point is said to be unconditional. Otherwise, when some input data evaluation is required,
the control point is conditional⋄

The code-sample in Figure 2.2 contains control points, for example, thefor statement on
the left hand-side. Note that conditional control points are always dependent on some data

3The Zig-Zag routine is used to facilitate entropy coding in the JPEG standard.
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Figure 2.2: Illustration of the basic-block definition in the JPEG standard Zig-Zag rou-
tine, [50].

(e.g., thefor statement depends on an indexi). However, there is a difference in the way
data-dependency is established. In the case of the earlierfor statement, the values of thei
index are knowna priori to the program execution - the loop boundaries are static. Insome
other cases that may not be so - theif conditional control is data-dependent on the run-time
data input (thesymbol value).

Data-dependent Control - Static & Dynamic.A conditional control point is a static control
point if the data value is known before execution time. Otherwise, it is a dynamic control
point⋄

This is illustrated in Figure 2.3.

1 for (l=1; l<64; l++)
2 {
3 symbol = get_symbol(HUFF_ID(AC_CLASS, AC_HT));
4 if (symbol == HUFF_EOB)
5 {
6 break;
7 }
8 ...

Figure 2.3: A code sample that illustrates conditional control and unconditional control

Figure 2.3 illustrates both static and dynamic data-dependent controls. The code shown there
is part of the variable-length decoding of the AC coefficients in the JPEG standard, [50]. Line
1 is a for-loop head where the number of iterations is controlled. Thus, Line 1 illustrates a
conditional control point. Line 4 is anif selection statement which guards the program flow
between Lines 5 and 7. Since the retrieved symbol is evaluated (compared with a constant),
this is also a conditional control. Moreover, since the symbol value is not knowna priori,
this is a dynamic control. Finally, Line 6 illustrates the unconditional control point (a jump),
which directs the program flow towards the exit point, explicitly known in advance.
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2.4 Symbolic Programs

Symbolic Programs.A symbolic program (SP) is a bipartite representation of a process con-
sisting of (1) a structural element - an abstract CDFG and (2)a behavioral element - which
is a control trace that represents the outcomes of conditional statements for a particular data
set⋄

Symbolic programs are abstractions of process behaviors which were earlier given either as
low-level Control Data Flow Graphs or as source-code descriptions. The SP representation is
inspired by the idea ofabstract execution[51]: (1) the application model (KPN) is executed
to produce traces of control data and (2) the control data traces are used later, when simu-
lating the execution of an SP mapping onto an abstract architecture model. By using the SP
representation, we want to capture the behavior and the structure of the application process.
We explain the way a symbolic program represents an application process using as reference
the code-example in Figure 2.8 and the corresponding symbolic program in Figure 2.12.

2.4.1 SP Structure

The C/C++ code in Figure 2.6 provides an executable specification of the ’Vectorize’ process
in the adaptive QR matrix decomposition algorithm [52]. This code was automatically gen-
erated byCompaan tool. The execution of this code generates the communication (read,
write) and computation (execute) loads. Since the code is static (e.g., the sequences of
read, execute, andwrite SIs are not dependent on the input data values) it is possibleto
rewrite it into a little bit different code - Figure 2.8, and still produce the same sequences by
execution of the rewritten code. It is worth noting here thatrewriting code from Figure 2.6 to
Figure 2.8 corresponds to ’detection of variants’ source code transformation explained later in
Section 2.5.1. However, to keep things simpler we use Figure2.8 to explain the SP structure
and how it is derived.

This code implements a Kahn process:read function calls4 andwrite function calls5

obey the Kahn semantics6. The internal computation is wrapped in theVec function call.
The structure of the symbolic program text7 is depicted in Figure 2.12 and is given in accor-
dance with the SP syntax (see Section 2.4.4).

The source code is arranged so as to expose the binary decision tree of the application process.
This helps when abstracting source code details. For example, the code section between lines
6 and 10 in Figure 2.8 is collapsed to only tworead IPC nodes. Similarly, the code section
between lines 16 and 18 is a single computation node - aVec function call. Consequently,
the source code in Figure 2.8 and the abstract representation in Figure 2.12 have the same
structure.

4Lines: 8,9,14, and 15.
5Lines: 22,23,28, and 36.
6i.e.a processes is blocked when trying to consume data from empty channels and the inter-process communica-

tion is done through FIFOs only
7This is a textual or code view of the SP. It is also possible to view SPs as their corresponding abstract CDFGs

by drawing directed arcs each following a series-parallel relation in the SP text. Please, be aware that these CDFGs
arenot executable.
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However, no functional information is available in the abstract SP text in Figure 2.12. That
is, the C/C++ code maintains loop index values, as indicatedin lines 2 and 3, and de-
pending on these loop index values the code performs certainactions as indicated in lines:
6,11,18,20,25,31,34 and 38. On the contrary, the SP text does not process or compute any in-
dex values; thecondition text only marks the place of the corresponding control points 8

in the C source code, but neither arithmetic nor logical computation takes place. Nevertheless,
the structure is preserved, and so are the dependencies. Notice that a designer can recover
the edges of the corresponding abstract CDFG by following series-parallel markings9, IPC
access point identifiers10 and variable names11. This is much more than an SIT representa-
tion12 can offer.

2.4.2 SP Behavior

Mapping of the application model on an architecture model associates components of the two
models together: the application model produces SP representations (e.g., Figure 2.12) and
the architecture model has to interpret them. However, an SPis, by definition, independent
of any particular data-set that drives the application, whilst the architecture component has
to interpret the SP for a specific data-set. It, therefore, also needs information regarding the
outcomes of data-dependent constructs. The outcomes are stored in a control trace, which
- when combined with the SP text - can provide an SI trace that is valid for a particular
data-set and can be interpreted by the architecture components. The control trace appears as
annotation in the binary decision tree structure of the C/C++ code. In Figures 2.4, 2.6 and 2.8
the annotations are given by C comments. It is worth noting that the annotations of C/C++
code in Figures 2.6 and 2.8 correspond uniquely to the conditions of SP texts in Figures 2.7
and 2.12, respectively. During the process execution in an unconstrained domain13, the
inserted annotation code produces a sequence of tokens - theprocesscontrol trace. This
control trace (CT) is data-dependent, meaning that a different control trace may (and usually
does) appear when process input-points are fed with a different data-set. This is illustrated
in Table 2.2 . The table shows that for the JPEG decoding KPN network (for details see
Chapter 4, Section 4.5.3) although the same SPs are used for the decoding, the CTs are
different (observing both their sizes and their contents) since different images are used.

Table 2.2 illustrates that CTs separate data-dependent process information from the process
control structure. The CT examples shown so far assume that the only information available
CTs is whether some selection/repetition condition was evaluated as’true’ or ’false’
for some input data set - see Figure 2.6. However, there are dynamic algorithms that contain
more complicated data dependencies. The example in Figure 2.4 is a C/C++ excerpt from
theraster process of the JPEG decoding process network in Figure 4.10.The corresponding
peace of the SP text is shown in Figure 2.5. The sample CTs for theraster process for the
images from Table 2.2 is given as follows:

8for, if, orelse.
9In an SP text, ’;’ markssequentialrelations between SIs, and ’‖’ marksparallel relations among SIs.

10The port arguments are indicated by the decimal numbers immediately afterread andwrite calls.
11The arguments ofread, write, execute nodes, as well as the arguments ofcondition nodes.
12SeeSpade in Section 1.6.1.
13Unlimited resources.
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Table 2.2: The illustration of data-dependent Control-Trace feature using the ratio of values
filessizes

contentssignature
for the fixed JPEG decoding network of SPs given in Figure 4.10. The

CT files sizes are taken from the file system by’ls -al’, while the file content signature
is obtained by running the ’md5sum’ digest program on the contents of CT files. The Mes-
sage Digest 5 (MD5) algorithm implements a cryptographic hash-function which ensures that
when operating on an arbitrary-length data returns a distinctive 128-bit hash value [5].Note:
One can observe that for the same SP text (e.g.,vld), the JPEG decoding network running on
the two different JPEG images produces CTs of different sizes (ls) and data content values
(md5sum).

0: for (int l=0; l<8; l++) {
1: { /* branch C12(l) taken */
2: if ((x<X[ci]) && (X[ci]-x >= 8))
3: { /* branch C13(x X) taken */
4: read (IP7, &stripe[ci][(8*v+l)*X[ci]+xi+8*h], 8);
5: /* branch C14(x X) NOT taken */
6: /* branch C15(x X) NOT taken */ }
7: else if ((x<X[ci]) && (X[ci]-x < 8))
8: { /* branch C13(x X) NOT taken */
9: /* branch C14(x X) taken */
10: read (IP7, &stripe[ci][(8*v+l)*X[ci]+xi+8*h], X[ci]-x);
11: read (IP7, dummy, 8-(X[ci]-x));
12: /* branch C15(x X) NOT taken */ }
13: else
14: { /* branch C13(x X) NOT taken */
15: /* branch C14(x X) NOT taken */
16: /* branch C15(x X) taken */
17: read(IP7, dummy, 8); } }
18: /* branch C12(l) NOT taken */

Figure 2.4: A code sample of the JPEGraster process. This code sample illustrated data-
dependentread operations at Lines 10 and 11 - the amount of data read is decided at the run
time based onX [ci] − x and8 − (X [ci] − x), respectively.
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• philips.jpg ...(c12 ≡ true) ≺ (c13 ≡ false) ≺ (c14 ≡ true)
V

(R7(6) ≺ R7(2)) ≺

(c15 ≡ false)..., and

• shuttle.jpg ...(c12 ≡ true) ≺ (c13 ≡ false) ≺ (c14 ≡ true)
V

(R7(1) ≺ R7(7)) ≺

(c15 ≡ false)...,

where ’≺’ indicates that the group (a data event enclosed with ’(’ and ’)’) on the left of
the ≺ operator precedes the group on the right of the≺ operator. It is worth noting that
the read SIs at Lines 4 and 5 in Figure 2.5 are dependent on thecondition 14 and
the run-time evaluations of the expressionsX [ci] − x and8 − (X [ci] − x) in Figure 2.4.
These evaluations depend, again, on the arrayX and the scalar-variablex, which values
change depending on the data-input. Since the control is already linked to data input (e.g.,
the resolution ofphilips.jpg is 50 × 67, and the resolution ofshuttle.jpg is 669 × 1004 -
the file sizes are already shown in Table 2.2 , theraster CTs for each of these two images
are used to convey the results of the former expression evaluations. As a consequence, the
philips.jpg CT sequence says to a Program Unit (see Chapter 3, Section 3.4.2) and its Depth
First Traversal engine (see Appendix A) that 6 tokens are to be read from the port 7 and
put to thestripe memory, followed by 2 tokens to be read from the port 7 and put to the
dummy memory - look above for(R7(6) ≺ R7(2)). For thephilips.jpg CT sequence says
to a Program Unit that 1 token is to be read from the port 7 and put to thestripe memory,
followed by 7 tokens to be read from the port 7 and put to thedummy memory - look above
for (R7(1) ≺ R7(7)). The JPEG decoding network in Figure 4.10 contains a few such
processes, so their corresponding SP texts and CTs make use of this behavior.

0: loop condition 12 (l) {
1: condition 13 (x X ci) {
2: read 7 (stripe, 8); }
3: condition 14 (x X ci) {
4: read 7 (stripe,0);
5: read 7 (dummy, 0); }
6: condition 15 (x X ci) {
7: read 7 (dummy, 8); } }

Figure 2.5: A SP text sample corresponding to the C/C++ sample of the JPEGraster process
in Figure 2.4.Note: Due to the fact that data-dependentread operations at Lines 10 and
11 decide on amount of data to be read at the run time, the corresponding SP text in here at
Lines 4 and 5 (respectively), have both value0 for the amount of data to be read from port 7
- so called ’budget’. The0 value says to the corresponding Program Unit and its Depth First
Traversal Engine to acquire the ’budget’ value from the corresponding CT.

The SPs are not a so-called ’silver bullet’ to resolve all theapplication representation mod-
eling issues. As indicated in [9], Sequence-Parallel representations cannot cover for all
partially-ordered cases that one application specification may have. As we indicate later
on in Section 2.5, not all information is kept in applicationSPs, and, therefore, only very few
classes of SPs can be transformed successfully without knowing the original C/C++ code.
For example, it would be beneficial for SP-transformations if the SPcondition statements
could capture the exact expressions that are evaluated in the original C/C++ code. However,
due to the possible complexities of C/C++ specifications that requirement cannot always be
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met. The currently supportedbehavior-capturing capabilitiesof SPs are elaborated in more
detail in Sections 2.4.3 and 2.4.4.

Regardless of the limited behavior-capturing capabilities, SPs posses one special feature that
distinguishes them from the other application representations; SPs use ’separation of con-
cerns’ to separate input data set dependent and independentbehaviors. This feature has been
shown earlier in Figure 2.1 in a more abstract manner. Disassociation of process structure
and control helps in creating more flexible architecture models (see Chapter 3).

0 /* The Compaan-like C code */
1 void ND_5 :: main() {
2 for ( int k = 1 ; k <= -2*k+T+1 ; k += 1 )
3 { /* branch C1(k,T) taken */
4 for ( int j = 1 ; j <= N ; j += 1 )
5 { /* branch C2(j,N) taken */
6 read( RP_11, a );
7 if ( j-2 >= 0)
8 { /* branch C3(j) taken */
9 read( RP_12, b ); }
10 else
11 { /* branch C3(j) NOT taken */ }
12 if ( j-1 == 0)
13 { /* branch C4(j) taken */
14 read( RP_13, b ); }
15 else
16 { /* branch C4(j) NOT taken */ }
17 Vec( a, b, c, d );
18 if ( -3*k+T >= 0)
19 { /* branch C5(k,T) taken */
20 write( WP_19, c ); }
21 else
22 { /* branch C5(k,t) NOT taken */ }
23 if ( -j+N-1 >= 0)
24 { /* branch C6(j,N) taken */
25 write( WP_18, d ); }
26 else
27 { /* branch C6(j,N) NOT taken */ }
28 /* branch C2(j,N) NOT taken */ }
29 /* branch C1(k,T) NOT taken */ }
30}

Figure 2.6: TheCompaan-generated C/C++ source code of the ’Vectorize’ process in the
adaptive QR matrix decomposition algorithm [53].Note: All conditional statements (selec-
tions and repetitions) are annotated by hand with ”branch taken” or ”branch NOT taken”. The
elsebranches that do not exist inCompaan are added for easier annotation.

2.4.3 Semantics

Looking at Figure 2.1, SP representations have a front-end role for the mapping process: An
application KPN model behavior is converted to a set of SPs and a set of related Control
Traces, and then these SPs and Control Traces are successively transformed towards targeted
mapping. This is indicated astransformation stepsin the same figure. In addition to this,
Figure 2.1 brings an extra message: In contrast to SI representations, SP representations in-
cluding their Control Traces are complete representationsin which instructions (conditional
as well as non-conditional) are partially ordered. Moreover, SPs can very well be hierarchi-
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cally defined14.

0 /* Symbolic Program text */
1 main {
2 loop condition 1 (k T) {
3 loop condition 2 (j N) {
4 read 11 (a, 1);
5 condition 3 (j) {
6 read 12 (b, 1); }
7 condition 4 (j) {
8 read 13 (b, 1 ); }
9 execution 0 (in a in b out c out d, 1);
10 condtion 5 (k T) {
11 write 19 (c, 1); }
12 condition 6 (j N) {
13 write 18 (d, 1); } } } }

Figure 2.7: The SP text of theCompaan-generated C/C++ source code of the ’Vectorize’
process from Figure 2.6.Note: All conditional statements (selections and repetitions) have
the identical annotations as they have in the C/C++ source code. From the structure of the SP
text and its correlation with the originalCompaan C/C++ code, it is implicit that the SP-text
and the C/C++ code share the same abstract CDFG. It is also implicit that the nodes of the
SP text are totally ordered and that the interpretation of the compound (composite) nodes -
the nodes indicated between ’{’ and ’}’ - happens in the Depth First Traversal manner.

Hierarchy. The hierarchical features introduce structure in the SP, which helps to cope with
SP representation complexities. The SP hierarchy replicates theseparation of concernscon-
cept of classical structural (procedural) Software Engineering. Each C procedure or even each
basic-block could be a sub-SP text15. For example, theexecute statement in Figure 2.12 -
line 10 - may itself result in an SP through aprogram call.

Partial order. The instructions in an SP are partially ordered. However, the instructions
being abstract, their underlying detailed behavior is still assumed to be sequentially specified,
i.e., as given in the source code. For example, theexecute statement in Figure 2.12 - line
10 - has a sequential specification of ’Vectorize’ in the source code given in Figure 2.8.
Architecture components, on the other hand, may be capable of executing an instruction in
parallel, or may execute the instruction in a sequential order that is different from the given
one. This requires conversion ofstrictly orderedinstructions to partially ordered instructions
(and possibly back to strictly ordered instructions) as proposed in [30] and [36]. Figure 2.13
shows the parallel counterpart of the sequential SP in Figure 2.12

Information preserving. Looking back at Table 2.1, both SIT and SP representations are ab-
stract representations, which implies that some information is necessarily lost. Thus, though
the SP representation is complete (see the same table), translations, transformations and ab-
stractions used when an SP is derived will result in some information loss - the coarser that
abstractions are, the greater the information loss will be.The claim of this chapter is that the
amount of lost information in an SP representation is much smaller once compared to a SIT
representation. In other words, the information preservation of an SP representation is better
than the information preservation of a SIT representation.We illustrate the above statement

14We re-invent the idea of so-calledstructured procedural designin domain of Software Engineering.
15Thefunction text description serves this purpose.
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0 /* Variant-friendly C code */
1 void ND_5 :: main() {
2 for ( int k = 1 ; k <= -2*k+T+1 ; k += 1 )
3 { /* branch C1(k,T) taken */
4 for ( int j = 1 ; j <= N ; j += 1 )
5 { /* branch C2(j,N) taken */
6 if ( j-2 >= 0)
7 { /* branch C3(j) taken */
8 read( RP_11, a );
9 read( RP_12, b );
10 /* branch C4(j) NOT taken */ }
11 else
12 { /* branch C3(j) NOT taken */
13 /* branch C4(j) taken */
14 read( RP_11, a );
15 read( RP_13, b );
16 }
17 Vec( a, b, c, d );
18 if ( -3*k+T >= 0)
19 { /* branch C5(k,T) taken */
20 if ( -j+N-1 >= 0)
21 { /* branch C7(j,N) taken */
22 write( WP_19, c );
23 write( WP_18, d );
24 /* branch C8(j,N) NOT taken */ }
25 else
26 { /* branch C7(j,N) NOT taken */
27 /* branch C8(j,N) taken */
28 write( WP_19, c );
29 }
30 /* branch C6(k,T) NOT taken */ }
31 else
32 { /* branch C5(k,T) NOT taken */
33 /* branch C6(k,T) taken */
34 if ( -j+N-1 >= 0)
35 { /* branch C9(j,N) taken */
36 write( WP_18, d );
37 /* branch C10(k,T) NOT taken */ }
38 else
39 { /* branch C9(k,T) NOT taken */
40 /* branch C10(k,T) taken */ }
41 }
42 /* branch C2(j,N) NOT taken */ }
43 /* branch C1(k,T) NOT taken */ }
44 }

Figure 2.8: The C/C++ sequential source code of the ’Vectorize’ process.Note: This code
has the identical behavior with the code in Figure 2.6, but itis ’variant friendly’. Such code
is used for so-called ’variant detection transformation’ modeling and for generating the CTs
for the case study.
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by the following example.

We made an analytical comparison to show how large a simulation error one can get by us-
ing only SITs, given that the final system can exploit the partial ordering not addressed by
SITs. The SP in Figure 2.13 has been transformed twice at the source-code level. The first
transformation results in some SP instructions being partially ordered16. The second trans-
formation17 further enhances the parallelism within the SP. These two cases are compared
against the strictly ordered SP, which corresponds to the classical SIT [7]. The comparison is
done by means of analysis only in the following way:

1. The following assumptions were made:

• All read andwrite SIs are considered to take the same amount of time -(∀i :
i = 1 : Ri, Wi ≡ C), whereRi andWi are the individual SIs andC is the
amount.

• All execute SIs are considered to take the same amount of time -(∀i : i = 1 :
Ei ≡ E), whereEi are the individual SIs andE is the amount.

• No blocking appears.

• All sequential SIs are contributing their amounts to the total delay amount by
means of a simple addition+.

• All parallel SIs are contributing their amounts to the totaldelay amount by means
of amax function.

2. The three SPs were observed: the sequential SP as in Figure2.12, the partially ordered
SP as in Figure 2.13, and the parallel scheduled SP as in Figure 2.14.

3. The total delay for SP in Figure 2.12 can be approximated as: DSP1(x, y) = y · (4 ·
x + 1), wherex = C

E
andy is the number of the loop iterations.

4. The total delay for SP in Figure 2.13 can be approximated as: DSP2(x, y) = 2 · x +
y · max(x, 1).

5. The total delay for SP in Figure 2.14 can be approximated as: DSP3(x, y) = y ·
(2 cotx + 1).

6. The relative improvementij(x, y) is defined as|∆Dj(x,y)|
Dj(x,y) for each of the cases, as

follows:

• The relative improvement of SP2 vs. SP1:i1(x, y) = |y·(2·x+1)−y·(4·x+1)|
y·(4·x+1)

• The relative improvement of SP3 vs. SP1:i2(x, y) = |2·x+y·max(x,1)−y·(4·x+1)|
y·(4·x+1)

7. Thegnuplot engine was used to create the graphical representations of the relative
improvements. See Figures 2.9 and 2.10.

16Seedetection of variantsin Section 2.5.
17Seeloop schedulingin Section 2.5.
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Figure 2.9: SP2 vs. SP1 -i1(x, y).
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Figure 2.10: SP3 vs. SP1 -i2(x, y).
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Figure 2.11: Relative improvements (for 10 iterations only) in the worst case execution time,
measured with the range of values(0, 1] - 1 indicating the perfect match - when using SP
partial-order annotations against the pure sequential SIT. The SIT-like SP is shown in Fig-
ure 2.6. The first improvementi1(x) is achieved by detecting the variants of partially ordered
read, execute, andwrite SIs - see Figure 2.13. The second improvementi2(x) requires
a task-level examination because it represents a rescheduled SP. The maximum achieved im-
provement for the SP code in Figure 2.14 is indicated by the constantm(0.76).

Figures 2.9 and 2.10 show that modeling of the partial order for system-level performance
exploration is important. To help better understanding of these two figures we have created a
joined plot fory = 10 (the number of the iterations). The results are shown in Figure 2.11. As
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1 main { // e.g.,:
2 loop condition 1 (k T) { // c1 T
3 loop condition 2 (j N) { // c2 T
4 condition 3 (j) { // c3 T
5 read 11 (a, 1); //
6 read 12 (b, 1); } //
7 condition 4 (j) { // c4 F
8 read 11 (a, 1); //
9 read 13 (b, 1); } //
10 execute 0(in a in b out c out d, 1); //
11 condition 5 (k T) { // c5 T
12 condition 7 (j N) { // c7 T
13 write 19 (c, 1); //
14 write 18 (d, 1); } //
15 condition 8 (j N) { // c8 F
16 write 19 (d, 1); } } //
17 condition 6 (k T) { // c6 F
18 condition 9 (j N) { //
19 write 18 (c, 1); } //
20 condition 10(j N) { skip; } } } } } // ... the next value for ’c1’

Figure 2.12:Left: SP text of the ’Vectorize’ process, in the adaptive QR matrixdecomposi-
tion algorithm.Right: A peace of CT associated with the SP text on the left and generated
by the ’Vectorize’ process in Figure 2.8 for some fictive dataset-up.Note: condition N

on the left corresponds tocN on the right; T stands for ”true” or ”branch taken”, while F
stands for ”false” or ”branch NOT taken”. The inner conditions that are eliminated by the
”false” value of the outer conditions (e.g.,condition 9 eliminated due tocondition 6
evaluated as ”false”) are not in the presented CT piece.

1 main {
2 loop condition 1 (k T) { // c1 T
3 loop condition 2 (j N) { // c2 T
4 condition 3 (j) { // c3 T
5 read 11 (a, 1) || //
6 read 12 (b, 1); } //
7 condition 4 (j) { // c4 F
8 read 11 (a, 1) || //
9 read 13 (b, 1); } //
10 execute 0(in a in b out c out d, 1); //
11 condition 5 (k T) { // c5 T
12 condition 7 (j N) { // c7 T
13 write 19 (c, 1) || //
14 write 18 (d, 1); } //
15 condition 8 (j N) { // c8 F
16 write 19 (d, 1); } } //
17 condition 6 (k T) { // c6 F
18 condition 9 (j N) { //
19 write 18 (c, 1); } //
20 condition 10(j N) { skip; } } } } } //

Figure 2.13: Parallelized SP code of the Vectorize process presented earlier in Figure 2.12.
Note: The CT on the right is the identical one to the CT in Figure 2.12. This is due to the
fact that the original code is static with regards to loop-indexes and conditions dependent on
loop-indexes. Consequently, for such cases no CT transformations are required.

one can see, the improvement18 varies between 0 and 0.76 with respect to the type of process-

18This should be understood as apotential concurrencyso that there exists a possibility to execute some process
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ing element being used in the system-level simulation. Thismeans that absence of modeling
features in SITs can seriously jeopardize simulation accuracy. The SP, on the contrary, pre-
serves application process information so that more options are available and accuracy can
be improved.

2.4.4 Syntax

Figure 2.12 is an SP text representation of the C/C++ code of an application process. Its SP
syntax is the subject of this subsection.

The symbolic program syntax must be expressive enough to specify abstract CDFGs, leaving
enough room for further manipulation. This syntax should not support fine-grain operations
which are customary in CDFG representations. Thus, it is necessary to find a minimal set of
expressions that are sufficient to support both requirements: expressiveness and granularity.
Of course, symbolic programs are abstract, and therefore, only read,execute, andwrite
are inherently partially ordered.

To summarize, SPs are composed of SIs representing already mentioned communication
events (read andwrite) and computation events (execute), as well as outcomes of
control events (Control Trace). SIs are partially ordered,whilst Control Trace information is
totally ordered.

The symbolic program syntax can conveniently adhere to the syntax of the standard parser-
generator tool called Yacc [54]. The implementation details of symbolic programs expressed
in the Lex-Yacc format are given in Appendix A

2.5 SP Transformations

In the preceding sections we have introduced the symbolic program representation. We claim
that symbolic programs are well suited to associating application model components and
architecture model components together. Application model SP representations can be easily
transformed to SI representations by combining them with the corresponding CTs, and these
SIs can be further interpreted by architecture model components that do not necessarily match
the application model components.

SP transformations are source-to-source transformations. The input is an SP and the output
is a transformed SP. The transformation mimics high-level design decisions on the source
code from which the SP was derived. The SP transformations may be: (1) Intra-task (i.e.
intra-process) transformations, or (2) Task-level (i.e. process-level) transformations. Trans-
formations illustrated in this section areonly applicable to a certain set of SPs- namely, to
the set which SPs do not have dynamic data-dependencies within conditions of selection and
repetition statements.

code concurrently - the choice of whether this is going to happen is still dependent on the mapping model.
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2.5.1 Intra-task Transformations

Intra-task transformations represent high-level abstractions of some well known ILP19 tech-
niques. For example, if the processor model onto which an SP is mapped can process more
than one SI in parallel, then the employed SP transformations may expose this characteristic
explicitly in the SP. Such transformations are for example:Detection of variants20, and loop
scheduling. Notice that transforming an SP usually impliescontrol-trace transformationas
well.

The ILP techniques which abstract the manifestations whichwe try to model are based on
a dependency analysis of both the arguments of SIs and the arguments of conditionals in a
particular SP. We explain these transformations using the examples in Figures 2.6, 2.13, and
2.14. The SP in Figure 2.6 may be improved in two ways: Firstly, by applying the detection
of variants if they are not already detected, some SIs becomepartially ordered as shown in
Figure 2.13; secondly, by scheduling the loop iterations ofthe SP shown in Figure 2.13,
some additional SIs become partially ordered and the numberof control-points decreases.
The resulting SP is depicted in Figure 2.14. It is worth noting again that the SP we used for
illustration does not contain data-dependent conditions,as well as, that it has been already
structured in a form of the binary decision tree.

1 main {
2 loop condition 1 (k T) {
3 read 11 (a, 1) ||
4 read 13 (b, 1);
5 read 11 (a, 1) ||
6 read 12 (b, 1) ||
7 execute 0(in a in b out c out d, 1);
8 loop condition 2 (j N) {
9 read 11 (a, 1) ||
10 read 12 (b, 1) ||
11 execute 0(in a in b out c out d, 1) ||
12 write 19 (c, 1) ||
13 write 18 (d, 1); }
14 execute 0(in a in b out c out d, 1) ||
15 write 19 (c, 1) ||
16 write 18 (d, 1);
17 write 18 (c, 1); }

Figure 2.14: The pipe-lined SP code of the ’Vectorize’ process earlier given in Figure 2.12.

Detection of Variants. The transformation which performs the detection of variants is for-
mally explained in [55]. Here, we present the modeling effect of this type of transformation
and we do it by way of example only. We assume that ’variants’ can be detected either manu-
ally or the original C/C++ code is given in the form of a binarydecision tree (as it is the case
in Figure 2.12). Since SPs keep the dependency information by their definition, sometimes
such tree can be developed manually. When the manual detection of variants is employed,
after examining the dependencies, the selection statements of an SP are merged in such a way
that the direct product of this merging represents a decision tree whose leaves are symbolic
read-execute-write instructions. When these instructions are guarded by the same con-
ditional, and when they do not depend on each other, we say that they represent avariant.

19Instruction-Level Parallelism
20’Variants’ are basic blocks associated with leaf conditions in a leaf in a binary decision tree.
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As a direct advantage of this transformation, the SIs withina single variant can be processed
in parallel (see Figure 2.13). Note that each SI contains dependency information, i.e., where
the SI arguments come from and where they go to. In Figure 2.12, theexecute takes theb
argument either from FIFO channel 12 or from FIFO channel 13.Obviously, within a single
loop iteration there is a total order between theexecute and theread SIs. However,read
SIs from FIFO channels 11 and 12, or 11 and 13, can overlap. That is why it was possible
to replace the sequential symbol ”;” at lines 5, 8, and 13 in Figure 2.12 with the partial order
symbol ”‖” at the same lines in Figure 2.13. However, as a disadvantage, the size of the sym-
bolic program grows because each variant is now atrace statement which contains at
least a single bundle of SIs21.

Loop Scheduling. SP loop scheduling is possible only in a limited amount of cases (in the
scope of this thesis we are actually interested only in the case illustrated in Chapter 4, Sec-
tion 4.5.2). Loop scheduling techniques modify the order ofoccurrence of certain SIs in order
to allow better utilization of processor component resources. As a side effect, they may re-
duce the number of conditionals in the loop body (see Figure 2.14). Note that different loop
iterations of the SPs in Figures 2.12 and 2.13 may overlap, sothe application ofsoftware
pipelining [56] on the SP with parallel variants (Figure 2.13) producesan SP with pipelined
instructions (Figure 2.14). Note, however, that loop scheduling techniques must not be ap-
plied when there is a dependency cycle22 at the task level. Figure 2.15 illustrates the case
where a cycle between processesSP3 andSPX via FIFO channels12 and18 exists. Here,
there is a risk that a deadlock may occur because the loop-body of the SP in Figure 2.14 is
skewed in such a degree that multiple (in this case two)read 12 instructions appear before
a singlewrite 18 takes place. Consequently, processSPX cannot perform anyread
18, and hence, it may block without producing enough tokens in FIFO 12. Thus, the soft-
ware pipe-lining technique applied to process loops must not be considered as an intra-task
transformation only, because changes in communication behaviors affect system properties.

12
18

SP3

SPX

Figure 2.15: A deadlock caused by the re-scheduling transformation:SP2 7→ SP3

21The partially ordered SIs - see the syntax.
22This is the case when the architecture component relies solely onto compile-time reordering and it does not

support run-time reordering.
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Figure 2.16: Transformations of control traces with regards to transformations ofSP1

Control-trace transformation. We have mentioned in Section 2.4.2 that SPs come with con-
trol information in the form of control traces, for each application process (or a task). Thus,
when intra-task transformations, such as those in Figures 2.6, 2.13, and 2.14, are applied to
an SP, the corresponding control traces have to be transformed as well since the intra-task
transformations affect the SP control structure (e.g. its decision tree). Moreover, if such
SP control structure changes can be expressed formally (e.g., in terms of logical expressions
over original control structure in the starting/not-transformed SP), the same formalisms can
be used to automate the transformation of the control trace -an example is given in Fig-
ure 2.16. The consecutive transformations of the SP in Figure 2.6 to the SP in Figure 2.13
(SP1 7→ SP2), and the SP in Figure 2.13 to the SP in Figure 2.14 (SP2 7→ SP3), include
the corresponding transformations of control traces as shown in Figure 2.16. Note that each
conditional control point of the SP in Figure 2.6 (SP1), is enumerated as aci, wherei is
unique in the scope ofSP1. In other words,c1 stands for the outer loop conditionk < T , c2

stands for the inner loop conditionn < N , and so on. A similar enumeration is applied for
the SP in Figure 2.13 (SP2) and the SP in Figure 2.14 (SP3).

When the transformationSP1 7→ SP2 is applied, the control trace ofSP1 needs to be trans-
formed as well. This new trace is labeled asSP2 in Figure 2.16. Since the transformation
did not change the SP structure from the point of view of loops, loop-related trace events
are unchanged. However, because two selection statements at the end of the inner loop are
merged, the corresponding trace events, namelyc5 andc6 in the control tracesSP1 andSP2
have a different meaning and, therefore, a transformation is required. This is illustrated as a
logical negation in Figure 2.16. Furthermore, when transformationSP2 7→ SP3 is applied,
the selection statements are lost, the trace events that correspond to these selections, namely
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c3, c4, c5, andc6, are simply ignored. Moreover, because software pipe-lining is applied
(prolog and epilog code sections are generated at the expense of the number of inner loop
iterations), the first twoc2 events inSP2 are also ignored. The resultingSP3 control trace
is shown in Figure 2.16.

2.5.2 Task-level Transformations

Task-level transformations are transformations that affect the application model structure23.
That is, the topology of the application network is changed,resulting in processes (in other
words their SPs) and channels being removed or created. In the former case the transfor-
mation may be seen asprocess merging, while in the latter case asprocess splitting. In
both cases, conditions have been given under which these transformations can be automated
(See [57] and [58]).

In general, process merging implies that a valid schedule among merged processes has to be
found. Such valid schedules cannot in general be obtained from the partially ordered SPs that
represent the processes to be merged. A property of KPNs is that they are compositional,
which also implies that a KPN is equivalent to a single process. Deriving a PN from a single
process is much easier than deriving a single process that isequivalent to a PN.

We use [59] and [60] as the base for explaining process splitting in this thesis. In [59] split
processes appear as a result of a transformation of the sequential program from which a KPN
originates. In [60] process splitting is performed directly on a PN. However, both methods
are not generally applicable.

Finally, note that each of the aforementioned task-level transformations also imply the trans-
formation of associated control traces. For example, in thecase of the merging of processes,
a new control trace is formed by merging corresponding control traces. In the case of split-
ting a process, the control trace is also split to provide control traces for the split-processes.
In Chapter 4, Section 4.5.2, we illustrate a process-splitting transformation applied to a 2-
Dimensional Inverse Discrete Cosine Transform (2D-IDCT),resulting in a network of two
1-Dimensional IDCTs (1D-IDCT).

23This is also known as arepartitioningof the application code.



Chapter 3
Architecture Modeling

Who stands on a hill, even a small one, sees more than he who stands below the hill.1

3.1 Summary

The aim of this chapter is to provide an architecture modeling paradigm for embedded sys-
tems. Because we are dealing with levels of abstraction above RTL, we need models that
adequately represent the underlying architectures. Abstract models are adequate when they
can predict behaviors and costs in terms of relevant metrics. Without an adequate model of
architecture, we cannot reason about our decision-making and its consequences in terms of
performance and cost in abstract design space exploration.Our modeling is aiming at subse-
quent performance analysis and design space exploration ina computational way, i.e., using
simulation and not in an analytical way. Because of that, some ingredients in the modeling
paradigm will often be referred to asrepresentationsrather thanmodels.

Thus, we represent or model an architecture in terms of that part of a system not containing its
functional behavior. Roughly stated, an architecture consists of a number of computational
units and a communication, synchronization and storage infrastructure. It also includes soft-
ware that is necessary for operating the architecture.

Our architecture model describes architectures that are specific for an application domain
that is calledstreaming applications. Recall that the two major characteristics of embedded
systems are that they are application domain specific information processing systems and that
they depend on their environment (input data characteristics). Streaming applications have
functionalities that can be modeled conveniently in terms of the Kahn Process Network model

1In original: ”Ko na brdo ak’ i malo stoji, vixe vidi n’o onaj pod brdom.” These were the words of the
historical character Bishop Danilo in the epic ”The Mountain Wreath”, written by Petar II Petrović Njegoš -Petar
II Petrovi� �egox - (1813 A.D.-1851 A.D.) Serbian Orthodox Prince-Bishop of Montenegro and among the
greatest poets of the Serbian language.
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of computation (MoC). The streaming architectures on whichthey are mapped could also be
specified in terms of the commonly addressed set of MoCs, yet they are more heterogeneous
than the application models are or have to be. This chapter focuses on the heterogeneity of
architecture models.

3.2 Introduction

Architecture modeling is crucial for the design space exploration method we envision in
this thesis. Architecture exploration is the third step in athree step procedure: modeling,
analyzing and finally exploring. Our approach is based on simulation and one objective is to
provide methods that can achieve fast analysis and exploration, as well as high accuracy given
the abstraction level that we are considering and the approach we are advocating. We rely on
two key concepts: the first one is separation of concerns [61], meaning that we try to keep
application modeling, architecture modeling and mapping issues as orthogonal as possible;
the second concept is that of component based design [61]. Both concepts lead to re-use of
components, in the sense that modifications and refinements do not have consequences in all
parts of the system models, i.e., can be kept local and do not ask for very large component
libraries. Our modifications are in terms of architecture composition modifications and these
in turn are in terms of selection of components from a libraryof components and admissible
interconnections of selected components.

3.2.1 Architecture definition

The classic definition of an architecture that has been promoted by the Instruction Set Archi-
tecture community is in terms of functionality - it can be built from instructions. The conse-
quence of this is that there is no relation between the timingbehavior of the implementation
and its realization. The realization is changed frequentlyas a consequence of technology
advances, while instructions are not changing (significantly) over time. Thus, the relation
between functionality and timing has become completely decoupled over time so that it is al-
most impossible to analyze timing behavior. In embedded systems design, timing is a crucial
issue, especially when there are real-time constraints imposed by the environment and when
one has to predict timing behavior using abstract models that cannot be well specified if the
relation between functional behavior and timing behavior is obscure.

We, therefore, define the architecture in a different and indeed, almost opposite way. We
do not include functional behavior in the definition of an architecture. Functional behavior
is specified and modeled in isolation. The architecture, then, is defined as the way imple-
mentation resources are organized, how they co-operate andhow they are scheduled (time-
behavior). This definition applies to all levels of abstraction, though the precise meaning
of organization, co-operation and time-behavior does depend on the level of abstraction we
want to deal with. The higher the level of abstraction, the more we have to rely on models
that are abstract themselves and can not, therefore, contain details that are only known at the
lower levels of abstraction. Thus, when components are abstractly modeled, organization and
co-ordination can only be expressed at the same level of abstraction and modeling and timing
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behavior can only be as accurate as the models can predict.

Clearly, abstraction reduces complexity and cost of modeling and simulating. On the other
hand, it leads to the problem of coping with accuracy and level of confidence. It is, therefore,
extremely important to have means to predict accuracy in such a way that it can be analyzed
in terms of bounds. This in turn certainly depends on the models that are used. Hence,
the ultimate challenge is to find an architecture model that is expressive and flexible but
still allows for reasoning about predictability and accuracy, given a number of well chosen
metrics. The following two chapters offer our answer to thischallenge by way of an insight
into how our architecture model is assembled, how it can be used and what the expected level
of predictability is(see Sections 4.5.1 and 4.5.3).

3.2.2 Targeted Architectures

Multiprocessor architectures in embedded systems are usually not general purpose architec-
tures but are tailored to match - to a certain extent - a particular application domain. Because
the application domain we are dealing with in this dissertation is the domain of multime-
dia, the multiprocessor architectures that fit this domain are architectures that can sustain
heavy computations as well as high data throughputs withoutincurring obstruction from con-
trol events that may interfere with the main data stream processing. Such architectures are
sometimes calledstreamingmultiprocessor architectures. It is important to notice that we
are not considering application-specific architectures but architectures that fit an application
domain. The implication of this condition is that it should be possible to target a single, pos-
sibly configurable architecture when transforming severalapplications from the application
domain to parallel implementations. Thus we consider architectures that are built on com-
ponents that support computationally intensive tasks and which can exchange large amounts
of data among themselves. The communication of data betweenproducing and consuming
components occurs - at least in principle - over channels that support FIFO-like buffering
with blocking write and blocking read synchronization protocol. A representative example of
the architectures we are addressing here consists of a set ofcomputational units and a com-
munication, synchronization and storage infrastructure.Notice that we will not be dealing
with design issues. Considering architecture alternatives is confined to selecting components
from a component repository and connecting them in different yet admissible and dependable
ways. This also includes alternatives in terms of the system’s software protocols.

3.2.3 Model Structure

The architecture model structure is a composition of component models, some of which are
for computation, some for communication and synchronization and some for storage. Re-
member that we want to model embedded multiprocessor (streaming) architectures as defined
in Section 3.2.1. A component model is defined as a set of constituent modules (services), an
input stream representation (tokens and their types) and anoperational representation (sym-
bolic programs). The composition of component models is based on well-defined admissible
composition rules and interfaces. This is the structuralwhatissue. The answer to the question
of whywe structure the model of the architecture this way is that wewant to separate concerns
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as much as possible in such a way that performance analysis and design space exploration is
not only feasible, but also effective and efficient in terms of modeling effort, simulation effort
and accuracy. The representation of the basic ingredients is necessary and sufficient to pre-
dict the architecture’s timing behavior as confidently as a simulation based prediction method
can do. Later in the chapter, we shall elaborate onhowwe materialize the representations to
achieve that goal.

3.2.4 Model Behavior

An architecture model does have a behavior that results fromthe dynamic behavior of the
component’s constituent modules and the interaction of thecomponents through their in-
terfaces. From our definition of what an architecture model is, it should be clear that it’s
behavioris to be interpreted in terms of behavior intimerather thanfunctionality. Functional
behavior is represented by symbolic instructions or symbolic programs extracted from the
functional model and which must be interpreted by the architecture model. The functional
model exposes its own concurrency, event ordering and synchronization primitives and pro-
tocols. The architecture model exposes its parallelism, resource constraints and operational
delays. It interprets the former into the latter, possibly after transformations of the functional
representations. This is what we can say here about thewhat of the behavior. Again,why
we deal with behavior in the way we do is mainly because we wantto separate concerns: the
architecture’s behavior model predicts whether an application can execute timeously, given
current workloads and workloads added by the envisioned application; the application model
predicts functional behavior and exposes this behavior to the architecture in terms of repre-
sentations. The question ofhow this is accomplished is addressed in the remainder of this
chapter.

3.2.5 Contribution

Recall that our streaming architectures are comprised of computational units, a communica-
tion, synchronization and storage infrastructure, and system software. The computational and
infrastructure components are selected from a repository of re-usable components. Although
the repository may contain a vast amount of components, we only rely on a relatively small
set of modules and admissible interconnection rules (interfaces) to compose the structure of
a so-calledTransaction Level Model2 of an architecture and its components. Of course,
components have behavior and so has the architecture. We separate functional behavior from
time behavior, the latter being dealt with in the architecture model. Functional behavior is
represented in terms of symbolic programs that may have to betransformed before they can
be interpreted, in terms of time and execution delays, by thecomponent modules in the ar-
chitecture model which is aware of aspects such as resource sharing, contention and control.

A large portion of our modeling paradigm is compatible with the Model of Computations
paradigm3 and is compliant with the Transaction Level Modeling semantics ofSystemC[62].

2See Chapter 1, Section 1.3.2.
3See Chapter 1, Section 1.3.1.
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We claim that our modeling paradigm can accurately predict the timing behavior of many
conceivable streaming architectures (see Sections 4.5.1 and 4.5.3).

3.2.6 Chapter Organization

This chapter is organized as follows. First, in Section 3.3 we deal withthe howquestion
related to the structure of our architecture model: how is itmaterialized? Then, in Section 3.4
we turn to the how question related to the behavior of our architecture model: how is it mod-
eled? Next, in Section 3.5 we demonstrate how we model some representative architecture
types. Finally, in Section 3.6 we list briefly, by means of examples, some related architecture
modeling approaches.

3.3 Architecture Model Structure

In Section 3.2.3 we dealt withthe whatandthe whyquestions related to the structure of our
architecture model: what is the problem and why is it so? Herewe deal with the approach to
this problem, so we introduce the model itself in these terms.

The structure of our architecture model consists of components and relations among these
components. We define components based on their main purpose: processors- used to per-
form computations,router interfaces- used to establish the communication routes,arbiters
- used to synchronize shared interconnections andstorage- used to function as as a global
shared memory. The relations comply with theTransaction Level Modeling[62] way of inter-
connecting components i.e., components interact through well defined interfaces, where each
component has an appropriate number of interface ports. Theinterconnection of components
is based on well-defined admissible composition rules and interfaces. This is illustrated in
Figure 3.1. Processor components, storage components and arbiters can only be connected to
router interface components, as indicated with the encircled numbers 1, 2 and 3 respectively.
Note that the router interface components are essentially dealing with thecommunication
workload of the mapped application model and that, thus, they have twomodeling roles:
data transferto and from processor components to other processing components or storage
components andsynchronizationof these transfers. This, however, represents a model behav-
ior and it will be covered in Section 3.4 with the rest of the behaviors.

We introduce the different components in the sections that follow.

3.3.1 Processor Components

Processor components in Figure 3.1 are the architecture components onto which application
processes are mapped. Actually, our methodology supports mapping of symbolic program
representations of application processes onto processor components rather than mapping ap-
plication processes themselves. Therefore, in the modeling, analysis and exploration phases,
processor components interpret symbolic programs in termsof execution times. As repre-
sentations of application processes are rich in behavioralinformation (see Chapter 2), the
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Figure 3.1: The architecture model structure - components and relations. Encircled numbers
indicate which components should be connected to each other.

processor components are themselves composite modules, rather than being characterized by
operation counts and cumulative delays. Thus the processorcomponents model timing be-
havior of distinct entities such as symbolic instruction fetching, dispatching, execution and
resource sharing.

Figure 3.1 reveals that we distinguish between three types of processor components. These
three types are established depending on (1) the maximum number of mapped application
processes which a processor component can handle at once and(2) how many parallel exe-
cution flows a processor component can handle. The types in Figure 3.1 are enumerated in
terms of the types of mapping relation of|processes|-on-|processors| such as: theone-on-
one, the many-on-oneand themany-on-many. Please note that ”many-on-many” does not
include ”one-on-one” as is the case with the conventional ’many-to-many’ and ’one-to-one’
relations from Entity-Relation (ER) model [63]. In our architecture model ”many-on-many”
and ”one-on-one” represent disjoint (non-overlapping) sets of processor models.

The one-on-one processor type can only model the execution of a single process mapped
onto it. The many-on-one processor type can model the interleaved execution of a number of
processes that are mapped onto it. Finally, the many-on-many processor type can model the
overlapped execution of a number of processes that have beenmapped onto it. Many-on-one
corresponds tomultitasking, while many-to-many corresponds tomultiprocessing. In both
multitasking and multiprocessing cases, the light-weightoperating systemsare modeled4 as
well and integrated in the processing units. Please note that theone-on-manymapping rela-
tion is not explicitly shown here. However, it is worth noting that one-on-many is available

4See Section 3.5.3.
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as a sub-type of the processor type with the one-on-one relation (see VLIW later on).

We further distinguish between two one-to-one processor subtypes: theCompile Time Sym-
bolic Program Unitand theRun Time Symbolic Program Unit(see Figure 3.1). For the
compile time symbolic program unit, concurrency must be exposed in symbolic program rep-
resentations just before their mapping onto the processor (e.g. Very Long Instruction Word
or VLIW - see [64]). For the run time symbolic program unit, concurrency is extracted by
the processor itself (e.g. super-scalar - see [65]).

The four processor types are built from lower-level moduleswhich are specialized Finite
State Machines that model particular behaviors. Because not all of the behaviors are present
in every one of the considered processor types, it is a specific partition, combination and
relation of these behavioral modules that defines the model of a particular processor type.
There is acommon corein all these processor types around which the different flavors are
built. We call this core theSymbolic Program Unit(SPU). Amongst the many-on-one, many-
on-many, and run-time processing units, the SPU core5 is the simplest, and thus serves as
the basis from which all the other processing units are derived.

3.3.2 Communication Router Interfaces

Communication interfaces create a context6 in which the Inter Process Communication (IPC)
is refined and then executed. The IPC refinement7 refers to the conversion of the IPC of an
application representation to the IPC of an architecture representation. Processes in the appli-
cation model communicate by means ofread andwrite primitives in which data transfer
and synchronization are intertwined. Components in the architecture model, on the other
hand, have separated data transfer and synchronization protocols. When communicating data
from the memory space of one process to the memory space of another process, an IPC
connection must be established first. The part of the processor component that executes an
IPCread symbolic instruction connects to the part of the Read Interface (RIF) component
that controls the data retrieval from the storage componentaddressed by that symbolic in-
struction. A few different RIF components are shown Figure 3.1. The RIF differences are
explained later in Section 3.3.5. The same holds true for thepart of the processor component
that executes an IPCwrite symbolic instruction: it connects to the part of the correspond-
ing Write Interface (WIF) component that controls data deployment to the storage component
addressed by the write symbolic instruction. A few different RIF components are shown in
Figure 3.1. The WIF differences are explained later in Section 3.3.5. The controlling of the
RIF and WIF components effectively separatesdata transferfrom synchronization.

Thus two operations can overlap whenever the connection is established: transferring data
to and from the processor to the associated interface and transferring data from the WIF to
the corresponding RIF through the storage component. The synchronization that goes with
data transfer is dependent on the synchronization protocol(s) that the architecture supports.
On an abstract level, the synchronization of the transfer ofdata to and from a processor

5See Section 3.4.2.
6A contextis a special environment necessary to properly translate-&-interpret the Inter Process Communication

of a mapped symbolic program.
7This is a run-time refinement - it is performed by the model while it runs.
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component to its interface component is modeled in terms of amaster-slave rendezvous pro-
tocol, where the processor is the master and the interface isthe slave. The synchronization
between interface components and a storage component is modeled in terms of condition-
synchronization protocols:check-room/signal-datafor the WIF andcheck-data/signal-room
for the RIF. In the event that data transfer to/from a storagecomponent goes over a shared bus,
a shared bus synchronization protocol, bus-claim/bus-release, is injected between conditional
synchronization pairs. We discuss the synchronization anddata transfer protocols further in
Section 3.3.5 where we deal with component-level interfacing.

As can be seen from Figure 3.1 we distinguish between three types of processor interconnects:
Exclusive,SharedandBurst. The first iscross-barlike, the second one similar to beingbus-
basedand the third one is likened to aburst-bus.

It is worth noting that, as is the case with processor component types, the various commu-
nication interface types are built on modules, some of whichmay or may not play a role
depending on the type considered. We will come to the timing and dynamic behavior of the
constituent modules in Section 3.4.

3.3.3 Arbiters

As already mentioned in the previous subsection, there exists a situation where a shared
bus has to be modeled. In this case, the architecture component library provides the arbiter
component. The arbiter component models a shared bus synchronization protocol - bus-claim
and bus-release. The model uses the integer-valued P-V semaphore [66]: 1) bus-claim wraps
the P call, 2) bus-release wraps the V call.

In the case of a single bus (orBus Arbiterin Figure 3.1), when the arbiter component grants
the bus to an interface component (the bus owner), every other interface component that
claims the bus afterwards will be blocked until the bus ownerreleases the bus. When the
interface component is bus owner it can transfer data through it.

In the case of multiple bus-lines (orHighway Arbiterin Figure 3.1), when the arbiter com-
ponent grants the bus to an interface component, every otherinterface component that claims
the bus thereafter will be granted access too, until the specified number of simultaneous data-
transfers is reached. When the number of simultaneous data-transfers becomes equal to the
number of bus owners, new bus claims are blocked and wait for release of the bus by current
bus owners.

Multiple bus-arbiters can co-exist safely in the same architecture model instance8. That is,
an interface component can use services from different bus arbiters. However, a single bus
arbiter must be used for data-transfers to a particular storage component. It is not permitted
to transfer data to/from the particular storage component via different buses. A FIFO buffer
is connected to same bus on both of its ends.

8In terms of Object-Oriented Design, our architecture modelshould be understood as a class-template and a
particular architecture description based on our model should be understood as an object-instance.
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3.3.4 Storages

The storage components are organized as FIFO memory buffers. Each buffer has a writer
port and a reader port. The interface components (WIF and RIFin Figure 3.1) communicate
with each other using the protocol associated with these ports. This protocol is described in
the next section along with the other protocols.

We differentiate FIFO storages in two ways: 1) based on the size of tokens that they store
in transit and 2) based on the synchronization interface. The size of tokens reaching and
leaving the buffer may be either homogeneous or heterogeneous. Homogeneous FIFOs con-
sume equally large tokens on both (read and write) ends, while heterogeneous ones do not.
With respect to the synchronization interface, an embeddedprocessing core may or may not
be required. That is, the conditional synchronization protocol (wait-for-data/room, signal-
room/data) is executed either on a programmable core or in a specialized hardware.

In our architecture model, all FIFOs communicate using the same protocol, but they differ
primarily in the way data packets are treated. When data is written to a FIFO, it may or may
not have to be rearranged to fit a predefined token size. Similarly, when data is read from
a FIFO, it may require a similar treatment. The ability to store, load and synchronize ex-
change of tokens of variable size requires an extra modelingeffort for the implementation of
thecheck-room/signal-dataandcheck-data/signal-roomprotocol actions. Alternatively, the
architecture model may communicate tokens that have the same size as the tokens communi-
cated in the application model. That would not require any overhead in the FIFO components,
but may lead to unrealistic memory requirements (FIFO size)and performance numbers (ex-
cessive FIFO blocking delays because of lack of room or of data). Finally, one could build an
application model which takes into account all architecture FIFO communication artefacts.
This is, indeed, also possible, but it is totally inadequatefor the architecture modeling and
exploration purposes. Remember that our decision to followthe Y-chart approach separates
application and architecture models. This means that the application model is independent of
the architecture model and vice versa.

The above discussion raises several questions, one of whichis whether thecheck-room/signal-
data andcheck-data/signal-roomprotocol actions are implemented in hardware or in soft-
ware. This is especially interesting in the case ofheterogeneousFIFOs, where the per-
formance of these actions may significantly impact the performance of the rest of the sys-
tem. Designs where the FIFO conditional synchronization protocol is executed on that pro-
grammable core (e.g., the inter-processor communication in thespaceCake architecture [67]
architecture are known in practice. Therefore, with respect to the materialization of the FIFO
conditional synchronization, the FIFO may require the software core or the specialized hard-
ware for the conditional synchronization protocol.

More details are provided in the following section.
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3.3.5 Interfacing Architecture Components

As already mentioned, the model components described so farcommunicate through well
defined component interfaces9. There are three interface types, as depicted in Figure 3.1.
Each of them goes with a particular protocol:

1. Thepush-pullprotocols - the handshake protocols between processing units 10 as mas-
ters and interface units11 as slaves.

2. Theroom-dataprotocol - the condition synchronization protocols between interface
units when communicating data through FIFOs12.

3. The claim-releaseprotocol - the resource-sharing protocol between interface units
when transferring data over the shared-resource13.

One possible sequence involving all these protocols is illustrated in Figure 3.2. interface
points among different architecture components are indicated by circled numbers; they cor-
respond to the enumerations in Figure 3.1. To explain the protocol sequence illustrated in
Figure 3.2 we use Dewey decimal numbers [68].

On the left hand side of the figure is illustrated a pull master-slave protocol. The pull protocol
pullsdata into a processor component from the corresponding read-interface component. On
the right hand side of the figure, a push protocol illustrated. The push protocolpushesdata
from a processor component to the corresponding write-interface component. Both of the
protocols consist of three parts. Firstly, the connectionshave to be opened: Dewey sequences
1.0 7→ 2.0 7→ 2.1 7→ 1.1 for the pull-side and6.0 7→ 5.0 7→ 5.1 7→ 6.1 for the push-side.
Secondly, the real push or pull handshake protocols: sequences1.2 7→ 2.2 7→ 2.8 7→ 1.3
and 6.3 7→ 5.3 7→ 5.9 7→ 6.4, respectively. Thirdly, the connections have to be closed
explicitly: sequences1.5 7→ 2.10 for the pull-side and6.5 7→ 5.10 for the push-side. Note
that when looking into the write connection, data is moved from the processor component
to a local memory of the write interface component prior to any handshake activity: the
sequence6.2 7→ 5.2. On the contrary, when moving data from the read interface component
to the processor component, the data is moved from a local memory of the read interface
component to the processor component after all handshake activities are completed: The
sequence2.9 7→ 1.4.

In the center of Figure 3.2, the condition synchronization protocols are illustrated. These are
protocols that are convenient for the modeling of synchronization. The reader side (visible
through the previously established pull connection) checks on the availability of data in a
global memory buffer14. If the data is not in the memory buffer the reader side blocksuntil

9The component interfaces are the interfaces from the component-based design point of view, unlike the router
interface components we introduced in Section 3.3.2. Consequently, whenever we speak in terms of inter-component
interfacing we refer tocomponent interfaces, whereas when we speak in terms of the model description and assem-
blies we refer tointerface componentsor routers.

10See Section 3.3.1.
11See Section 3.3.2.
12See Section 3.3.4.
13See Section 3.3.3.
14See Section 3.3.4.
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it is notified that the data has arrived: Dewey sequence3.0 7→ 2.3. Similarly, the writer side
(push connection) checks on the availability of room in the global memory buffer. If there is
no available space in the memory buffer the writer side blocks until it is notified that sufficient
space is available: The sequence3.1 7→ 5.4. In the particular case illustrated in Figure 3.2,
neither of the two checks (data-to-read or room-to-write) give rise to blocking, which implies
that the memory buffer (FIFO) has both enough data and room. When data is read from
the memory buffer or when data is written to it, the signalingpart of the synchronization
protocol takes place: Dewey sequences2.2 7→ 3.3 and5.8 7→ 3.5 respectively. The former
serves to update (atomically) the number of available data tokens. The latter serves to update
(also atomically) the available space in the buffer. Note that in the case of Figure 3.2 data is
transferred through the bus. Therefore, the load and the store activities (data transfers) are
synchronized by the conditional synchronization protocolbut they are only possible when the
bus protocol is fulfilled.

Finally, there is a small part in Figure 3.2 where the resource sharing protocol is illustrated.
This is a single bus protocol that allows only a single bus owner. For example, after the read
interface has discovered that data tokens are available in the memory buffer, it claims the
bus. When it has been given control over the bus, it loads the data from the global memory
into the local memory of the read interface. After that, the read interface releases the bus,
allowing a next bus request to take over the bus. The respective activities are depicted by the
following Dewey sequence4.0 7→ 2.4; 3.2 7→ 2.5; 2.6 7→ 4.1 (the semi-colon ’;’ sign forces
the load data transfer between the bus claim and the bus release). On the contrary, the write
interface side is blocked on the bus request - therefore it must first wait for the read interface
to finish its data transfers. After that, it gains control, stores new data into the global memory
buffer and releases the bus afterwards. This is illustratedby the following Dewey sequence:
4.2 7→ 5.5; 5.6 7→ 3.4; 5.7 7→ 4.3.

3.4 Architecture Model Behavior

The behavior of our architecture model is with respect to time aspects only. The performance
analysis is then based on that behavior.

Time in our model is configurable via a set of parameters. These parameters determine the
way conditions necessary for some actions in the model are addressed. This orders these
actions in the model and affects the possible states and state transitions in the model. To
deal with the conditions, ordering and state in our architecture model, we define the follow-
ing elements: Threads of Execution, Asynchronous Inter-thread Communication Channels,
Synchronous Inter-thread Communication Channels and Concurrent Finite State Machines.
Lastly, we describe the time-performance measurement model.

3.4.1 Architecture Model Element Behaviors

Finite State Machine. A Finite State Machine (FSM) is a sequential MoC defined by an
ordered relation among the actions described by the 5-tuple〈S, T, X, Y, A〉 where: S is a
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set of FSM states,T is a set of FSM transition condition predicates,X is a set of state entry
actions,Y is a set of state exit actions andA is a set of transition actions[28]. ⋄

Thread of Execution. A Thread of Execution is an ordered sequence of actions whichrefer
to a single program and data memory context. Each thread defines its own ordered sequence
which can be executed concurrently with sequences of other threads. [69] ⋄

Synchronous Inter-thread Communication Channel. A Synchronous Inter-thread Com-
munication Channel is the information exchange where one execution thread sends a certain
message to other blocked threads of execution and, at the same time, unblocks them. In
computer engineering this is known as a conditional synchronization. [70] ⋄

Asynchronous Inter-thread Communication Channel.An Asynchronous Inter-thread Com-
munication Channel is the information exchange where one execution thread, the caller, ac-
tivates a sequence of actions in the context of the other thread of execution, the callee, and
where - whilst this sequence is not explicitly part of the callee thread native sequence - it can
still be used to: (1) copy-back to caller all the needed insight information of the callee and
(2) alter the execution flow of the callee thread. [70] ⋄

Concurrent Finite State Machine. Concurrent Finite State Machines (CFSM15) are threads
of execution represented with FSM behavior, one FSM per thread and where interactions are
based on the Inter-thread Communication paradigm, both Synchronous and Asynchronous.⋄

3.4.2 Processor Modeling

Generally speaking, an application process is a High-LevelLanguage (HLL) specification
of one or more threads compiled and linked for a particular processor and a particular plat-
form. However, the application process in a binary form would not serve the architecture
exploration purpose because it is specific to a single processor-platform pair. Consequently,
changes in the processor or platform specifications, or in the application source imply new
tools (compilers) or at least recompilation. Sometimes this is acceptable because the com-
pilation process may be fast and automated16, but sometimes this is not the case17. Thus,
processor components in our architecture model do not execute the application processes that
are eventually mapped onto them. Instead, our processor components interpret process repre-
sentations in terms of timing behavior. The representations we use are Symbolic Programs18

(SP) and transformations that are applied to them are part ofthe application-to-architecture
mapping process. See Chapter 4.

A symbolic program captures the details the functional behavior of an application process
without implying resource-limitations. The processor model needs tointerpret the symbolic
program(s), toextractthe partial order within the stream(s) of symbolic instructions, tosched-
ule the symbolic instructions according to the resource availability and todelayaccording to

15Note that Polis Co-design Finite State Machines [29] and ourConcurrent Finite State Machines are identical.
16A singlemake command that can rebuild the whole image.
17For example, consider the case of a heterogeneous architecture with both dedicated, semi-programmable and

fully-programmable processors. The changes in the dedicated or customized components would impact the recom-
pilation duration.

18See Chapter 2.
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the annotations in these instructions. Therefore, the mainfeatures we model within the pro-
cessor model are: symbolic instruction extraction, fetching, dispatching (distribution) and
execution and resource sharing, all these in terms of time dynamic behavior. Based on the
above features, we determine the low-end threads of execution and the interfaces of such
threads in the processor model. In the next subsection we describe the timing behavior and
the dynamic behavior of the processor model in terms of threads and channel-events (see
Section 3.4.1).

Symbolic Instruction Extraction & Fetching

When a symbolic program (SP) is assigned to a processor modelinstance, a part of the pro-
cessor model extracts symbolic instructions from the SP. Wecall it the program unit (PU).
This is a thread whose behavior is described by the SP syntax (see Section 2.4.4) rather than
by a CFSM rule. The PU thread has two parts: the parser part andthe traversal part.

The parser part creates aparse treeout of the symbolic program. The parse tree models
a conventional program memory. The creation of the parse tree corresponds to the process
loading. The other part of the program unit traverses the parse tree based on the SP control
trace (see Chapter 2). This corresponds to the symbolic instruction extraction. Remember,
a symbolic program is a general representation, valid for many data-sets. It is the control
trace that is bound to a particular data-set. This will help to produce a particular sequence
of symbolic instructions. When the tree traversal hits a symbolic instruction, the PU thread
writes its content into the FIFO channel to which the PU is connected. This corresponds to
the symbolic instruction fetching. The implementation details of the PU thread are given in
Appendix A, Section A.3.

Symbolic Instruction Scheduling

The fetched symbolic instructions arrive queued accordingto the order expressed in an SP.
We call a front-end controller (FECTRL) the part of the processor model that reacts to such an
input stream of symbolic instructions (SI). The controllerdelivers SIs with a certain degree of
concurrency. That degree should match the degree of concurrency available in the processor
model instance. For example, the processor instance can or cannot perform two differently
designatedread symbolic instructions in parallel. Similar criteria hold for the other types
of SIs. This corresponds to the symbolic instruction scheduling. The scheduled symbolic
instructions are written to the FIFO channel that conveys them to a following controller in the
processor model instance (Symbolic Instruction Dispatching).

The re-ordering of input instructions into output instructions can be modeled by means of a
user-configurable delay parameter19. The implementation details of the FECTRL thread are
given in Appendix A, Figure A.6.

19The value of this parameter can also be zero. If the parametervalue is zero, then re-ordering is considered to be
instantaneous.
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Symbolic Instruction Dispatching

Once fetched and scheduled, symbolic instructions have to be dispatched according to their
type and sub-type20. The part of the processor model that performs this job is theBack-End
Controller (BECTRL) thread. The BECTRL thread reads the scheduled symbolic instruc-
tions and dispatches them to their ultimate destination threads (Read Units, Execute Units, or
Write Units). It applies a block to the output until the execution of the dispatched symbolic
instructions is completed. For example, if three differentsymbolic instructions have been
submitted to the execution simultaneously, the BECTRL thread dispatches them and applies
a block until all three are completed.

Dispatching the symbolic instructions to the destination threads can be modeled by means of
a user-configurable delay parameter. The implementation details of the BECTRL thread are
given in Appendix A, Figure A.7.

However, it is possible to parallelize symbolic instruction execution even further. For ex-
ample, it may be possible to commit the next instruction to a Read Unit without having to
wait for the completion of an Execute Unit. For this purpose,we make a few modifications
in the BECTRL thread. The idea is to queue the results of the executions in a synchronous
data-flow manner, such that these results can be used later, when needed. If the results are
not available, then the execution of an instruction which needs them stalls until the results
become available. The implementation details of the modified BECTRL thread are given in
Appendix A, Figure A.7.

Symbolic Instruction Execution

As a dispatched symbolic instruction may be either aread, awrite, or anexecute, the
thread that executes it may be similarly either a Read Unit, aWrite Unit or an Execute Unit.

The Read Unit thread (RU) reacts on a read symbolic instruction and processes it through sev-
eral stages: (i) the RU makes a request to communicate with the FIFO global memory com-
ponent21 which is logically identified in the instruction; (ii) it performs the pull protocol22 to
read data, (iii) it creates releasing events on both the dispatcher and the RIF component ports.
The RU thread is suspended in three cases: 1) on the input, if there is no read instruction;
2) on the output, when opening the connection to the FIFO component and 3) again on the
output, when it performs the pull data protocol with the RIF component. The data retrieval
from the RIF into the processor can be modeled by a user-configurable delay parameter. The
implementation details of the RU thread are given in Appendix A, Figure A.9.

The Write Unit thread (WU) reacts on a write symbolic instruction and processes it through
several stages: (i) the WU makes a request to communicate with the FIFO component which

20read 12 (...) means that data from the logical FIFO 12 are to be read -read is a type,12 is a subtype.
Similarly, execute 12 (...) means that function 12 is to be executed. However, rather than being function
arguments the sub-types refer to distinguishable processing resources. That is,read andwrite sub-types bind ap-
plication Kahn buffers to architecture FIFO components andexecute sub-types correlate to different functionality
with the different computation elements within a processorcomponents.

21See Section 3.3.5
22See Section 3.3.5
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is logically identified in the instruction; (ii) it performsthe push protocol to write data; (iii) it
creates releasing events on both input and output channels.The WU thread is suspended in
three cases: 1) on the input, if there is no write symbolic instruction; 2) on the output, when
opening the connection to the FIFO component and 3) again on the output, when it performs
the pull data protocol with the WIF component. The data submission from the processor to
the WIF can be modeled by a user-configurable delay parameter. The implementation details
of the WU thread are given in Appendix A, Figure A.10.

The Execute Unit thread (EU) reacts on an execute symbolic instruction and processes it
through several stages: (i) it waits for a certain amount of time 23; (ii) it creates releasing
events on the input channel. The EU thread is suspended on theinput if there is no ex-
ecute instruction. The implementation details of the EU thread are given in Appendix A,
Figure A.11.

Interrupt Modeling

Although the KPN application model does not know about interrupts, the processor model
does know. This is required for the cases of many-on-one and many-on-many mapping rela-
tions (see Section 3.3.1). The processor interrupt logic ismodeled using the Programmable
Interrupt Controllers threads (PIC). There are two kinds ofthem available: the Read Interrupt
Controller thread (RIC) and the Write Interrupt Controllerthread (WIC). Both are associated
with the same CFSM, hence we refer to both of them as PICs. The modules implement the
’master’ part of the read/write interrupt methods24. These methods are employed to sub-
mit the network data-status or the network room-status to the Distributed Operating System
(DOS) channel25. Specifically, the PIC applies a block until a change is detected in the data-
status or in the room-status of the global FIFO component. The events are generated directly
by the router interface components (WIF and RIF). The interrupt generation can be modeled
by a user-configurable delay parameter. The implementationdetails of the PIC threads are
given in Appendix A, Figure A.12. The PIC thread usage is exemplified in Section 3.5.3,
Figure 3.7, as WIC and RIC.

Processor Synchronous-Event Channels

The processor synchronous event channels model interconnection data paths between pro-
cessor modules which model SI fetching, scheduling, dispatching, execution and interrupts
according to definitions for synchronous channels established in Section 3.4.1. There are four
internal synchronous processor channels: (i) A Read-WriteBlocking FIFO channel (RWB
FIFO), (ii) a Peek Read Write Execute channel (peek-RWE), (iii) a Blocking Dispatcher
channel (BD) and (iv) a Symbolic Instruction Operands Crossbar channel (SIOC).

The Read-Write Blocking FIFO channel provides two interface methods: (1) a method to

23Equal to the product of the configured amount of time and the amount indicated in the instruction - so-called
budget.

24Remote procedure callraise which activates the asynchronous event handling in the DOS channel - see Ap-
pendix A

25See Section 3.4.2.
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read data from the channel and (2) another method to write data to the channel. This channel
is used to transfer symbolic instructions between the PU thread and the FECTRL thread, as
well as between the FECTRL thread and the BECTRL thread. See Section 3.5.1.

The Peek Read Write Execute channel provides four interfacemethods: (1) a method to poll
for available symbolic instructions, (2) a method to peek the type of a symbolic instruction
from the channel, plus (3&4) the aforementioned RWB FIFO-channel read/write methods.
This channel is used between the FECTRL thread and the modified BECTRL thread. See
Section 3.5.2.

The Blocking Dispatcher channel provides four interface methods, two for the dispatcher
(BECTRL) side and two for the execution unit (RU, WU, EU) side. The dispatcher uses one
method to deliver the symbolic instructions and the other towait for the finalization report.
The execution unit uses one method to accept a new symbolic instruction and the other to
report on finalization of that instruction. The BD channel isused between the BECTRL
thread on the one side and the configured number of the RU, WU and EU threads on the
other side.

The Symbolic Instruction Operands Crossbar channel provides two interface methods: (1) a
method to get the oldest value of a symbolic instruction operand from a head of the operand
FIFO and (2) another method to put the latest value of a symbolic instruction operand to the
back of the operand FIFO. A thread that requests the operand value is a ’requester’ (e.g.,
WU or EU). A thread that provides the operand value is a ’provider’ (e.g., RU or EU). The
synchronization in the SIOC channel is reminiscent of Integer Data Flow (IDF) MoC [24]. A
requester will remove as many operand tokens from the operand FIFO(s) as expected in the
write or execute symbolic instruction. A provider will provide as many operand tokens to the
operand FIFO(s) as expected in the read or execute symbolic instruction.

Processor Asynchronous-Event Channels

The processor synchronous event channels model interconnection data paths between pro-
cessor modules which model SI scheduling, dispatching, execution, and interrupts according
to definitions for asynchronous channels established in Section 3.4.1. Essentially, the asyn-
chronous channels are needed to model a processor with an operating system on-top. Our
operating system model targetshomogeneousmultiprocessors, e.g., the cases of many-on-
one and many-on-many mapping relations (see Section 3.3.1).

When modeling an operating system, one has to be aware of three different operating sys-
tem types that may appear on a homogeneous multiprocessor [71]: (1) separate-supervisors,
(2) master-slave and (3) symmetric. Separate-supervisor and master-slave are not truly par-
allel software platforms - the former has serious load-balancing issues, the latter does not
scale well and has Amdahl’s Law implications. Unlike these two, a symmetric software plat-
form scales nicely and allows for modular (micro-kernel) implementations. Moreover, the
symmetric software platform complies with the main requirements needed to support stream-
oriented applications [31]. This is why our operating system model, Distributed Operating
System (DOS) is implemented as a symmetric software platform.

The DOS channel virtualizes the RU, WU and EU threads for eachsymbolic program, isolat-
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ing a symbolic program from all other symbolic programs withwhich it may share processor
resources. The interconnection and the global memory are abstracted partly by the DOS
channel, and partly by the channel contained in the router interface (WIF and RIF) compo-
nents26.

To achieve this, the DOS channel has to exclude explicit blocking conditions because they
may produce biased symbolic program schedules27. Excluding explicit synchronization im-
plies that the asynchronous event synchronization protocol has to be used in the underlying
channel implementation28. Therefore, the DOS channel consists of a single thread, which
performs the polling and a set of communicating signal handlers, which handle predefined
asynchronous events. The asynchronous events contain feedback information about: (a) idle
symbolic processing unit cores29, (b) globally available room and data30 and (c) non-empty
symbolic instruction streams31. The signal handlers prevent artificial deadlocks by conveying
this feedback to the scheduler.

The multiprogramming scheme creates additional overhead for the processor model. The
symbolic programs are scheduled according to somescheduling policy. The switching among
the symbolic program instruction streams creates a model ofa context switchingdelay. Fur-
thermore, if the processor is a homogeneous multiprocessor, then the scheduling may imply
a migration delay, because a symbolic program may continue its execution on a different
Read-Write-Execute thread than before. See Appendix A, Figure A.13 for the implementa-
tion details.

Processor Composite Modules

A composite module is a hierarchical module that conveniently groups the low level threads
into processor model parts. This makes the processor model itself easier to understand. We
define two composite modules: the Symbolic Program Stream module and the Symbolic
Program Unit Core module.

The Symbolic Program Stream composite module (SPS) provides a hierarchical model of the
context of a single process, on top of the processor model which supports multiprogramming.
This module connects to the DOS channel explained earlier32. Since the DOS channel is
based on asynchronous events, minor modifications are required in the threads which the
SPS module uses. Namely, the FECTRL thread uses an asynchronous interface (I/F) at the
output33. For the implementation details, see Appendix A, Figure A.14. The structure of the
SPS module is depicted in Figure 3.3.

26See Section 3.4.3.
27E.g., inSpade the available ’native’ SI trace schedules guarantee artificial deadlock-free executions, but are

only a subset of valid schedules modeled. This implies that all other valid schedules are left unmodeled. The
explanation and exemplifications of this issue are available in [72].

28See Section 3.4.1 for asynchronous events
29See Section 3.4.2, Figure 3.4 and Section 3.5.3, Figure 3.7.
30See Section 3.4.2 and Section 3.5.3, Figure 3.7.
31See Section 3.4.2, Figure 3.3 and Section 3.5.3, Figure 3.7.
32See Section 3.5.3, Figure 3.7.
33The asynchronous I/F at the output serves as the master routine for the DOS channel, or in other words, it keeps

the DOS channel up-to-date with the available symbolic instructions in the symbolic program.
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Figure 3.3: The composite SPS processor model module (Program Unit refers to the PU
thread, Front-end Controller refers to the FECTRL thread, and the RWB FIFO refers to Read-
Write Blocking FIFO).

The Symbolic Program Unit Core (SPU core) composite module represents a single pro-
cessing core. This is quite useful when modeling homogeneous multiprocessors - performed
by simply replicating this module. It connects to the DOS channel at the bottom end34.
Since the DOS channel is based on asynchronous events, minormodifications are required in
the threads which the SPU-core module uses. Namely, the BECTRL thread uses two asyn-
chronous I/F’s at the input35. For the implementation details, see Appendix A, Figure A.15.
The structure of the SPU core module is depicted in Figure 3.4.
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Figure 3.4: The composite SPU-core model module (coreBECTRLrefers to a modified ver-
sion of the BECTRL thread, necessary to match the DOS asynchronous channel).

34See Section 3.5.3, Figure 3.7.
35One asynchronous I/F at the input serves as the master routine for the DOS channel, or in other words, it keeps

the DOS channel up-to-date with the status of the SPU core (busy/idle). The other asynchronous I/F at the input
serves as the slave routine for the DOS channel, which reads the next available symbolic instructions for the SPU
core.
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3.4.3 Router Interface Modeling

A router interface model defines a platform-dependent context for the Inter-Process Commu-
nication (IPC). The IPC context we consider is a virtualization of bus and global memory
components for one or more processes mapped onto a single processor.

Recall that the application model limits inter-process communication to FIFO-based IPC
only. Theread andwrite symbolic instructions directly abstract the FIFO read/write
IPC. However, such symbolicread/write instructions are executed inside the processor
model. The question is: Why do we need to model yet another application-process related
context (router interfaces) when we already have the processors for that purpose? The answer
is rather intuitive: the refinement of the IPC symbolic instructions also depends on other non-
processor components - mainly those in the interconnectingnetwork. When data needs to
be moved between the network and a processor (or multiple processors), processors are only
partially involved. Data needs to be loaded and stored into the global FIFO memory. Also, on
the way to/from the global memory, arbitration for data-transfer lines takes place. These is-
sues were described when interface protocols were discussed (See Section 3.3.5). Hence, the
status of these network components and their dynamics act ina way which is complementary
to the processor components in the case of IPC. Network dynamics and global memory capac-
ity influence the schedules of the SP executions:read SI’s stall processor components until
sufficient data is available in the global memory andwrite SI’s will stall processor compo-
nents until sufficient space is available in the global memory. These stallings are the result of
the finite network throughput and the finite global memory capacity. Thus, these constraints
affect the way processor components push and pull data via the network and memory. By
considering both processor and network components, the IPCmodeling picture is complete.

In this subsection we provide an insight into the behavioralelements implementing the above
IPC refinements in router components. We mention them following the order in which the
IPC refinement is carried out: connection, synchronizationand transfer. In addition, we show
how network-generated interrupts are modeled.

Opening and Closing FIFO Connections

The opening and closing of read and write IPC connections is implemented inside the FIFO-
Input Controller (FICTRL) and the FIFO-Output Controller (FOCTRL) threads. The two are
essentially the same: the only differences consist of (i) the unit to which they are connected
(the RU or the WU processor thread) and (ii) their purposes (to establish either a read or a
write connection). Thus, we exploit their similarities to provide a general explanation of the
dynamic features of these threads.

Initially, a thread waits for a request to come from the processor unit. In the case of the
FICTRL thread, the request comes from the RU processor thread; in the case of the FOC-
TRL thread, the request comes from the WU processor thread (see Section 3.4.2). As soon
as the request arrives, the thread configures the appropriate connection based on the infor-
mation available within the interface component context36. The connection configuration

36Interface components are also known asrouters: WIF and RIF. See the explanation of the connection opening
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is performed according to the received ‘logical’ (application) FIFO identification number.
Eventually, the requester is given the acknowledgement that the connection is ready-to-use.

The opening of the FIFO connection can be modeled by means of auser-configurable delay
parameter. A FIFO connection is considered to close instantaneously. The closing is done
after read/write IPC have been completed (see Figure 3.2). The implementation details of the
FICTRL and FOCTRL threads are given in Appendix A, Figures A.16 and A.17.

Synchronizing FIFO Connections

The synchronization over FIFO connections is implemented inside the FIFO-Input Unit (FIU)
and the FIFO-Output Unit (FOU) threads. The two are essentially the same: the only differ-
ences are (i) the unit they are connected to (either to the reader or to the writer side of the
FIFO component) and (ii) their purpose (to load the data fromor to store the data in the FIFO
component).

The FIU thread is connected to (1) the read FIFO component side and to (2) the pull event-
synchronization channel. The FOU thread is connected to (1)to the write FIFO component
side and to (2) the push event-synchronization channel. In addition to these, the threads can
be connected to the bus arbiter component. That is, each timethe FIFO is accessed by either
of these threads, bus arbitration takes place.

The FIFO connection synchronization can be modeled by meansof a user-configurable delay
parameter. The implementation details of the FIU and FOU threads are given in Appendix A,
Figures A.18, A.19 and A.20.

Network Interrupt Modeling

We considered interrupt modeling in Section 3.4.2. The Readand Write interrupts are gen-
erated by some bookkeeping activities in the router components: the data and room status
information are acquired using the FIU and FOU threads. These status acquisitions (1) must
be done in a non-blocking way (i.e., status check must not interfere with the main IPC tasks
of the router component threads) and (2) should appear only when the relevant room and data
changes in the FIFO appear (i.e., ideally they should be performed only once, when the status
has already meaningfully changed - sufficient room or data spotted.).

These two ”rules” appear to be imprecise because we may not know explicitly when to gen-
erate an interrupt. Furthermore, the processor DOS channelis fundamentally dependent on
the presence of the status information (see Section 3.4.2).Thorough examination of the in-
teraction between processor components and the router components provides the following
guidance. Both writing-to and reading-from the FIFOs are operations generated at the pro-
cessor side; recall that, ‘push’ and ‘pull’ channels are blocked until processor WU and RU
threads generate requests. It is worth noting that when storing data to a FIFO component,
the processor component first writes to the router componentand then it may possibly apply
a block. Conversely, when loading data from a FIFO component, the processor component

protocol shown in Figure 3.2.
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may first apply a block if there is no data and then continue with the loading sequence. This
is visualized in Figure 3.2, in the push and pull protocol sequence parts. Consequently, (1)
room status can be obtained from the FOU thread of the write router component by acquiring
room status of a FIFO at the beginning of the push sequence and(2) data status requires an
independent polling mechanism which can be activated whenever there is a change in the
FIFO status from ‘empty’ to ‘data-has-just-arrived’.

Router-Interface Synchronous-Event Channels

The synchronous-event channels of the router-interface component model interconnection
data paths between internal router modules. This models theopening/closing/synchronising
connections and network-interrupts according to definitions for synchronous channels estab-
lished in Section 3.4.1 .They are thus namedsynchronous-event channels. There are two
internal synchronous event channels available: (1) A Pull Channel (PULL) and (2) a Push
Channel (PUSH). They model the pull and push protocols, respectively. The PUSH and
PULL channels are important parts of the router-interface components.

The channels have the same structures but complementary roles. The PULL channel provides
the means for the processor RU threads to pull data from the FIFO’s. The FIU thread connects
to the other side of the PULL channel and provides the interface to the designated FIFO
component. Similarly, the PUSH channel provides the means for the processor WU threads
to push data to the FIFO’s. The FOU thread connects to the other side of the PUSH channel
and provides the interface to the designated FIFO component.

3.4.4 Global FIFO Memory Modeling

To model storage in our architecture model we use the Global FIFO Memory component. The
global FIFO memory consists of a set of FIFO memory components. A FIFO memory com-
ponent is a buffer with two explicit access points: One for the writer and one for the reader.
Data being written are always appended (unless there is no room). Data being read are always
removed from the front (unless there is no data). Lack of roomor data in the buffer sets the
synchronization primitivescheck-room andcheck-data to a blocking state. Since they
are part of the FOU and the FIU threads inside of router-interface components, any further
queuing and removing activity for that buffer is blocked too. As soon as such condition dis-
appears, the corresponding threads in the peer interface components37 unblock any pending
data operation for that buffer and triggersignal-data or signal-room primitives. As
a result, FIFO components convey data according to a conditional-synchronization protocol
(check-room/signal-dataandcheck-data/signal-room- see Section 3.3.5).

A FIFO component is always connected to two configured router-interface components such
that only the particular FIU thread inside of read router-interface can load data from the FIFO
memory and that only the particular FOU thread inside of write router-interface can store data
into the FIFO memory - the FIFO connection cannot migrate over different router-interfaces

37A peer of a FOU thread in a WIF interface component connected to the writer side of a FIFO is a unique FIU
thread in a RIF interface component connected to the reader side of the same FIFO and the other way around.
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nor over different threads within a single router-interface. The execution of the conditional-
synchronization protocol primitives can be modeled by means of a user-configurable delay
parameter. If these primitives require such user-configuration, it is implied that they are
implemented in software (e.g., a dedicated processor, not visible to a user, executes these
primitives). Otherwise, the primitives are implemented inhardware, using particular logic
blocks.

3.4.5 Bus Arbitration Modeling

The Arbiter component models the bus contention. It consists of: 1) a semaphore [66] with
its initial value set to a number of bus-lines and 2) a priority queue [73]. When a bus-line
is requested and the semaphore value is not zero, the semaphore value is decremented. In
this case, a bus-requester does not block and can proceed with a transfer over the bus-lines.
Otherwise, if the current bus-semaphore value is zero, thenthe bus-requester applies a block
until the bus-semaphore is incremented, the latter being anindication that bus-lines have been
released. To make the bus schedule realistic, each bus contender queues its request based on
the time-stamp38 value. A requester releases the bus when it completes its transaction. This
event increments the bus-semaphore value and wakes up all waiting (blocked) requesters.
However, only the contender with the oldest request will getthe next bus access. It is worth
noting that the criteria by which the requests in the queue are managed, correspond to the bus
schedule. Depending on the implementation of this feature,different bus schedules can be
derived.

3.4.6 Measuring Performance

Our architecture model is abstract and non-functional. Thereason is simple - during the ex-
ploration process we are interested in performance numbers, not in produced data. Therefore,
the application functionality is modeled by a set of abstract architecture instructions, each of
which corresponds to a particular computation delay. Typically, application processes ex-
change tokens (data types) which must be translated into architecture data types, e.g., bits,
bytes, words, double words, etc. As a consequence, a single application SI may have to
be translated in a sequence of architecture SIs. Hence, the first step is to define an abstract
instruction set.

Abstract Instruction Set. An abstract instruction set (AIS) is a pair〈F, S〉 used to specify
symbolic instructions, whereF is a set of functions, the execution of which the architecture
model needs to simulate andS is a set with specifications of processor and network word
sizes.⋄

Apart from architecture SIs, the architecture model instance executes various communication
related delays. They can either be fixed assigned delays or implicitly generated delays. The
former are given as architecture structure component parameters. For example, an execute
SI must be specified in terms of a fixed delay. The latter results from the model instance
execution (simulation) and various time behaviors of the components. For example, a delay

38A time-stamp marks the ’time’ when the bus-request has arrived at the arbiter component.
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that appears as a consequence of blocking on either memory ordata availability falls into this
category.

We use fixed delays for scheduling, process migration, context switching, interrupt, commu-
nication connection switching, a single bus word transfer,a communication setup and both
data/room checking and signaling. Some of these may be ignored or are not applicable for
some platform instances (e.g., hardware accelerators and co-processors do not need schedul-
ing, context switching or other multi-programming functionalities).

CFSM Performance Measurement

The measuring mechanism of performance numbers is closely related to a dynamic TLM
model of the component CFSMs and the inter-thread communication channels. We collect
and accumulate both the explicit (fixed) and the implicit delays by summing and subtracting
the end-to-end time differences for each architecture functionality deemed to be a delay. This
produces a ’running’ time of an individual CFSM in a certain state. The CFSM running time
is a sum of running times in all its states.

For example, looking at Figure A.9 from Appendix A, the execution of a singleread sym-
bolic instruction by an RU thread inside of a processor component results in the unrolled
sequence of FSM states:IDLE 7→ SETUP 7→ STALL 7→ RUN 7→ IDLE, where ”7→”
defines the total order between the states from left to right.The delay of theSETUP state
can be assigned by means of user-configuration, and the delayof theSTALL state is implicit
due to the fact that it depends on the conditional synchronization with a separate component
(a read router-interface component connected to the processor component). Finally, depend-
ing on the user configuration, theRUN state can contribute to both the explicit delay (so
called ”budget” of aread SI) and the implicit delay (storing data coming from the outside
in the specific internalread operand FIFO). Each time aread SI arrives, all states are
affected according to (1) the assigned delay parameters and(2) implicitly generated delays
due to conditional synchronization. As a result of these delays the RU CFSM running time
is altered, the other CFSMs interfacing the RU module are also altered and finally, the total
system simulated time is altered.

Equations 3.1 and 3.2 more formally express the measures;TS stands for the running time
of stateS, delayi expresses a fixed-parameter delay (i indexes through all delays of stateS),
updateaccounts for a collection of implicit delays caused by condition-synchronization (j
indexes through all updates of stateS) andTM stands for the running time of the moduleM
with statesSk (k indexes through all states of the moduleM).

TS =
∑

i

delayi +
∑

j

update(j) (3.1)

TM =
∑

k

TSk
(3.2)
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Component Performance Measurement

However, running time must be calculated differently for a component than for a module
since modules may run concurrently. The running time of the component cannot be derived
by a simple sum of all running times. Rather, we look for an end-to-end delay because it
gives us the running time of the component. The start time is found as a minimum of start-up
time-stamps of all modules within the component. Each module39 acquires this start-up time
at the start of the execution. The end time is found as a maximum of stop time-stamps of all
modules within the component. Each module acquires this stop time when it is blocked and
there are no inputs available40.

For example, looking into the processor with compile-time pipelining of symbolic instruc-
tions (see Section 3.5.1), each of its CFSM modules, PU, FECTRL, BECTRL and the sets
of RUs, WUs and EUs, have their specific start-up time-stampsand stop time-stamps. The
processor component running time is determined by a difference between the highest stop
and the lowest start-up time-stamp values. If an RU module has a lowest start-up time-stamp
and the PU module has the highest stop time-stamp, then thesetwo time-stamps determine
the processor component running time.

Equation 3.3 expresses more formally this end-to-end measure; TB stands for the running
time of the componentB (which may be a processor or a interface),max(

⋃
i

TEi
) represents

theend timeof the componentB (i indexes through all modules ofB component,TEi
refers

to the stop time stamp of the modulei andmaxextracts the maximal value) andmin(
⋃
i

TOi
)

represents thestart timeof the componentB (i indexes through all modules ofB component,
TOi

refers to the start time stamp of the modulei andmin extracts the minimal value).

TB = max(
⋃

i

TEi
) − min(

⋃

i

TOi
) (3.3)

The running time of the whole architecture is calculated in the following way: we look for
the maximum end time of all components41 and the minimum start time of all components42

and we define the difference between this maximum and minimumas the running time of the
architectureW (i.e.,TW in Equation 3.4).

TW = max(
⋃

i

TBE
i
) − min(

⋃

i

TBO
i
) (3.4)

39A module is described by a single CFSM.
40This phenomena we named the artificial deadlock.
41T

BE
i

in Equation 3.4, wherei indexes through all components in the architecture andE stands for an end time
stamp.

42T
BO

i
in Equation 3.4, wherei indexes through all components in the architecture andO stands for a start time

stamp.
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Architecture Timing Model

Based on the CFSM timing model and the component timing model, we have the following
definition of the timing model.

Timing Model. The timing model of the architecture model instance is defined as the 3-tuple
〈A, D, T 〉 where,A is the abstract instruction set for that instance,D is a set of assigned
delays for each state of a CFSM, for each CFSM in a component, for each component in
the architecture andT is a set of calculated performance measurements (TS, TM , TB, TW )
obtained during the system simulation.⋄

It is worth noting thatA andD (abstract instruction set and assigned delays) are established
through a mapping prepossessing phase calledcalibration. This is not a trivial task at all,
and due to that, it is probably impossible to automate. The calibration has a major impact
on accuracy of an architecture model instance, since it is driving the configuration of that
instance. There is some research work done in the area of calibration of DSE [74], but
none of it’s results can be acquired ”as is” in our architecture model. An exemplification of
calibration issues is given in the next chapter, Section 4.5.3.

3.5 Examples

In this section we present examples of different flavors of components (processor-types,
router-types, bus-types) which can be instantiated based on the structural and behavioral ar-
chitecture elements described earlier.

3.5.1 Model of the Processor Compile-Time Pipelining

The processor with compile-time pipelining of symbolic instructions is an architecture com-
ponent which: (1) represents a model of the single processorcore of an embedded multipro-
cessor, (2) can execute only a single SP, (3) can execute manysymbolic program instructions
in parallel but only when they are specified in the SP as bundles 43 of mutually independent
SIs -compile timeand (4) can reuse internal resources to read (write) different FIFOs - appli-
cation (logical) FIFO identifiers are decoupled from the identification of architecture FIFO
components [32].

The processor with compile-time pipelining of symbolic instructions consists of the following
threads: the extraction and fetching thread (PU in Section 3.4.2), the symbolic instruction
scheduling thread (FECTRL in Section 3.4.2), the symbolic instruction dispatching thread
(BECTRL in Section 3.4.2) and a specified number of executionthreads of read, execute and
write type (RU, EU and WU in Section 3.4.2, respectively).

The topology description of this processor type component (i.e., which threads are intercon-
nected by which channels) is as follows (see Figure 3.5):

43This term is commonly used by the compiler community when they refer to scheduling a set of partially assem-
bly instructions on top of a VLIW processor [64].
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• the PU thread is connected to the FECTRL thread through a read-write blocking chan-
nel (RWB),

• the FECTRL thread is connected to the BECTRL thread through aread-write blocking
channel (RWB),

• the BECTRL thread is connected to a configured number of RU, EU, WU threads by
the blocking dispatcher channel (BD).
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Figure 3.5: Internal structure of the processor with compile-time instruction scheduling.

The configuration parameters of this processor component are given in the mapping chapter,
Chapter 4.

3.5.2 Model of the Processor Run-Time Pipelining

The processor with run-time pipelining of symbolic instructions is an architecture component
which: (1) represents a model of the single processor core ofan embedded multiprocessor, (2)
can execute only a single SP, (3) can execute many symbolic program instructions in parallel
irrespective of whether or not they are specified in the SP as bundles of mutually independent
SIs - if they are not, then the parallelism is established atrun-timeand (4) can reuse internal
resources to read (write) different FIFOs [75].

The processor with run-time pipelining of symbolic instructions consists of the following
threads: the extraction and fetching thread (PU), the symbolic instruction scheduling thread
(FECTRL), the symbolic instruction dispatching thread (a modified version of BECTRL,
Section 3.4.2), the dispatching threads for each type of symbolic instruction (R-BECTRL,
E-BECTRL, W-BECTRL) and a specified number of execution threads of read, execute and
write type (RU, EU and WU, respectively). In addition, the processor with run-time pipelin-
ing of symbolic instructions makes use of the following channels: the read-write channel with
non-blocking methods to examine the possibility of partialretrieval of an SI-bundle44 and a

44This is a Peek-RWE channel, Section 3.4.3. Note that this channel transports partially ordered instructions -
SI-bundle.
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data-operand-flow channel which keeps the data45.

The topology description of this processor model (i.e., which modules are interconnected by
which channels) is as follows (see Figure 3.6.):

• the PU thread is connected to the FECTRL thread through a read-write blocking chan-
nel (RWB),

• the FECTRL thread is connected to the BECTRL threads througha peek read-write-
execute channel (Peek-RWE),

• the BECTRL thread is connected to the R-BECTRL thread through a read-write block-
ing channel (RWB),

• the BECTRL thread is connected to the E-BECTRL thread through a read-write block-
ing channel (RWB),

• the BECTRL thread is connected to the W-BECTRL thread through a read-write block-
ing channel (RWB),

• the R-BECTRL thread is connected to a configured number of RU threads through a
particular instance of the blocking dispatcher channel (BD),

• the E-BECTRL thread is connected to a configured number of EU threads through a
particular instance of the blocking dispatcher channel (BD),

• the W-BECTRL thread is connected to a configured number of WU threads through a
particular instance of the blocking dispatcher channel (BD),

• the RU threads are connected to the EU and WU threads and the EUthreads are con-
nected to the WU threads through a symbolic instruction operand crossbar (SIOC).

The configuration parameters of this processor component are given in the mapping chapter,
Chapter 4.

3.5.3 Model of the Programmable Multi-Processor

The programmable multi-processor is an architecture component which: (1) represents a
composition of multiple identical (homogeneous) single processor cores in an embedded
multiprocessor, (2) can execute multiple SPs, (3) can migrate the SP executions over dif-
ferent processor cores at run-time, (4) can execute many symbolic program instructions in
parallel only if they are specified in the SP as ordered SIs and(5) can reuse internal resources
to read (write) different FIFOs. Later in this thesis we use the programmable multi-processor
component when modeling many-on-many mappings46.

The programmable processor component is shown in Figure 3.7. It consists of the follow-
ing composite modules, threads and channels: a set of composite modules which model the

45This is an SIOC channel, Section 3.4.3.
46See Chapter 4, Section 4.5.3.
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Figure 3.6: The processor with run-time instruction scheduling.

multiple program memory spaces (see SPS in Section 3.4.2), the operating-system channel
(see DOS in Section 3.4.2), the modules to report on the network status (see RIC and WIC
in Section 3.4.2) and a set (a configured number) of single processor cores (see SPU-core in
Section 3.4.2).

The topology description of the processor model (i.e., which units are interconnected by
which channels) is as follows (see Figure 3.7):

• the number of SPS modules (each SPS module corresponds to a single application
process) are connected to the number of SPU-cores (each SPU-core corresponds to
a single processor core in a multiprocessor) through the distributed operating-system
channel (DOS),

• the RIC thread is connected to the SPU-cores through the DOS channel,

• the WIC thread is connected to the SPU-cores through the DOS channel.

The configuration parameters of this processor component are given in the mapping chapter,
see Chapter 4.

3.5.4 Model of the Routing Interfaces for a Point-to-Point Network

The point-to-point routing interfaces are architecture components which: (1) model the rout-
ing over an interconnect of exclusive data-transfer lines,(2) move data from the processor
IPC context to the network IPC context and vice-versa, (3) synchronize data accesses to the
global FIFO memory buffers and (4) move the data to and from the global FIFO memory.
There is no resource contention in this case - the performance of the network architecture,
considered in isolation of the application model (representation), is fully dependent on the
global FIFO memory capacity.
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There are two complementary types of point-to-point routing interface: 1) The read network
interface (RIF), through which all refinedread symbolic instructions are routed and 2) write
network interface (WIF), through which all refinedwrite symbolic instructions are routed.

The RIF router (Figure 3.8) consists of: one pull channel (PULL in Section 3.4.3), a config-
ured number of FIFO input-controller modules (FICTRL in Section 3.4.3) and a configured
number of FIFO input-modules (FIU in Section 3.4.3). The number of FICTRL modules in
the RIF component is equal to the number of RU modules in the processor component con-
nected to that RIF component. The number of FIU modules in theRIF component is equal to
the number of FIFO components connected to that RIF component 47.

The configuration parameters of this processor component are given in the mapping chapter,
Chapter 4.

The WIF router (Figure 3.9) consists of: one push channel (PUSH in Section 3.4.3), a config-
ured number of FIFO output-controller modules (FOCTRL in Section 3.4.3) and a configured
number of FIFO output-modules (FOU in Section 3.4.3). The number of FOCTRL modules
in the WIF component is equal to the number of WU modules in theprocessor component
connected to that WIF component. The number of FOU modules inthe WIF component is
equal to the number of FIFO components connected to that WIF component48.

The configuration parameters of this processor component are given in the mapping chapter,
Chapter 4.

47If the number of FICTRL modules isr and the number of FIU modules isf , then the rule which applies is:
r ≤ f .

48If the number of FOCTRL modules isw and the number of FOU modules isf , then the rule which applies is:
w ≤ f .
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3.5.5 Model of the Routing Interfaces for a Shared Bus Network

The shared bus routing interfaces are architecture components which: (1) model the routing
over shared data-transfer lines, (2) move data both ways between the processor IPC con-
text and the network IPC context, (3) synchronize data access to the global FIFO memory
buffers and (4) move data to and from the global FIFO memory. There is possibly a resource
contention when using shared bus and that affects performance of the network architecture.

The model of shared bus router component is based on the point-to-point component model
introduced in Section 3.5.4 and conveniently modified to match the shared bus communica-
tion case. The changes affect the FIU and FOU modules inside the RIF and WIF routing
components respectively: before data transfer can take place, the shared data transfer lines
must first be claimed and, after data transfer has finished, the shared lines must be released
(see the bus-protocol example in Section 3.3.5, illustrated in Figure 3.2).

3.5.6 Model of the Routing Interfaces for a Burst Bus Network

The burst bus routing interfaces are architecture components which: (1) model the routing
over the shared data-transfer lines, (2) move both ways between the processor IPC context
and the network IPC context, (3) translate data-tokens to fitthe packet size of the burst bus, (4)
cache data in the routing interfaces, (5) synchronize data access to the global FIFO memory
buffers and (6) move data to and from the global FIFO memory inpredefined chunks of data.
In this case, there is not only a resource contention but there are also data delays caused by
buffering of data which affects performance of the network architecture.

The model of the burst-bus router component is based on the shared-bus component model
introduced in Section 3.5.5 and conveniently modified to match the burst bus communica-
tion case. The changes affect the FIU and FOU modules inside the RIF and WIF routing
components respectively. However, unlike the modifications in Section 3.5.5, which were
symmetrical (the same change applies for both the RIF component and the WIF component),
the burst bus changes are asymmetrical. The change at the WIFcomponent side accounts for
the fact that the WIF component must provide more concurrency and smarter buffering inter-
nally than is the case for the WIF component in the point-to-point connection (Section 3.5.4)
and the WIF component in the shared-bus connection (Section3.5.5). The change at the RIF
component side is rudimentary; in the burst bus case the FIU module of an RIF component
may have already retrieved more data than it really needs so that when the next symbolic
read instruction arrives the RIF component will immediately deliver the already retrieved
data to the processor.

There are pros and cons when transferring data using burst-packets. The pros are: 1) Data is
retrieved by a burst-RIF component earlier than what is needed by the processor RU modules
- this implies that data is delivered faster than with non-burst buses; 2) The number of bus-
transactions is less than the number of transactions in the case of non-burst buses. This is
because data is already fetched (or cached within an RIF component) so less bus-transfers are
needed. There are two cons. Firstly, since the data is transferred in bursts, WIF components
must buffer a few consecutive transfers to the same FIFO buffer. Buffering is dictated by
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the burst-word size which may not ideally match the size of the data indicated inwrite
symbolic instructions. In order not to cause a hangup in the WIF component due to lack of
data in the burst packet, the burst-translation (buffering) is guarded by a buffering interval.
So, if for a long time there are no morewrite symbolic instructions targeting the particular
FIFO, the burst data-transfer will take place with the amount of data being buffered. This
means that infrequent and smallwrite symbolic instructions will de-grade the network
performances. Secondly, if the amount of buffered data is not equal to the burst-packet size
(the case of insufficient data in WIF), the remaining space inthe packet, when the burst
occurs, will be filled with useless data. Therefore, the efficiency and the throughput may be
lower than expected.

3.5.7 A Heterogeneous System

A heterogeneous system consist of a heterogeneous multiprocessor and a heterogeneous com-
munication network. It can be modeled using all the previously described components. Here,
we give a brief description (example) of such a system.

Let us assume that the aim is to model a coprocessor-based embedded system, consisting
of a programmable processor (see Section 3.5.3), global memory accessible via burst bus
(see Section 3.5.6), coprocessors (see Sections 3.5.1 and 3.5.2) and a dedicated memory used
for communication between processor and coprocessors (seeSection 3.5.4). The structural
model of this system49 is shown in Figure 3.10. The communication network is surrounded
by a dashed line. The top-part of the network in Figure 3.10 isthe network part with dedicated
channels. The bottom part of the network in Figure 3.10 is thebus-based network part.

The ability to model heterogeneous embedded system architectures is crucial because - as we
will see in Chapter 4 - heterogeneous embedded multiprocessors are the ultimate architec-
tures for mapping streaming applications. In addition, designers may acquire very important
information about the ‘cost vs. performance’ ratio using the heterogeneous embedded sys-
tem modeling scheme. That is, they are able to estimate e.g.,whether mapping some part of
the application onto a pure hardware processors and dedicated channels is justified from the
performance improvement point of view or not, as well as whether it is acceptable from the
cost impact point of view or not.

3.6 Related Work

Closely related to the architecture modeling described in this thesis are the other symbolic
instruction driven architecture models:Spade andSesame. The difference comes from
the representation used to capture these symbolic instructions: instead of symbolic programs
these two models use linearly (i.e. totally) ordered traces. The symbolic instruction traces
drive the (non-functional) architecture model which interprets the transformed symbolic in-
struction in terms of performance and cost values.

49The programmable processor is marked asMT-proc., coprocessors are marked ascompile-T, the global
memory is light-shaded and the dedicated memory is dark-shaded.
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Figure 3.10: Model of a heterogeneous system.

3.6.1 Spade Architecture Modeling

In this section we present a brief description of the architecture modeling in the Spade
methodology. The methodology was mentioned briefly in Chapter 1, Section 1.6.1. For
the methodology, we refer to [7] and [33].

TheSpade architecture modeling resembles apioneeringapproach. It was the first to make
use of the separation of concerns by using application and architecture symbolic instructions.
Therefore, the architecture model focussed fully on timingrather than on functional perfor-
mance.

I/O Port

read

execute

w
rite

TD Execution Unit

Bus I/F

Proc.
Unit

D
ire

ct
 I/

F

Bus

Architecture model

Figure 3.11: TheSpade TDU related execution unit
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The Spade architecture model is based on thetrace-driven(TD) approach [76]. The ar-
chitecture components are generic building blocks withoutany functional behavior but with
a parametrized timing (delay) behavior. The processors aremodeled using theSpade TD
execution unit (TDU). The network interfaces, interconnections and memory are basically
Point-to-Point(PtP) FIFO connections, which may be temporally scheduled by a semaphore
(a bus model).

A TDU accepts symbolic instructions from the architecture trace of symbolic instructions (see
Figure 3.11). The traces of symbolic instructions are mentioned in Chapter 2, Section 2.1.
The symbolic instructions may either be the non-refined symbolic instructionsread,write
andexecute from the application trace, or may be their refined versionscheck-data,
load, signal-room, checkroom, store, signal-data andexecute obtained by
applying trace transformations in the mapping layer [30]. In both cases, there is a strict or-
der among the symbolic instructions within a trace: either symbolic instructions are strictly
ordered, or at least, there is a strict order between theload-execute-store sequences.
Hence, rather than re-arranging (rescheduling) the strictly ordered trace, a TDU executes the
symbolic instructions in the given order. This implies thatpotential concurrency hidden in the
application process cannot be exploited by TDUs: neither dotraces keep such information,
nor do TDUs make use of such information. Indeed, in [30] a setof possible trace transfor-
mations were presented as a possible way out of the above restriction. However, recall that
trace symbolic instructions do not capture process controlconstructs. Possible trace transfor-
mations are, therefore, limited in number. Consequently, the number of realistic architectures
that can be modeled usingSpade architecture modeling is rather limited.

3.6.2 Sesame

In this section we present a brief description of the architecture modeling in the Sesame
methodology. For the methodology, we refer to [36].

The main differences betweenSpade andSesame architecture are: (1) theSesame archi-
tecture models are implemented rather using thediscrete event simulation language[35] than
thecycle-driven simulation language[7] and (2) theSesame architecture models are based
on refined application symbolic instructions [30]. This allows for significant modeling-space
and simulation-time improvements overSpade. Nevertheless, the architecture components
still follow the basicSpade idea: they are essentially non-functional timing (delay) blocks.

Comparing to other the models described in this thesis, we can conclude that the concept of
Sesame’s virtual processors [36] is strongly influenced by the symbolic program paradigm [11,
32]. However, unlike our model, which refines application symbolic instructions into archi-
tecture symbolic instructions in the architecture components, theSesame model expects
this to be done in the mapping model, before reaching the architecture component. More-
over, each symbolic trace is bound to a dedicated architecture component and this makes
context-switching and context-migration unrealistic or even impossible50. Finally, the virtual
processors are essentially bound by the particular Synchronous Data Flow (SDF) graph [77]:
the input trace-sequence is essentially a repeatable pattern of read, execute andwrite

50In other words, homogeneous multiprocessing cases or even multitasking cases are not realistically modeled.
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symbolic instructions. If the trace-sequences are random or are not periodic, the SDF graph
becomes increasingly complex. At this point,Sesame tries to solve this problem by fol-
lowing the main ideas of symbolic programs and control points - it re-uses the CDFG-like
selectionand iteration constructs, but it names them differently:CASE-BEGIN/END and
REPEAT-BEGIN/END [36]. However, the SDF graph may be sensitive to the data-setbe-
cause the separation of concerns has not been applied on the traces, so that both the data-set
dependent and data-set independent elements are still in a single trace of symbolic instruc-
tions. Thus, the same application, which is highly data-dependent, may produce a different
read-execute-write sequence when processing a different data input (e.g. a different
JPEG image or a different MPEG stream), which also implies that the architecture instance
below the virtual processor may vary (may differ) from one data set to the another data set.
In such a case, the number of the SDF graphs needed is non-determinate, which also implies
that the model is not reusable because it is not generic. On the contrary, in our model this
issue cannot appear because the architecture model components at the simulation time decide
what is theread-execute-write sequence to be executed and, thus, they are insensitive
to any relative pattern within this sequence.



Chapter 4
Mapping Modeling

E Pluribus Unum.1

4.1 Summary

This chapter deals with methods to relate application models to architecture models. These
methods transform the representation of the application model to the representation of the
architecture model. Together they constitute what we call the mapping of the application
on the architecture. The application representations are mainly process representations in
the form of symbolic programs. The architecture representations are architecture specific
symbolic programs that differ from the application specificsymbolic programs. The mapping
transformations aim to bridge the mismatch between the two symbolic programs. The chapter
presents the various mapping steps and mapping techniques and illustrates the process by
means of case-studies.

4.2 Introduction

Because we separate the application model from the architecture model, there is in general
no match between these models, except for the fact that the application is specified in a par-
allel language [78] or model of computation [18] and the architecture is specified in terms of
interconnected components [32]. These components in the architecture behave in general in
a different way to the process counterparts in the application. The two behaviors have thus to

1From many, (comes) One. In original: color est e pluribus unus. The phrase originally came from ”Moretum”,
a poem attributed to Publius Vergilius Maro - known in English as Vergil - (70 B.C.-19 B.C.) a classical Roman
poet who completed Aeneid. Much later, the motto was selected by the first Great Seal committee in 1776, at the
beginning of the American Revolution.
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be related in one way or another. In other words, a transformation of the application behavior
into the architecture behavior needs to be performed in order to deal with unavoidable mis-
match between the two models. This transformation we callthe mapping of the application
on the architecture. In our case, we want to apply transformations on the symbolic program
representations of application processes and their architecture component counterparts. The
mapping process starts out with the assignment of application process and communication
channels to architecture processor components and storagecomponents, respectively. Once
an application process is assigned to an architecture processor component, the symbolic pro-
gram that represents the application process has to be transformed to the corresponding ar-
chitecture processor component symbolic program that is composed of processor component
native instructions which are - in general - different from the instructions in the applica-
tion symbolic program. Of course, the ’native instructions’ of the processor component are
purely symbolic - that is, they do not encompass any functional behavior, only latency and
throughput annotations. To illustrate a gap between application and architecture symbolic in-
structions we provide the following example: An application instructionread may translate
to an architecture instruction tuple〈check-data,load-data,signal-room〉 as given
in [30]. The mapping of an application to an architecture is considered to be the third indepen-
dent part in a system model. Thus, in Design Space Exploration and Performance Analysis
of a System, one can, and in general will, deal with alternatives in all three parts: applica-
tion model, architecture model and mapping transformations, all at the appropriate level of
abstraction and in anexploration-drivenembedded system design process. The latter is differ-
ent from a synthesis-driven embedded system design processalthough the exploration-driven
approach should not be such that a designer cannot rely on it to perform synthesis.

As a matter of fact, the user of a DSE methodology2 should be able to recognize DSE map-
ping based on his understanding of what the mapping stands for in a traditional synthesis
driven design process. That is, there should be a strong resemblance between: (1) The map-
ping actions in traditional embedded system design processes, and (2) DSE mapping steps.
In a traditional synthesis-driven embedded system design process, applications are speci-
fied using a high level language3 (HLL) and architectures (SoC) are chosen based on their
availability, stated performance, reconfigurability, andsupport for a software development kit
(SDK). In the most general sense, SDK includes tools such as compilers, linkers and OS im-
ages. The traditional mapping (for embedded system synthesis), then follows as an iterative
process consisting of:

1. Binding - the assignment of the application processes to architecture processing units
and the application IPC to architecture communication resources,

2. Porting - rewriting the HLL specification in order to meet the hardware description
language (HDL) or SDK requirements and the architecture features,

3. Translation - manual and automatic (tool) actions which will produce architecture spe-
cific object (instruction) code for each bound and ported application entity,

4. Building - the creation of thesystem imagewhich can be loaded and executed on that
particular architecture,

2The builder of an embedded system.
3C, C++, Java, Matlab, ...
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5. Integration - making of loaders and start-up scripts and embedding them together with
the system image into the SoC, and finally,

6. Performance Test & Verification - running the integrated SoC system with whatever
set of data in whatever environment in order to verify the behavior and to test the
performances.

We argue that the DSE mapping described in this thesis resembles most of the traditional
mapping for synthesis steps, and thus, it fits the user’s needs better than some other DSE
methods [34]. The user does not need to fundamentally changehis understanding of ’map-
ping’, since the traditional design-for-synthesis steps are preserved. The only requirement for
the user is to keep in mind that asystemis a simulation program andnot a synthesized sys-
tem image, as well as that the modeled architecture is characterized in terms of latencies and
throughput and not in terms of functionalites. In any case, the triple〈 application model,
architecture model, mapping transformations 〉 is again a model, the system-model.

4.2.1 Chapter Organization

This chapter is organized as follows. Firstly, we roughly introduce the mapping specification
in Section 4.3. Secondly, in Section 4.4 we define and illustrate the steps needed to create
the mapping specification. Thirdly, in Section 4.5 we show some exploration cases and their
results. Finally, in Section 4.6 we list and explain the maincontributions of our approach
versus some related mapping modeling approaches.

4.3 Mapping Specification

The mapping of an application model instance onto an architecture model instance is com-
pleted when a designer creates4 a so-calledmapping specification. Roughly speaking, the
mapping specification establishes unambiguousworkload-versus-resourcerelations, namely:
(1) a relation between the computational workload of an application representation and the
computation resources of an architecture model, and (2) a relation between the communica-
tion workload of an application representation and the communication resources of an archi-
tecture model.

Once the mapping specification is ready, it is parsed and aSystemC file is generated. By
compiling this file with the library of architecture models (see Chapter 3) the simulation pro-
gram is created. By running this simulation program on a particular data-set (see Chapter 2)
we get simulation numbers for that data-set.

In the following section we identify the steps needed to establish a mapping specification,
and consequently, to create a simulated system program.

4In order to create a mapping specification a designer may use atool-set, follow a mapping methodology, or rely
on hisknow-howi.e. mapping-experiences.



82 Mapping Modeling

M a p p i n g

Application Model

Architecture Model

Producer Consumer

msg N

size n’

msg M

size m’ size a’

msg
A

FIFO

Arbiter

W
I
F

R
I
F

bus synchbus synch

mem synchmem synch pull synch

connect

data lines

Processor

Consumer

Processor

Producer push synch

connect

data lines

bus lines

100% 70%

burst−word 2burst−word 3 burst−word 1burst−word 4

write

port

read

port

Figure 4.1: Mapping of the application model onto the architecture model

4.4 Mapping Steps

Figure 4.1 illustrates that a mapping is needed to associateapplication models with architec-
ture models.

The application model is the Kahn Process Network (KPN). Therefore, the application behav-
ior is preserved, but no resource constraints have been decided yet (See Chapter 2). Having
such application model helps to create multiple data-sets cheaply; the output of a KPN for
a given input data is invariant to the KPN schedule. Hence, the application simulation data
can be generated independently of mappings. If the application KPN does not change, the
symbolic programs do not change either, so the application simulation data is limited to data-
dependent control traces.

The architecture model is based on a library of components (See Chapter 3). The architecture
components exchange data based on architecture SIs. However, these SIs are different to
the SIs coming from the application representation. Architecture components are unaware of
functional behavior, they can only produce latency (delays) and throughput (synchronization).
Moreover, the data used by the architecture components has precise granularity, while the
data in the application has varying length, it is abstract, and it is generally too complex for
immediate use in the architecture. Therefore, it is necessary to translate annotations coming
from symbolic programs into architecture SIs.
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In practice, the mapping is an iterative process consistingof a set of subsequent steps (see
Section 4.2) rather than a high-level, coarse-grained, monolithic job. Similarly to the prac-
tice, a DSE mapping shown in Figure 4.1 cannot be a monolithicjob since the gap between
application model and architecture model is too big. Therefore, we have to identify steps
for our mapping model similar to the existing steps in this socalled ’traditional mapping
for synthesis’. Identifying the mapping modeling steps is dependent on the following two
aspects: (1) what is the modeling goal (accuracy vs. abstraction) and (2) what are the flow
types (platform vs. budgeting). We have indicated in Chapter 1 that our modeling method
aims at both abstraction and accuracy. Regarding the secondaspect, our method flow is rather
platform-based since the mapping input is fixed to a large extent and the main architecture
functions are described in terms of architecture primitives (architecture model is a repository
of parametrized library components). As a matter of fact, this is the one of the reasons our
mapping model resembles realistic mapping implementationsteps.

We recognize the following four steps in our mapping modeling:

• Binding - the assignment of the components of application representation to the com-
ponents of architecture representation,

• Matching - translating abstract data types and high-level application behaviors into
architecture model data and instruction types,

• Refinement - translating application symbolic programs into architecture symbolic pro-
grams of suitable granularity and quality, and

• Transforming - pre-processing architecture symbolic programs and architecture con-
trol traces in order to expose more parallelism among symbolic instructions of sym-
bolic programs, to create smaller symbolic programs, to reduce the number of loops in
symbolic programs, to reduce number of conditional constructs, etc.

The order in which these steps are applied may vary for different mappings. Some steps may
be performed more than once or they may not be performed at all- depending on a mapping
case. For example, matching, transformation and refinementsteps may be repeated many
times in order to create an appropriate mapping.

4.4.1 Binding Step

The application KPN model executes the application on a single data set, resulting in the
pairs〈symbolic program,control trace〉, where onlycontrol trace depends on the data
set (see Chapter 2). The architecture model is a network of interconnected architecture com-
ponents (see Chapter 3). Binding is the assignment of: (1) symbolic programs and control
traces to processor components, and (2) KPN channels to architecture communication com-
ponents (routers, FIFOs and arbiters). For example, in the example shown in Figure 4.1 the
binding is of type 1-on-1, whereProducer process is bound toProducer Processor
andConsumer process is bound toConsumer Processor, and the channel between
Producer andConsumer is bound to aFIFO component, betweenProducer Proces-
sor andConsumer Processor.
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4.4.2 Matching Step

Having symbolic programs bound to the architecture components leaves many issues open
such as: (1) the relationship between the width of the processor component words and the
annotated size in the symbolic instructions of the symbolicprogram(s) bound to that pro-
cessor, (2) the types of the processor component primitivesversus the number of different
execute symbolic instructions of the symbolic programs(s) bound tothat processor, and
(3) the relationship between the width of the communicationinterface words and the anno-
tated message size inread andwrite symbolic instructions of the symbolic program(s).
Therefore, the usual step that follows the binding step is a translation of the data types and
primitives (symbolic instructions) from the bound symbolic programs to the data types and
primitives (symbolic instructions) of the CFSMs of the architecture components (see about
abstract instruction setandtime measurementin Chapter 3, Section 3.4.6). We call this step
Matching.

Firstly, we need to examine an SI-subtype for each symbolic instructions-type. In the case of
anexecute SI the SI-subtype differentiates among different computation functions, and in
the cases ofread andwriteSIs the SI-subtype differentiates among different target FIFOs.
When all possible SI-subtypes belonging to SIs within an SP bound to a particular processor
component are detected, we need to associate the input and the output arguments with these
SI-subtypes. In the case ofread andwrite SIs these are single arguments since only a
single data item can be read from or written to a FIFO. In the case of anexecute SI these
will in general be a list since anexecute can take many inputs and produce many outputs.
However, there are two exceptions where anexecute contains either one-or-more outputs
or one-or-more inputs: A source process (or processes) of the application KPN, and a sink
process (or processes) of the application KPN. Finally we need to examine budgets in these
SIs5. Budgeting of an SI determines the volume of communication or computation which the
SI will model. In the cases ofread andwriteSIs the budget number represents a token size
to be read from or written to the target FIFO. In the case ofexecute SI, the budget number
represents the worst case execution time for the annotated computation function. Therefore,
the budget says either how many times an EU CFSM in the processor component is going to
repeat a computation delay, or how many times an RU CFSM or a WUCFSM in the processor
component is going to repeat a communication delay. It is worth noting that the computation
delay may refer to a single instruction, a basic block, or an atomic routine (depending on
the choice) whilst the communication delay refers to the transfer of a single communication
word to-or-from a processor. For instance, in the example shown in Figure 4.1, the matching
is done between the sizes of the application messages (msg A, msg M, msg Nand their sizes
size a’, size m’, size n’, respectively) and the burst-words in the architecture (burst-word 1,
burst-word 2, burst-word 3, andburst-word 4). Note that some burst-words are 100% filled
with valid data, while some others are not - nevertheless, all of them cause the same delay.

Obviously, the most critical task in this step is to establish the budget such that the matching
between an SI and an architecture primitive is as good as possible at this level of abstraction6.
This is also known as acalibration. The calibration is not directly part of DSE, but it is
rather a pre-processing step for DSE. It is a matter of relating parameters at two levels of

5See Figure 4.1, differentsizes model different communication budgets in the applicationmodel part.
6Remember, in Chapter 3, we defined our models asTransaction-Level Models.



4.4 Mapping Steps 85

abstraction: (1) The abstraction level of the application model, and (2) the abstraction level
of the architecture model. In this sense, we could say that the ’calibration’ is a form of
matching and that it could be done for all components in the architecture model library, once
and forever. However, actual architectures cannot always be specified in terms of the available
library components, and the calibration step is really difficult in these cases. Therefore, the
matching step for calibration purposes must be repeated as many times as needed (e.g., until
simulation results of the calibration case reach saturation, or until simulation results of the
calibration case reach some reasonable or sought accuracy.).

4.4.3 Refining Step

This step always exists due to the fact that there is a mismatch between the application model
representation and the architecture model representation. For example, the symbolic pro-
grams may base computation and communication on tokens thatare atomic for the application
model whereas they are composite tokens in the architecturemodel. Furthermore, the com-
ponents communicate using primitives other thanread andwrite. In Chapter 2 we have
already defined the horizontal refinement as the creation of more instructions of the same type
that act on the tokens of granularity which are smaller than the original instruction. Similarly,
we have defined the vertical refinement as the creation of moreinstructions of different types
that act on the tokens of the same granularity as the originalinstruction. For example, in the
example shown in Figure 4.1 we show the vertical refinement between: 1)read andwrite
symbolic instructions visible as read/write ports at the application side, and 2) complex par-
tially ordered sequences ofpush-pull, signal-wait data-room, connection,
bus claim/grant synchronization protocols anddata andbus transfers.

Obviously, the refining step is closely linked with the matching step. For example, by means
of the horizontal refinement we change the size-annotation in the SIs, while we determine
the appropriate size-annotation by matching. In this chapter we exemplify these refinement
strategies.

4.4.4 Transforming Step

In a sense, binding, matching, and refining are also transformations. Nevertheless, the Trans-
forming Step refers to the transformations which affect theorder among SIs in a symbolic
program. In general we consider two sorts of transformations: (1) platform-independent,
and (2) platform-dependent. The former do not require any prior knowledge of architecture
(buffer sizes, timing-info, or similar) while the latter do. Platform-independent transforma-
tions are in a way part of the application modeling. The SP example shown in Chapter 2,
Figure 2.13, is a platform-independent detection of variants of partially ordered SIs within
a symbolic program. However, in order to derive some more sophisticated SI scheduling,
we need architecture timing and architecture constraints as well. Therefore, the platform-
dependent transformations can take place only after binding, matching, and refining steps.
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4.5 Mapping Cases

The target architectures in the case-studies have been modeled using the components intro-
duced in Chapter 3. To reach the appropriate mappings, however, we had to iteratively con-
duct different experiments and several interviews with SoCdesigners. The reason lies in the
“specifications” which SoC designers had produced: they were not generic and not abstract
enough for any TLM architecture modeling paradigm. That is,the values of parameters in
our model are difficult to derive from the detailed SoC specifications and descriptions which
are derived by the designer without any reference to the model.

This is related to ’calibration’. The calibration is both anecessityand aproblem: (1) It
is necessary because abstract models are parametrized and some of those need to be given
values which must be obtained from the actual component, and(2) it is a problem because it
is often difficult to extract parameter values from (low-level) component specifications.

Each of the following three cases is conducted to show or verify certain aspects of our archi-
tecture and mapping modeling paradigm. For the simple case described in Section 4.5.1, the
main goal was to show efficiency and accuracy of our mapping methodology given that: (1)
the platform is implemented in a so-called Field Programmable Gate Array (FPGA), and (2)
the application model is represented by means of Symbolic Programs. The case described in
Section 4.5.2, illustrates mapping-refinements of the original application-specification with-
out rewriting the original code. Finally, the case described in Section 4.5.3 illustrates how
such high-level architecture exploration methods can successfully be used to model a hetero-
geneous multiprocessor on chip (MPSoC).

4.5.1 Case-study: Adaptive QR Matrix Decomposition

The objective of this case is to model embedded system mappings which can be explained as:

”Create the accurate one-on-one mappings of Kahn PNs onto multi-processor with compile-
time pipelining of symbolic instructions7, where the application process networks are pre-
created and cannot be changed.”

The restriction on changing application process networks implies that the mapping transfor-
mations can happen only at the level of symbolic programs (i.e., we must apply the Trans-
forming Step). Thus, in this sub-section we give (1) a description of the mapping case we
conducted and (2) experimental results to support our claims about accuracy, efficiency and
the exploration power of the mapping approach presented in this thesis.

The case is based on an algorithm commonly used to solve an over-specified set of linear
equations in a least squares sense. This algorithm is known as adaptive QR matrix decom-
position [79]. In signal processing practice, this algorithm is used for calculating weights in
an adaptive beam-forming system [80]. We performed system-level exploration of different
mappings of the QR algorithm onto an FPGA platform as described in [52]. For an under-
standing of this case it is necessary to give a specification e.g., in the form of a sequential
algorithm inMatlab. See Figure 4.2. Ther(m, n) are entries of an upper triangular matrix

7See Chapter 3, Sections 3.3.1 and 3.5.1.
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R of sizeN × N that is updated at eachk-step, thex(k, p) are entries of a vector of size
N that are taken from a source consisting ofN sensing devices called antenna data in the
remainder of this section, andθ(p) is a vector of sizeN that represents the orthogonal matrix
Q of sizeN × N in the decompositionX = QR, whereX is the stack of all vectors of size
N collecting thex(k, p) entries. For the case of simplicity we have assumed thatX , Q, and
R are real-valued.

1 for k=1:1:K,
2 for j=1:1:N,
3 [r(j,j),x(k,j),θ(j)]=Vectorize(r(j,j),x(k,j));
4 for i=j+1:1:N,
5 [r(j,i),x(k,i),θ(j)]=Rotate(r(j,i),x(k,i),θ(j));
6 end
7 end
8 end

Figure 4.2: A QR matrix decompositionMatlab code sample.

Description of The Case

We modeled three different mappings of the adaptive QR algorithm onto an FPGA platform.
For the first mapping, the algorithm is modeled as a process network of four communicating
processes. The network is shown in Figure 4.3, part 1. For thesecond mapping, the algorithm
is modeled as a process network of eight communicating processes. The network is shown
in Figure 4.3, part 2. Finally, for the third mapping, the algorithm is modeled as a process
network of twelve communicating processes. The network is shown in Figure 4.3, part 3. All
the networks were derived automatically from the sequential algorithm in Figure 4.2, using
theCOMPAAN tool-set [53].

We represented the networks using symbolic programs and control traces. We modeled the
FPGA platform using components from the repository of the architecture model components
depicted in Figure 3.1. In the experiments, we use the following architecture plus mapping
specifications (for each mapping there is one architecture plus mapping specification):

1. Binding: The number of processor components in the architecture is equal to the num-
ber of processes in the QR process network. In other words, each application process is
mapped onto a single processing unit in a 1-on-1 fashion (seeone-to-onein Chapter 3,
Section 3.4.2).

2. Binding: The number of FIFO components in the architecture is equal tothe number
of channels in the QR process network. Each application FIFOchannel is mapped onto
a single FIFO component in a 1-to-1 fashion.

3. Binding: There is no resource sharing, neither for computation (an operating system
is not needed since there are no different threads on any processing unit) nor for com-
munication (a bus is not needed since all buffers are dedicated).

4. Transforming: The number of simultaneousread andwrite operations in the ar-
chitecture is explicitly shown in the symbolic programs (see the example in Chapter 2,
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Figure 4.3: The three application QR process networks (Derivation of these process networks
is not subject of this thesis, for more information about that please refer to [59].)

Figure 2.13).

5. Matching: Each operation (read, write, execute) takes a single processing unit
cycle when executed in the architecture.

6. Matching: From the architecture network point of view,read andwrite operations
cause additional delays: a cycle for switching and a cycle for a FIFO buffer access.
The FIFO buffer access cycle appears only when blocking on the FIFO takes place.

7. Matching: FIFO buffers in the architecture are sized so as to provide enough space (in
this case study, for the three mappings the FIFO buffer sizesare always 256 tokens).

Based on the above mapping specification, the nine simulation programs for the nine QR-
on-FPGA mappings have been synthesized: (1) There are threeapplication process networks
as shown in Figure 4.3; (2) There are two different SP representations for each application
network - the first one contains totally ordered symbolic instructions, the second contains
partially ordered symbolic instructions; (3) There are three different architecture and map-
ping specifications for each application-architecture mapping candidate. The first contains
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specifications for the multiprocessor which cannot executesimultaneously multiple symbolic
instructions of the same type (read,execute,write). The second contains specifications
for the multiprocessor which can execute simultaneously multiple symbolic instructions of
the same type. The third contains specifications for the multiprocessor which can both ex-
ecute simultaneously multiple symbolic instructions of the same type and pipeline commu-
nications to FIFO components. These different mapping specifications are the result of the
Calibration - we needed three iterations to determine the correct matching & transforming
parameters before the synthesized simulation programs provided us with a relative error of
about +1.5%. We describe these results in the next section.

Results
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Figure 4.4: The simulation results of the adaptive QR matrixdecomposition case-study.

Number of processors FPGA cycle count TLM cycle count relative error
4 29281 29458 0.6%
8 9771 9884 1.2%
12 6111 6202 1.5%

Table 4.1: Cycle-count: the FPGA mapping vs. the SP-TLM-3 mapping
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QR onto the FPGA QR with the TLM model
10 hours 10 seconds

Table 4.2: Required mapping & simulation times: QR on FPGA vs. QR on TLM. We con-
sider mappingequal tocompilation, and we considersimulationequal toexecution. The
necessary preparations and adaptations of the applicationand architecture models have not
been taken into account.

We run the executables of our nine mappings, and the results are shown in Figure 4.4. There
are three SP-TLM labels8 which refer to three gradually differing mapping cases: “SP-
TLM-1” refers to mappings of totally ordered SPs onto multiprocessors which cannot exe-
cute simultaneously multiple symbolic instructions of thesame type; “SP-TLM-2” refers to
mappings of partially ordered SPs onto multiprocessors which can execute simultaneously
multiple symbolic instructions of the same type; and, “SP-TLM-3” refers to mappings of
partially ordered SPs onto multiprocessors which can both execute simultaneously multiple
symbolic instructions of the same type and pipeline communications to FIFO components.

To quantify the results we show the comparison of the mappingcase “SP-TLM-3” versus
actual FPGA mappings of the adaptive QR matrix decomposition in Tables 4.5.1 and 4.5.1.

Table 4.5.1 shows the number of cycles needed to complete executions of the different QR
networks on the FPGA platform [52] vs. the number of cycles needed to complete the exe-
cutions of different QR networks on the TLM based model of this platform. As can be seen,
the TLM architecture model is able to predict the performance of the real FPGA platform
executing the adaptive QR algorithm with a relative error ofabout +1.5%. For the case in
hand, a larger error would have revealed a major flaw in the method. Table 4.5.1 shows that
simulation speed is excellent.

8“SP-TLM” stands forSymbolic ProgramontoTransaction Level Architecture Model.
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4.5.2 Case-study: Mapping 2D-IDCT Specification to IP-primitives

The objective of this case is to model embedded system mappings which can be explained as:

”Create the flexible one-on-one mappings of a particular application Kahn PN onto: (1) multi-
processor with compile-time pipelining, and (2) multi-processor with run-time pipelining
of symbolic instructions9, where: (1) the application process network is pre-createdand
cannot be changed, and (2) the granularity of computations and communications between the
application model and the chosen architecture models differ significantly.”

The restriction on changing application process networks implies that the mapping transfor-
mations can happen only at the level of symbolic programs. The restriction on granularity
enforces the Refining Step (see Section 4.4.3). Thus, in thissub-section we give (1) a de-
scription of the mapping case we conducted and (2) a refinement of the 2D-IDCT mapping
model without modifying the high-level specification. It isworth noting that with this case we
model ’fictive’ architectures, and due to this, we cannot reason about the accuracy of the case
results as we did with the case in Section 4.5.1. Here, we can reason only about performance
impacts of refinement and transformation choices on the simulated system in isolation, i.e, in
the scope of simulation models, and which are already available in [75].

The Two Dimensional Inverse Discrete Cosine Transform (2D-IDCT) is part of image com-
pression methods, one of which is a standard described in [81]. 2D-IDCT appears in many
Multimedia applications and is a critical path function [50].

At some level of abstraction, the 2D-IDCT application is specified as a 3-process PN [18],
as shown in Figure 4.5 (processesSource andSink do not play any role here - they are
illustrated for the sake of delivering input data and collecting output data).

Source Sink
cols

IDCT1d
rows

IDCT1d Transpose

FIFO1 FIFO2 FIFO3 FIFO4

Figure 4.5: The 2D-IDCT Kahn Process Network

In this graph,1D-IDCT is the One Dimensional Inverse Discrete Cosine Transform, which
transforms a time-domain block of 8× 8 image pixels to a frequency-domain block of 8×
8 values in arow-by-rowfashion.Transpose performs the transpose of the output blocks
of the first1D-IDCT and then delivers the transposed blocks to the second1D-IDCT. The
second1D-IDCT then also applies row-by-row transformations, which, due to the transposi-
tion, corresponds to acolumn-by-columntransformation on the output of the first1D-IDCT.
The (unbounded) channels between the two producer-consumer pairs exchange these blocks.

9See Chapter 3, Sections 3.3.1, 3.5.1, and 3.5.2.
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Symbolic Program Representation of the 2D-IDCT Khan PN

The listing in Figure 4.6 below, is a Symbol Program that represent all three processes in
Figure 4.5.

1 main {
2 loop condition 0 (iN)
3 {
4 read m (i0, 64);
5 execute f (i0 o0, b);
6 write n (o0, 64);
7 }
8 }

Figure 4.6: Symbolic program template for both the IDCT1D and the Transpose tasks.

The numbers “64” and “b” indicate the token size in number of pixels read from (written
to) the input (output) channel, and the execution budget, relative to theread andwrite
execution budgets, of the function being executed by the process, respectively. The 1D-
IDCT and the Transpose functions have different budgets10. As indicated earlier, each SP is
associated with an accompanying control trace. From the structure of the SP in Figure 4.6,
it can be seen that the corresponding control trace is trivial in this case because there is only
one control point.

Architecture Specifications & Mapping Descriptions

We conducted two different experiments: (1) mapping of the 2D-IDCT specification onto
a multiprocessor withcompile-time pipeliningprocessors, and (2) mapping of the 2D-IDCT
specification onto a multiprocessor withrun-time pipeliningprocessors. In these experiments,
we use the following architecture plus mapping specifications (for each mapping there is one
architecture plus mapping specification):

1. Binding: We assumed a 1-on-1 mapping of SPs onto processors and application chan-
nels onto FIFO components.

2. Binding: There is no resource sharing, neither for computation (an operating system is
not needed) nor for communication (a bus is not needed since all buffers are dedicated).

3. Refining: 1D-IDCT processors operate on rows (8-pixel data-token) rather than on
blocks (8 × 8 = 64 data-token). That is, the architecturecheck-data andcheck-
room FIFO synchronization primitives operate on rows, and thesignal-room, and
signal-data FIFO synchronization primitives operate on blocks. Conversely, in the
other tasks (Source, Transpose, Sink) thecheck-data andcheck-room synchro-
nization primitives operate on blocks, and thesignal-room, andsignal-data
synchronization primitives operate on rows.

10The execution budget parameter of the 1D-IDCT tasks is 8, andthe execution budget parameter of the Transpose
task is 1.
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4. Refining: 1D-IDCT implementations in the processors are as in [82], and can be rep-
resented by a sequence of four differentexecute symbolic instructions.

5. Matching: FIFO buffers in the architecture are sized such that they provide enough
space (in this case study, for the three mappings the FIFO buffer sizes are always 256
tokens).

Compile-time Transformation of Symbolic Programs
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Figure 4.7: The transformed loop body of the IDCT1D SP

The idea of this transformation is to schedule the executionof the SP shown in Figure 4.6 as
shown in Figure 4.7. After applying this transformation theSP template has changed and the
resulting SP template is shown in Figure 4.8.

The transformation illustrated in Figures 4.7 and 4.8 is so-called “software pipelining”, al-
lowing overlapping of symbolic instructions at run-time [56]. Each symbolic instruction, de-
limited by the ”;” terminal, may express parallelism (mutual independence)among symbolic
operations delimited by the ”||” terminal. This implies that no dependency checks (argument
checking) in the architecture model are performed at run-time. Notice that mutually inde-
pendent symbolic operations in an explicit parallel symbolic instruction need not have equal
evaluation times. The next symbolic instruction is only scheduled when the slowest symbolic
operation in the current symbolic instruction terminates.

Run-time Transformation of Symbolic Programs

Another way of modeling the behavior shown in Figure 4.7 is todetect at run-time a pos-
sibleoverlappingof read, execute, andwrite symbolic instructions. The appropriate
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processor model is provided in Chapter 3 Section 3.5.2. The transformation applied here is
a simple refinement: an expansion of the loop-body in the SP template shown in Figure 4.6.
The processor model, on the other hand, is now more complex because it has to produce at
run-time the pipelined execution order (compared to the compile-time processor where the
compiler is more involved). The result of the refinement of the SP is shown in Figure 4.9. It
is worth noting that the execution flow of this SP is the same asin Figure 4.7.

1 main {
2 loop condition 0 iN

3 {
4 read m (i0, 8);
5
6 read m (i0, 8) || execute f1 (i0 I1, 2);
7
8 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2);
9
10 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) ||
11 execute f3 (i2 I3, 2);
12
13 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) ||
14 execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2);
15
16 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) ||
17 execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2) || write fn (o0, 8);
18
19 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) ||
20 execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2) || write fn (o0, 8);
21
22 read m (i0, 8) || execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) ||
23 execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2) || write fn (o0, 8);
24
25 execute f1 (i0 I1, 2) || execute f2 (i1 I2, 2) || execute f3 (i2 I3, 2) ||
26 execute f4 (i3 o0, 2) || write fn (o0, 8);
27
28 execute f2 (i1 I2, 2) || execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2) ||
29 write fn (o0, 8);
30
31 execute f3 (i2 I3, 2) || execute f4 (i3 o0, 2) || write fn (o0, 8);
32
33 execute f4 (i3 o0, 2) || write fn (o0, 8);
34
35 write fn (o0, 8);
36 }
37 }

Figure 4.8: Unrolled and pipelined symbolic program template.
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1 main {
2 loop condition 0 (iN) // the original loop
3 {
4 loop condition 1 (iM) // the newly introduced loop
5 {
6 read m (i0, 8); // the refined read (lines)
7
8 execute f1 (i0 I1, 2); // the first pipeline stage
9 execute f2 (i1 I2, 2); // the second pipeline stage
10 execute f3 (i2 I3, 2); // the third pipeline stage
11 execute f4 (i3 o0, 2); // the fourth pipeline stage
12
13 write n (o0, 8); // the refined write (lines)
14 }
15 }
16 }

Figure 4.9: Unrolled symbolic program template.

4.5.3 Case-study: JPEG Decoding Network on MPSoC

The objective of this case is to model embedded system mappings which can be explained as:

”Create the acceptable mapping models of (1) a realistic application onto (2) a complex and
challenging distributed shared memory architecture with and without operating system in-
cluded11, where the mapping excluding operating system is done in one-to-one fashion sim-
ilarly as in the earlier cases, and the mapping including operating system is done in many-
on-many fashion, and where the communication mechanism in the modeled architecture can
modify the mechanisms available in the architecture component library.”

Theacceptableaccuracy means that the maximal difference between our simulation numbers
and the numbers given to us as the real architecture performance, has to be within±20%.
The idea is to have a realistic application, which is dynamicand rich with dependencies (see
Chapter 2, Section 2.3) mapped onto a model of a realistic high-end MPSoC architecture12.
Our choice of the realistic is a JPEG decoder. JPEG is an acronym for Joint Picture Experts
Group [50]. The architecture modeled here is called Wasabi architecture [83].

For our JPEG-on-Wasabi study, we identify two sub-cases: in the first case, we exclusively
use hardware accelerator resources (all-in-hardware case); for the other, we rely only on soft-
ware core resources (all-in-software case). The rationalebehind this choice is the following:

• We need to accurately model theWasabi communication network at system-level and
to do that we create a one-on-one all-in-hardware mapping case because it will help us
to translate the low-levelWasabi specifics into the high-level manifestations which
we can model with our architecture components.

• We need to accurately model theWasabi processors (software cores and hardware
accelerators) at a high level of abstraction and to do that wecreate acalibration sub-
case - Producer-Consumer, which will expose the irregular behaviors of theWasabi

11See Chapter 3, Sections 3.5.3.
12By realistic architecturewe mean the ILP-level simulated high-end multiprocessor model.
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processors. Later, using this sub-case we will extrapolateadditional high-level mani-
festations from these low-level irregularities.

• We need to model a symmetrical shared memory multiprocessorand to do so we will
re-use previously estimated parameters of theWasabi processor and communication
network and we will model the operating system based solution, a so-called many-on-
many all-in-software mapping case.

As a first step, we gather a properWasabi parameter which is set to be suitable for our
architecture models. Moreover, we investigate some details of the actual architecture behavior
that may be overlooked in our models.

As mentioned earlier, in order to capture the system-level parameters and the behavior of
the communication network inWasabi, we run the all-in-hardware case. This relies on
the fact that hardware accelerators behave according to user-annotated delays. Such delay-
annotations relate the computation load of the JPEG application and can be roughly estimated
from the C/C++ code. In this way, bothWasabi and our models experience the same com-
putation load. From theWasabi related documentation andspace-Cake13 Instruction
Set Simulation (ISS) we can estimate the communication network parameters. This can be
regarded as the Matching Step for the communication network.

Only at this point do we proceed with the all-in-software case. By means of previously
estimated network parameters, we calibrate the computation load. In this way, we identify
the model parameters and the behaviors related to MIPS-es and the Operating System.

We expected that the default communication network behavior captured by our model would
not be accurate enough to predict theWasabi communication network behavior. For this
reason we also have conducted a simple Producer-Consumer experiment to expose and refine
the actualWasabi communication network behavior.

The remainder of the section is organized as follows: firstlywe present the JPEG decoder
model; secondly, we set out theWasabi block diagram. Then we study the Producer-
Consumer sub-case. Finally, we summarize results and indicate the pros and cons of the
model which is highlighted in this case.

The JPEG Application Specification

We reuse the JPEG decoder specification already introduced in [58]. The application is mod-
eled using Kahn Process Networks. A graphical representation of this process network is
given in Figure 4.10.

Big bobbles with text labels represent processes (e.g., DMXstands for de-multiplexer, VLD
stands for variable length decoder, etc.). Little white andblack bobbles with numbers repre-
sent ports (e.g., o1 stands for output port 1, while i5 standsfor input port 5, etc.); rectangles
with 3 edge boundaries represent unbounded FIFO channels; text labels specify types of to-
kens being transferred through these FIFOs, and arrows indicate data-flow direction.

13space-Cake is going to be introduced later in this section.
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Figure 4.10: The JPEG decoder process network

Note that each FIFO is enumerated with an integer number. Consequently, data streams
through FIFOs 1, 3, 5, 6, 7 (in sequence), then 9, 10, 11 (in parallel), then 15, 16, 17, (in par-
allel), then 21, 22, 23, (in parallel), and finally, 24, 25, 26(in parallel). The remaining FIFOs
serve to provide once-per-picture parameter initializations through so-called ”headers”. It is
worth noting that these headers are not fixed, but rather are derived by the Frontend process.
That is, the network is not tuned for processing a particularJPEG image format. In the signal
processing community this is also known as ”parametrized data-flow modeling” [84].
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The spaceCake - Wasabi Block Diagram
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Figure 4.11: Block diagram of the Wasabi MPSoC architecture

Our primary objective is to model theWasabi architecture as a target architecture. The
Wasabi multiprocessor system on a chip (MPSoC) is designed in the Philips Research Lab-
oratories (for more data refer to [83]). This MPSoC represents a single tile of a more complex
system, calledspace-Cake, see [67]. This is the reason both names appear when we dis-
cuss the modeled architecture.

The Wasabi tile is a MPSoC consisting of: a number of programmable MIPS processor
cores with an integrated L1 Harvard cache (i.e., separated instruction and data caches), a
snooping bus-based interconnection network (ICN) which connects the cores and the L2
cache, and a memory-management unit (MMU) interface to the off-chip DDR 14 memory.
Apart of MIPS-es, dedicated processor cores (or accelerators) may also be used in Wasabi.
Thus, this architecture is heterogeneous, and suitable formultimedia and video processing
applications such as JPEG compression.

The block based architecture view is given in Figure 4.11. Note that the ICN in Figure 4.11
provides a certain level of concurrency, which is very interesting for our modeling environ-
ment. Also, note the Embedded MIPS block in the same figure. Itserves as a software
synchronization core in situations where hardware accelerators have been employed. This
block should not be overlooked, since it is a source of unpredictability, given the amount of
interaction it has with the caches.

Producer-Consumer Calibration Sub-case

Figure 4.12 illustrates the case when our default communication network behavior15 is used
to model thespaceCake Wasabi communication network. The parameters are set accord-
ing to the detailedWasabi description [83]. Thex-axis represents the total amount of tokens

14DDR - Double Data Rate - is a synchronous dynamic random access memory technology used for high speed
storage of the working data of a computer or other digital electronic device.

15Thedefaultbehavior is described in Section 4.5.1.
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being exchanged via the FIFO channel. They-axis reports processor component cycles. Such
data have been measured by executing the Producer-Consumernetwork16.
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Figure 4.12: The Producer-Consumer performance numbers:Wasabi (solid) and our not-
calibrated model ofWasabi (dashed)

The results show that our architecture model scales linearly with the total amount of the
tokens being exchanged via the FIFO channel. This is clearlynot the case for theWasabi
MPSoC.

After interviews with designers, we have reached the following conclusions (not immediately
visible from [83]):

1. When used in the all-in-hardware mode,Wasabi engages Embedded MIPS to syn-
chronize hardware accelerators. Its behavior varies and cannot be deterministically
described (i.e. a statistical model is necessary),

2. When accelerators access the network (ICN) for writing, they buffer as many requests
as possible. This became clear when we run different instances of PC application,
with the producer having different write patterns: token-after-token, 10-tokens-after-
10-tokens, and 100-tokens-after-100-tokens. The resulting performance numbers did
not change.

3. Whenever accelerators access the network (ICN) for reading, they always take full

16The network given as the application model in Figure 4.1.
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cache-lines (128 bytes), even when less than 128 bytes are available. In such cases,
dummy data is used to fill up the cache line.

4. The network setup time should not be overlooked, since it takes up to several millions
of PU cycles (depending on the application network size). This actually explains the
horizontal part of theWasabi characteristic shown in Figure 4.12. The network setup
time can be measured when the source node (producer) does notsend any data token
to the destination node (consumer) - e.g., an unconnected FIFO.

5. All synchronization operations (check-room/data, signal-data/room) are executed by
the Embedded MIPS. Rather than simply blocking (as we assumed in our architecture
model), the synchronization operations take extra cycles.
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Figure 4.13: The Producer-Consumer performance numbers:Wasabi (dashed) and our cal-
ibrated model (solid)

The outcome of this calibration case was that our basic modeling approach remains the same
- no compromise on that. Only new states have been added to basic modules of components
from our architecture library. Thus, considering the insights listed above, we enriched the
models of our interface components (FIFO In and Out CFSMs), arbiter’s bus-related oper-
ations and FIFO synchronization operations (see Chapter 3,Section 3.5.6 and Appendix A,
Figures A.18 and A.19). Finally, we added a setup delay in thebus-claim operation. This
delay is now executed the first time a FIFO interface accessesthe bus. During the setup phase
no units can operate over the network. Thus, all units simplyblock and wait for the expiration
of the setup delay.
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The simulation results of the calibrated model are shown in Figure 4.13. Thex andy axes
maintain the same meaning as before. Note that unlike in Figure 4.12, the absence now of the
‘setup time’ gap makes the error seem bigger for larger numbers of tokens. However, this is
not true, since both thex andy axes are logarithmic. It is sufficient to compare the deviation
for a million cycles in Figure 4.12 and Figure 4.13. One can realize that the degree of error
does not significantly change.

Architecture Specification & Mapping Description for All-i n-Hardware

The architecture plus mapping specifications for the all-in-hardware experiment are estab-
lished based on the calibration sub-case. Here follows the brief description of these specifi-
cations (for each mapping there is one architecture plus mapping specification):

1. Binding: We assumed a 1-on-1 mapping of SPs and unbounded channels of the JPEG
application specification (see Figure 4.10) onto processors and FIFO components of the
properWasabi architecture instance (similar to the one in Figure 4.11), respectively.
This implies that the number of processor components in the architecture specification
is equal to the number of processes in the application specification (i.e., 14), and that
the number of FIFO components in the architecture specification is equal to the number
of unbounded channels in the application specification (i.e., 27).

2. Binding: Computation resources are not shared, but the communication resources are
shared. As determined by the calibrated case, the global FIFO memory buffers are ac-
cessed through aburst-bus. Consequently, the routing interfaces are modeled according
to the example in Section 3.5.6.

3. Matching: FIFO buffers in the architecture are sized such that they provide enough
space (in this case study, for the mappings shown in Figure 4.14 the FIFO buffer sizes
are always a maximum 65536 tokens, where token equals one byte, which also matches
the architecture specs given in [67,83]).

4. Matching: The conditional synchronization protocol operations for the FIFO buffers
(check-room/check-data andsignal-data/signal-room) are ’executed
in software’ by Embedded MIPS. This creates a performance impact since these oper-
ations cannot run in parallel. Therefore, their cost is not negligible and they have to be
explicitly modeled. (Based on the calibration case and alsofor the mappings shown in
Figure 4.14, we estimated that thecheck-room/check-data operations consume
100 nanoseconds and that thesignal-data/signal-room operations consume
50 nanoseconds).

5. Refining: The calibration sub-case shows that data-transfers happenthrough the burst-
bus highway. Theburstmeans that the data-transfers are packetized to utilize thebus.
The busmeans that the interconnection lines are shared. Thehighwaymeans that a
number of parallel data-transfers over interconnection lines are possible.

6. Refining: The simultaneous memory requests are also transferred overa bus. These
requests are conveyed to Embedded MIPS, so they will ultimately be resolved as syn-
chronization operations running in software.
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7. Matching: The burst-line length is as in [67, 83] (i.e., 128 bytes), andthe network
setup time is as determined in the calibration sub-case (i.e., 12957510 nanoseconds).
The depth of simultaneous memory requests is one, which means there is only one
Embedded MIPS able to queue and process these requests.

8. Matching: The cost of the single read, execute, and write budgets (e.g,expressed
in form of SIs: read M (input,1), execute N (input output,1), and
write P (ouput,1)) for each accelerator is as determined in the calibration sub-
case (2500 picoseconds).

9. Refining: For the read routing interface components, there is a significant switching
delay due to the buffering of consecutivereads in order to utilize traffic over a burst-
bus. This is not the case for the write routing interface components, so there is no
significant switching cost there. Hence, the architecture and mapping specifications for
the routing interface components are asymmetric in the sense of the aforementioned.

10. Matching: The cost of the read routing component switching is as determined in the
calibration sub-case (9999 picoseconds). The costs of theload-data andstore-
data transfer operations when writing-to and reading-from FIFOcomponents is de-
termined as the same for both read and write routing interface components (209 pi-
coseconds).

Results for All-in-Hardware

Once the architecture specification is sufficiently accurate to model theWasabi communica-
tion behavior, the all-in-hardware modeling, mapping and simulation can be performed. The
results are provided in Figures 4.14 and 4.15. The first chartreports the performance numbers
for a set of eight JPEG images of various size. Thex axis lists these images. The first row
below the axis gives the amounts of raw input data for each image. The second row provides
the spatial resolution (number of pixels) generated at the output. The third row simply lists
the JPEG file names. They axis represents the number of processor component cycles inmil-
lions, where each cycle corresponds to the previously estimated budget of the singleread,
execute, andwrite. In Figure 4.14 the left-side bars correspond to the defaultArcher
17 communication behavior, the middle bars correspond to thespaceCake Wasabi all-in-
hardware execution, and the right-side bars correspond to the calibrated model of the com-
munication behavior. Similarly, in Figure 4.15 the left-side bars correspond to the default
model communication behavior, while the right-side bars correspond to the calibrated model
communication behavior.

From Figure 4.14 one can see the improvement gained by the calibration. However, the
amount of error is noticeable. This is illustrated in Figure4.15. The cause is the unpre-
dictable behavior of the Embedded MIPS, which loads and stores semaphores used for the
synchronization in a manner not supported by theArchermodels yet. However, one should
also notice that the error slope is significantly reduced after the calibration (see Figure 4.15).
The images are ordered with respect of the spatial resolution - so if an imaginary line is

17Archer is the name used for the authentic models and methods described in this thesis - see Chapter 5.
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Figure 4.14: Performance of the JPEG decoder network: our model without calibration (left-
side bars),Wasabi (middle bars) and our model with calibration (right-side bars)
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Figure 4.15: Simulation relative error: our model without calibration (left-side bars), and our
model with calibration (right-side bars)



104 Mapping Modeling

drawn over the top of the bars, the slope in the first case (non-calibrated) is steeper than in the
last case (calibrated). Additionally, for the lower trafficvolumes, it is obvious that the setup
time parameter plays the main role. However, for the higher traffic volumes, the effect of
this parameter disappears, and other effects (seeProducer-Consumer Calibration Sub-case)
start to compensate calibrated behavior towards the realWasabi numbers. The conclusion
is that the Embedded MIPS, which inWasabi executes all synchronization operations for
the all-in-hardware, introduces unpredictable behavior.

The All-in-Software Subcase

In this paragraph we proceed with the all-in-software case.The all-in-hardware case showed
thatWasabi is a highly unpredictable architecture due to the specific caching and synchro-
nization mechanisms. It should not come as a surprise that the all-in-software case experi-
ences unpredictability, as a consequence of the operating system usage in the architecture, i.e.,
resource-sharing, scheduling and preemption of tasks ontop of the programmable homoge-
neous configuration of theWasabi multiprocessor. One can argue whether or notWasabi
is a domain-specific embedded architecture or a GPP.

Using the results of the preceding case, we can state that theWasabi communication net-
work parameters are determined with an accuracy of about -50% for small JPEG pictures
(on the left hand side of bar-charts Figures 4.14 and 4.15) and about +15% for large JPEG
pictures (on the right hand side of bar-charts Figures 4.14 and 4.15). From the perspective
of cycle-accurate simulations and synthesis-driven methodologies, this error is probably un-
acceptable. However, it is fair to say that 50% off the expectations in this case also comes
from the fact that we modeled an existing architecture whichdid not emerge from system-
level simulations and exploration-driven methodologies,but rather from a guru approach (see
Section 1.2.2). On the contrary, in the cases where the underlying architecture has not been
finalizedyet, we believe that our models can lead to successful designs. The architecture
that would result from DSE would be a composition of library components that do not need
calibration and have much improved accuracy. This is the case shown in Section 4.5.1, where
the architecture and mapping came as a result of DSE.

Here, we do not repeat the complete example from the all-in-hardware case. Rather than
evaluating the case for the eight different JPEG pictures, we focus only on the worst case
determined in the all-in-hardware case - the small JPEG picture (the picture data: 1. name
philips-logo.jpg, 2. size on the file-system 1883 bytes, 3. resolution 50×67, 4. Y :Cb:Cr is
4:1:1). The architecture specification and mapping set-up are as follows:

1. The multiprocessor is now modeled differently as compared to the all-in-hardware
mapping model. It is not necessary for the number of processor components to equal
the number of processes in the application specification.

2. The network model is copied from the all-in-hardware mapping model. The number of
FIFO components equals the number of unbounded applicationchannels, as well. The
behavior of the Network-on-chip (NoC) is almost the same as in the all-in-hardware
mapping model, except for the following two differences: (1) the all-in-software map-
pings have increased the throughput for the simultaneous memory requests (i.e., it goes
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from one-request-per-time in the all-in-hardware case, tothe number-of-requests-per-
time, where thenumberis the number of MIPS cores in the multiprocessor), and (2) the
all-in-software mappings reduce network start-up delay proportionally to the number
of MIPS cores in the multiprocessor.

3. The processor components of the MPSoC model are homogeneous and allow formi-
gration of the execution threads of the mapped symbolic programs. This originates
from the fact that the MIPS-es inWasabi support migrations of the mapped applica-
tion processes.

4. The control delays and function-call delays now have non-zero component parameter
values because the symbolic programs are mapped to software, and thus processor
instructions and data caches play important roles.

5. The operating system parameters, such as: migration delay 18, scheduling delay19,
interrupt delay20, and context-switching delay21 (see Chapter 3, Section 3.4.2) may be
required22. It is worth noting that these delays are now at the level of tens or hundreds
of nanoseconds, which illustrates the fact that instead of accelerators (all-in-hardware),
we have relied on the many-on-many processor component. Similarly, nanoseconds
are expected delays caused by the SI constructs:read, write, andexecute, as
well asfunction call, condition, etc.

6. WhenWasabi is configured for all-in-software mappings, the synchronization opera-
tions (check-room/data, signal-data/room) are executed by the homogeneous MIPS-es,
since there is no independent Embedded MIPS involved. Thus,there is no need for ex-
tra cost cycles for the synchronization operations.

The results of this sub-case are shown in Figure 4.16. It provides performance numbers in
millions of cycles for the chosen JPEG image. Thex axis lists the number of MIPS-es in
the MPSoC. They axis represents the number of processor component cycles inmillions (as
in the all-in-hardware sub-case). JPEG-Cake stands for thespaceCake Wasabi all-in-
software execution. JPEG-1 and JPEG-2 correspond to two different architecture choices for
our modeling of theWasabi architecture.

As already mentioned, we simulated two mappings: the first one (JPEG-1) has inherited the
NoC settings from the all-in-hardware case, and the second one (JPEG-2) has been calibrated
regarding the set-up time (see the text above). Obviously, our model is able to simulate
the trend of the MPSoC behavior, but the irregularities (or unpredictabilities) caused by the
cache-plus-operating-system combination definitely affect the accuracy of the simulation.
That is, the simulation errors in the JPEG-1 mapping case aredefinitely affected by the fluc-
tuation in the results of the all-in-hardware case: in-between -50% and +20%. Based on
these performance measures, the immediate assumption would be that the most optimistic

18A migration delayis the time needed to migrate a context of one symbolic program execution from one processor
component to the other.

19A scheduling delaydefines the time period between two consecutive OS schedulerinvocations.
20An interrupt delayis the time needed to run an Interrupt Service Routine (ISR).
21A context-switching delayis the time needed to deliver the next symbolic instruction to the processor-component

core.
22It is possible to ignore them as well, i.e., to assign zero-values.
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error-margin (probably unrealistic) for the all-in-software case would be the same as or even
larger (a more realistic assumption) than the error-marginfor the all-in-hardware case.

The JPEG-2 mapping sub-case illustrates how calibration can improve architecture param-
eters such as the network set-up time. By reducing the set-uptime by 40% (which is the
error-margin determined for small JPEG pictures) we can approach the performance num-
bers of the cycle-accurate results (JPEG-Cake). Of course,this should be an iterative process,
aimed at matching the performance numbers of the cycle-accurate simulation to the perfor-
mance numbers of our model. After the desired accuracy is achieved23 the case should be
reproduced for all other data-sets.
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Figure 4.16: Performance of the all-in-software JPEG decoding network: (JPEG-Cake)
the cycle-accurate execution model of theWasabi, (JPEG-1) our model without-any-
calibration, and (JPEG-2) our model with the initial calibration.

At this point we do not experiment further with this case, leaving additional all-in-software
calibrations as part of future work. In this thesis, becausewe are aware of architecture model
restrictions (such as non-supported cache modeling, etc.)we were more interested to show
mapping capabilities . As a part of the future work, the repository of architecture components
or the components themselves should be enlarged and enriched for memory-management and
cache-models. With such enhancements we could definitely achieve highly accurate results
for the mappings onto the resource-shared and resource-managed platforms. At this moment
such platforms can only be modeled, which is nevertheless a remarkable result which other

23What thedesired accuracymeans is design-space exploration specific and it may differfrom application to
application.
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exploration methodologies are unable to offer [36].

4.6 Contribution

The intention of this section is to underline the differences between our exploration method
and other closely related exploration methods [7,36], and at the same time, to point point out
the added advantages of our mapping method.

Our method is a simulation based exploration method, and as such it relies on: i) high-level
and abstract models (representations) of both applications and architectures, ii) a repository
of non-functional architecture components, iii) discrete-event component implementations
(e.g.,SystemC) instead of cycle-accurate component implementations, and, finally, iv) the
exploration-aimed Y-chart [14] (see Chapter 1, Section 1.2.2).

However, amongst other simulation based exploration methods mentioned earlier [7,36], this
is also a very distinctive method . The three major differences are:

1. Rather than using so-called trace-driven approach wherean application process behav-
ior is captured by the symbolic instruction trace, our method captures an application
process behavior using a generic CDFG-like representation- symbolic program - and
the corresponding sequential control trace.

2. Rather than relying on heuristic solutions for modeling OS [7], our method is able to
model OS without any model-imposed restrictions.

3. As opposed to restricting the possible application domain or architecture set to only
control-dependency-free applications with rudimentary or no multi-tasking software
architectures at all [36], our method is not restricted in this way.

Our application model is able to separate concerns clearly:i) the data-set insensitive informa-
tion is captured in symbolic programs, and ii) the data-set sensitive information is captured
in sequential control traces. Changing the data-set changes only the control trace values. Yet,
the symbolic programs do not need to change because they are data-set insensitive. The same
single symbolic program can be reused for any data-set as long as it is produced by the appli-
cation process from which the symbolic program originated.Remember that the annotated
control points in the process are in 1-to-1 relation with control points within the symbolic
program (see Chapter 2, Section 2.4). It is possible to establish the generality and reuse of
the same single mapping for as many data-sets as desired (as long as the control structure is
not changed).

Our architecture model is based on a library of generic, high-level, abstract architectural com-
ponents. They represent a mix of various formalisms (Communicating Sequential Processes,
Kahn PN, Synchronous Data-Flow, State-Charts, and ROOM-charts), ideas (Master-Slave
Protocols, Trace-Transformations, Transactional Protocols), technologies (Data-Structures
& Algorithms, Compilers & Translators, Design-Patterns, Parallel Programming by Multi-
threading, Object-Orientation, and Component-Based Development), and implementations
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(Open-Sources, Library-Reuse, and Discrete-Event Simulation). If, for instance, mutual-
exclusion or condition-synchronization is needed, the appropriate formalisms and technolo-
gies inside or in between those components support the proper architecture model specifica-
tion because the components are not CSP-only or SDF-only or Kahn-only - they are hybrids.
Furthermore, the roles of each component are orthogonal to the role of the other components.
Thus, computation-related mapping affects one kind of component, while communication-
related mapping affects the other kind of component. Finally, components are easily ex-
tensible because, as explained earlier, they are able to clearly separate computation-only,
communication-only, resource-sharing and resource-schedule concerns. Therefore, each en-
hancement can easily be added without affecting the entire repository of components.

The architecture components interpret (unroll) and refine mapped symbolic programs at run-
time, making the modeling context close to the real architecture context24. Performing un-
rolling and refinement at run-time is particularly beneficial for the modeling of real system
software . For run-time refinement, various synchronization issues remain open, and since
they are open, they need to be closed as well. If we were to remove synchronization from
the architecture, the model becomes poorer (or restricted)and, worse still, the omission of
this significant component is simply overlooked. Moreover,synchronization is in general a
costly operation from the performance point of view, and hence we do not exclude it from the
architecture model.

Our method resembles the standard synthesis-driven mappings quite closely (see Section 4.1).
Even-more, one can identify similarities with real-designs or even recode our abstract map-
pings to the real (synthesizable) code. As such, our method is both iterative and waterfall-
like [61]. It is not able to “prune exploration space efficiently” as for instance the method
described in [36] does. Yet, it connects well with real designs; as described above there are
almost no restrictions when dealing with streaming application/architecture combinations and
it supports reuse to a large extent. Therefore, we believe that it is a better (more complete)
candidate for efficient architecture exploration than for instance the methods [7, 36]. The
reason has its roots in the product-development of today’s consumer-electronics industry;
embedded designers are asked often to provide quick rough estimates of some real applica-
tion standard (e.g., JPEG, MPEG-2, MPEG-4, etc.) running onsome high-end MPSoC ar-
chitecture (e.g.,Wasabi-like MPSoC). In such cases, an embedded system designer usually
performs an example-case which represents the implementation with the most challenging ap-
plication specification and maps it on the architecture exploration simulator of the designer’s
choice. Now, if the simulator is too low level, this trial would require an unjustifiably greater
expenditure of time and effort. This fact justifies the use ofhigh-level abstract exploration
methods such ours or any other similar [7, 36]. Nevertheless, if the exploration method can-
not handle/model neither the application specification northe architecture specification, then
the method will simply be avoided. Moreover, if a designer can establish some correlation
between: 1) the mapping steps he is asked to execute in the exploration method and 2) the
mapping steps he has to perform in the real synthesis process, he will be in favor of this type
of high-level exploration method. Our method allows for allthe above:

• It is not selective with respect to mapping cases, neither from the aspect of the applica-

24Sesame, for example, really decouples trace refinement from the architecture, making the mapping layer re-
sponsible for the modeling of a system software
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tion behavior nor from the aspect of the architecture features.

• It resembles the real synthesis flow, as in [85] as well as the real code transformations
from [56], [86] and [55].

• It is easily extensible, since its components are orthogonalized - changing one compo-
nent will not affect the sequencing in the others.

• It relies on discrete-event simulation, so it is fast enough(e.g., compared to cycle-
accurate approaches).

• It can be easily further automated in two directions: by better pruning of design-space
by generating Pareto curves [37], and by introducing an appropriate memory-hierarchy
model (cache modeling).These two improvements will not affect its current robustness,
generality and re-usability.





Chapter 5
Big Picture & Conclusion

What concerns me is not the way things are, but rather the way people think things are.1

5.1 Summary

The main aim of this chapter is to provide the complete view ofrelations between models,
model representations and simulations for performance analysis as part of a Design Space
Exploration (DSE) process.

Models and model representations are on a level of abstraction where flexibility, accuracy
and cost of simulations are well balanced, see Figure 1.1. Asshown in Figure 1.2, perfor-
mance analysis is conducted on the association with each other of an application model and
an architecture model. This association is in terms of modelrepresentations generated by the
application model and interpreted by the architecture model, as well as in terms of transfor-
mations to better match the two representations.

Our application model representations are Symbolic Programs (SP), see Chapter 2, and our
SP interpreting architecture model is theArcher 2 model, see Chapter 3. We call the per-
formance analysis approach theArcher Symbolic Program approach, or simply theSP
approach.

1The words of Epictetus -Eπικτητøς - (55 A.D.-ca.135 A.D.), Greek philosopher associated withthe Stoics.
2TheArcher stands for ARCHitecture ExploRation.
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5.2 Big Picture

The Symbolic Program approach, which we introduced in this thesis, is positioned between
the Symbolic Instruction Trace (SIT) approach, as in theSpade [7] and theSesame [36]
exploration driven approaches and the Control Data-Flow Graph (CDFG) approach, as in
the MTG-DF* [25, 38] design-driven approach. The SP approach and its positioning has
been shown in Figure 5.1. On the left-hand side, the typical sequence of activities using SIT
is depicted. Similarly, on the right-hand side, the typicalflow of activities using CDFG is
shown. Finally, in the middle, the SP flow is shown; SPs allow designers (1) to perform
design-steps as in the case of detailed design (indicated with dashed lines), (2) to run fast
simulations of architectures being explored, and (3) to have more accurate numbers than in
the case of TD simulations.
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Figure 5.1: The Symbolic Program approach vs. SIT & CDFG approaches (repeated Fig-
ure 2.1).

Applications are modeled using Kahn’s MoC. Process behaviors are captured in Symbolic In-
struction Traces (left), Symbolic Programs plus separatedControl Traces (center), or Control
Data-Flow Graphs (right). The SP approach allows for a performance analysis with accepted
as well as simulation speed, whereas the other two approaches either have low accuracy or
low simulation speed, respectively. The SP approach is, thus, a hybrid approach. Applications
processes are abstracted by means of (1) generic non-executable CDFG-like representations
of a process and (2) a symbolic instruction trace that captures conditional construct outcomes
that are the result of the execution of a single data-set. Thebehavioral models of archi-
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tecture components are derived from SI traces which in turn are determined by interpreting
transformed application SPs in the light of control outcomes which are derived from control
traces. It is worth noting here that the SP representations are repeating separation of concerns
between control-traces and symbolic program data-structures. In Figure 5.1 these are marked
asData Stream(data-dependent part) andInstruction Stream(data-independent part). This is
exactly the reason whyArcher can reuse application representations in mappings without
changing underlying architecture specifications and why e.g. Sesame cannot guarantee the
same. Moreover, this also ends-up in many other flexibilities for architecture, architecture
and mapping modelings we presented in the preceding chapters.

The architecture models in the three approaches are very simple (left), very flexible (center),
and very detailed (right). See also Chapter 3.

5.2.1 Symbolic Program Flow Details

Figure 5.2 shows the flow of the SP approach in more details. After a parallel application
(process network) specification is obtained, each process is parsed and SP abstractions are
derived. The SP abstractions assume that some basic blocks of the original application pro-
cess are going to be substituted by symbolic instructions, and that some control points of the
original application process are going to be annotated. A designer is the one who selects
whether a basic block or a control point is going to be annotated or not. This is indicated with
the label “Abstraction of details”.

Once the application sources and abstraction assumptions are ready, a tool based on the gen-
eral purpose C/C++ parser [87] can translate them into the data-set independent SPs and
control annotated application sources. The workstation symbol in Figure 5.2, with the label
“Parser” above it, represents this tool. The control annotated application sources are then
compiled and run on a single data set in order to check functional correctness. The resulting
simulation is an untimed simulation, since no architecturerestrictions are applied yet. The
workstation symbol in Figure 5.2, with the label “Untimed Simulation” above it, represents
the above. At this point the annotated control points generate control trace outcomes. These
control traces represent the data-set dependent part of theSP representation.

In parallel with the previous steps, an architecture specification is obtained. The specification
is given in terms of platform parameters, i.e., a number of units, types of units, properties of
units such as delays, policies and the platform topology.

The key Y-chart part, the mapping, connects the SP application representation (both SPs
and control traces) with the architecture specification, i.e., maps application processes onto
architecture units. The product of this binding is a source code file which can be compiled and
run on an architecture simulator. When it comes to symbolic programs, they are translated to
the corresponding data structure. This data structure is often known as a parse tree. At the
same time, control traces which correspond to symbolic programs are connected with these
parse trees. These two inputs are forwarded to each architecture component on top of which
a process from the process network is mapped.

Each architecture component is instantiated according to an architecture specification. Also,
architecture components are generic Transaction Level Modeling (TLM) [3] building blocks.



114 Big Picture & Conclusion

They describe only a timing behavior, and not a functional behavior. A set of parameters
that is given in the architecture specification is directly related to the timing behavior of a
particular component.
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Figure 5.2: The flow of the Symbolic Program approach. The inputs are: (1) an application
process network, (2) intra-process-level abstractions, (3) a data set, and (4) an architecture
specification. The data-set independent parts of the application model are captured in (5)
SPs, and the data-set dependent part of the application model are captured in (6) control trace
outcomes.

After mapping is done, application and architecture are co-simulated, with functional behav-
ior being captured by the non-timed application model, and non-functional behavior being
captured by the timed architecture model. See also Chapter 1. The mapping step is not
fully automated because DSE feedback loops are not taken into account here. Therefore, in
Figure 5.2 the mapping step is shown as a puzzle - it requires adesigner input.

After the simulation has completed one can choose to performtransformations and changes
on SPs and control traces, architecture specifications, or data-sets (which again affects control
traces) in order to see how different application-architecture combinations will behave when
evaluated in subsequent simulations.
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5.2.2 Directions for Improvements

The Symbolic Program approach has its pros compared with theapproaches in the same
field. We have emphasised them many times in this thesis. However, the approach has many
points of improvement as well. The most critical one is the absence of both the front-end
and back-end tools that interface to the designer. By thefront-endtool we mean a tool that
automates the following designer actions: (1) derivationsof SP texts, and (2) annotations of
control-points of interest. By theback-endtool we mean a tool that collects the performance
numbers ofN simulations of interests and then performs (semi-)automatic analysis of these
numbers.

5.3 Conclusion

The main goal of this thesis was to produce a modeling approach suitable for efficient and
accurate DSE of complex MPSoC systems. Byefficientwe mean that a fast system simulation
model is derived from high-level representations of application(s) and architecture(s). By
accuratewe mean that the resulting simulation numbers are within a 20% error-margin with
respect to the RTL model.

In Chapter 1 we showed complexities, issues, and directionsof DSE of MPSoC systems. We
recognized that the best way to deal with the DSE issues is to perform sufficient exploration
at higher levels of abstraction before going to lower-levels and concrete designs (See Sec-
tion 1.2.2). We identified thathigher level of abstraction as the so-called ”Level of approx-
imate performance models”. It is aligned with the Transaction Level Modeling paradigm, it
requires the least level of platform details and it results in fast and accurate simulations (See
Section 4.5.1 in Chapter 4).

In Chapter 2 we introduced a novel DSE application representation - Symbolic Programs.
We defined symbolic programs as abstractions of behaviors which were earlier given either
as control data-flow graphs or as source-code descriptions.The main idea behind them is
the abstract execution [51]. We also defined a minimal set of expressions that is sufficient
to expose hierarchy and partial-order and to preserve the information needed for the high-
level architecture model later on. We pointed out that the symbolic program syntax may not
express parallelism as easily as CDFGs do, but symbolic programs can be maintained more
efficiently than CDFGs. The efficiency of maintenance of an application representation is
directly proportional to the efficiency of a DSE method.

In Chapter 3 we presented our authentic architecture modelsfor DSE of embedded systems.
These models are built in a generic way, so they can be used to model various architecture
characteristics. Further, the models capture most of the parallelism that designers express. We
verified our model by regenerating the accurate results of the earlier case studies [33,52,58].
The models support both Intra-task level parallelism and Task-level parallelism. Byintra-task
level parallelism we mean compile-time and run-time partial-order executions. Bytask-level
parallelism we mean multi-programming by means of multi-processing. The models have
been implemented usingSystemC [8], which makes it reusable in a wider DSE community.
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In Chapter 4 we described the mapping approach using our application representation and our
architecture models. We illustrated the mapping approach by means of a few case-studies.
The results of these cases we use to quantify the level of accuracy and DSE efficiency of our
DSE method.

5.3.1 Primary Contributions

• A proper concurrent application representation for the simulation-based MPSoC
DSE.We have introducedsymbolic programsas an application representation that can
be used for design-space exploration of heterogeneous multiprocessor embedded mul-
tiprocessors without biases regarding mapping layers or ”virtual-processors”. TheSP
representation properly separates application characteristics from data-set dependen-
cies which makes it possible to reuse symbolic programs for different data-sets. To
our knowledge no representation in the related work that is used at the same level of
abstraction and at the same level of the application complexity can achieve such reuse.

• A basic repository of the generic architecture models for the simulation-based
MPSoC DSE.We have created anArcher library of components, where all architec-
ture model components are divided into the four basic groups: processors, interfaces,
arbitersandmemory buffers(See Chapter 3). In our opinion, each embedded SoC ar-
chitecture can be specified by components of these groups andwithin each group there
is a diversification based on lower-level component characteristics. To our knowledge,
no TLM DSE library in the related work is able to achieve such generality.

• Mapping steps that closely mimic the activities of an MPSoC designer in real-life
cases.We have defined our mapping approach based on the Y-chart. However, we have
used common design steps to define our mapping approach rather than inventing new
steps (See Chapter 4). Therefore, our mapping approach is highly correlated with what
a designer would and does in reality use, whilst some other approaches are not [7,36].

5.3.2 Secondary Contributions

• Introduction of level of approximate performance models. We have introduced a
new level of abstraction in theAbstraction Pyramid. This level is the level of approx-
imate performance models and it is closely linked to the TLM approach (See Sec-
tion 1.3.2). The TLM approach is important because it becamepart of theSystemC
standard [62].

• Positioning of the simulation-based MPSoC DSE approaches with respect to ac-
curacy and simulation speed.We have been first to rationalise the pros and cons of
simulation-based DSE approaches. This reasoning has resulted in an approach allow-
ing designers (1) to perform design-steps as in the case of detailed design, (2) to run
fast simulations of architectures being explored, and (3) to have more accurate numbers
than in the case of TD simulations (See [11]). This reasoningwas the starting point
of development of some other simulation-based DSE methods,such asSesame. As
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a matter of fact, thebig-pictureof DSE approaches from Chapter 2 has been reused
in [36]. Thus,Sesame is incorrectly regarded as the originator of such positioning.

• Modeling of the specific code-transformations such as the Detection-of-variants
transformation. The result published in [55] represents the formal researchof this
transformation and it is more specific to the compiler technologies. In this thesis
we showed our work that has been done independently of this formal research, more
through the prism of Architecture Modeling for Design SpaceExploration. Particu-
larly, we identified the problem in [32] - as described in the modeling of the ’detection
of variants’ SP transformation in Chapter 2, Section 2.5.1,and we reported on our
case-study for the Proof-of-Concept (PoC) in [11]. We acknowledge the originality
and contribution of the formal approach presented in [55], and we point that such de-
signer’s decision can be modeled using our approach.
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[32] V. Živković, et al. Design Space Exploration of Streaming Multiprocessor Architec-
tures. InProc. of Signal Processing System (SiPS)’02, San Diego, October 2002.

[33] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprettere. System level design with
Spade: an M-JPEG case study. InInternational Conference on Computer Aided Design
(ICCAD’01), San Jose CA, USA, November 2001.

[34] A. D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger and E.F. Deprettere. Ex-
ploring Embedded-Systems Architectures with Artemis.IEEE Computer, 34(11):57–
63, November 2001.

[35] A. D. Pimentel. The parallelisation of the object-oriented simulation language pearl.
Master’s thesis, Amsterdam, The Netherlands, August 1993.

[36] A. D. Pimentel, C. Erbas, and S. Polstra. A systematic approach to exploring embedded
system architectures at multiple abstraction levels.IEEE Transactions on Computers,
55(2), February 2006.

[37] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multi-objective Optimization. InEvolutionary Methods for
Design, Optimization, and Control, Barcelona, Spain, 2002.

[38] F. Thoen, J. Van Der Steen, G. de Jong, G. Goossens, and H De Man. Multi-thread
graph: a system model for real-time embedded software synthesis. InEDTC ’97: Pro-
ceedings of the 1997 European conference on Design and Test, page 476, Washington,
DC, USA, 1997. IEEE Computer Society.

[39] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendor, Sonia and S. Yuhong.
Taming heterogeneity - the Ptolemy approach. InProceedings of the IEEE, Special
Issue on Modeling and Design of Embedded Software, 2002.

[40] M. Gries. Methods for Evaluating and Covering the Design Space During Early Design
Development.Integration. the VLSI Journal, 38(2):131–183, 2004.



122 Bibliography

[41] K. Lahiri, A. Raghunathan, S. Dey. Fast Performance Analysis of Bus-Based Systems-
On-Chip Communication Architectures. InProc. of IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD)’99, San Jose, CA, USA, November 7-11
1999.

[42] K. Richter and R. Ernst. Event model interfaces for heterogeneous system analysis. In
Proceedings of Design, Automation, and Test in Europe Conference (DATE’02), pages
506–513, Paris, France, March 2002.

[43] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP: A System-Level Exploration
Platform for Network Processors.IEEE Design and Test of Computers, 19(6):17–26,
2002.

[44] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek. The Click Modular Router.
SIGOPS Oper. Syst. Rev., 33(5):217–231, 1999.

[45] R.A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacharya, W.E. Dougherty, I. Nair,
J. Darringer, and S. Paliwal. SEAS: a system for early analysis of SoCs. In
CODES+ISSS ’03: Proceedings of the 1st IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pages 150–155, Newport Beach,
CA, USA, 2003.

[46] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rapiddesign space exploration of
heterogeneous embedded systems using symbolic search and multi-granular simulation.
SIGPLAN Not., 37(7):18–27, 2002.

[47] A.S. Cassidy, J.M. Paul, and D.E. Thomas. Layered, Multi-Threaded, High-Level Per-
formance Design. InProceedings of the conference on Design, Automation and Test in
Europe (DATE’03), pages 954–959, Munich, Germany, March 2003.

[48] G. De Micheli.Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[49] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, 1986.

[50] G. K. Wallace. The jpeg still picture compression standard. IEEE Transactions on
Consumer Electronics, page xxx, 1991.

[51] J. Larus. Abstract execution: A technique for efficiently tracing programs.Software–
Practice and Experience, 20(12):1241–1258, December 1990.

[52] T. Harriss, R. Walke, B. Kienhuis, and E. Deprettere. Compilation from matlab to
process networks realized in fpga.Journal on Design Automation of Embedded Systems,
Kluwer, 7(4), 2002.

[53] A. Turjan, et al. The Compaan Tool Chain: Converting Matlab into Process Networks.
In Proc. DATE’02, Paris, France, xxx 2002.

[54] J. Levine, T. Mason, and D. Brown.lex & yacc. O’Reilly, 1995.



Bibliography 123

[55] S. Derrien, A. Turjan, C. Zissulescu, B. Kienhuis and E.Deprettere. Deriving effi-
cient control in process networks with compaan/laura.accepted for publication in the
International Journal of Embedded Systems Inderscience (IJES).

[56] M. Lam. Software pipelining: An effective scheduling technique for vliw machines.
Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and
Implementation, June 1988.

[57] T. Stefanov and E. Deprettere. Deriving process networks from weakly dynamic appli-
cations in system-level design.Proceedings of IEEE/ACM/IFIP Int. Conf. on HW/SW
Codesign and System Synthesis (CODES-ISSS’03), pages 90–96, October 2003.

[58] E. de Kock. Multiprocessor mapping of process networks: A jpeg decoding case study.
Proceedings of 15th Int. Symposium on System Synthesis (ISSS’02), pages 68–73, 2002.

[59] Todor Stefanov.Converting Weakly Dynamic Programs to Equivalent Process Network
Specifications. PhD thesis, Leiden University, December 2004.

[60] Alexandru Turjan.Compiling nested loop programs to process networks. PhD thesis,
Leiden University, March 2007.

[61] I. Somerville.Software Engineering, 6th Edition. Addison-Wesley, August 11 2000.

[62] T. Grotker, S. Liao, G. Martin, and S. Swan.System Design with SystemC. Kluwer
Academic Publishers, Boston, 2002.

[63] J. Carter.Programming SQL, Computer Studies Series. Blackwell Scientific Publica-
tions, 1992.

[64] J. A. Fisher. Trace Scheduling: A Technique for Global Microcode Compaction.IEEE
Transactions on Computers, C-30(7):478–490, July 1981.

[65] J. L. Hennessy and D. A. Patterson. Computer architecture: a quantitative approach,
3rd edition. 2002.

[66] E. Dijkstra. Cooperating sequential processes.Technical Report EWD-123, University
of Eindhoven, The Netherlands, 1965.

[67] P. Stravers and J. Hoogerbugge. Homogeneous multiprocessing and the future of silicon
design paradigms. InProc. of VLSI-TSA’01, 2001.

[68] M. Dewey.A Classification and Subject Index for Cataloguing and Arranging the Books
and Pamphlets of a Library. Project Gutenberg - http://www.gutenberg.org/etext/12513,
2004 (originally from 1876).

[69] B. Lewis and D. Berg.Multithreaded Programming With PThreads. Sun Microsystems
Press and Prentice Hall, 1998.

[70] Synopsys, Inc., CoWare Inc., Frontier Design, Inc. Systemc version 2.0 user’s guide.

[71] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosenblum. Disco: Run-
ning commodity operating systems on scalable multiprocessors. ACM Transactions on
Computer Systems, 15(4):412–447, 1997.



124 Bibliography

[72] P. Lieverse. Many-to-one mapping and scheduling.Spade Project - Memo 12 (Internal
Document), September 1999.

[73] B. R. Preiss.Data Structures and Algorithms with Object-Oriented Design Patterns in
C++ . Wiley, September 1998.

[74] Sylvain Alliot. Architecture Exploration for Large Scale Array Signal Processing Sys-
tems. PhD thesis, Leiden University, March 2003.
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Appendix A
Implementation Details

A.1 Symbolic Porgram Definition Section

Figures A.1, A.2, A.3, and A.4 form the definition section of the Yacc notation of the SP
text syntax. Figure A.2 shows the pattern matching rules forthe lexical analyzer of the SP
parser. The lexer takes an input stream (e.g., a file containing the SP-text) andtokenizesit,
i.e., divides it up into lexical tokens. This tokens are combined (processed further) in the
parser according to the syntax rules. The% union declaration in Figure A.1 identifies all
of the possible C types that a symbol of SP can have. Some of these types are basic types,
such asint (e.g., integer) ortext (e.g., string). The other are more abstract (complex).
Figure A.3 provides the input of what values are associated with tokensor terminal symbols.
Concretely, only theNUM andID tokens have values associated with themselves (an integer
and a string, respectively). Figure A.4 declares the types of non-terminals. A type may be
any of the types declared in% union in Figure A.1 and it is surrounded with< >, while
the non-terminal is stated afterwards.

A.2 Symbolic Program Rules Section

Figure A.5 illustrates the grammar rules of the SP text. The rules shown resemble the SP
abstractions from the most general one (i.e., the SP itself -Lines: 1-3) towards the leaf ones
(e.g., an SI matchestrace event, or the parameters of an SI matchidentifier - Lines:
32-41). The actions (indicated inside of the C comments) areused to create the data-structure
of the particular SP.

An SP representation must contain themain text-section1, but may contain zero or more

1This is the main CDFG of a process.



126 Implementation Details

1 %union
2 {
3 text text_field;
4 int int_field;
5 symbolic_program program_field;
6 main main_field;
7 function_list function_list_field;
8 function function_field;
9 compound_statement compound_statement_field;
10 statement_list statement_list_field;
11 statement statement_field;
12 selection_statement selection_statement_field;
13 iteration_statement iteration_statement_field;
14 jump_statement jump_statement_field;
15 flow_type flow_type_field;
16 label_var label_var_field;
17 program_call program_call_field;
18 condition condition_field;
19 variable variable_field;
20 trace_statement trace_statement_field;
21 parallel_trace parallel_trace_field;
22 trace_event trace_event_field;
23 event_type event_type_field;
24 identifiers identifiers_field;
25 identifier identifier_field;
26 identifier_type identifier_type_field;
27}

Figure A.1: The symbol values types used in the SP text syntax.

function text-sections2 (see the Yacc code in Figure A.5 - Lines: 1-7). Eachmain
or function is essentially acompound statement, i.e., an ordered set of statements
(Lines: 8-10).

A statement can be any of the procedural programming language constructs: a com-
putation or communication load -trace statement, the already explained compound
statement -compound statement, an if-construct -selection statement, a loop
construct -iteration statement, a go-to construct -jump statement, a label -
label var, and a sub-routine call -program call (see Lines: 11-29).

Note thattrace statement is actually the extended SI; it is either a single symbolic
instruction -trace event, or a bundle of partially ordered symbolic instructions. A
trace event may be either of one ofREAD, WRITE, or EXECUTE, or it is anSKIP
(empty) instruction (Lines: 32-35). The first value (NUM) either enumerates the application
FIFO channels (in the cases ofREAD or WRITE) or determines the operation (in the case of
EXECUTE). The non-terminal represents one or more arguments oridentifiers (Lines:
36-37). Anidentifier has a unique name (string) in the SP scope. It may or may not
be explicitly characterized asINPUT or OUTPUT(Lines: 38-41). Follows the load of a sym-
bolic instruction (given by the third value-token of a symbolic instruction -NUM); it shows
either the communication load in terms of words3, or the computation load in terms of some
abstract Worst-Case-Execution-Path4.

2These are the abstracted CDFGs of the sub-routines of a process.
3This information will impact the real-platform communication. Thus, it is a number that can be securely trans-

lated into the multiples of the chosen platform communication-word size later-on.
4This information will impact the mapping stage; therefore this number must somehow depict the number of
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1 "goto" {lexReport("GOTO", (text) yytext);
2 return GOTO;}
3 "break" {lexReport("BREAK", (text) yytext);
4 return BREAK;}
5 "continue" {lexReport("CONTINUE", (text) yytext);
6 return CONTINUE;}
7 "return" {lexReport("RETURN", (text) yytext);
8 return RETURN;}
9 "call" {lexReport("CALL", (text) yytext);
10 return CALL;}
11 "function" {lexReport("FUNC", (text) yytext);
12 return FUNC;}
13 "main" {lexReport("MAIN", (text) yytext);
14 return MAIN;}
15 "condition" {lexReport("COND", (text) yytext);
16 return COND;}
17 "loop" {lexReport("LOOP", (text) yytext);
18 return LOOP;}
19 "read" {lexReport("READ", (text) yytext);
20 return READ;}
21 "execute" {lexReport("EXECUTE", (text) yytext);
22 return EXECUTE;}
23 "write" {lexReport("WRITE", (text) yytext);
24 return WRITE;}
25 "skip" {lexReport("SKIP", (text) yytext);
26 return SKIP;}
27 "||" {lexReport("OR", (text) yytext);
28 return OR;}
29 "in" {lexReport("IN", (text) yytext);
30 return IN;}
31 "out" {lexReport("OUT", (text) yytext);
32 return OUT;}
33 [:();,] {lexReport("char", (text) yytext);
34 return yytext[0];}
35 [0-9]+ {lexReport("NUM", (text) yytext);
36 yylval.int_field = (int)
37 strtol((text) yytext, NULL, 0);
38 return NUM;}
39 ([a-zA-Z_0-9])* {lexReport("ID", (text) yytext, &yylval);
40 return ID;}
41 . {skip((text) yytext);}
42 n {skip((text) yytext);}

Figure A.2: The regular expression rules used by the lexer tomatch the tokens.

A.3 Symbolic Program Interpretation

The interpretation of an SP by the Program Unit CFSM is done bymeans of a parse-tree
traversal plus the particular control-trace.

A parse tree is a data structure used for storing the parsed text. The start symbol is stored
at the top, as a root, while the terminals are stored as leaves. The tree body (branches and
nodes) is formed from the other non-terminals available in the parsed text. In the case of SP
shown in Figure 2.13, themain non-terminal is almost the root5, and, e.g.,skip at Line 20
is one of the leaves.

The tree-traversal we use is thepost-order depth-first traversal. That means first the nodes

low-level operations required on the potential platforms.
5Actually, the root is an invisiblesymbolic program non-terminal which wraps themain construct.
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1 %token GOTO
2 %token BREAK
3 %token CONTINUE
4 %token RETURN
5 %token CALL
6 %token FUNC
7 %token MAIN
8 %token COND
9 %token LOOP
10 %token READ
11 %token EXECUTE
12 %token WRITE
13 %token SKIP
14 %token OR
15 %token <int_field> NUM
16 %token IN
17 %token OUT
18 %token <text_field> ID

Figure A.3: The token values used in the SP text syntax.

1 %type <program_field> symbolic_program
2 %type <main_field> main
3 %type <function_list_field> function_list
4 %type <function_field> function
5 %type <compound_statement_field> compound_statement
6 %type <statement_list_field> statement_list
7 %type <statement_field> statement
8 %type <selection_statement_field> selection_statement
9 %type <iteration_statement_field> iteration_statement
10 %type <jump_statement_field> jump_statement
11 %type <flow_type_field> flow_type
12 %type <label_var_field> label_var
13 %type <program_call_field> program_call
14 %type <condition_field> condition
15 %type <variable_field> variable
16 %type <trace_statement_field> trace_statement
17 %type <parallel_trace_field> parallel_trace
18 %type <trace_event_field> trace_event
19 %type <event_type_field> event_type
20 %type <identifiers_field> identifiers
21 %type <identifier_field> identifier
22 %type <identifier_type_field> identifier_type

Figure A.4: The non-terminal type values used in the SP text syntax.

of the left subtree are visited, then the nodes of the right subtree are visited, and in the end
the root is visited. The control trace is always determined by two factors: the data set and the
SP structure. Consequently, there may be many control traces because there may be many
different data sets. However, all of them must resemble the SP structure, i.e., there must direct
the tree-traversal correctly. That is, the value of the condition node (e.g., loop condition 1)
must match the current control-trace event value (e.g., condition 1 equals true).

For example, given the following contents of the control-trace:

(condition1 ≡ true) ≺ (condition2 ≡ true) ≺ (condition3 ≡ true) ≺ (condition4 ≡ false)

with the SP shown in Figure 2.13, the following partially ordered symbolic instructions are
generated:
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1 symbolic_program : main function_list {/* action */}
2 | main {/* action */}
3 | function_list main {/* action */};
4 main : MAIN compound_statement {/* action */};
5 function_list : function {/* action */}
6 | function_list function {/* action */};
7 function : FUNC ID compound_statement {/* action */};
8 compound_statement : ’{’ statement_list ’}’ {/* action */};
9 statement_list : statement {/* action */}
10 | statement_list statement {/* action */};
11 statement : trace_statement {/* action */}
12 | compound_statement {/* action */}
13 | selection_statement {/* action */}
14 | iteration_statement {/* action */}
15 | jump_statement {/* action */}
16 | label_var {/* action */}
17 | program_call {/* action */};
18 selection_statement : condition compound_statement {/* action */};
19 iteration_statement : LOOP condition compound_statement {/* action */};
20 jump_statement : GOTO label_var {/* action */}
21 | flow_type {/* action */};
22 flow_type : BREAK {/* action */}
23 | CONTINUE {/* action */}
24 | RETURN {/* action */};
25 label_var : NUM ’:’ {/* action */};
26 program_call : CALL ID {/* action */};
27 condition : COND variable {/* action */};
28 variable : NUM ’(’ identifiers ’)’ {/* action */};
29 trace_statement : parallel_trace ’;’ {/* action */};
30 parallel_trace : trace_event {/* action */}
31 | parallel_trace OR trace_event {/* action */};
32 trace_event : event_type NUM ’(’ identifiers ’,’ NUM ’)’ {/* action */}
32 | SKIP {/* action */};
33 event_type : READ {/* action */};
34 | EXECUTE {/* action */}
35 | WRITE {/* action */};
36 identifiers : identifier {/* action */}
37 | identifiers identifier {/* action */};
38 identifier : identifier_type ID {/* action */}
39 | ID {/* action */};
40 identifier_type : IN {/* action */}
41 | OUT {/* action */};

Figure A.5: The production rules of the SP text syntax.

...; read 11 (a, 1) ‖ read 12 (b, 1) ; ...

As a conclusion, all control information is disappeared andthe partially ordered symbolic
trace is passed further to the architecture processor model.

The SP parse tree plays the role of the process object code (i.e., program code). The con-
trol trace models the data-input and execution. By assigning appropriate delays (e.g., jump-
delays, or loop-delays, etc.) to different parse-tree nodes various processor execution effects
can be modeled. Additionally, the traversing algorithm maybe constructed that it delays
depending on the contents of the control trace; e.g., in the case of(condition1 ≡ true) it
delays while in the case of(condition1 ≡ false) it does not delay. The last control trace
execution scheme is co-related with the cache-hit and cache-miss modeling. Although we do
not discuss modeling of the cache related behavior in this thesis, it is true that our model, in
general, provides some features for modeling the same.
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A.4 Processor Unit Threads

1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 blocking acquire of a next symbolic instruction bundle
6 state ← RUN
7 fi
8 if state = RUN
9 serialize the acquired bundle based on the number of RU, EU, W U using FCFS
10 wait for a configured delay
11 do until queue of serialized bundles = ∅
12 blocking transmit of the topmost serialized bundle
13 remove the transmitted bundle from the queue
14 done
15 state ← IDLE
16 fi
17 done
18 end

Figure A.6: Implementation of the FECTRL Concurrent FiniteState Machine.

1 CFSM initialize state ← WAIT
2 begin
3 do forever
4 if state = WAIT
5 blocking acquire of a next symbolic instruction bundle
6 state ← RUN
7 fi
8 if state = RUN
9 wait for a configured delay
10 dispatch symbolic instructions from the bundle based on R, E , W attributes
11 state ← IDLE
12 fi
13 if state = IDLE
14 block until all dispatched symbolic instructions finished
15 state ← WAIT
16 fi
17 done
18 end

Figure A.7: Implementation of the BECTRL Concurrent FiniteState Machine.
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1 CFSM initialize state ← WAIT
2 begin
3 do forever
4 if state = WAIT
5 if dispatched read instructions = finished
6 check for the next read symbolic instructions
7 fi
8 if dispatched execute instructions = finished
9 check for the next execute symbolic instructions
10 fi
11 if dispatched write instructions = finished
12 check for the next write symbolic instructions
13 fi
14 blocking acquire of next symbolic instruction based on the a bove checks
15 state ← RUN
16 fi
17 if state = RUN
18 if any new acquired
19 wait for the configured delay
10 do forall acquired read symbolic instructions
21 dispatch read instruction
22 done
23 do forall acquired execute symbolic instructions
24 dispatch execute instruction
25 done
26 do forall acquired write symbolic instructions
27 dispatch write instruction
28 done
29 fi
20 state ← IDLE
21 fi
22 if state = IDLE
23 block until all dispatched symbolic read instructions fini shed ∨
24 block until all dispatched symbolic execute instructions f inished ∨
25 block until all dispatched symbolic write instructions fin ished
26 state ← WAIT
27 fi
28 done
29 end

Figure A.8: Implementation of the Modified BECTRL Concurrent Finite State Machine.
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1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 get next execute symbolic instruction (operand, opcode, si ze)
6 state ← SETUP
7 fi
8 if state = SETUP
9 blocking open connection to the physical FIFO based on port, RU index, data size
10 state ← STALL
11 fi
12 if state = STALL
13 signal that read is ready
14 blocking check whether write is ready
15 state ← RUN
16 fi
17 if state = RUN
18 do until data size = 0
19 load data unit
20 wait for the configured data unit delay
21 decrement size
22 done
23 signal close connection
24 if run-time pipelining
25 unblocking put output operand
26 fi
27 signal that symbolic instruction execution has been finished
28 state ← IDLE
29 fi
30 done
31 end

Figure A.9: Implementation of the RU Concurrent Finite State Machine.

A.5 Interface Component Unit Threads



1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 get next execute symbolic instruction (operand, opcode, size)
6 if run-time pipelining
7 blocking get operand
8 fi
9 state ← SETUP
10 fi
11 if state = SETUP
12 blocking open connection to the physical FIFO based on port, WU index, data size
13 state ← RUN
14 fi
15 if state = RUN
16 do until data size = 0
17 store data unit
18 wait for the configured data unit delay
19 decrement size
20 done
21 state ← STALL
22 fi
23 if state = STALL
24 signal that write is ready
25 blocking check whether read is ready
26 signal close connection
27 signal that symbolic instruction execution has been finished
28 state ← IDLE
29 fi
30 done
31 end

Figure A.10: Implementation of the WU Concurrent Finite State Machine.

1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 get next execute symbolic instruction (operands, opcode, budget)
6 if run-time pipelining
7 do forall input operands in array of operands
8 blocking get input operand
9 done
10 fi
11 state ← RUN
12 fi
13 if state = RUN
14 do until budget = 0
15 wait for the configured unit delay
16 decrement budget
17 done
18 if run-time pipelining
19 do forall output operands in array of operands
20 unblocking put output operand
21 done
22 fi
23 signal that symbolic instruction execution has been finished
24 state ← IDLE
25 fi
26 done
27 end

Figure A.11: Implementation of the EU Concurrent Finite State Machine.



1 CFSM initialize state ← WAIT
2 begin
3 do forever
4 if state = WAIT
5 if this is Read Interface PIC
6 acquire all read ports with available data from Read Interface
7 fi
8 if this is Write Interface PIC
9 acquire all write ports with available room from Write Interface
10 fi
11 state ← INTERRUPT
12 fi
13 if state = INTERRUPT
14 do forall acquired ports
15 deliver port status to DOS through a master
16 done
17 state ← WAIT
18 fi
19 done
20 end

Figure A.12: Implementation of the PIC Concurrent Finite State Machine.



1 CFSM initialize state ← INPUT
2 begin
3 do forever
4 if state = INPUT
5 block until reschedule conditions appear
6 state ← OUTPUT
7 fi
8 if state = OUTPUT
9 do foreach SPU-core in set of all cores
10 if set of all Symbolic Programs = emptyset

11 break
12 fi
13 if SPU-core 6= busy
14 reschedule for this SPU-core
15 if rescheduling result in set of all cores
16 find Symbolic Program scheduled on this SPU-core
17 unblock Symbolic Instruction fetching for that Symbolic Program
18 unblock this SPU-core
19 fi
20 fi
21 done
22 state ← INPUT
23 fi
24 done
25 end
26 RIRQslave()
27 begin
28 queued as feasible Symbolic Programs for the read ports with data
29 end
30 WIRQslave()
31 begin
32 queued as feasible Symbolic Programs for the write ports with room
33 if room for any of postponed symbolic write instruction
34 unblock CFSM (rescheduling condition appeared)
35 fi
36 end
37 FETCHslave( index )
38 begin
39 if for indexed Symbolic Program exists an already fetched but
postponed instruction
40 block Symbolic Instruction fetching for indexed Symbolic Program
41 fi
42 acquire next Symbolic Instruction from the indexed SP Stream
43 if this instruction may be feasible based on data/room availability
44 unblock CFSM (rescheduling condition appeared)
45 fi
46 end
47 TRAPcores( index )
48 begin
49 mark the indexed SPU-core as 6= busy
50 block the indexed SPU-core
51 end

Figure A.13: Implementation of the DOS composite channel.



1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 blocking acquire of a next symbolic instruction bundle
6 state ← RUN
7 fi
8 if state = RUN
9 serialize the acquired bundle based on the number of RU, EU, WU using FCFS
10 wait for a configured delay
11 do until queue of serialized bundles = ∅
12 deliver the topmost serialized bundle through a master
13 remove the transmitted bundle from the queue
14 done
15 state ← IDLE
16 fi
17 done
18 end

Figure A.14: Implementation of the OS-based FECTRL CFSM (see the modification at Line
12).

1 CFSM initialize state ← WAIT
2 begin
3 do forever
4 if state = WAIT
5 acquire a next symbolic instruction bundle through a master
6 state ← RUN
7 fi
8 if state = RUN
9 wait for a configured delay
10 dispatch symbolic instructions from the bundle based on R, E, W attributes
11 state ← IDLE
12 fi
13 if state = IDLE
14 block until all dispatched symbolic instructions finished
15 state ← WAIT
16 fi
17 done
18 end

Figure A.15: Implementation of the OS-based BECTRL CFSM (see the modification at Line
5).



1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 blocking wait for the connection opening request from the corresponding RU
6 state ← RUN
7 fi
8 if state = RUN
9 establish the read connection between the RU and the FIFO
10 wait for a configured delay
11 acknowledge that the read connection is opened
12 state ← WAIT
13 fi
14 if state = WAIT
15 block until close read connection request signaled
16 close the read connection
17 state ← IDLE
18 fi
19 done
20 end

Figure A.16: Implementation of the FICTRL Concurrent Finite State Machine.

1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 blocking wait for the connection opening request from the corresponding WU
6 state ← RUN
7 fi
8 if state = RUN
9 establish the write connection between the WU and the FIFO
10 wait for a configured delay
11 acknowledge that the write connection is opened
12 state ← WAIT
13 fi
14 if state = WAIT
15 block until close write connection request signaled
16 close the write connection
17 state ← IDLE
18 fi
19 done
20 end

Figure A.17: Implementation of the FOCTRL Concurrent Finite State Machine.



1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 blocking wait until the next read connection is established
6 state ← HANDSHAKE
7 fi
8 if state = HANDSHAKE
9 blocking check for read to become ready and register the data-size required
10 state ← STALL
11 fi
12 if state = STALL
13 non-blocking test on the amount of data in the FIFO
14 if configured for burst
15 if data-size > cached-size
16 blocking wait for (data-size - cached-size) in the FIFO
17 fi
18 fi
19 if not configured for burst
20 blocking wait for data-size in the FIFO
21 fi
22 if bus configured ∨ data-size > cached-size
23 blocking claim of the bus
24 fi
25 state ← RUN
26 fi
27 if state = RUN
28 if configured for burst
29 if cached > data-size
30 get data-size data-units from cached data
31 cached, data-size ← 0
32 fi
33 if cached > 0
34 get cached data-units
35 data-size ← (data-size - cached)
36 cached ← 0
37 fi
38 if data-size > 0
39 if burst-word > data-size
40 cached ← (burst-word - data-size)
41 fi
42 do until burst-word 6= 0
43 get data-unit from the FIFO
44 wait for a configured delay unit
45 decrement burst-word
46 done
47 data-size ← 0
48 fi
49 fi
50 if not configured for burst
51 do until data-size 6= 0
52 get data-unit from the FIFO
53 wait for a configured delay unit
54 decrement data-size
55 done
56 fi
57 if configured bus ∧ bus was claimed
58 non blocking bus grant
59 fi
60 signal room appeared in the FIFO
61 signal written data ready
62 close the read connection
63 state ← IDLE
64 fi
65 done
66 end

Figure A.18: Implementation of the FIU Concurrent Finite State Machine.



1 CFSM initialize state ← IDLE
2 begin
3 do forever
4 if state = IDLE
5 if not configured for burst
6 blocking wait until the next write connection is established
7 room-size ← budget
8 fi
9 if configured for burst
10 block until the buffering event appears
11 room-size ← budget
12 if the room-size required < burst-word
13 counter = ( bust-word - room-size)
14 do until the room-size required < burst-word
15 wait until counter time units elapses
16 if counter > ( bust-word - room-size)
17 counter = ( bust-word - room-size)
18 fi
19 if counter ≤ ( bust-word - room-size)
20 decrement counter
21 fi
22 if counter = 0
23 break
24 fi
25 done
26 fi
27 fi
28 state ← HANDSHAKE
29 fi
30 if state = HANDSHAKE
31 if not configured for burst
32 blocking check for write to become ready and register the room-size required
33 fi
34 if configured for burst
35 block until BUFFERING CFSM signals
36 fi
37 state ← STALL
38 fi
39 if state = STALL
40 blocking wait for room-size in the FIFO
41 if bus configured
42 blocking claim of the bus
43 fi
44 state ← RUN
45 fi
46 if state = RUN
47 if not configured for burst
48 do until room-size 6= 0
49 put data-unit to the FIFO
50 wait for a configured delay unit
51 decrement room-size
52 done
53 if configured bus
54 non blocking bus grant
55 fi
56 signal data appeared in the FIFO
57 signal read data ready
58 close the write connection
59 fi
60 if configured for burst
61 if burst-word > room-size
62 do until burst-word 6= room-size
63 wait for a configured delay unit
64 decrement burst-word
65 done

Figure A.19: Implementation of the FOU CFSM (cont. in FigureA.20).



66 fi
67 do until burst-word 6= 0
68 put data-unit from the FIFO
69 wait for a configured delay unit
70 decrement burst-word
71 done
72 if configured bus
73 non blocking bus grant
74 fi
75 room-size ← 0
76 signal data appeared in the FIFO
77 fi
78 state ← IDLE
79 fi
80 done
81 end
82 # The BUFFERING is an additional CFSM thread; exists only for the burst-bus!
83 BUFFERING initialize state ← IDLE
84 begin
85 do forever
86 if state = IDLE
87 non-blocking test on the amount of room in the FIFO (for DOS)
88 blocking wait until the next write connection is established
89 blocking check for write to become ready and register the room-size required
90 state ← HANDSHAKE
91 fi
92 if state = HANDSHAKE
93 block access for setting up budget
94 if requested room from RU ≥ burst-word
95 budget ← burst-word
96 fi
97 if requested room from RU < burst-word
98 budget ← requested room from RU
99 fi
100 requested room from RU ← ( requested room from
RU - budget)
101 unblock after setting up budget
102 if initialization 6= true
103 delay for a set-up delay
104 fi
105 state ← STALL
106 fi
107 if state = STALL
108 non-blocking test on the amount of room in the FIFO
109 if ( budget > room tested) ∨
110 ( budget ≥ burst-word)
111 signal to main CFSM that buffering is done
112 block until main CFSM signals that emptying is done
113 fi
114 if ( budget ≤ room tested) ∧
115 ( budget < burst-word)
116 signal to main CFSM that buffering is done
117 fi
118 state ← RUN
119 fi
120 if state = RUN
121 if requested room from RU 6= 0
122 state ← HANDSHAKE
123 fi
124 if requested room from RU = 0
125 signal data appeared in the FIFO
126 signal read data ready
127 close the write connection
128 state ← IDLE
129 fi
130 fi
131 done
132 end

Figure A.20: Continuation of the FOU Concurrent Finite State Machine.
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Samenvatting

Moderne embedded systemen zijn ontworpen om met veel complexere en reken-intensievere
applicaties om te kunnen gaan dan 10 jaar geleden. Dit komt voornamelijk door de vooruit-
gang op het gebied van geavanceerde signal-verwerkings ICi’s en de ontwikkelingen van
geavanceerde applicaties. Door een toename in het aantal signaalverwerkingselementen die
geı̈ntegreerd kunnen worden op één IC maakt het systeem-level ontwerp uiterst complex en
uitdagend.

Deze ontwerptaak wordt bereikt door nieuwe ontwerp-paradigmes, geaccumuleerde kennis
en de expertise op het gebied van parallel-computing. Uit Object Oriented Technologies
geiëvolueerde onwerpparadigmas worden steeds beter om desystem level verkenning en on-
werpmethodologien te ondersteunen. Even belangrijk, modelling applicaties en architecturen
en de vertaling van taken naar parallele architecturen zijnversterkt door de solide en rijke
methoden die in de laatste twee decennia door parallel-computing kringen waren onderzocht
en voorgesteld.

Parallele computing vindt dus eigen weg uit de wetenschappelijke applicatie domeinen en
gaat verder naar de andere domeinen, onder andere multimedia en (draadloze) communicatie
domeinen. In deze domeinen, onder parallel computing system wordt bedoeld een hetero-
gene systeem wiens onderdelen zijn communicatie eenheden van verschillende typen and
meestal gedistribueerde geheugen eenheden. Een platform kan eigenlijk alles zijn: van mul-
tiprocessoren met taak-teogewijd processoren en een toegewijde communicatie netwerk, tot
een (semi-) programmeerbare multiprocessor die meerdere processen in parallel kan draaien
door het gebruik van beide interleaving en overlapping.

Ondanks dat de mogelijkheden voor het ontwerpen van de complexe en geavanceerde embed-
ded systeem platformen zeer groot zijn, een passende methodologie die voldoet aan alle door
de markt gesteld eisen is nog niet naar voren gekomen. Dat wilzeggen dat het specificaties
opstellen, onderzoeken en ontwerpen van de applicatie multiprocessor systeem platformen
gebaseerd op de gebruikers behoeftes is nog altijd qua tijd en hoeveelheid werk een kostbaar
proces dat moet ingezet worden.

Ons antwoord op de bovengenoemde uitdagingen is de Archer aanpak - aanpak beinvloedt
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door de ’Abstratie pyramide’ en Y-chart. Het hoofd doel van deze aanpak is om de per-
formance analyse te ondersteunen door de executie modelling van parallel (streaming) ap-
plicaties op candidate multiprocessor architecturen. Onze aanpak heeft drie kernelementen:
(1) representatie van de applicatie, (2) platform - gebaseerde bibliotheek van de (architec-
ture) componenten, en (3) een mapping methodologie. Symbolic Program representatie dat
was geiı̈ntroduceerd door het onderzoek gepresenteerd in dit proefschrift is een brug tussen
de twee werelden, die van de architecten en die van de ontwerpers. Dit Proefschrift brengt
abstractie van functionele details maar toch zorgt voor hetbehoud van andere elementen
zoals communicatie, computatie, control en dependencies.Archar architectuur represen-
tatie ondersteunt het modelleren van brede scala van systeem architecturen (bij voorbeeld
all-in-hardware, all-in-software, hybrid multiprocessor, with dedicated network, shared-bus,
or highway, burst-bus, or hybrid network). Ten slotte, onzemapping methodologie werkt met
alle bovengenoemde representaties en toch vertaalt applicatie Symbolic Programs tot Archer
architectuur executie threads. Het waardevol om te vermelden dat deze transfromaties lijken
op de stappen dat de designers en de ontwerpers nemen in de process van mapping van hun
applicatie specificaties op de echte-wereld architectures. Dit was aangetoond door een paar
voorbeelden waar de verschillende digitale en beeld verwerking standaarden op de verschil-
lende Multi-Processor (MP) Systems-on-Chip (SoC) zowel toegewijde (application specific)
als programmeerbare (met embedded OS) architectures zijn geı̈mplementeerd.
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