Universiteit

4 Leiden
The Netherlands

Execution platform modeling for system-level architecture performance
analysis
Zivkovié, V.D.

Citation
Zivkovié, V. D. (2008, September 23). Execution platform modeling for system-level
architecture performance analysis. Retrieved from https://hdl.handle.net/1887/13140

Version: Corrected Publisher’s Version
License: Licence agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden
Downloaded from: https://hdl.handle.net/1887/13140

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/13140

Execution Platform Modeling for
System-Level Architecture
Performance Analysis

Vladimir DobrosavZivkovic

Execution Platform Modeling for
System-Level Architecture
Performance Analysis

PROEFSCHRIFT

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof.mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties te verdedige
dinsdag 23 September 2008
klokke 15.00 uur

door

Vladimir DobrosavZivkovi¢
geboren te Aleksinac, Servié

in 1970

PhD Dissertation committee:

chair: Prof.dr. Joost Kok
promoter: Prof.dr.Ir. Ed Deprettere
referee: Dr.Ir. Erwin de Kock NXP Semiconductors, Eindhove

committee members: Prof.dr. Harry Wijshof
Prof.dr. Frans Peters

Prof.dr. Henk Sips EEMCS/EWI, Delft University of Techngio
Dr.Ir. Todor Stefanov EEMCS/EWI, Delft University of Teablogy
Dr. Andy Pimentel Informatics Institute, University of Atesdam

Dr.Ir. Goran Djordjevic FEE, University of Ni§, Serbia

The work in this thesis was carried out between 2000 and 20@de Archer project sup-
ported by Philips Semiconductors (now NXP Semiconductors)

Execution Platform Modeling for System-Level Archite@W®erformance Analysis
Vladimir DobrosavZivkovic. -

Thesis Universiteit Leiden. - With index, ref. - With summan Dutch

ISBN/EAN: 978-90-9023450-2

Text editing services: Neville Young, Technical WritereRiria, South Africa
Printing services: DPP-Utrecht, Utrecht, The Netherlands

Copyright(©2008 by V. D.Zivkovi¢, The Hague, The Netherlands.

All rights reserved. No part of the material protected by topyright notice may be repro-
duced or utilized in any form or by any means, electronic ocimaaical, including photo-
copying, recording or by any information storage and re#liesystem, without permission
from the author.

To my wife Vesna, and my son Petar
To my Mum and Dad, Dragica and Dobrosav
To my Mother in Law and Father in Law, Marija and Slobodan

Contents

Acknowledgments Xi

1

Introduction 1

11
1.2

1.3

1.4

15
1.6

SUMMAIY . . . e e e e e 1
Embedded Systems: Definitions, Design, and Exploration 2
1.2.1 Embedded SystemsDesign. oo 4
1.2.2 Design Space Exploration 4
1.2.3 Analytical Exploration Methods 7
1.2.4 Simulation-based Exploration Methods 7

SystemModeling 8
1.3.1 Models of Computation 9
1.3.2 System-Level Modeling Terminology 12
Problem Statement 31
1.4.1 Objectives and Research Topics 14
Solution Approach L 51
Relatedwork 16
1.6.1 Spade 16
1.6.2 Sesame 17
1.6.3 MTG-DF* 18

1.6.4 Ptolemy 19

viii

Contents

1.6.5 Some Additional DSE Methods

2 Symbolic Programs

2.1
2.2
2.3
2.4

2.5

sSummary ... e
Introduction
Definitions and Terminology
SymbolicPrograms oo L.
241 SPStructure
242 SPBehavior
243 Semantics
244 Syntax ...
SP Transformations
2.5.1 |Intra-task Transformations

2.5.2 Task-level Transformations.

3 Architecture Modeling

3.1
3.2

3.3

3.4

summary ...
Introduction
3.2.1 Architecture definiton
3.2.2 Targeted Architectures
3.2.3 Model Structure
3.2.4 Model Behavior
3.25 Contribution L.
3.2.6 Chapter Organization
Architecture Model Structure L.
3.3.1 ProcessorComponents
3.3.2 Communication Router Interfaces
3.33 Arhiters oo
3.34 Storages.

3.3.5 Interfacing Architecture Components

Architecture Model Behavior

3.4.1 Architecture Model Element Behaviors

Contents

3.4.2
3.4.3
3.4.4
3.4.5
3.4.6

ProcessorModeling

Router Interface Modeling
Global FIFO Memory Modeling
Bus Arbitration Modeling o oL

Measuring Performance

35 Examples

351
3.5.2
3.5.3
3.54
3.55
3.5.6
3.5.7

Model of the Processor Compile-Time Pipelining
Model of the Processor Run-Time Pipelining
Model of the Programmable Multi-Processor
Model of the Routing Interfaces for a Point-to-PoietiMork

Model of the Routing Interfaces for a Shared Bus Ndtwor
Model of the Routing Interfaces for a Burst Bus Network.

A Heterogeneous System

3.6 RelatedWork

3.6.1
3.6.2

Spade Architecture Modeling

SEeSAME

4 Mapping Modeling

4.1 SUMMANY . . . o e e e e e e

4.2 Introduction e

421

4.3 Mapping Specification
4.4 Mapping Steps

4.4.1
4.4.2
4.4.3
4.4.4

Chapter Organization

BindingStep
MatchingStep
RefiningStep

TransformingStep

45 MappingCases e

45.1
45.2
45.3

Case-study: Adaptive QR Matrix Decomposition
Case-study: Mapping 2D-IDCT Specification to IP-ptives

Case-study: JPEG Decoding Network on MPSoC

Contents

46 Contribution.

5 Big Picture & Conclusion

51 Summary
5.2 BigPicture

5.2.1 Symbolic Program Flow Details

5.2.2 Directions for Improvements
53 Conclusion

5.3.1 Primary Contributions

5.3.2 Secondary Contributions

Bibliography

A Implementation Details

A.1 Symbolic Porgram Definition Section
A.2 Symbolic Program Rules Section
A.3 Symbolic Program Interpretation
A.4 ProcessorUnitThreads

A.5 Interface ComponentUnit Threads

Index

Samenvatting

Curriculum Vitae

Acknowledgments

During the course of the research presented in this thedisjden University (2000 - 2004),
| was supported through thé cher (at the beginning also known &pade 1 1) research
grant from Philips Semiconductors (now NXP).

Many thanks to the next people for the interesting scientifid technical discussions we
had: Pieter van der Wolf, Erwin de Kock, Ondrej Popp, WidoiiKzer, Ad Peeters, Gerben
Essink, Denis Alders, Andrei Radulescu, Kasia Nowak and Btaravers from Philips Re-

search; Paul Lieverse from TU-Delft; Andy Pimentel from Wity of Amsterdam; Peter
Knijnenburg, Luuk Groenewegen, Herbert Bos, and Bart Kigsifrom LIACS.

| would like to thank the following fellow Ph.D. students oLIACS at Leiden University

whom | have shared room 122 with: Alexandru Turjan, Todofe8tev, Claudiu Zissulescu,
Laurentiu Nicolae, and Dmitry Cheresiz. | always will renteenthe very interesting dis-
cussions we had about our research work and survival in thieeands. | am particularly
grateful to Alexandru Turjan, for his unselfish acts of heltha beginning of our stay in the
Netherlands.

| am also greatly indebted to many teachers, colleagues r@grtl§ from my homeland:
Mile Stojcev and Goran Lj. Djordjevic from the Faculty ofe€tronic Engineering (FEE)
at the University of Ni5, Serbia; Bane Vasit from Univéysif Arizona; Jelena Vuckovic
from Stanford University; Dejan Milenovic from ABB Procemdustries Products, Switzer-
land; Daniela Milovi¢, Aleksandar Prvulovi€, Zoran Mamk¢, Dejan Dimitrijevi€, and Milo$
Kosti€.

As a foreigner in the Netherlands, | have been and still | apeddent on a practical help,
co-operation, and information sharing with other expatse following people proved to be
very supportive and | show my gratitude to all of them: Bojakavic, Slobodan Mijalkovit,
Zoran Stojanovic, Miodrag Djurica, Marko Cvetkovi€, Mil Petkovi€, Dejan Stojanovi€,
Stanislav Jovanovit, BoZidar Stankovi€, Vladimir&iDejan Ognjanovi¢, Marko Smiljanic,
Marija de Roo Jankovic, Aleksandar Beric, as well as J&oddger, Erik Reid, Koos Ellis,
Roelof van Wyk, Ettore Benedetti, Werner Strydom, and D&adand.

Last, but not least, | thank my family and my close relativesgupporting me during the

Xii Acknowledgments

course of my Ph.D: my parents, Dobrosav LaZakovic and DragicaCedomirZivkovic,

for giving me life in the first place, for educating me withadipects, from the ethical heritage,
over general culture, through literature, to sciences)fmonditional support and encourage-
ment to pursue of my own life path, even when my interests atahtions went boundaries
of conventional and expected; my sister Danijela Tasith&ieving in me; my cousin Zoran
Stevanovit, for supporting my family and myself when it weesessary; my parents in law,
Slobodan Burazor and Marija Burazor for supporting me arig\iag in me.

Two special persons | want to express my greatest gratityaeyt wife Viesna for her support
and patience, and my son Petar:

Petar, my son, many times this work appeared to be an obstacjeined fun, playing, and
learning. Thank you for all attention, understanding, aespect of my work and deeds. |
must admit there have been moments when | wanted to give ugeoftbing, but you, my
son, have been and remained my main motive to continue. Nggxeup Petar, always finish
your part of the job, do not allow unfinished businesses td fiaa later on...

Thank you all.

Vladimir DobrosavZivkovic
Leiden, September 23, 2008

Chapter

Introduction

Get your facts first, then you can distort them as you plebse.

1.1 Summary

The uninterrupted increase of the capacity of silicon haslted in radical changes in the
level of applications which an embedded system has to suppavrell as in the system’s level
of complexity. The consumer-electronics industry now cdegs many electronic gadgets
consisting of a single chip with various functions embeddedadio transceiver, a network
interface, multimedia functions, security functions. tddion, the chip contains the "glue”
needed to hold it together along with a design which allovesithrdware and software to be
reconfigured for future applications. In conclusion, tdd@mnbedded systems are integrated
on a single chip instead of their previous implementatioa sndard microprocessor-based
board.

As a result, such Systems-on-Chip (SoC) are heterogendtha. is, they are embedding
different types of processing units (programmable, regoméible, dedicated), and differ-
ent types of communication networks (buses, cross-backest shared and dedicated net-
works). Not only has the once inflexible hardwired systenobse "soft”, but the solid border
between software and hardware is rapidly fading away [1lis Tdoftening” creates problems
for SoC-based systems because they are becoming extreomeptex. To illustrate the SoC
design problems, we quote a few statements by Chris Rowesi{iba) [2]: (i) Design com-
plexity vs. designer productivity: A well-recognized S@&Sidn-gap, which lies between the
growth in the chip complexity (58% for 5 year period) and protvity growth (21% for 5
year period) in logic design tools, widens every year. (pphAcation complexity: Standard

1A quote of Samuel Langhorne Clemens, better known by the pererMark Twain (1835 A.D.-1910 A.D.),
American humorist, satirist, writer, and lecturer. By makiyerican experts regarded as "the father of American
literature”.

2 Introduction

communication protocols are rapidly increasing in comflex(iii) Hardware and software
validation: All embedded systems now contain significardwamts of software. (iv) Design-
bugs: SoC design-bugs can literary kill a compaiifis was confirmed to an extent at the
Transaction-Level Modeling panel (TLM) [3], where desighsaid that more effort at the
system-level - to cut "time-to-market” - is urgently need®ée agree and claim that a sound
mapping exploration strategy can give some reassuranbeésidéveloping situation.

To master the complexity of the exploration of various mapgpalternatives, it is essential
that higher levels of abstraction are included in the dekigrarchy and that all relevant ap-
plications/architectures are effectively and efficierdfptured in the models that are used
at these levels. The models must be generic enough (at leattd application domain
considered) to encompass the various features that go vifinesht mappings. Moreover,
although at high levels of abstraction, application andhigecture models are coarse grained
and parametrized, it is imperative that architecture camepts should be Intellectual Prop-
erties (IPs) wherever possible. This may imply that input aatput data types in application
model tasks and architecture model processing units ate djffierent. Mapping should still
be straightforward in such cases. To the best of our knoweaulg mapping approaches offer
such facilities.

This chapter focuses on explaining research-backgrouddedated work needed to under-
stand our application, architecture, and mapping modelppyoach as detailed in this thesis.
We focus on the parallelism and heterogeneity of architecthe abstraction level needed to
efficiently explore such architectures, and the existirgjeay-level methods and approaches.

1.2 Embedded Systems: Definitions, Design, and Exploration

Embedded systems have become a highly significant part oj@ve’s daily lives. They are
literally everywhere: from the various electronic gadgrish as personal-digital assistants,
mobile-phones, MP3-players, i-Pod-devices, identiftcaéind banking smart-cards, through
television & entertainment sets, gaming devices, to varimeasurement and acquisition in-
struments - all different in scale and size. Embedded systtend to telecommunication,
military and space-exploration equipment. Hence, it i§idift to arrive at a single coher-
ent definition of embedded systems. Obviously, there agpteabe no size, area, cost or
similar restriction when speaking about embedded systefas.one special characteristic
distinguishes them from other types of systems: they ariggallly connected to their envi-
ronment.

Embedded Systems.Embedded systems are digital computer-based systemsttieede
their functionality into environments they operate, ane: da their tight-relation to these
environments, they differentiate from any other categddigital computer-based systeras.

The operation of an embedded system can be easily descutikd following sequence: (1)
acquire the inputs from the environment using sensors,dayls, on-off triggers, analog-to-
digital converters or any other input converters; (2) pssdbese inputs using the embedded
functionality to produce the corresponding results; andc(@vey those results to the envi-
ronments using primitive light-and-sound outputs, aatssuch as relays or robotic arms,

1.2 Embedded Systems: Definitions, Design, and Exploration 3

networks, digital-to-analog conversion, audio outputlea output or any other output de-
vice or format. Although the sequence is a simple one, mgétia functional requirements
needed for any of today’s embedded systems is not simplé at al

Embedded systems are reactive, often real-time systenterdiog to [4], a real-time system
must satisfy explicit (bounded) response-time constsaintit risks erroneous behavior, in-
cluding failure. Embedded systems also must meet requegdnmance constraints or they
risk failure of the embedding system or loss of Quality-efxgce (QoS); An MP3 player will
not produce the required audio-quality if performance nexents are not met; a Set-Top-
Box (STB) will not be able to descramble scrambled digitialeo data; a data stream will not
be acquired properly by a Digital Acquisition System; a roband will not react on time;
parameters indicating the failure of some other digitatiagre will not be processed in time.
Hence, we can say that embedded systems are a special sybefreal-time systems.

High performance requirement is particularly challenggd (1) the high volume of data
going into and out of an embedded system, (2) varying da¢a rdtinputs, and finally, (3) the
power hungry behaviors (algorithms) built into the systdimese aspects may be considered
to be an ill-affordable system cost which may conflict witlifpemance requirements.

However, performance requirements are not the only concéor mobile devices, size,
weight, and power consumption are equally important. Addally, integrity and privacy

may play such an important role that security constraintg lbeeome dominant [5]. Finally,

for devices whose configuration (structure and topologyy rl@ange when activated the
reconfigurability is the most important [6].

All these factors make the understanding of embedded sggiatantly difficult. To help both
designers and scientists in their understanding, anakygsoration and design of newer and
better embedded systems, a specialization of embeddetsysiwards specific applicability
domains is made.

Domain Specific Embedded Systemdf a group of embedded systems shares a certain com-
monality, such as e.g. application domain, and due to thisroonality they can interchange
or re-use parts of their implementations among themsethiese systems are called domain
specific embedded systems.

Designing domain specific embedded systems makes liferettséee is no real need to be
concerned about text processors and Graphical User logsrf@GUI) in an STB, but the
task of decoding the MPEG-2(4) stream must be performedeptyf Conversely, some
word-processor applications and GUIs are expected on haltdPersonal Assistant (PA)
gadgets, but there is no need for extreme decoding and speasessing features. In this
way, reducing (removing) unnecessary embedded tasks ritglaesible to save both silicon
real estate and limited resources. However, even thouglaithospecific applications do
not require General Purpose Platforms (GPP) (such as aderubéggh-level CPUSs), today’s
domain specific applications are still hungry for perforrme(resources) and this implies that
modern domain specific embedded systems need multiplegsingeresources.

Multiprocessor Embedded Systemslf an embedded system comprises multiple processing
components which operate in parallel, then the embeddedryis called a multiprocessor
embedded system. Moreover, the components may be ditigreatin which case the system

4 Introduction

is called heterogeneous.

1.2.1 Embedded Systems Design

Embedded systems design has become far more complex thiae @atly days when they
were simple micro-controller-on-PCRBlesigns. Thed-hocdesign approach that was com-
mon then is no longer possible. As quoted in Section 1.1: "&esign-bugs can literary kill a
company.” Modern embedded system design requires thorsiaghation verification of an
SoC before it is delivered to production-lines because tbe-Necurring Engineering costs
(NRE) are too high. Moreover, non-functional behaviorssas power dissipation, Quality-
of-Service (Q0S), integrity and Real-Time (RT) constraiate now of primary importance.
Therefore, the major goal of embedded system design is te waih both functional and
non-functional aspects. In addition to that, design andeémntation costs must not grow
with system complexity. This in itself demands a foresighdesign paradigm which avoids
prototyping by relying on abstract model-based and exfitmrebased designs.

1.2.2 Design Space Exploration

Given (user) requirements and constraints, there are -imtipte - many systems that can
implement these demands. All these systems constitutésgnia 'performance-cost’ design
space. Design Space Exploration (DSE) is a method aimindgatifying those points that
are optimal in some way or another.

Approaching this search for optimal points by consideriagheand every point in the space
is not feasible. Instead, one has to find a strategy that gulte search in the path from
requirements and constraints to optimal implementatiordickates by pruning the design
space while proceeding. This approach, which is a real parashift, was introduced in [7]
and called theAbstraction Pyramidview. This view is reproduced here in Figure 1.1 for
convenience.

The base of the pyramid represents the complete design gpattee application domain.
This space is, at least in principle, reachable from usarirements and constraints that are
at the top of the pyramid. Specification, exploration andgfeshen proceeds at discrete
levels of abstraction as represented by the parallel cutgagh level, level-specific models
are used to explore the system instances (also referregtatfarminstances) with levels of
confidence that are within pre-defined bounds. Selectedrinsts narrow down the reachable
design space, as illustrated by the inner pyramids in Figure Transition from one level of
abstraction to the next one down implies a number of refinésr@rboth the parameters and
the accuracy measures. The cost of model construction atdation is higher at the more
detailed levels of abstraction whilst the opportunitiesxplore alternatives are significantly
greater at the higher levels of abstraction. Exploraticth@esign at higher levels of abstrac-
tion is called system-levélexploration and design. At the system-level, parametdnatnd
concurrency are typically coarse-grained, and perform@ost measures are coarse metrics

2Printed Circuit Board.
3System-level igapplication, architecture, mapping).

1.2 Embedded Systems: Definitions, Design, and Exploration 5

Low - system specifications and requirements High
executable behavioural
models n
2
c
2
. o
‘g approximate (performance) S
8} models O
3 3
B\ o
g g
3 3
8 cycle—accurate =
< models g
i
o
0
[
) >
ynthesizable]
models
High Low

Alternative realizations (Design Space)

Figure 1.1: The Abstraction Pyramid.

as well. For example, a processor unit is characterized hyeady and a throughput value,
parallelism is at the level of tasks, and performance antaresmeasured in terms of, say,
throughput and the number of processing units.

We now describe briefly the levels of abstraction in Figude 1.

Top level - Level of specifications and requirements

This level of abstraction is essentially an expert levelmcalledback of the envelope spec-
ification (user requirements and constraints). The system is seepea#iad by the user
without any technology or implementation hints. In softerangineering it is also known as
level zero(LO) requirements.

Level of behavioral models

This is an entry point to a design process. The models atdted hreexecutable The sys-
tem being modeled is still decoupled from time and resogargstraints, so that the numbers
obtained from the executions are rather 'qualitative’ (amt@f messages communicated and
amount of abstract operations executed) than 'quangtafsystem performance). Never-
theless, the behavior can be expressed in some high lewalgddanguage. At this level,
performance is purely functional.

6 Introduction

Level of approximate performance models

The level of "approximate-accuracy’provides more opportunities to the designer to ex-
plore alternative solutions, anticipating the transfaliorafrom executable behavioralig-
timed[8]) models and cycle-accurate models. In [10] this levedb$traction is introduced
as an ultimate way to avoid the so-called “guru approachgmelthe embedded system de-
signer jumps from the conceptual or behavioral model dtteig the cycle-accurate model.
In contrast, an incremental narrowing of the design-spadaaes the risk of landing on non-
optimal points.

In this thesis we claim that before going down to lower lev@lgbstraction, the designer
should perform a thorough exploration at the level of appnate performance abstraction.
This exploration prunes the design space in such a way thatgkigner will then have only
to focus on a significantly reduced set of design possieditvhen moving down to the next
level of abstraction.

Level of cycle-accurate models

The level of cycle-accurate models is also known as a buke-@gcurate level. At this level,
communication between system components and computatitiia components are eval-
uated on a scale of Register Transfer Bus Cycles

While this approach level of exploration provides a great @é confidence, the processing
power that is required to run exploration simulations in ¢ese of complex and demanding
applications is overwhelming [11]. Therefore, we argudis thesis that the designer should
use models at this level only after he has significantly pduthe design space at the upper
abstraction levels.

Level of synthesizable models

This level of abstraction is the "ultimate” implementatispecification level. Almost all
consumer-electronics products today are designed takilygeycle-accurate and synthesiz-
able levels into account. These are the levels where aitraditdesigner feels comfortable
and becomes sufficiently confident with the obtained peréoroe numbers. Raising the lev-
els of abstraction leads to new challenges in dealing wilttimversion of specifications and
exploration on higher levels of abstraction to specifigaiat synthesizable level.

Now that we have introduced the Abstraction Pyramid paragigremains to decide whether
(and on what levels) we should rely analyticalor simulations exploration methods

4|t is sometimes calletime-approximatdevel [8] or everperformance moddével [9].
5In Computer Architecture this is known as RTL.

1.2 Embedded Systems: Definitions, Design, and Exploration 7

1.2.3 Analytical Exploration Methods

As indicated earlier, modern embedded systems are inagdgsiomplex. Aspects related to
resource sharing, communication buffering and timing tangs are fairly complicated to
deal with when it comes to modeling and to evaluating them.

One can deal with these aspects by using analytical modatidgquantification methods.

These are based on Network Calculus Theory [12]. In this @gyr, data is modeled in

terms of data characteristics; resources are modeled ek-btxes that transform data to
data and transform available capacity to remaining capatite analysis then solves a set of
equations that confirm or deny the attainment of the pre-édéfabjectives.

A quite different usage of analytical exploration is illteged in theDesi gn Trotter
framework [13]. There, a designer can establish 'metricgjuide the embedded design and
synthesis tools towards an efficient application architecimatching. The metrics are com-
puted through data and control dependency analysis ont-dmchglobal data transfers, on
data-processing, and on control operations at all abgireletvels. The application specifica-
tion & is parsed into a Hierarchical Control Data Flow Graph (HCR@ich consists of the
lower-level Control Data Flow Graphs (CDFG), which againgists of so-called elementary
nodes (the aforementioned representations are equival&idFGs defined in Chapter 2).
Once the HCDFG hierarchy is creat@derage parallelism metrigsnemory orientation met-
rics andcontrol orientation metricare calculated in a bottom-up manner, from the lowest
level of hierarchy to the highest level of hierarchy. Theutssform the application charac-
terization, and hence they help to direct the SoC desigrhfsmpplication. This approach is
known as Multi-Granularity Metrics.

Analytical methods are very efficient when the componertilaox relations between input
guantities and output quantities (service costs, avéitygl®tc.) can be expressed in terms of
relatively simple, say linear, equations. Because of tagsamptions, analytical methods are
only feasible at high levels of abstractions where the dhjeds to 'estimate’ performance
and cost before a more detailed exploration of the estimdiased pruned design space can
be addressed.

1.2.4 Simulation-based Exploration Methods

Analytical methods have their limitations. In particulahen going down the abstraction
levels, analytical methods may have to rely on simulatioggbmore detailed information

about the component’s input-output capacity (see [12])usTfanalytical methods are not
feasible at all levels of abstraction. Sooner or later, &ion is mandatory. Of course,

simulation at the lower levels of abstraction is costly. fHfiere, simulation can be conceived
at the approximate-performance level.

In this thesis we focus on a simulation-based exploratiotihotewhich is compliant with the
so-calledY-chartapproach to a system exploration [14]. In the Y-chart apghipa system
(model) comprises an application (model), an architec(aredel) and mapping transfor-
mations which associate the application (model) and thieiteicture (model) together. See

6This is usually a C-code functional specification.

8 Introduction

Figure 1.2. The application (model) is purely transforneabe., it only expresses functional
behavior. The architecture (model) is purely reactive iteonly expresses non-functional
behavior which includes latency and throughput, resouvedadbility, power consumption,
etc. The Y-chart, then, takes the parameters from the twoetaathd the transformation
set to conduct a quantitative performance/cost analysiee numbers that are returned by
the analysis may be used to tune application and architatodels and to make mapping
transformations.

\ Mapping
\\
\
\
N
N
N
P Performance
s .
= Analysis
AN /r
N . ,
< P)
~~--/Performance | - -~ .
Numbers +----______ o=

Figure 1.2: The Y-chart approach (Kienhuis)design space exploratigerocess.

This approach permits multiple applications to be mappedd arcandidate architecture as
well as to map an application onto a variety of architectutesa framework in which the
Y-chart approach is implemented, the top three boxes inrEigw2 appear as applications
layer, mapping layer and architecture layer, respectivEhe mapping layer translatesp-
resentationsof components in the application model fepresentation®f components in
the architecture model. For example, a mapping transfoomatay convert communication
semantics in the application model to communication seitgirt the architecture model.

1.3 System Modeling

The Y-chart modef is applicable at each and every level of abstraction [15}ak originally
introduced by Gajski [15] as a generalization for designsinthesis. See Figure 1.3.

In Gajski’s approach, 'system’ is defined using various i@usion levels, where each level
contains objects common for that abstraction level and e/héher level objects are hier-
archically composed out of lower level ones. At each abstiadevel the design can be
described in the form of either a behavioral or structuratiel@and both models are defined
by the number of details at that abstraction level. In thenhgtmodel, design is the process

“It is worth noting that we distinguish betwe&rchart modeblnd Y-chart approach

1.3 System Modeling 9

Multiprocessing

Computation Communication

synthesis

Behavior Structure

Specification Architecture

System
Lovd %D
Level

Gate
Level

Figure 1.3: The Y-chart (Gajski): a generalization cfyathesigprocess.

of moving from a behavioral model to a structural model uradset of constraints and where
structural objects are each designed at the next lower.|eleis is why this approach is
sometimes called synthesis Y-chart.

The application and architecture models are independehtigen, yet they should match in
the sense that applications should be specified in parafigliage when the architectures are
parallel architectures. In any case, both the applicatrmhthe architecture can be conve-
niently modeled in terms of so-callédiodels of Computatian

1.3.1 Models of Computation

According to the National Institute of Standards and Tebtbgw(NIST):

"Models of Computation (MoC) are formal, abstract definismf a computer. Using a model
one can more easily analyse the intrinsic execution time @mory space of an algorithm
while ignoring many implementation issues. There are maoglats of computation which
differ in computing power (that is, some models can perfoomputations which are not
possible in other models) and differ in the cost of variousragions.”

From the above we derive our own definition for Models of Cotagian.

Models of Computation. Models of Computation give a formal semantics concernirg th
way computations communicate between or follow each oty allow for reasoning - to
answer 'what-if’ questions. They may also be used for absspecifications of computa-
tions.[16]¢

Models of Computation that are relevant for our needs atedibelow.

Finite-State Machines

Finite-State Machines (FSM) are graphs, the nodes of wiijstesent states and may perform

10 Introduction

computations on input events, and the arcs of which reptésasitions between states. The
number of states and possible state-transitioriimite. Finite-State Machines may become
intractable when the number of states grows large.

Parallel Models of Computation

Parallel models of computation are graphs of nodes thabparEomputation and arcs that
exchange data between the nodes. Computation nodes ae(eidithematical) functions or
sequential processes. The various models differ in the weag$ communicate data among
each other.

Process Network Models (PN)

A PN is a network of processes that mutually exchanges datg ssme sort of synchroniza-
tion. An example of a fairly general PN is the Communicatirgi&ential Processes MoC
(CSP) [17] which uses the rendezvous’ or synchronous ngespassing synchronization
method. The CSP model is non-deterministic, and is usuadéintedriven. Since today’s het-
erogeneous embedded systems are not purely data-drivaisbutontrol-driven, the MoC's

such as the CSP model are important as well.

An example of deterministic PN is the Kahn Process NetwokaN) MoC [18] in which
the processes operate autonomously and concurrently anchgoicate through unidirec-
tional Point-to-Point (PtP) channels that buffer data ibaumded First-In-First-Out (FIFO)
gueues. Processes synchronize by means of blocking reads, process read blocks when
attempting to read from an empty channel. Each process capue data in its own lo-
cal memory, allowing the overlapping of process executiotigs is usually described as
globally-asynchronous, locally-synchronous.

Many MoCs have been proposed in the literature that are alpesses of the KPN model.
They can be classified in two groups: (1) Data-Flow Processdt&s [19], and (2) Data-
Flow Graphs (DFG) [20]. In a DFG, the processes are actuaigtifematical) functions,
called actors, that have well-defined firing rules which atiettoken consumption and pro-
duction conditions. The most well known DFG is the SynchimData-Flow (SDF) [21], in
which every actor consumes a fixed number of tokens fromitstiohannels and produces a
fixed number of tokens for its output channels. A global sciednd FIFO channel sizes can
be decided at compile-time - 'bounded buffer-size execu{i®2]. More expressive DFGs
have been proposed, namely Boolean Data-Flow (BDF) [28gkr Data-Flow (IDF) [24],
and Data-Flow combined STAte machine controlled Recondigom (DF*) [25]. With these
FGs, there is a trade-off between expressiveness and esitipi analysis opportunities. In
Data-Flow Process Networks, the processes are charazidyz repetitive invocation of ac-
tor functions. KPNs and their special casesaata-driven and are typicallylata-streaming
oriented.

1.3 System Modeling 11

Concurrent FSM Models

Opposed to the streaming data-driven applications aredhgol-drivenapplications. The
control-driven applications can be modeled by the FSM mogatlthis model may become
intractable, unless a concurrent FSM model is introducashcGrrent FSMs communicate
by sending data availability signals. Examples are: (1)eStharts and ROOM-charts, orig-
inating from the real-time software design, and (2) Co-Desd FSMs, originating from the
digital signal processing design.

State-charts [26] is a broad extension of conventional &ism of FSM. State-charts are
relevant for large and complex discrete event systems, asiahulti-computer real-time sys-
tems, communication protocols, and digital-control unigdl of them commonly known as
reactive systemsdn state-charts states and transitions are described wdalar fashion, al-
lowing for: clustering (generating super-states), orthraity (i.e., concurrency) and refine-
ment (i.e. 'zoom’ capabilities). Due to these featuredestharts allow for bothop-down
andbottom-updesign approaches. The communication in state-chartsed@broadcast
communication mechanism. That is, one state generatesea &vd all other states sense
it, acting in response if specified. This is unlike the MoC C8Rere an explicit rendezvous
channel has to be established, with a single sender and ke setgiver. Therefore, state-
charts are more efficient for describing 'interrupt-driveehavior than any other parallel
MoC. Finally, state-charts can be easily extended or iategrwith the other representations.
For instance, incorporating Temporal Logic (TL) [27] intate-charts allows for verification.

ROOM-charts [28] are an integral part of the wider methogdglosed for modeling of real-
time systems, called Real-time Object Oriented Modelin@@®). ROOM-charts are in-
spired by the state-charts formalism. Yet, ROOM-chartdaiormore formalisms to describe
real-time constraints of a system than state-charts. Awahdily, ROOM-chart models use the
so-called “principle of separating internal control froom€tion”, and due to this, ROOM-
charts are very convenient for modeling today’s heteroges@mbedded systems as well.
Finally, the ROOM-charts model is aimed at Object-Orientadguage code-synthesis (e.g.,
C++ code). Therefore, the parts and features of the ROONtshee strongly typed, and the
ultimate goal is either an executable model of the system{fition-based Exploration) or
the final real-time software image (the final product).

Co-Designed Finite State Machine (CDFSM) representasiomtioduced to embedded sys-
tem designers by thieol i s method [29]. A CDFSM is a specialized FSM that incorporates
the unbounded delay assumption: for a classic FSM only tleepidase can have any du-
ration between zero and infinity. The other phases all haveration zero. An FSM also
instantaneously reacts on input events. In CDFSM, the ittanghase can have any du-
ration between one time unit and infinity - all other phases ltave any duration between
zero and infinity. A CDFSM also takes a non-zero unbounded tomperform its tasks. The
CDFSM MoC is also described as globally-asynchronous|liigegnchronous. The system
is modeled as a network of interacting CDFSMs communicatingugh events: 1) receiving
an event is analogous to blocking, 2) sending an event iogaak to not blocking, and 3)
the events are broadcast to all connected CDFSMs.

12 Introduction

1.3.2 System-Level Modeling Terminology

In Section 1.3.1 we have introduced models of computatiahdhe appropriate for abstract
modeling of system behavior. In this subsection we presentare detail the terminology
and concepts of system-level modeling. Recall that a sy&temdel) is conceived as consist-
ing of an application (model), an architecture (model), asdt of (mapping) transformations
that associate the two models together. The mapping tranafmns convert application rep-
resentations to architecture representations. The apiglicand architecture representations
can be conveniently modeled using Transaction-Level Mo(ldLMs).

Transactions and Transaction-Level Models.A transaction refers to a data or event ex-
change between two architecture components. As a resudelsof architecture components
which are involved in transactions are said to be modeledasdaction-Level Models. Com-
munication among components is modeled by channels anetégsiare separated from the
details of computation and the cost of various operatifsis:

In TLM, application representation primitives are coneerto architecture level primitives.
For example, a process in an application model may be repesbas a sequence oead,
execut e, andwr i t e abstract instructions. A processor in the architecture ehodto
which that process is mapped may be represented as a seqfariveck-dat a, | oad-
dat a,si gnal -roomexecut ef 0,execut ef 1,execut ef n,check-room,st or e-
dat a, si gnal -dat a (see [30]). Different architecture models may interpread, execu-

t e andwr i t e application primitives in different ways (see Chapter 3neT LM is aware
of these alternative architecture primitives and takes oéthe appropriate conversions.

The TLM components significantly reduce the amount of d@iah architecture model. For
example, in Chapter 3 we rely strongly on the TLM concept,ad result of using TLM in
our model, when two (or more) components heed to commurticeyecommunicate nothing
else but events. A real data item is neither processed nomeomcated in our architecture
model, and hence, no additional simulation-time costs bggssing or communicating data
are introduced. The architecture model processes onlyyngsvierated delay and synchro-
nization events. A delay event appears when an architetursaction delay expires.

To explain transaction delays, we first have to introduceva ecencept - a concept of Plat-
forms.

Platforms. A platform is a parametrized architecture that is a comgosiof library com-
ponents. The library provides component types and rulesttwdonnect components. It also
provides software to manage the composition of comporents.

Obviously, introducing platforms not only provides a legabstraction where we can easily
make comparisons to other platforms, but it also allows udigtnguish between environ-
mental characteristics such as technology, flexibilityd &moling. A familiarity with the
similarities and differences between platforms helps unaie time-to-market predictions
and explore the accuracy of the predictions.

Platforms can be hardware platforms and software platforms

Hardware Platform. A hardware platform consists of a set of computation units@eom-
munication, synchronization, and storage infrastructiReughly speaking, a hardware plat-

1.4 Problem Statement 13

form is a parametrized hardware architecture in which thegaeters are typically number
and type of units, communication and synchronization giwes and protocols, and storage
methods:

Software Platform. A software platform consists of a set of computation sesyiseich
as: inter-process communication, memory managementepsogcheduling, file system and
input/output services. A software platform provides aggilbns with unified and hardware
independent interfaces, maintains a system state cohgrand supervises the execution of
applications. A software platform may be: (1) an operatiggtem, (2) a virtual machine, or
(3) a micro kernel. In all three cases a software platform imaltiprogramming paradigm
for an embedded multiprocessor system.

Roughly speaking, a software platform is an abstractioheiiderlying hardware platform
for the cases when the hardware platform is programmableconfigurable in time®.

In this thesis, we are interested in the mapping of streasedapplicationg onto multi-
processor architectures. Applications are modeled as Rabteess Networks (or specialized
versions) and architectures are modeled as parametrizeiteanture templates. The software
platform: (1) provides soft real-time services, (2) suppdine chosen programming model,
(3) copes with the schedules that maximize the overall vp&réormance and (4) supports
system-calls that can cope with the high-bandwidth requérgs of stream-based applica-
tions [31]. A particular model of such an operating systepresented in Chapter 3.

1.4 Problem Statement

Now that we have introduced the concepts of system-lewatstiction-level, and platform-
based modeling, it remains to clarify why we rely on thesecepits and how we do so.

Why

Next generation (embedded) systems on a chip will be mutic@ssor systems. These are
systems that comprise of a set of heterogeneous processtaghat operate concurrently and
communicate over some communication, synchronizationstorége infrastructure. These
systems are too complex to be specified by an expert desigdeesigned by state-of-the-art
design methodologies. This approach is so error-pronétibaton-recurrent costs (prototyp-
ing, debugging, re-design) would block any form of returnrorestment (see Section 1.2.1).
To overcome this problem we abstract the applications amditthitectures. In addition, we
also abstract the way that the applications associate éthartchitecture - that is, we abstract
their association. As a consequence, the exploration adélse@yn space is at abstract levels
too. In the Y-chart model this is called system-level andiguFe 1.3 it is indicated by the
bold solid arrow-headed lines.

8As opposed to 'reconfigurability in time’, a hardware platfocan be reconfigurable in space - as FPGA de-
vices are. From the viewpoint of this thesis, reconfiguitgbih space is modeled purely as a feature of hardware-
platforms.

9Stream-based applications are sometimes also cedietinuous media applications

14 Introduction

How

Due to us having to deal with abstract, parametrized systedefs, we choose to distinguish
between issues as proposed in the Y-chart approach - issuels are further refined in the
computation models where a distinction is made between atatipn and communication as
well. In the scope of this thesis the architecture modelsansidered to be at the transaction
level (see above). At this level we can abstract the intsroéthe computation units and
focus on transactions among units (the communication,lspmézation, and storage infras-
tructure). Similarly, we have to provide a model of the apgtions so that we can specify
them at the level of abstraction where we will be dealing wlitbm. We emphasise that the
application is irrespective of any specific hardware asttitre, though the application and
hardware architecture models must match in the sense #attn be easily related. How-
ever, because the application model should be irrespeatigay specific hardware archi-
tecture, the matching between application model and haelarahitecture model will never
be perfect. As a consequence, the relating of applicatiotetsaand hardware architecture
models requires transformations which take applicationl@hoepresentation primitives to
architecture model representation primitives. Thesesframations constitute what we call
the mapping process.

1.4.1 Objectives and Research Topics

The main objective of this thesis is to develop models anchout that lead to fast and

accurate, abstract, design-space exploration multigemesystems-on-chip which are used
in high-throughput, streaming applications. Central esthmodels is a Y-chart, with three
clearly separated entities: Architecture, Applicationd dMapping (see Figure 1.2). Relat-

ing these three means determining their models and repeg®ers, as well as the required

transformations to overcome differences between the fiviesi of the entities. Hence, we

identify Models, Representations and Transformationfi@sitain research subjects for this
thesis. That is:

e Models - Applications and architectures are modeled indéestly. However, they
should be compatible in the sense that applications are lesbdea parallel language
when architectures are parallel architectures. The quretsti What are these models?

e Representations - Applications and architectures areceged with each other. This
requires that application and architecture componentggresented in such a way that
the application model can drive the architecture model. question here isWhat are
these representations?

e Transformations - Because application models and ar¢hiteenodels do not neces-
sarily match, transformations should be provided to ti@esapplication representa-
tions to architecture representations. The question keW&hat are these transforma-
tions?

Given Application/Architecture models and Mapping repraations and transformations, a
Performance/Cost Analysis Method must be provided suchalsaibsequent design-space

1.5 Solution Approach 15

exploration can be built on it in a fast and accurate way. Ttuesend thus subsection with
the final questionWhat is that Method?

1.5 Solution Approach

The approach to the solution in this thesis is depicted iufeidl.4. We explain it in this
section.

Application model (KPN)

SP Approach
y4
7 \
/ (annotated) KPN code KPN (source) code \
Data —» Ctrl. Trace Symb. Prog.
%) Generator Generator
o
w
— X
%) Control Symbolic
z Trace Program
]
—
< Ctrl. Trace Symb. Prog.
= Transformations Transformations
o
O
w
2 Control Symbolic
< Trace’ Program’
14
- Data Instruction
Stream
\ Trace Stream
:' """ Generator |7}
Architecture
lerary
Architecture Arch. Descr ‘ [Archltecture : Performance
Specmcatlon Generator i Simulator Numbers /

Figure 1.4: The Symbolic Program approach (SP approachBP]1 This approach allows
designers (1) to perform design-steps as in the case ofetbtiésign (indicated as Transfor-
mation Steps), (2) to run fast simulations of architectieiag explored, and (3) to reuse the
same application and architecture representations gotisp of the supplied data input (one
of the ideas of the Y-chart approach [14].

Because we target streaming application systems, we bdhatthe KPN MoC is an appeal-
ing model for specifying the functional behavior of the gyst We call this the application

model, which is purely transformative. The architecturg pathe system is modeled as an
admissible composition of components taken from a librdrgaonponents. These compo-
nents only model the 'cost’ of the application’s workloadénms of resources, transaction

16 Introduction

delays, throughput, service availability, etc. We asge@aplication and architecture models
together by letting the application components generatet®yic Programs as well as Con-
trol Traces that provide information regarding the outcarhdata-set dependent conditions
for a given input stream. The idea of recovering or presertire control flow and data-
dependencies from the original application represemdiipmeans of Symbolic Programs
(SP) has been introduced in [32].

Our architecture model components are executable angbietehe combined symbolic pro-

grams and control traces in terms of non-functional belratdowever, because the architec-
ture model does not necessarily match the application msgelbolic programs and control

traces may have to be transformed to yield information wiihgharchitecture components
are able to interpret. They combine information from transfed symbolic programs and in-

formation from transformed control traces to data-spe&ifimbolic Introduction traces, and

interpret the incoming instructions in terms of performaiand cost of services (modules)
that are internal to the components. The ideas of modelidgeaploring architectures by

interpreting symbolic program representations has betesdaced in [11, 32].

To conclude, our approach to the solution is directed at MpdRepresentations and Trans-
formations. We do not discuss Performance Analysis in tiesis.

1.6 Related work

Several design-space exploration methods at abstrads lesee been proposed in the liter-
ature. The approaches mentioned below are closely relatie approach presented in this
thesis.

1.6.1 Spade

TheSpade methodology [7], [33] is a System-level Performance Anialgsid Design-space
Exploration methodology. Th&pade methodology follows the Y-chart approach introduced
in Figure 1.2. TheSpade design flow is illustrated in Figure 1.5. In this flow, we reoom
the application modeling, architecture modeling, mappnd performance analysis. We
now briefly comment on the various parts in Figure 1.5.

Spade uses KPN MoC [18] to model the functional behavior of an aggilon. The ap-
plication model represents the workload that is imposedroarahitecture. The workload
consists of two parts: communication workloaecéd andwr i t €) and computation work-
load xecut e). The architecture model iBpade is component based. It qualifies aspects
of non-functional behavior, such as delays and throughput.

Spade supports an explicit mapping step, where application meee and channels are
mapped on architecture components. For the purpose ofrpeafee/cost analysBSpade
performs a co-simulation of application and architectuhe.Spade methodology this is
called Trace-Driven Execution (TDE). The application miogenerates traces of Symbolic
Instructions (Sl). These traces are, hence, represemsaticthe processes in the application

1.6 Related work 17
Workload
/ analysis explore
Application Application
C-code Kahn model
Mapping Performance
analysis
Architecture Architecture
specification model
explore
Architecture
blocks
Figure 1.5: The SPADE design flow

model. The application Sl traces are translated to ardoiteSI traces by an explicit TDE
simulation-time transformation engine. Then, the architee S| traces are interpreted by the
architecture, which returns performance numbers.

Spade models have two major disadvantages: (1) Sl traces do neepue dependencies
between instructions (loss of information), and (2) thehdecture model is too close to the
application model (loss of generality).

1.6.2 Sesame

Sesane [34] is a successor ddpade. Like Spade, Sesane models the applications as
KPNs and represents a KPN process as a trace of abstraatiitis. In contrast t§pade,
Sesane uses an even-driven simulator [35], which is much fasten thus-cycle accurate
simulator. Moreover, an architectureSesane is defined by thé&ear | modeling language
and that makes the architecture modeling more flexible th@drary-based approach (such
asSpade).

In order to partially recover data-dependencies from3pade-like Sl tracesSesane re-
lies on the Integer Data Flow graph (IDF) representation).[3&sane replaced the TDE
type of mapping with the so-called "virtual processor regrgation”, which is the IDF im-
plementation of ideas in [30]. Hence, the task of a virtuagessor is to refine ead,
execut e, andwr i t e Sltracesinto a partially ordered tracecdfeck-dat a,| oad-dat a,
si gnal -roomexecutef0,executefl,executefn,check-room,st ore-dat a,
si gnal -dat a instructions.

Sesarne uses evolutionary algorithms to find Pareto optimal archites [37]. In this way
Sesane provides a method to steer DSE towards a simulated solution.

Our approach differs from thEpade andSesane approaches in that we represent the ap-
plication process and the architecture processor as syerfiraigrams rather than as sym-
bolic instruction traces. Symbolic programs can fully sepa data-dependent and data-

18 Introduction

independent information while symbolic instruction tra@annot. See Figure 1.4. In the
SP-approach, data-dependent information (e.g., vaniatiaata input contents and of data
format) is isolated in a control trace, while data-indepartdnformation (such as the ap-
plication process structure in terms of control-and-d&jaethdencies) is isolated in a sym-
bolic program. On the contrary, a symbolic instruction ¢/@ombines data-dependent and
data-independent information. Hence, a variation of ifaif implies various TDEs (in the
Spade case) or various IDFs (in tigesan®e case) for a single application process. To avoid
that, symbolic-instruction based methodologies imply ensevere restrictions than model-
ing architectures and application-on-architecture maggi On the contrary, the SP approach
can cope with any architecture, as long as it is a compoditioary component. If there is
no applicable composition in the SP component library, theditional SP components can
be added®. ThereforeSpade andSesane components are dealing with the effects of par-
ticular behaviorifraces of application executipinstead of with the source of behavigufe
application representation Due to this, the&Sesane cannot cope with general mapping (see
Sections 3.6.2 and 4.6).

1.6.3 MTG-DF*

MTG-DF* is a modeling methodology which combines the Mdltiread Graph (MTG) ap-
proach [38] with the Data-Flow combine STAte machine cdigtbReconfiguration (DF*)
model [25].

The DF* model is an extension of SDF [21] so that: (1) each @sschas multiple states
which are executed in a fixed sequential order, (2) each ststés own producer/consumer
conditions and implementation, (3) transitions and predlconsumer communication ap-
pear only when state-conditions are satisfied, and (4) stestate is either followed by the

first state (cyclo-static execution order) or some otheesta principle, DF* states can ex-

ecute in parallel. We see the value of the DF* model more atrttra-task level than at the

Task-level (See Chapter 2). We acknowledge that the DF* irtwate some influence when

creating our symbolic programs.

The MTG representation models embedded software as a gfaphliple threads of exe-
cution. Therefore, the MTG representation is a paralleliegfion representation too. How-
ever, unlike in the cases where the representations ar@atiigg from the Kahn model and
where inter-process communication is based on unboundd Ehannels, the inter-process
communication in MTG is split between synchronization \eéanaphores and data commu-
nication via shared memory. These are explicitly visibld #reir non-deterministic nature is
fully exposed. This is also why the MTG representation is lsstract than our symbolic pro-
gram representation (see in Section 2.45pade-trace representation [7]. Due to the level
of details the MTG representations are regarded as sadacabg-boxrepresentations, where
black-boxrepresentations stay for fully abstracted representatdapplication sources and
wherewhite-boxrepresentations stay for to-the-last detail synthesezadgpresentations of
application sources.

10Resolving the missing behaviors by enlarging the libramytents is a common practise fBesane, too. The
only difference is that newly addegesane components still miss the proper separation of representaf data-
dependent vs. data-independent information, while SPpomients do not miss this.

1.6 Related work 19

The MTG-DF* approach is synthesis-driven and hence, itagetailed for simulation-based
DSE of MPSoCs. Additionally, the main goal of this approacsadftware which immediately
excludes the DSE of the all-in-hardware architecturesrdfoee, we refer to the MTG-DF*

from the point of view of thgraphrepresentations it uses rather than anything €lse

1.6.4 Ptolemy

ThePtolemyframework provides methods and tools for the modeling, &itian, and design
of complex computational systems [39]. It has been develbgehe University of California
at Berkeley. It focuses on heterogeneous system desigg M&€s for modeling both hard-
ware and software. Important features are the ability tstraot a single system model using
multiple MoCs which are interoperable, and, the introduttf disciplined interactions be-
tween components, where each of them is governed by a MoGnTdreperability between
different MoCs is based odomain polymorphisimwhich means that components can in-
teract with other components within a wide variety of donsgiMoCs). Also, the Ptolemy
methodology does not have the objective to describe egistieractions, but rather imposes
structure on interactions that are being designed. Comysm® not need to have rigid in-
terfaces, but they are designed to interact in a possibldoruof ways. Particularly, instead
of verifying that a particular protocol in a single portypert interaction can not deadlock,
Ptolemy tends to focus on whether an assemblage of commocantdeadlock. Designers
are supposed to think about an overall pattern of interastiand to trade off expressiveness
for uniformity.

The Ptolemy work and the work presented in this thesis cdratghe part of modeling het-
erogeneous systems: (1) Both promote interoperability o€Cll- the complex architecture
behaviours are modeled using different models of commnatihich interact over rigid in-
terfaces, and (2) both are kind-of Component-based De€igB) approaches - the particular
system instances are built as assembles of smaller comizpeach of which contributes in
the particular aspect of the system architecture.

1.6.5 Some Additional DSE Methods

The work of this thesis dates to the period between the yéf)8 &nd 2004, and, hence, itis
clear that more development has happened between thatrtishEoalay. We feel a responsi-
bility to mention the new activities in the field of DSE and Maitig for DSE-purposes. The

DSE methods we mention in this section are based on the DSodebverview paper of

Matthias Gries [40]. This overview paper recognizes twallofimethods in a way how they
relate to the Y-chartin Figure 1.2:

1. Methods that deal witthe evaluation of a single desigrepresented by the perfor-
mance analysis step in the chart. These methods range fraty pualytical methods
to cycle-accurate and RTL simulations. To shorten the DS and to be able to focus

UThere is a similarity in the way how the MTG-DF* represeruatis used to describe an embedded software
application and the way how SP-architecture modules areridesl. However, the purpose/aim and the origin of
these approaches are different.

20 Introduction

on the resource utilization, these methods sometimes @&ssamect-by-construction
synthesis steps prior to simulations. Examples of such odstland/or frameworks
are the earlier mentionegpade andPt ol ey, but alsoMESH, St epNP and SEAS
which also use the abstract architecture models. The fouses HLLs to describe
architecture model components, while the later two use E8sHDLS (respectively)
for the same purpose.

Some of the analytical approaches are also falling into ¢higgory, e.g. the ap-
proach [41] where computation and communication systemtsysymbolic instruc-

tions) are first augmented and then simulated, or the appifd@¢which uses the four
event stream models (periodic, jitter, burst, and spojadienodel internal compo-
nent scheduling and then through their transformationaterthe formal analysis of
the global system-scheduling and buffer memory of the bgemreous system being
modeled.

2. Methods fotthe coverage of the design spdne(more or less) systematically modify-
ing the mapping and the analysis to the mapping and architeot the chart. These
methods only slightly alter an application representaiost enough to adopt or refine
it in order to match the facilities of the architecture regaetations. These alterations
are usually required to establish a feasible mapping. Orother hand, while DSE
run only the workload (so-called input data sets) changekewime application func-
tionalities do not change. Examples of such methods andiordworks are the earlier
MI'G DF* andSesarne which search for Pareto-optimality [37], but also sowhé. AN
which has different tools for DSE pruning (see later in thastson).

The paper [40] deals with in-depth of all commonly-known @rem and/or legacy) DSE
methods. We, however, focus here on system-level simuakatamd abstract performance
models only. Hence, we will mention only small subset of thettmds and frameworks
available. In addition, we decided to focus on the approsttet somehow (either via MoC
and modeling choices or via simulation-techniques) lintheowork we present in this thesis.

StepNP

StepNPstands for SysTem-level Exploration Platform for Networkdéessing. StepNP has
been developed by STMicroelectronics in collaboratiorhwaitcouple of universities. It tar-
gets a system-level exploration of streaming applicationgtiprocessor network-processing
architectures, and SoC tools [43]. It provides well-defimeelrfaces between multi-processor
architecture components in terms of interconnects (fonefichannels, NoCs), processors
(simple RISC), memories and coprocessors. It also has amuSperating System (OS)
that provides support for concurrency and multi-threads@the existing Instruction Set
Simulators (ISS) can be integrated via additional wrappEnge targeted applications should
be described using the MIT Click modeling paradigm [44]govally intended for building
flexible and configurable routers. Thus, the applicationsseanbled from packet process-
ing elements where each individual element implementslsimguter functions like packet
classification, queuing, scheduling, and interfacing. @lete application representations are
then built by connecting elements into a graph which modatket. StepNP uses synthesiz-
ableSyst entC models to provide path to the hardware [40].

1.6 Related work 21

SEAS

SEASstands for a System for Early Analysis of SoCs. This is an IBaMrfework that allows
for the composition of high-abstraction level virtual cooments with the aim to estimate the
performance, area, and power dissipation of the resultirg [85].

Early analysis begins with a designer specifying a systrmtidescription of the SoC design.
The designer needs first to identify the SoC components. dhgonents, including buses
and power-management circuitry, are selected from a gegmilogy library of cores. The
core library components include the necessary performaogesr, and physical information.
As aresult of this step, each virtual component has a resigddinked to it. The second step
for the designer is to describe interconnecting of the camepts. Describing the connections
between the chip interface and the constituent cores is plexrtask that requires extensive
knowledge of a bus architecture and each core in order torstahel how each pin should
be connected. Support is usually provided by automatirgphocess as much as possible.
Finally, the designer needs to describe clock domains.i$leispecially required since clocks
have to be considered during floor-planning and power dasisip modeling. The evaluation
in terms of speed and power is done by mearSyat entC simulation.

MILAN

MILAN is a model-based, extensible simulation framework thatiaines tools for DSE prun-
ing with the simulators at different levels of abstracti@Msitlab,Sy st enC, C, SimpleScalar
Assembly, etc.). It provides a unified environment capablaadeling a large class of em-
bedded systems and applications, seamlessly integratiageait widely-used simulators into
a single framework [46]. The simulators include variousce-®riven as well as Task-Level
performance evaluation tools, but also the third party eegi The application are specified
at the high-abstraction level by means of hierarchical data graphs, where each graph
node is represented according to the level and specificiimyuage of the simulation target.
The two very important additional MILAN's features are: (i capability to enable rapid
evaluation of different performance metrics such as polagrncy, and throughput, and (2)
its support for rapid evaluation of a large design space.

MESH

MESHis Carnegie Mellow University a performance DSE framew@/K|[In MESH, hard-
ware building blocks, software, and schedulers/protoamsseen as three abstraction levels
that are modeled by software threads on the simulation hdatdware modeling threads
are running periodically why software and scheduler moggihreads are running sporadi-
cally. The software threads are delivering load (time bas)ge the hardware threads; these
budgets are estimated through the application specifitatiofiling.

The abstract performance architecture modeling is at theegat level very similar with the
Models of Architecture (MoA) we present in this thesis (sémfter 3).

22 Introduction

SPW

SPWis the Signal Processing Worksystem created by CoWare Inallows hierarchical
compositions of components written with respect to eitharcBronous Data-Flow (SDF)
or Dynamic Data-Flow (DDF) MoC formalisms. Components arailable either as parts
of design-libraries or explicitly coded FSM rules using H{Vat | ab, C++, Syst enC) or
HDL (VHDL, Veri | og). The DSE flow is based on iterative refinement of modeling and
simulation at different abstraction levels.

The approach we present here also employs FSM based atahétewodels (see Chapter 3),
as well as the exploration flow through modeling and simafetiiterative refinement (see
Chapter 4).

Chapter

Symbolic Programs

Today'’s scientists have substituted mathematics for @xpets, and they wander off through
equation after equation, and eventually build a structutéch has no relation to reality*

2.1 Summary

The aim of this chapter is to provide representations of comept behaviors in a KPN ap-
plication model that are suitable to drive an architectuaeeh in a Y-chart design-space
exploration approach. KPN process behaviors can be rapgszgsén various ways. These
ways are shown in Figure 2.1.

One way is to generateteace of the Application Programming Interface (API)process, in
which Reading ExecutingandWriting actions appear aad, execut e, andw i t e Sym-
bolic Instructions (Sl). This is the we§pade andSesane represent process behaviors. The
representation model is rather poor, because it cannotwipelata-dependent expressive-
ness of the process behavior. A representation that ovexsonis problem is the Control
Data Flow Graph representation model (CDFG). However, a@Ddpresentation contains
all low-level details of an application process and, heitée not the best choice for abstract
design-space exploration.

The main differences between these representations aegnis tof completenesand ab-
straction The Sl representation is easy to use because it abstrasisadion details quite
well, and focuses designer’s attention on the actual agpdic computation and communi-
cation sequences. This is convenient for Design Space Eatja (DSE - see Chapter 1,
Section 1.2.2) of complex application-onto-architecsureppings. However, the Sl repre-

1These words were taken from "Form of Modern Mechanics andritigns,” printed in July, 1934 A.D. The
words belong to Nikola TeslaHuxkosa Teca - (1856 A.D.-1943 A.D.), Serbian scientist, inventor andiager.
In honor to him in 1960 A.D. the tesla (symbb) was accepted as the Sl derived unit of magnetic flux density (
magnetic induction) and defines the intensity (density) wfeanetic field.

24

Symbolic Programs

(annotated) YAPI code

Application model (Kahn PN)

(annotated) YAPI code

YAPI (source) code

YAPI (source) code

s N 7 X N N
. Prog.
Data Trace Data Ctrl. Trace Symb. Prog. CDFG
[Generator Generator Generator Generator
o
w
-
7y Control Symbolic
z Trace Program
o
= Trace Cul. Trace Symb. Prog. CDFG
s Transformations T T { Transformations
o
o "
5 TD Approach Control Symbolic
z Trace’ Program’
< Instruction Data Instruction
CDFG Approach
z Stream Stream {77/ Stream PP
Architecture [Architecture Trace ; Architecture
ificati i H Generator i Specification
ISpecification Simulator i H
- J i ;
SP Approach
Instructions
Architecture Architecture Architecture | Architecture
Specification Simulator bata Simulator | Specification
AN I / J
Low ACCURACY High ACCURACY

High SIMULATION SPEED

Low SIMULATION SPEED

Figure 2.1: The Symbolic Program approach vs. SIT & CDFG aaghnes.

sentation also leads to inaccuracies in performance etstinsadue to a lack of completeness
- the Sl representation is static and reflects the sequextgiution of a process in its totally
ordered Symbolic Instruction trace.

CDFG representations, on the other hand, lead to compldtsyarthesizable representations.
This is desirable from an accuracy point of view. Howeverjvileg and maintaining CDFG
representations is time consuming and too detailed fori@fi@and fast abstract-level DSE
Data-Flow Graph (DFG) representations are less detaildgbartially ordered. Due to these
gualities they are used in the Sesame framework as inteateadipresentations. But - these
representations are inadequate because they do not, dcemtheat least, model conditional
constructs [48].

In this chapter, we introduce a novel representation ofggetehaviors, which we call Sym-
bolic Programs. Asymbolic progranis an abstract non-executable CDFG, plusoatrol
tracewhich memorizes the outcomes of data-dependent constiVetslaim that Symbolic
Program representations are both abstract and completeharefore, preferable to DFG,
CDFG, and Sl representations. See Table 2.1.

2The whole point of a DSE method is to steer designer’s dewsiy depicting the pros and cons of particular
choices. As such, the method must not be too time consumingxtemely complex - otherwise it stops to be a
DSE method and becomes a design method.

2.2 Introduction 25

é4bst7’la(ztion—> NO YES

ompleteness]

YES CDFG code| Symbolic Program

NO DFG code | Symbolic Instruction Trace

Table 2.1: Process representations compared in terms gileteness and abstraction. The
completenesmeans that a representation contains both control andldat&lements, while
abstractionmeans that element details are hidden-or-removed.

2.2 Introduction

Because we advocate the Y-chart approach, we have to find tovesgociate an application
model with an architecture model. Both models consist é&dlgnof computation, commu-
nication and storage components. In the application maldegse are processes with FIFO
buffered channels between the processes. In the archi#gettodel, they are computation
units, communication units, synchronization units andagje units (See Chapter 3). These
two models are linked to each other by means of a functionla&vier representation of
the application model components which drive the architecinodel components. This is
done in such a way that the architecture model componenttenpret the application’s
functional behavior representation as far as non-funatiaspects such as delays, through-
put, service cost and availability are concerned. In thiptér we propose to represent the
functional behavior of application components as SymbBlieagrams (SP). These are ab-
stract non-executable CDFGs that can be converted to Syerihstruction Traces (SIT), by
merging the SP representation with a Control Trace that mieesthe outcomes of data-
dependent constructs.

The remainder of this chapter is organized as follows. ljjrst Section 2.3, we introduce
entities used by symbolic programs in a top-down mannetjrsgawith the highest level pos-
sible - i.e. the application network - and ending with the ésiMevel possible - the smallest
details used by symbolic programs. Then, in Section 2.4 vpéaéxthe details of symbolic
programs, their syntax and semantics. Finally, in Sectién\®e provide briefly those sym-
bolic program transformations used prior to and during tl@ping process (See Chapter 4).

2.3 Definitions and Terminology

This section provides a glossary of terms found in this theBb begin, we interchangeably
use terms application model components and processes.

Process. A process is a computational component of a concurrent (fyaapplication
model, particularly a KPN model, that performs a certain aeior, expressed via an ordered
graph of repetitive Read, Execute and Write statementsbelfsvior has a representation
that can be interpreted, possibly after transformationsalzhitecture model components. A
process has its own exclusive memory space which is nokevisibther processes belonging
to the same application representation

26 Symbolic Programs

The applications in this thesis are modeled by means of egtjflin representations.

Application Representation. An application representation is an abstract view of the be-
havior of application model components and their commuiocanterfaces:

When two or more processes need to communicate, they us@intess communication.

Inter Process Communication.Inter process communication (IPC) is a well-defined proto-
col that processes have to adhere to when they exchangeTatgorotocol is wrapped into
globally accessible interfaces, which must guarantee:eitjusivity of the internal process
memories, and (2) atomicity of the accesses to the globalnREmationo

The process representations and the IPC representatmim@ortant because they drive the
mapping process and the exploration process. Thus, ther bettrepresent them the better
(easier, more accurate, more beneficial) the mapping andrexipn will be. Particularly,
the application KPN consists of application processes aplication FIFO channels. We
opt for usage of control and data intermediate representtio represent processes and
specially tailored ead andwr i t e symbolic instructions to represent the IPC interfaces.

Intermediate Representation.An intermediate representation is a program for an abstract
machine which has three important properties: (1) it is e&syroduce, (2) it is easy to
translate into the target-machine program and (3) it sugpats purpose (e.g. transforma-
tion). [49] ¢

Intermediate representations can appear in a variety nffoMost of them use basic-blocks
and control-points to capture information about the agpidn behavior given by the appli-
cation model.

Basic Block. A basic block is a sequence of consecutive statements it atlow of con-
trols (dependencies) enters at the beginning and leavesea¢mnd without halt or possible
branching, except at the end

This is illustrated in Figure 2.2.

The left part of Figure 2.2 shows a part of the Zig-Zag routiitethe JPEG still image codec
standard [50]. Figure 2.2 illustrates a basic block as wetsdée DFG of this basic block
is shown on the right in Figure 2.2. It is worth noting thatpeesses a partial order of the
operations within the basic block.

The DFG in Figure 2.2 is acyclic due to its basic block featumo control flow nodes are
allowed. Symbolic programs do rely on control point annotat the control points form an
obligatory part of this application representation as wiéseie in Section 2.4.

Control Points - Unconditional & Conditional. A node in an intermediate representation
of an application program is said to be a control point if itarpose is to direct the control
flow in the program. When directing is done independentlyryf iaput data, the control
point is said to be unconditional. Otherwise, when sometidjata evaluation is required,
the control point is conditionad

The code-sample in Figure 2.2 contains control points, xangle, thef or statement on
the left hand-side. Note that conditional control points always dependent on some data

3The Zig-Zag routine is used to facilitate entropy codinghie §PEG standard.

2.3 Definitions and Terminology 27

Cout
array Oth

Cn
array Oth

zi gzag

array Oth

position position position

for (int i=0; i<64; i++)

DR D

(Oout[zigzag[i]] =an[i];

Basic block

Cout [
zi gzag

[i11

Data-flow graph representation

Cout [
zigzag[i]]
=anil;

Figure 2.2: lllustration of the basic-block definition inetIPEG standard Zig-Zag rou-
tine, [50].

(e.g., thef or statement depends on an index However, there is a difference in the way
data-dependency is established. In the case of the eladiestatement, the values of the
index are knowra priori to the program execution - the loop boundaries are statisoine
other cases that may not be so - ittfeconditional control is data-dependent on the run-time
data input (thesynbol value).

Data-dependent Control - Static & Dynamic. A conditional control point is a static control
point if the data value is known before execution time. Qtf, it is a dynamic control
pointo

This is illustrated in Figure 2.3.

1 for (1=1; 1<64; |++)

2 {

3 synmbol = get_synbol (HUFF_I D(AC_CLASS, AC HT));
4 if (synmbol == HUFF_EOB)

5

6 break;

7

8 C

Figure 2.3: A code sample that illustrates conditional oargnd unconditional control

Figure 2.3 illustrates both static and dynamic data-depetebntrols. The code shown there
is part of the variable-length decoding of the AC coefficgantthe JPEG standard, [50]. Line

1 is a for-loop head where the number of iterations is colgtiol Thus, Line 1 illustrates a
conditional control point. Line 4 is aif selection statement which guards the program flow
between Lines 5 and 7. Since the retrieved symbol is evaly(atanpared with a constant),
this is also a conditional control. Moreover, since the sghvalue is not knowra priori,

this is a dynamic control. Finally, Line 6 illustrates theconditional control point (a jump),
which directs the program flow towards the exit point, exglidknown in advance.

28 Symbolic Programs

2.4 Symbolic Programs

Symbolic Programs.A symbolic program (SP) is a bipartite representation of agass con-
sisting of (1) a structural element - an abstract CDFG andd2)ehavioral element - which
is a control trace that represents the outcomes of condifistatements for a particular data
seto

Symbolic programs are abstractions of process behavioihwyere earlier given either as

low-level Control Data Flow Graphs or as source-code dpsoris. The SP representation is
inspired by the idea ddibstract executiofb1]: (1) the application model (KPN) is executed
to produce traces of control data and (2) the control dateesrare used later, when simu-
lating the execution of an SP mapping onto an abstract aathite model. By using the SP

representation, we want to capture the behavior and thetsteuof the application process.

We explain the way a symbolic program represents an apjlicptocess using as reference
the code-example in Figure 2.8 and the corresponding syo@gram in Figure 2.12.

2.4.1 SP Structure

The C/C++ code in Figure 2.6 provides an executable spetiificaf the "Vectorize’ process

in the adaptive QR matrix decomposition algorithm [52]. Sbode was automatically gen-
erated byConpaan tool. The execution of this code generates the communicétiead,

wri t e) and computationgxecut e) loads. Since the code is static (e.g., the sequences of
read, execut e, andw i t e SIs are not dependent on the input data values) it is podsible
rewrite it into a little bit different code - Figure 2.8, antillgoroduce the same sequences by
execution of the rewritten code. It is worth noting here tleairiting code from Figure 2.6 to
Figure 2.8 corresponds to 'detection of variants’ sourakedeansformation explained later in
Section 2.5.1. However, to keep things simpler we use Figug¢o explain the SP structure
and how it is derived.

This code implements a Kahn processad function calls* andwr i t e function calls®
obey the Kahn semantiés The internal computation is wrapped in tiec function call.
The structure of the symbolic program téxs depicted in Figure 2.12 and is given in accor-
dance with the SP syntax (see Section 2.4.4).

The source code is arranged so as to expose the binary detcesmf the application process.
This helps when abstracting source code details. For exana code section between lines
6 and 10 in Figure 2.8 is collapsed to only twead IPC nodes. Similarly, the code section
between lines 16 and 18 is a single computation nod¥e@function call. Consequently,
the source code in Figure 2.8 and the abstract representatiéigure 2.12 have the same
structure.

“Lines: 8,9,14, and 15.

SLines: 22,23,28, and 36.

6i.e.a processes is blocked when trying to consume data froptyechannels and the inter-process communica-
tion is done through FIFOs only

"This is a textual or code view of the SP. It is also possiblei¢a\SPs as their corresponding abstract CDFGs
by drawing directed arcs each following a series-paradiigtion in the SP text. Please, be aware that these CDFGs
arenot executable

2.4 Symbolic Programs 29

However, no functional information is available in the ast SP text in Figure 2.12. That
is, the C/C++ code maintains loop index values, as indicatelihes 2 and 3, and de-
pending on these loop index values the code performs ceatdions as indicated in lines:
6,11,18,20,25,31,34 and 38. On the contrary, the SP testmioigprocess or compute any in-
dex values; theondi t i on text only marks the place of the corresponding control fsint
in the C source code, but neither arithmetic nor logical cotaton takes place. Nevertheless,
the structure is preserved, and so are the dependencieise Nwdt a designer can recover
the edges of the corresponding abstract CDFG by followingsgarallel marking8, IPC
access point identifier§ and variable names. This is much more than an SIT representa-
tion'? can offer.

2.4.2 SP Behavior

Mapping of the application model on an architecture modsbeistes components of the two
models together: the application model produces SP repass (e.g., Figure 2.12) and
the architecture model has to interpret them. However, ais 38y definition, independent
of any particular data-set that drives the application Isttihe architecture component has
to interpret the SP for a specific data-set. It, therefosn akeds information regarding the
outcomes of data-dependent constructs. The outcomesomeel $h a control trace, which
- when combined with the SP text - can provide an Sl trace thaalid for a particular
data-set and can be interpreted by the architecture compgnihe control trace appears as
annotation in the binary decision tree structure of the G/€ade. In Figures 2.4, 2.6 and 2.8
the annotations are given by C comments. It is worth notirag tihe annotations of C/C++
code in Figures 2.6 and 2.8 correspond uniquely to the condibf SP texts in Figures 2.7
and 2.12, respectively. During the process execution inrasonstrained domait?, the
inserted annotation code produces a sequence of tokensprdahesscontrol trace This
control trace (CT) is data-dependent, meaning that a diftezontrol trace may (and usually
does) appear when process input-points are fed with a diffetata-set. This is illustrated
in Table 2.2 . The table shows that for the JPEG decoding KRiark (for details see
Chapter 4, Section 4.5.3) although the same SPs are useldefatectoding, the CTs are
different (observing both their sizes and their conteritg)esdifferent images are used.

Table 2.2 illustrates that CTs separate data-dependecegsaonformation from the process
control structure. The CT examples shown so far assumettdairily information available
CTs is whether some selection/repetition condition wasuewed as t rue’ or’ f al se’

for some input data set - see Figure 2.6. However, there arendig algorithms that contain
more complicated data dependencies. The example in Figdris 2 C/C++ excerpt from
theraster process of the JPEG decoding process network in Figure ZHcorresponding
peace of the SP text is shown in Figure 2.5. The sample CTéotatster process for the
images from Table 2.2 is given as follows:

8 or,if,orel se.

9n an SP text,;” markssequentialrelations between Sls, anfif marksparallel relations among Sls.
10The port arguments are indicated by the decimal numbers diatedy afterr ead andwr i t e calls.
1The arguments afead, wr i t e, execut e nodes, as well as the argumentseidi t i on nodes.
125eeSpade in Section 1.6.1.

B8ynlimited resources.

30 Symbolic Programs

| Imegee— |1 philips (resolution:50 x 67)

shutde (resolution:669 x 1004) |

SPs|
frontend 441428y 52319538y
b7cd3a3f51717e1d232648 fbacerlfcf 4855001699 f6f754f f60377d328a715
vid _ 447656 By _ 51572812By
c45b364 f780b04ab101940eb57 f467d9 096320bd9335766a222a944401561657
iq 42074By 5451634By
3f2889c¢b78ebabb798 fc5b2a383db55d 67838c7ea0a73el1c59be3 fc59327b242
izz] 39605By __ 5239085By _
ca801b7 f6261c4b67e727627d87abd9c 1a2984cfc8e74b599459¢10293ee7f2 f
idct2d — 1240858y . 16368521 By _
efebf544c999aalba f6fbel235497cd8 bfcf058cc2633e78feb702a1906 2213
raster 32618By 4132831 By
89ff1f47f19¢c261cadclcTccab6d208fb 2242765377c02221¢65b49915203a49¢e
WS 1891 By 30136 By
fb150456dd49132¢ba84357¢1a386733 0280577950309 f0623e2e876da0a3a fb
cbvs 1397By 22104By
23aed27ef2ef826fda2161615¢cf667e8 38496317e3beb52f37e4 f9bb2c¢91c32d9
crvs 13978y i ___22103By
19calle047693f1dac3e82546ba9 f098 67935bec3f5f fa9fdad99d62e652ce2¢c
th 50925By 10085185By
6d88 fa4935e8396a f1883dea f5255791 6cb466555b629a28eb f7 fc025¢72cc48
cbhs] 34175By] 6731825By _
1320c8a02d914d983b98aacce89eb75e 5e123a5d02c81lae3e91bal231734a58d
crhs 1397By 6731825By
1320c¢8a02d914d983b98aacce89eb75¢e 38496317e3beb52 f37e4f9bb2c91c32d9
matrix - 167558y . 33583858y —
d092b01 f2d52e66319b42a126b41755e d8c6dlcaaab6bf93f2f162be7 f138382
sink 17425By 3368425By
0dad373c9e573d88e964798661ee2ae2 06851224e67855ccblbad9b634762 f9d

Table 2.2: The illustration of data-dependent Controle€réeature using the ratio of values
(m{m% for the fixed JPEG decoding network of SPs given in Figure 4.Tbe
CT files sizes are taken from the file system’Bys - al ’ , while the file content signature
is obtained by running therd5sumi digest program on the contents of CT files. The Mes-
sage Digest 5 (MD5) algorithm implements a cryptographghhfaunction which ensures that
when operating on an arbitrary-length data returns a ditti 128-bit hash value [5Note:
One can observe that for the same SP text (eld), the JPEG decoding network running on
the two different JPEG images produces CTs of differenssfze) and data content values

(md5sum.

0: for (int 1=0; 1<8; I++) {

1: { /+* branch C12(l) taken =/

2: if ((x<X[ci]) & (X[ci]-x >= 8))

3: { [/ branch C13(x X) taken =*/

4: read (IP7, &stripe[ci][(8*xv+l)*X[ci]+xi+8+h], 8);
5: [+ branch Cl4(x X) NOT taken =*/

6: /* branch C15(x X) NOT taken */ }

7 else if ((x<X[ci]) & (X[ci]-x < 8))

8: { [/ branch C13(x X) NOT taken x/

9: /* branch Cl4(x X) taken =/

10: read (I1P7, &stripe[ci][(8xv+l)*X[ci]+xi+8«h], X ci]-x);
11: read (I1P7, dummy, 8-(X[ci]-x));

12: /* branch C15(x X) NOT taken */ }

13: el se

14: { [/ branch C13(x X) NOT taken x/

15: I+ branch Cl4(x X) NOT taken */

16: /* branch Cl15(x X) taken =/

17: read(!P7, dummy, 8); } }

18: /* branch C12(1) NOT taken =*/

Figure 2.4: A code sample of the JPEGster process. This code sample illustrated data-
dependent ead operations at Lines 10 and 11 - the amount of data read isekeitthe run
time based otX [¢i] — 2 and8 — (X [ci] — x), respectively.

2.4 Symbolic Programs 31

e philips.jpg ...(c12 = true) < (c13 = false) < (cl4 = true) A(R7(6) < R7(2)) <
(c15 = false)..., and

e shuttle.jpg ...(c12 = true) < (c13 = false) < (cl4 = true) A(R7(1) < R7(7)) <
(c15 = false)...,

where <’ indicates that the group (a data event enclosed w(tland ’)’) on the left of
the < operator precedes the group on the right of theperator. It is worth noting that
ther ead Sls at Lines 4 and 5 in Figure 2.5 are dependent oncthvedi ti on 14 and
the run-time evaluations of the expressichifi] — = and8 — (X|ci] — x) in Figure 2.4.
These evaluations depend, again, on the a¥agnd the scalar-variable, which values
change depending on the data-input. Since the controlés@yrlinked to data input (e.g.,
the resolution ophilips.jpg is 50 x 67, and the resolution ofhuttle.jpg is 669 x 1004 -
the file sizes are already shown in Table 2.2 ,itheter CTs for each of these two images
are used to convey the results of the former expression &vahs. As a consequence, the
philips.jpg CT sequence says to a Program Unit (see Chapter 3, Secti@) &Ml its Depth
First Traversal engine (see Appendix A) that 6 tokens areetoelad from the port 7 and
put to thestripe memory, followed by 2 tokens to be read from the port 7 and puhé
dummy memory - look above fofR7(6) < R7(2)). For thephilips.jpg CT sequence says
to a Program Unit that 1 token is to be read from the port 7 andgthe stripe memory,
followed by 7 tokens to be read from the port 7 and put todiw@my memory - look above
for (R7(1) < R7(7)). The JPEG decoding network in Figure 4.10 contains a few such
processes, so their corresponding SP texts and CTs maké thé lmehavior.

0 loop condition 12 (1) {

1 condition 13 (x X ci) {
2 read 7 (stripe, 8); }
3 condition 14 (x X ci) {
4: read 7 (stripe,0);

5: read 7 (dummy, 0); }
6 condition 15 (x X ci) {
7 }

read 7 (dummy, 8); }

Figure 2.5: A SP text sample corresponding to the C/C++ saoifithe JPEG aster process
in Figure 2.4.Note: Due to the fact that data-dependertad operations at Lines 10 and
11 decide on amount of data to be read at the run time, thespmneling SP text in here at
Lines 4 and 5 (respectively), have both valu®r the amount of data to be read from port 7
- so called 'budget’. Thé value says to the corresponding Program Unit and its Depst Fi
Traversal Engine to acquire the ’budget’ value from the egponding CT.

The SPs are not a so-called 'silver bullet’ to resolve alldpglication representation mod-
eling issues. As indicated in [9], Sequence-Parallel mgm&ations cannot cover for all
partially-ordered cases that one application specifinati@y have. As we indicate later
on in Section 2.5, not all information is kept in applicat®Rs, and, therefore, only very few
classes of SPs can be transformed successfully withoutikgative original C/C++ code.

For example, it would be beneficial for SP-transformatidiiseé SPcondi t i on statements

could capture the exact expressions that are evaluateé oritjinal C/C++ code. However,
due to the possible complexities of C/C++ specifications tbquirement cannot always be

32 Symbolic Programs

met. The currently supportdzehavior-capturing capabilitiesf SPs are elaborated in more
detail in Sections 2.4.3 and 2.4.4.

Regardless of the limited behavior-capturing capabdjt®Ps posses one special feature that
distinguishes them from the other application represemtst SPs use 'separation of con-
cerns’ to separate input data set dependent and indepdretentiors. This feature has been
shown earlier in Figure 2.1 in a more abstract manner. Digdeton of process structure
and control helps in creating more flexible architecture et@see Chapter 3).

0 /+ The Conpaan-1ike C code */
1 void ND5 :: main() {

2 for (int k =1; k <= -2«k+T+1 ; k += 1)
3 { /* branch Cl(k,T) taken */

4 for (int j =1; j <=N,; j+=1)
5 { [/ branch C2(j,N) taken =/

6 read(RP_11, a);

7 if (j-2>=0)

8 { /* branch C3(j) taken */

9 read(RP_12, b); }

10 el se

11 { /* branch C3(j) NOT taken */ }
12 if (j-1==0)

13 { /* branch C4(j) taken */

14 read(RP_13, b); }

15 el se

16 { /* branch C4(j) NOT taken =/ }
17 Vec(a, b, ¢, d);

18 if (-3xk+T >= 0)

19 { /* branch C5(k, T) taken =*/

20 wite(W_19, c); }

21 el se

22 { [/ branch C5(k,t) NOT taken =/ }
23 if (-j+N-1 >= 0)

24 { /* branch C6(j,N) taken */

25 wite(W_18, d); }

26 el se

27 { /* branch C6(j,N) NOT taken */ }
28 /* branch C2(j,N) NOT taken */ }

29 /* branch Cl(k, T) NOT taken %/ }

30}

Figure 2.6: TheConpaan-generated C/C++ source code of the "Vectorize’ proceshén t
adaptive QR matrix decomposition algorithm [58lote: All conditional statements (selec-
tions and repetitions) are annotated by hand with "brandrtaor "branch NOT taken”. The
elsebranches that do not exist @onpaan are added for easier annotation.

2.4.3 Semantics

Looking at Figure 2.1, SP representations have a front-eledor the mapping process: An
application KPN model behavior is converted to a set of SRsaaset of related Control

Traces, and then these SPs and Control Traces are sucbesansformed towards targeted
mapping. This is indicated @smnsformation step the same figure. In addition to this,
Figure 2.1 brings an extra message: In contrast to S| repiesans, SP representations in-
cluding their Control Traces are complete representafiomgich instructions (conditional

as well as non-conditional) are partially ordered. Morep8®s can very well be hierarchi-

2.4 Symbolic Programs 33

cally defined*.

0 /* Synbolic Programtext */

1 main {

2 loop condition 1 (k T) {

3 loop condition 2 (j N) {

4 read 11 (a, 1);

5 condition 3 (j) {

6 read 12 (b, 1); }

7 condition 4 (j) {

8 read 13 (b, 1); }

9 execution O (in ain b out c out d, 1);
10 condtion 5 (k T) {

11 wite 19 (c, 1); }

12 condition 6 (j N {

13 wite 18 (d, 1); } } } }

Figure 2.7: The SP text of theonpaan-generated C/C++ source code of the "Vectorize’
process from Figure 2.@8\ote: All conditional statements (selections and repetitiore)eh
the identical annotations as they have in the C/C++ sourde.derom the structure of the SP
text and its correlation with the origin@bnpaan C/C++ code, it is implicit that the SP-text
and the C/C++ code share the same abstract CDFG. It is aldiintipat the nodes of the
SP text are totally ordered and that the interpretation efdtmpound (composite) nodes -
the nodes indicated betweefi and '}’ - happens in the Depth First Traversal manner.

Hierarchy. The hierarchical features introduce structure in the SR;lmhelps to cope with
SP representation complexities. The SP hierarchy repBdaeseparation of concernson-
cept of classical structural (procedural) Software Engjiimgy. Each C procedure or even each
basic-block could be a sub-SP téXt For example, thexecut e statement in Figure 2.12 -
line 10 - may itself result in an SP througlpaogr amcal | .

Partial order. The instructions in an SP are partially ordered. Howevaes,itistructions
being abstract, their underlying detailed behavior isassumed to be sequentially specified,
i.e., as given in the source code. For examplegthecut e statement in Figure 2.12 - line
10 - has a sequential specification of "Vectorize’ in the seucode given in Figure 2.8.
Architecture components, on the other hand, may be capélgleeguting an instruction in
parallel, or may execute the instruction in a sequentiatotidat is different from the given
one. This requires conversionsifictly orderedinstructions to partially ordered instructions
(and possibly back to strictly ordered instructions) agps®d in [30] and [36]. Figure 2.13
shows the parallel counterpart of the sequential SP in Eigut2

Information preserving. Looking back at Table 2.1, both SIT and SP representatiaatar
stract representations, which implies that some inforoma§ necessarily lost. Thus, though
the SP representation is complete (see the same tablejlatians, transformations and ab-
stractions used when an SP is derived will result in somerindédion loss - the coarser that
abstractions are, the greater the information loss willTise claim of this chapter is that the
amount of lost information in an SP representation is mucallemonce compared to a SIT
representation. In other words, the information presesuaif an SP representation is better
than the information preservation of a SIT representativa.illustrate the above statement

14We re-invent the idea of so-calletructured procedural desigin domain of Software Engineering.
15Thef unct i on text description serves this purpose.

34

Symbolic Programs

0 /+ Variant-friendly C code */

1 void ND5 :: main() {

2 for (int k =1; k <= -2«k+T+1 ; k += 1)
3 { /% branch Cl(k,T) taken */

4 for (int j =1; j <=N; j+=1)

5 { [/ branch C2(j,N) taken =/

6 if (j-2>=0)

7 { /* branch C3(j) taken */

8 read(RP_11, a);

9 read(RP_12, b);

10 /* branch C4(j) NOT taken */ }
11 el se

12 { /* branch C3(j) NOT taken */

13 /* branch CA4(j) taken x/

14 read(RP_11, a);

15 read(RP_13, b);

16 }

17 Vec(a, b, ¢, d);

18 if (-3*xk+T >= 0)

19 { /* branch C5(k, T) taken */

20 if (-j+N-1 >= 0)

21 { /* branch C7(j,N) taken */

22 wite(WP_19, ¢);

23 wite(W_18, d);

24 /* branch C8(j,N) NOT taken %/ }
25 el se

26 { /* branch C7(j,N) NOT taken =*/
27 [+ branch C8(j,N) taken */

28 wite(WP_19, ¢);

29 }

30 /* branch C6(k, T) NOT taken */ }
31 el se

32 { /* branch C5(k, T) NOT taken =/

33 [+ branch C6(k, T) taken */

34 if (-j+N-1 >= 0)

35 { /* branch C9(j,N) taken */

36 wite(W_18, d);

37 /* branch C10(k, T) NOT taken */ }
38 el se

39 { /* branch C9(k, T) NOT taken =*/
40 /* branch C10(k, T) taken %/ }
41 }

42 /* branch C2(j,N) NOT taken */ }

43 /* branch Cl(k, T) NOT taken */ }

44 }

Figure 2.8: The C/C++ sequential source code of the "VertoprocessNote: This code
has the identical behavior with the code in Figure 2.6, big iariant friendly’. Such code
is used for so-called 'variant detection transformatiowwdaling and for generating the CTs
for the case study.

2.4 Symbolic Programs 35

by the following example.

We made an analytical comparison to show how large a sinoul&iror one can get by us-
ing only SITs, given that the final system can exploit the iphdrdering not addressed by
SITs. The SP in Figure 2.13 has been transformed twice abilvees-code level. The first
transformation results in some SP instructions being @irtbrdered'®. The second trans-
formation'’ further enhances the parallelism within the SP. These twesare compared
against the strictly ordered SP, which corresponds to @msidal SIT [7]. The comparison is
done by means of analysis only in the following way:

1. The following assumptions were made:

e All read andwr i t e Slis are considered to take the same amount of tifie -
i=1:R;,W; = C), whereR; andW; are the individual Sis and’ is the
amount.

e All execut e Sls are considered to take the same amount of tifive =i = 1 :
E; = E), whereE; are the individual Sis and’ is the amount.

e No blocking appears.

e All sequential Sls are contributing their amounts to thaltolelay amount by
means of a simple addition.

e All parallel Sls are contributing their amounts to the tatelay amount by means
of amax function.

2. The three SPs were observed: the sequential SP as in RidZrehe partially ordered
SP as in Figure 2.13, and the parallel scheduled SP as ine=yiM.

3. The total delay for SP in Figure 2.12 can be approximatedias (z,y) = y - (4 -
z + 1), wherez = € andy is the number of the loop iterations.

4. The total delay for SP in Figure 2.13 can be approximatedas(z,y) = 2 -« +
y - max(z,1).

5. The total delay for SP in Figure 2.14 can be approximatedlasps(z,y) = vy -

(2cotx +1).
6. The relative improvemerit(z,y) is defined asADDf(im) for each of the cases, as
follows:
* The relative improvement of SP2 vs. SRi(z, y) = L-Eoty-u ot
e The relative improvement of SP3 vs. SRi(z,y) = 22ty m“((zmllli’ (-z+1)]

7. Thegnupl ot engine was used to create the graphical representatiohs oéfative
improvements. See Figures 2.9 and 2.10.

16geedetection of variantin Section 2.5.
17seeloop schedulingn Section 2.5.

36 Symbolic Programs

ixy) —— i20y) ——

improvement vs. sequential improvement vs. sequential

Figure 2.9: SP2 vs. SPlit(z,y). Figure 2.10: SP3 vs. SPIs(x,y).
1 T T
i1(x)
F
m(0.76) -
0.8 | 4
. 06 i
: ,

0 1 1

0.1 1 10 100
communication vs. computation

Figure 2.11: Relative improvements (for 10 iterations pirhythe worst case execution time,
measured with the range of valug 1] - 1 indicating the perfect match - when using SP
partial-order annotations against the pure sequential Bi&¢ SIT-like SP is shown in Fig-
ure 2.6. The firstimprovemeit(x) is achieved by detecting the variants of partially ordered
read, execut e, andw i t e Sis - see Figure 2.13. The second improveni2ft) requires

a task-level examination because it represents a res@e8& The maximum achieved im-
provement for the SP code in Figure 2.14 is indicated by tmstamtn(0.76).

Figures 2.9 and 2.10 show that modeling of the partial ordesystem-level performance
exploration is important. To help better understandindnete two figures we have created a
joined plot fory = 10 (the number of the iterations). The results are shown infeiguL1. As

2.4 Symbolic Programs 37

1 main { /1 e.g.,:
2 loop condition 1 (k T) { I clT
3 loop condition 2 (j N) { 11 c2 T
4 condition 3 (j) { I c3 T
5 read 11 (a, 1); /1

6 read 12 (b, 1); } /1

7 condition 4 (j) { I c4 F
8 read 11 (a, 1); 11

9 read 13 (b, 1); } /1

10 execute O(in ain b out ¢ out d, 1); /1

11 condition 5 (k T) { I c5 T
12 condition 7 (j N { I c7 T
13 wite 19 (c, 1); 11

14 wite 18 (d, 1); } /1

15 condition 8 (j N { I c8 F
16 wite 19 (d, 1); } } 11

17 condition 6 (k T) { I c6 F
18 condition 9 (j N { I

19 wite 18 (c, 1); } /1

20 condition 10(j N) { skip; } } } } } /1 ... the next value for ’cl’

Figure 2.12:Left: SP text of the "Vectorize’ process, in the adaptive QR matagomposi-
tion algorithm.Right: A peace of CT associated with the SP text on the left and gextera
by the "Vectorize’ process in Figure 2.8 for some fictive deg&up.Note: condi ti on NV
on the left corresponds to/NV on the right; T stands for "true” or "branch taken”, while F
stands for "false” or "branch NOT taken”. The inner conditéothat are eliminated by the
"false” value of the outer conditions (e.g.ondi t i on 9 eliminated due teondi ti on 6
evaluated as "false”) are not in the presented CT piece.

1 main {

2 loop condition 1 (k T) { 11 cl T
3 loop condition 2 (j N) { I c2 T
4 condition 3 (j) { I c3 T
5 read 11 (a, 1) || 11

6 read 12 (b, 1); } 11

7 condition 4 (j) { I c4 F
8 read 11 (a, 1) || I

9 read 13 (b, 1); } /1

10 execute O(in ain b out ¢ out d, 1); 11

11 condition 5 (k T) { 11 c5 T
12 condition 7 (j N { I c7 T
13 wite 19 (c, 1) || I

14 wite 18 (d, 1); } /1

15 condition 8 (j N { I c8 F
16 wite 19 (d, 1); } } 11

17 condition 6 (k T) { I c6 F
18 condition 9 (j N { I

19 wite 18 (c, 1); } I

20 condition 10(j N { skip; } } } } } 11

Figure 2.13: Parallelized SP code of the Vectorize processemted earlier in Figure 2.12.
Note: The CT on the right is the identical one to the CT in Figure 2.TRis is due to the
fact that the original code is static with regards to loogeixes and conditions dependent on
loop-indexes. Consequently, for such cases no CT transfowns are required.

one can see, the improvemétvaries between 0 and 0.76 with respect to the type of process-

18This should be understood agpatential concurrencygo that there exists a possibility to execute some process

38 Symbolic Programs

ing element being used in the system-level simulation. Teans that absence of modeling
features in SITs can seriously jeopardize simulation asmurThe SP, on the contrary, pre-
serves application process information so that more optéwe available and accuracy can
be improved.

2.4.4 Syntax

Figure 2.12 is an SP text representation of the C/C++ code apalication process. Its SP
syntax is the subject of this subsection.

The symbolic program syntax must be expressive enough tifgpdstract CDFGs, leaving
enough room for further manipulation. This syntax shoultsupport fine-grain operations
which are customary in CDFG representations. Thus, it iessary to find a minimal set of
expressions that are sufficient to support both requiresnexpressiveness and granularity.
Of course, symbolic programs are abstract, and therefohgread, execut e,andwr i t e
are inherently partially ordered.

To summarize, SPs are composed of Sls representing alreadtiomed communication
events fead andwri t e) and computation eventeXecut e), as well as outcomes of
control events (Control Trace). Sls are partially ordevehi]st Control Trace information is
totally ordered.

The symbolic program syntax can conveniently adhere toyh&as of the standard parser-
generator tool called Yacc [54]. The implementation dstaflsymbolic programs expressed
in the Lex-Yacc format are given in Appendix A

2.5 SP Transformations

In the preceding sections we have introduced the symbadigram representation. We claim

that symbolic programs are well suited to associating appiin model components and

architecture model components together. Application mB&eepresentations can be easily
transformed to Sl representations by combining them wighctbrresponding CTs, and these
Sls can be further interpreted by architecture model coraptathat do not necessarily match
the application model components.

SP transformations are source-to-source transformatibme input is an SP and the output
is a transformed SP. The transformation mimics high-leesigh decisions on the source
code from which the SP was derived. The SP transformationshbea (1) Intra-task (i.e.
intra-process) transformations, or (2) Task-level (i..ocpss-level) transformations. Trans-
formations illustrated in this section analy applicable to a certain set of SPs namely, to
the set which SPs do not have dynamic data-dependenciés withditions of selection and
repetition statements.

code concurrently - the choice of whether this is going topleaipis still dependent on the mapping model.

2.5 SP Transformations 39

2.5.1 Intra-task Transformations

Intra-task transformations represent high-level abstras of some well known ILP® tech-
niques. For example, if the processor model onto which ars$fapped can process more
than one Sl in parallel, then the employed SP transformatioay expose this characteristic
explicitly in the SP. Such transformations are for exampletection of variant$®, and loop
scheduling Notice that transforming an SP usually implEntrol-trace transformatioms
well.

The ILP techniques which abstract the manifestations winetry to model are based on
a dependency analysis of both the arguments of Sls and thenargs of conditionals in a
particular SP. We explain these transformations usingxheneles in Figures 2.6, 2.13, and
2.14. The SP in Figure 2.6 may be improved in two ways: Firsyapplying the detection
of variants if they are not already detected, some Sls begartally ordered as shown in
Figure 2.13; secondly, by scheduling the loop iterationshef SP shown in Figure 2.13,
some additional Sls become partially ordered and the numibeontrol-points decreases.
The resulting SP is depicted in Figure 2.14. It is worth ngptgain that the SP we used for
illustration does not contain data-dependent conditiagsyell as, that it has been already
structured in a form of the binary decision tree.

1 main {

2 loop condition 1 (k T) {

3 read 11 (a, 1) ||

4 read 13 (b, 1);

5 read 11 (a, 1) ||

6 read 12 (b, 1) ||

7 execute O(in ain b out c out d, 1);
8 loop condition 2 (j N) {

9 read 11 (a, 1) ||

10 read 12 (b, 1) ||

11 execute O(in ain b out c out d, 1) ||
12 wite 19 (c, 1) ||

13 wite 18 (d, 1); }

14 execute O(in ain b out c out d, 1) |]
15 wite 19 (c, 1) ||

16 wite 18 (d, 1);

17 wite 18 (c, 1); }

Figure 2.14: The pipe-lined SP code of the "Vectorize’ psscearlier given in Figure 2.12.

Detection of Variants. The transformation which performs the detection of vagastor-
mally explained in [55]. Here, we present the modeling dftéc¢his type of transformation
and we do it by way of example only. We assume that 'variaras’lee detected either manu-
ally or the original C/C++ code is given in the form of a binascision tree (as it is the case
in Figure 2.12). Since SPs keep the dependency informatidhdir definition, sometimes
such tree can be developed manually. When the manual deteftvariants is employed,
after examining the dependencies, the selection statsrmoéah SP are merged in such a way
that the direct product of this merging represents a detisee whose leaves are symbolic
r ead-execut e-wr i t e instructions. When these instructions are guarded by tine san-
ditional, and when they do not depend on each other, we sayhéw represent sariant

Bnstruction-Level Parallelism
20'Variants’ are basic blocks associated with leaf condiiama leaf in a binary decision tree.

40 Symbolic Programs

As a direct advantage of this transformation, the Sls withgingle variant can be processed
in parallel (see Figure 2.13). Note that each Sl containgd@gncy information, i.e., where
the Sl arguments come from and where they go to. In Figure th#2xecut e takes thed
argument either from FIFO channel 12 or from FIFO channel3viously, within a single
loop iteration there is a total order betweenéxecut e and ther ead Sis. Howeverr ead
Sls from FIFO channels 11 and 12, or 11 and 13, can overlapt i§hehy it was possible
to replace the sequential symbdl at lines 5, 8, and 13 in Figure 2.12 with the partial order
symbol ”||” at the same lines in Figure 2.13. However, as a disadvantigsize of the sym-
bolic program grows because each variant is naw ace st at enent which contains at
least a single bundle of $fs

Loop Scheduling. SP loop scheduling is possible only in a limited amount oksg the
scope of this thesis we are actually interested only in tlse déustrated in Chapter 4, Sec-
tion 4.5.2). Loop scheduling techniques modify the ordexatfurrence of certain Sis in order
to allow better utilization of processor component resesrcAs a side effect, they may re-
duce the number of conditionals in the loop body (see Figuré)2 Note that different loop
iterations of the SPs in Figures 2.12 and 2.13 may overlathea@pplication okoftware
pipelining[56] on the SP with parallel variants (Figure 2.13) produaes$P with pipelined
instructions (Figure 2.14). Note, however, that loop scitied techniques must not be ap-
plied when there is a dependency cy&eat the task level. Figure 2.15 illustrates the case
where a cycle between proces$&33 and.SPX via FIFO channel§2 and18 exists. Here,
there is a risk that a deadlock may occur because the loop-tifditie SP in Figure 2.14 is
skewed in such a degree that multiple (in this case tvegd 12 instructions appear before
a singlewri t e 18 takes place. Consequently, procés§8X cannot perform any ead
18, and hence, it may block without producing enough tokendHWOFL2. Thus, the soft-
ware pipe-lining technique applied to process loops musbeaonsidered as an intra-task
transformation only, because changes in communicatioaviets affect system properties.

Figure 2.15: A deadlock caused by the re-scheduling tramsftion: S P2 — S P3

21The partially ordered Sls - see the syntax.
22This is the case when the architecture component reliedysmi¢o compile-time reordering and it does not
support run-time reordering.

2.5 SP Transformations 41

precedence ——

::T@cﬁzT ¢5=T c4=F c3=T c2=T cG:T@ c4=T c3=F c2:T@

SP1

[}

SP2 c3=T(c2=T) c6=F c5=T c4=F c3=T c2=T

Sp3 c2=T ¢2=T ¢2=T ¢2=T c¢2=T c¢2=T c¢2=T c2=T

Figure 2.16: Transformations of control traces with regdodtransformations o$ P1

Control-trace transformation. We have mentioned in Section 2.4.2 that SPs come with con-
trol information in the form of control traces, for each apgtion process (or a task). Thus,
when intra-task transformations, such as those in Figu&213, and 2.14, are applied to
an SP, the corresponding control traces have to be transtbas well since the intra-task
transformations affect the SP control structure (e.g. é@siglon tree). Moreover, if such
SP control structure changes can be expressed formally ifetgrms of logical expressions
over original control structure in the starting/not-triomened SP), the same formalisms can
be used to automate the transformation of the control tresoe example is given in Fig-
ure 2.16. The consecutive transformations of the SP in Eigus to the SP in Figure 2.13
(SP1 — SP2), and the SP in Figure 2.13 to the SP in Figure 242% — SP3), include
the corresponding transformations of control traces awslio Figure 2.16. Note that each
conditional control point of the SP in Figure 2.6 1), is enumerated as @, wherei is
unigue in the scope & P1. In other words¢; stands for the outer loop conditiagn< 7', ¢,
stands for the inner loop condition< N, and so on. A similar enumeration is applied for
the SP in Figure 2.139P2) and the SP in Figure 2.14f3).

When the transformatiofiP1 — S P2 is applied, the control trace ¢fP1 needs to be trans-
formed as well. This new trace is labeled%B2 in Figure 2.16. Since the transformation
did not change the SP structure from the point of view of lodpgp-related trace events
are unchanged. However, because two selection statentghts end of the inner loop are
merged, the corresponding trace events, nameiindcg in the control traces P1 andS P2
have a different meaning and, therefore, a transformasioaquired. This is illustrated as a
logical negation in Figure 2.16. Furthermore, when tramsfgionS P2 — SP3 is applied,
the selection statements are lost, the trace events thaspand to these selections, namely

42 Symbolic Programs

cs, ¢4, C5, @ndeg, are simply ignored. Moreover, because software pip&ding applied
(prolog and epilog code sections are generated at the exdriee number of inner loop
iterations), the first twa, events inSP2 are also ignored. The resultirfyP3 control trace
is shown in Figure 2.16.

2.5.2 Task-level Transformations

Task-level transformations are transformations thaicatfee application model structufé
That is, the topology of the application network is changedulting in processes (in other
words their SPs) and channels being removed or created.elfotmer case the transfor-
mation may be seen gwocess mergingwhile in the latter case gsrocess splitting In
both cases, conditions have been given under which thesgdranations can be automated
(See [57] and [58]).

In general, process merging implies that a valid schedulengnmerged processes has to be
found. Such valid schedules cannotin general be obtainedtine partially ordered SPs that
represent the processes to be merged. A property of KPNsighthy are compositional,
which also implies that a KPN is equivalent to a single prec&seriving a PN from a single
process is much easier than deriving a single process tegtiigalent to a PN.

We use [59] and [60] as the base for explaining processispgliih this thesis. In [59] split
processes appear as a result of a transformation of therstgaysgogram from which a KPN
originates. In [60] process splitting is performed dirgaih a PN. However, both methods
are not generally applicable.

Finally, note that each of the aforementioned task-lewagldformations also imply the trans-
formation of associated control traces. For example, ircse of the merging of processes,
a new control trace is formed by merging corresponding cbitaces. In the case of split-
ting a process, the control trace is also split to providerabiraces for the split-processes.
In Chapter 4, Section 4.5.2, we illustrate a process-spjitransformation applied to a 2-
Dimensional Inverse Discrete Cosine Transform (2D-IDQ&¥ulting in a network of two
1-Dimensional IDCTs (1D-IDCT).

23This is also known as @partitioning of the application code.

Chapter

Architecture Modeling

Who stands on a hill, even a small one, sees more than he widssb@low the hilll

3.1 Summary

The aim of this chapter is to provide an architecture modgtiaradigm for embedded sys-
tems. Because we are dealing with levels of abstractioneaBd\L, we need models that
adequately represent the underlying architectures. Atistnodels are adequate when they
can predict behaviors and costs in terms of relevant metwéthout an adequate model of
architecture, we cannot reason about our decision-makiddta consequences in terms of
performance and cost in abstract design space explor@ianmodeling is aiming at subse-
guent performance analysis and design space explorat@edmputational way, i.e., using
simulation and not in an analytical way. Because of that,esorgredients in the modeling
paradigm will often be referred to aspresentationsather tharmodels

Thus, we represent or model an architecture in terms of #rata system not containing its
functional behavior. Roughly stated, an architecture st&®f a number of computational
units and a communication, synchronization and storagastriucture. It also includes soft-
ware that is necessary for operating the architecture.

Our architecture model describes architectures that ageifgpfor an application domain
that is calledstreaming applicationsRecall that the two major characteristics of embedded
systems are that they are application domain specific irdtiom processing systems and that
they depend on their environment (input data charactesjstiStreaming applications have
functionalities that can be modeled conveniently in terfte®@Kahn Process Network model

LIn original: "Ko ma 6pao ax’ u Maso cToju, Buie Buau 1 0 ouaj noz 6pgom.” These were the words of the
historical character Bishop Danilo in the epic "The Mount#reath”, written by Petar Il Petrovic Njego3Fferap
Il TIerposuh Hoerom - (1813 A.D.-1851 A.D.) Serbian Orthodox Prince-Bishop obMenegro and among the
greatest poets of the Serbian language.

44 Architecture Modeling

of computation (MoC). The streaming architectures on wkley are mapped could also be
specified in terms of the commonly addressed set of MoCshggtdre more heterogeneous
than the application models are or have to be. This chapteisis on the heterogeneity of
architecture models.

3.2 Introduction

Architecture modeling is crucial for the design space esgilon method we envision in
this thesis. Architecture exploration is the third step itheee step procedure: modeling,
analyzing and finally exploring. Our approach is based omukition and one objective is to
provide methods that can achieve fast analysis and exmorais well as high accuracy given
the abstraction level that we are considering and the appnwa are advocating. We rely on
two key concepts: the first one is separation of concerns fG&hning that we try to keep
application modeling, architecture modeling and mapp#sgiés as orthogonal as possible;
the second concept is that of component based design [61f. dmcepts lead to re-use of
components, in the sense that modifications and refinememtstchave consequences in all
parts of the system models, i.e., can be kept local and doskofioa very large component
libraries. Our modifications are in terms of architectursnposition modifications and these
in turn are in terms of selection of components from a libi@rgomponents and admissible
interconnections of selected components.

3.2.1 Architecture definition

The classic definition of an architecture that has been ptedioy the Instruction Set Archi-
tecture community is in terms of functionality - it can belbfriom instructions. The conse-
guence of this is that there is no relation between the tirbigftavior of the implementation
and its realization. The realization is changed frequeasiya consequence of technology
advances, while instructions are not changing (signiflgausiver time. Thus, the relation
between functionality and timing has become completelypdpted over time so that it is al-
most impossible to analyze timing behavior. In embeddettays design, timing is a crucial
issue, especially when there are real-time constrainteseg by the environment and when
one has to predict timing behavior using abstract modetscranot be well specified if the
relation between functional behavior and timing behavsasbscure.

We, therefore, define the architecture in a different ane@éal almost opposite way. We
do not include functional behavior in the definition of antatecture. Functional behavior
is specified and modeled in isolation. The architecturen tieedefined as the way imple-
mentation resources are organized, how they co-operata@mdhey are scheduled (time-
behavior). This definition applies to all levels of absti@act though the precise meaning
of organization, co-operation and time-behavior does dema the level of abstraction we
want to deal with. The higher the level of abstraction, theenwe have to rely on models
that are abstract themselves and can not, therefore, natetils that are only known at the
lower levels of abstraction. Thus, when components areatist modeled, organization and
co-ordination can only be expressed at the same level afeadhisin and modeling and timing

3.2 Introduction 45

behavior can only be as accurate as the models can predict.

Clearly, abstraction reduces complexity and cost of madedind simulating. On the other
hand, it leads to the problem of coping with accuracy and lelveonfidence. It is, therefore,
extremely important to have means to predict accuracy ih augay that it can be analyzed
in terms of bounds. This in turn certainly depends on the rsotfet are used. Hence,
the ultimate challenge is to find an architecture model thaxpressive and flexible but
still allows for reasoning about predictability and acay;agiven a number of well chosen
metrics. The following two chapters offer our answer to ghallenge by way of an insight
into how our architecture model is assembled, how it can bd aad what the expected level
of predictability is(see Sections 4.5.1 and 4.5.3).

3.2.2 Targeted Architectures

Multiprocessor architectures in embedded systems ardlyisiwh general purpose architec-
tures but are tailored to match - to a certain extent - a pdati@pplication domain. Because
the application domain we are dealing with in this dissertais the domain of multime-
dia, the multiprocessor architectures that fit this domaaachitectures that can sustain
heavy computations as well as high data throughputs witingutring obstruction from con-
trol events that may interfere with the main data streamgssing. Such architectures are
sometimes calledtreamingmultiprocessor architectures. It is important to noticat tve
are not considering application-specific architecturdsabthitectures that fit an application
domain. The implication of this condition is that it shoulel possible to target a single, pos-
sibly configurable architecture when transforming sevapgilications from the application
domain to parallel implementations. Thus we consider gchires that are built on com-
ponents that support computationally intensive tasks amdhmwcan exchange large amounts
of data among themselves. The communication of data betmexiucing and consuming
components occurs - at least in principle - over channelsstjaport FIFO-like buffering
with blocking write and blocking read synchronization pail. A representative example of
the architectures we are addressing here consists of a setgfutational units and a com-
munication, synchronization and storage infrastructiNetice that we will not be dealing
with design issues. Considering architecture alternaiseonfined to selecting components
from a component repository and connecting them in diffeyehadmissible and dependable
ways. This also includes alternatives in terms of the systeoftware protocols.

3.2.3 Model Structure

The architecture model structure is a composition of coreppmodels, some of which are
for computation, some for communication and synchrororaind some for storage. Re-
member that we want to model embedded multiprocessor (singdarchitectures as defined
in Section 3.2.1. A component model is defined as a set of ikoast modules (services), an

input stream representation (tokens and their types) amparational representation (sym-
bolic programs). The composition of component models iethas well-defined admissible

composition rules and interfaces. This is the structwhratissue. The answer to the question
of whywe structure the model of the architecture this way is thatvawet to separate concerns

46 Architecture Modeling

as much as possible in such a way that performance analysidemign space exploration is
not only feasible, but also effective and efficient in terrhsiodeling effort, simulation effort
and accuracy. The representation of the basic ingrediemisdessary and sufficient to pre-
dict the architecture’s timing behavior as confidently asrautation based prediction method
can do. Later in the chapter, we shall elaboratéowwe materialize the representations to
achieve that goal.

3.2.4 Model Behavior

An architecture model does have a behavior that results thendynamic behavior of the
component’s constituent modules and the interaction ofcttraponents through their in-
terfaces. From our definition of what an architecture modgltishould be clear that it's
behavioris to be interpreted in terms of behaviortimerather tharfunctionality. Functional
behavior is represented by symbolic instructions or syinhmiograms extracted from the
functional model and which must be interpreted by the aechitre model. The functional
model exposes its own concurrency, event ordering and sgnization primitives and pro-
tocols. The architecture model exposes its parallelissgurce constraints and operational
delays. It interprets the former into the latter, possilitgretransformations of the functional
representations. This is what we can say here abouwtia of the behavior. Againwhy
we deal with behavior in the way we do is mainly because we wasg¢parate concerns: the
architecture’s behavior model predicts whether an apfdicacan execute timeously, given
current workloads and workloads added by the envisionelicapion; the application model
predicts functional behavior and exposes this behavidneaatchitecture in terms of repre-
sentations. The question bbwthis is accomplished is addressed in the remainder of this
chapter.

3.2.5 Contribution

Recall that our streaming architectures are comprisedmfpetational units, a communica-
tion, synchronization and storage infrastructure, antesysoftware. The computational and
infrastructure components are selected from a repositag-osable components. Although
the repository may contain a vast amount of components, Werely on a relatively small
set of modules and admissible interconnection rules (extes) to compose the structure of
a so-calledTransaction Level Modél of an architecture and its components. Of course,
components have behavior and so has the architecture. \&emsefunctional behavior from
time behavior, the latter being dealt with in the architeettnodel. Functional behavior is
represented in terms of symbolic programs that may have tabsformed before they can
be interpreted, in terms of time and execution delays, byctileponent modules in the ar-
chitecture model which is aware of aspects such as resoacimg, contention and control.

A large portion of our modeling paradigm is compatible witie tModel of Computations
paradign?® and is compliant with the Transaction Level Modeling serarif System@62].

2See Chapter 1, Section 1.3.2.
3See Chapter 1, Section 1.3.1.

3.3 Architecture Model Structure 47

We claim that our modeling paradigm can accurately pretiiettiming behavior of many
conceivable streaming architectures (see Sections 48.4.8.3).

3.2.6 Chapter Organization

This chapter is organized as follows. First, in Section 3€deal withthe howquestion
related to the structure of our architecture model: howrnsdterialized? Then, in Section 3.4
we turn to the how question related to the behavior of ouriggcture model: how is it mod-
eled? Next, in Section 3.5 we demonstrate how we model sopregentative architecture
types. Finally, in Section 3.6 we list briefly, by means ofmydes, some related architecture
modeling approaches.

3.3 Architecture Model Structure

In Section 3.2.3 we dealt witthe whatandthe whyquestions related to the structure of our
architecture model: what is the problem and why is it so? Mereleal with the approach to
this problem, so we introduce the model itself in these terms

The structure of our architecture model consists of comptsnand relations among these
components. We define components based on their main punposessors used to per-
form computationsrouter interfaces used to establish the communication routebjters

- used to synchronize shared interconnectionsstathge- used to function as as a global
shared memory. The relations comply with fransaction Level Modelin@2] way of inter-
connecting componentsi.e., components interact throwefined interfaces, where each
component has an appropriate number of interface portsintéreonnection of components
is based on well-defined admissible composition rules atatfaces. This is illustrated in
Figure 3.1. Processor components, storage componentstatetsacan only be connected to
router interface components, as indicated with the eredirobmbers 1, 2 and 3 respectively.
Note that the router interface components are essentialiyirdy with thecommunication
workload of the mapped application model and that, thus, they haventedeling roles:
data transferto and from processor components to other processing coemp®or storage
components anglynchronizatiomf these transfers. This, however, represents a model behav
ior and it will be covered in Section 3.4 with the rest of thééeiors.

We introduce the different components in the sections thikv.

3.3.1 Processor Components

Processor components in Figure 3.1 are the architecturpa@oemts onto which application
processes are mapped. Actually, our methodology suppa@ppimg of symbolic program
representations of application processes onto processgranents rather than mapping ap-
plication processes themselves. Therefore, in the maglaeimalysis and exploration phases,
processor components interpret symbolic programs in te@fnexecution times. As repre-
sentations of application processes are rich in behaviofatmation (see Chapter 2), the

48 Architecture Modeling

1 Processors

1-on-1 many-on-1 many-on-many
Compile Run Multi— Multi— : ;
Time Time Tasking Processing ' H Bus
Symbolic Symbolic Processor Processor ! @H Arbiter |
' Program Program CT/ RT| CT/ RT||CT/ RT||CT/ RT||| : :
: Unit Unit SPU SPU SPU SPU ! . 1
' 14 14 ay A ay oA ' H B
: = - = = : ' : :
[3 AU 7 AU 71 ~ vl ¥/ 1 |Highway |
ST o]

Router

shar ed
i nterconn
WIF
=]
-
~ burst

Interfaces

excl usive
interconn
N

-
e
L
e
e
o

f Honpgeneous 1 Het er ogeneous 1 Software Ctrl | 3
3 FI FO FI FO Firoll |

FI FO Menory Buffers

Figure 3.1: The architecture model structure - componerdselations. Encircled numbers
indicate which components should be connected to each other

processor components are themselves composite modules, ttzan being characterized by
operation counts and cumulative delays. Thus the processoponents model timing be-
havior of distinct entities such as symbolic instructiotcféng, dispatching, execution and
resource sharing.

Figure 3.1 reveals that we distinguish between three typpsocessor components. These
three types are established depending on (1) the maximunbeuaf mapped application
processes which a processor component can handle at on¢2)drmv many parallel exe-
cution flows a processor component can handle. The typeguré-B.1 are enumerated in
terms of the types of mapping relation|pf-ocesses|-on-|processors| such as: thene-on-
one the many-on-oneand themany-on-many Please note that "many-on-many” does not
include "one-on-one” as is the case with the conventionaliyato-many’ and 'one-to-one’
relations from Entity-Relation (ER) model [63]. In our aiteltture model "many-on-many”
and "one-on-one” represent disjoint (non-overlappingg & processor models.

The one-on-one processor type can only model the executiansimgle process mapped
onto it. The many-on-one processor type can model the @#eeld execution of a number of
processes that are mapped onto it. Finally, the many-onsmatcessor type can model the
overlapped execution of a number of processes that haverbagped onto it. Many-on-one
corresponds tonultitasking while many-to-many corresponds taultiprocessing In both
multitasking and multiprocessing cases, the light-wedgigrating systemare modeled as
well and integrated in the processing units. Please notalie@ne-on-manynapping rela-
tion is not explicitly shown here. However, it is worth najithat one-on-many is available

4See Section 3.5.3.

3.3 Architecture Model Structure 49

as a sub-type of the processor type with the one-on-onéael@ee VLIW later on).

We further distinguish between two one-to-one procesdotypes: theCompile Time Sym-
bolic Program Unitand theRun Time Symbolic Program Unsee Figure 3.1). For the
compile time symbolic program unit, concurrency must beosel in symbolic program rep-
resentations just before their mapping onto the procegsgr {ery Long Instruction Word
or VLIW - see [64]). For the run time symbolic program unitncaorrency is extracted by
the processor itself (e.g. super-scalar - see [65]).

The four processor types are built from lower-level modwidgch are specialized Finite
State Machines that model particular behaviors. Becausallnaf the behaviors are present
in every one of the considered processor types, it is a spemfitition, combination and
relation of these behavioral modules that defines the mddalparticular processor type.
There is acommon coren all these processor types around which the different faaoe
built. We call this core th&ymbolic Program Uni(SPU). Amongst the many-on-one, many-
on-many, and run-time processing units, the SPU coiethe simplest, and thus serves as
the basis from which all the other processing units are ddriv

3.3.2 Communication Router Interfaces

Communication interfaces create a confaxtwhich the Inter Process Communication (IPC)
is refined and then executed. The IPC refinenfeefers to the conversion of the IPC of an
application representation to the IPC of an architectyseagentation. Processes in the appli-
cation model communicate by means &ad andwr i t e primitives in which data transfer
and synchronization are intertwined. Components in thaitcture model, on the other
hand, have separated data transfer and synchronizatitotpte. When communicating data
from the memory space of one process to the memory space tieanmrocess, an IPC
connection must be established first. The part of the processnponent that executes an
IPCr ead symbolic instruction connects to the part of the Read |lat=f(RIF) component
that controls the data retrieval from the storage compoaddtessed by that symbolic in-
struction. A few different RIF components are shown Figute 3he RIF differences are
explained later in Section 3.3.5. The same holds true fopéneof the processor component
that executes an IP@r i t e symbolic instruction: it connects to the part of the coresp
ing Write Interface (WIF) component that controls data dgpient to the storage component
addressed by the write symbolic instruction. A few diffdrBhF components are shown in
Figure 3.1. The WIF differences are explained later in ®&c8.3.5. The controlling of the
RIF and WIF components effectively separadesa transferfrom synchronization

Thus two operations can overlap whenever the connectiosté&bkshed: transferring data
to and from the processor to the associated interface ansfémraing data from the WIF to
the corresponding RIF through the storage component. Tiehsgnization that goes with
data transfer is dependent on the synchronization prg®ciblat the architecture supports.
On an abstract level, the synchronization of the transfedaié to and from a processor

5See Section 3.4.2.

6A contextis a special environment necessary to properly translaietepret the Inter Process Communication
of a mapped symbolic program.

"This is a run-time refinement - it is performed by the modellevtiruns.

50 Architecture Modeling

component to its interface component is modeled in termsnoéster-slave rendezvous pro-
tocol, where the processor is the master and the interfate islave. The synchronization
between interface components and a storage component isledod terms of condition-
synchronization protocolsheck-room/signal-datéor the WIF andcheck-data/signal-room
for the RIF. In the event that data transfer to/from a storameponent goes over a shared bus,
a shared bus synchronization protocol, bus-claim/blesass, is injected between conditional
synchronization pairs. We discuss the synchronizationdata transfer protocols further in
Section 3.3.5 where we deal with component-level intenfgci

As can be seen from Figure 3.1 we distinguish between thpsstyf processor interconnects:
ExclusiveSharedandBurst The first iscross-barlike, the second one similar to beibhgs-
basedand the third one is likened tolaurst-bus

It is worth noting that, as is the case with processor compbtypes, the various commu-
nication interface types are built on modules, some of winay or may not play a role
depending on the type considered. We will come to the timimdydynamic behavior of the
constituent modules in Section 3.4.

3.3.3 Arbiters

As already mentioned in the previous subsection, therdseaisituation where a shared
bus has to be modeled. In this case, the architecture complim@ry provides the arbiter

component. The arbiter component models a shared bus yrzation protocol - bus-claim

and bus-release. The model uses the integer-valued P-\pbemeg[66]: 1) bus-claim wraps

the P call, 2) bus-release wraps the V call.

In the case of a single bus (Bus Arbiterin Figure 3.1), when the arbiter component grants
the bus to an interface component (the bus owner), every aitesface component that
claims the bus afterwards will be blocked until the bus owmdgases the bus. When the
interface componentis bus owner it can transfer data thrdug

In the case of multiple bus-lines (btighway Arbiterin Figure 3.1), when the arbiter com-
ponent grants the bus to an interface component, every iotieeface component that claims
the bus thereafter will be granted access too, until theiip@éoumber of simultaneous data-
transfers is reached. When the number of simultaneoustdatsfers becomes equal to the
number of bus owners, new bus claims are blocked and waitfease of the bus by current
bus owners.

Multiple bus-arbiters can co-exist safely in the same aechire model instance That is,
an interface component can use services from different thitees. However, a single bus
arbiter must be used for data-transfers to a particulaageocomponent. It is not permitted
to transfer data to/from the particular storage componiendifferent buses. A FIFO buffer
is connected to same bus on both of its ends.

8In terms of Object-Oriented Design, our architecture madeuld be understood as a class-template and a
particular architecture description based on our modalishioe understood as an object-instance.

3.3 Architecture Model Structure 51

3.3.4 Storages

The storage components are organized as FIFO memory buffach buffer has a writer
port and a reader port. The interface components (WIF andriRAigure 3.1) communicate
with each other using the protocol associated with thesespdhis protocol is described in
the next section along with the other protocols.

We differentiate FIFO storages in two ways: 1) based on the of tokens that they store
in transit and 2) based on the synchronization interfacee dike of tokens reaching and
leaving the buffer may be either homogeneous or heterogsnétomogeneous FIFOs con-
sume equally large tokens on both (read and write) endseweiterogeneous ones do not.
With respect to the synchronization interface, an embegdecessing core may or may not
be required. That is, the conditional synchronization gcot (wait-for-data/room, signal-
room/data) is executed either on a programmable core orpeciaized hardware.

In our architecture model, all FIFOs communicate using #raes protocol, but they differ
primarily in the way data packets are treated. When dataitganrto a FIFO, it may or may
not have to be rearranged to fit a predefined token size. Siwilehen data is read from
a FIFO, it may require a similar treatment. The ability torefdoad and synchronize ex-
change of tokens of variable size requires an extra modeffiogt for the implementation of
the check-room/signal-datand check-data/signal-roomprotocol actions. Alternatively, the
architecture model may communicate tokens that have the semm as the tokens communi-
cated in the application model. That would not require argrbgad in the FIFO components,
but may lead to unrealistic memory requirements (FIFO sing) performance numbers (ex-
cessive FIFO blocking delays because of lack of room or af)d&inally, one could build an
application model which takes into account all architeetilFO communication artefacts.
This is, indeed, also possible, but it is totally inadeqdatethe architecture modeling and
exploration purposes. Remember that our decision to follewY-chart approach separates
application and architecture models. This means that thkcagion model is independent of
the architecture model and vice versa.

The above discussion raises several questions, one of ighidtether theheck-room/signal-
data and check-data/signal-roorprotocol actions are implemented in hardware or in soft-
ware. This is especially interesting in the caseheterogeneou&lIFOs, where the per-
formance of these actions may significantly impact the perémce of the rest of the sys-
tem. Designs where the FIFO conditional synchronizatiariqmol is executed on that pro-
grammable core (e.g., the inter-processor communicatitives paceCak e architecture [67]
architecture are known in practice. Therefore, with respethe materialization of the FIFO
conditional synchronization, the FIFO may require thewafe core or the specialized hard-
ware for the conditional synchronization protocol.

More details are provided in the following section.

52 Architecture Modeling

3.3.5 Interfacing Architecture Components

As already mentioned, the model components described stofamunicate through well
defined component interfacés There are three interface types, as depicted in Figure 3.1.
Each of them goes with a particular protocol:

1. Thepush-pullprotocols - the handshake protocols between processitg’fiais mas-
ters and interface unifs as slaves.

2. Theroom-dataprotocol - the condition synchronization protocols betwégerface
units when communicating data through FIF®s

3. The claim-releaseprotocol - the resource-sharing protocol between interfagits
when transferring data over the shared-resotitce

One possible sequence involving all these protocols istifed in Figure 3.2. interface
points among different architecture components are itelichy circled numbers; they cor-
respond to the enumerations in Figure 3.1. To explain théeopob sequence illustrated in
Figure 3.2 we use Dewey decimal numbers [68].

On the left hand side of the figure is illustrated a pull mastave protocol. The pull protocol
pullsdata into a processor component from the correspondingindadace component. On
the right hand side of the figure, a push protocol illustratEde push protocgbusheglata
from a processor component to the corresponding writefaxte component. Both of the
protocols consist of three parts. Firstly, the connectlmange to be opened: Dewey sequences
1.0 — 2.0 — 2.1 — 1.1 for the pull-side and.0 — 5.0 — 5.1 — 6.1 for the push-side.
Secondly, the real push or pull handshake protocols: seggér2 — 2.2 — 2.8 — 1.3
and6.3 — 5.3 — 5.9 — 6.4, respectively. Thirdly, the connections have to be closed
explicitly: sequence$.5 — 2.10 for the pull-side and.5 — 5.10 for the push-side. Note
that when looking into the write connection, data is movexnhfrthe processor component
to a local memory of the write interface component prior ty &andshake activity: the
sequencé.2 — 5.2. On the contrary, when moving data from the read interfacepmment

to the processor component, the data is moved from a localameat the read interface
component to the processor component after all handshakstias are completed: The
sequencé.9 — 1.4,

In the center of Figure 3.2, the condition synchronizatiost@cols are illustrated. These are
protocols that are convenient for the modeling of synctraindn. The reader side (visible
through the previously established pull connection) ckemk the availability of data in a

global memory buffet4. If the data is not in the memory buffer the reader side blaskd

9The component interfaces are the interfaces from the coemdrased design point of view, unlike the router
interface components we introduced in Section 3.3.2. Gpresgly, whenever we speak in terms of inter-component
interfacing we refer teomponent interfacesvhereas when we speak in terms of the model description sseira
blies we refer tanterface componentsr routers

10gee Section 3.3.1.

Hsee Section 3.3.2.

12g5ee Section 3.3.4.

13g5ee Section 3.3.3.

14see Section 3.3.4.

53

3.3 Architecture Model Structure

© < &) <
© © © © © | ©
o X e S N
o =
2
° (%)
2 %
c
s B
& ©
= g c
g < 8
_ o G B
> =
uw v o c
|| Q
= s}
) o o o~ 2
[N) e
M B e b N -
[}

2
;2
bus tlaim

1.3
1.4
5

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
'3
h
H

1.5
|
|
| .

close connection

|
|
|
i
|
i
|
i
|
'
|
v

Figure 3.2: The architecture model structure - sequenagatia describing the component

interfaces.

54 Architecture Modeling

it is notified that the data has arrived: Dewey sequen@e— 2.3. Similarly, the writer side
(push connection) checks on the availability of room in tlabgl memory buffer. If there is
no available space in the memory buffer the writer side daokil it is notified that sufficient
space is available: The sequerikceé — 5.4. In the particular case illustrated in Figure 3.2,
neither of the two checks (data-to-read or room-to-writeg gise to blocking, which implies
that the memory buffer (FIFO) has both enough data and roorhenAdata is read from
the memory buffer or when data is written to it, the signalpagt of the synchronization
protocol takes place: Dewey sequengesi— 3.3 and5.8 — 3.5 respectively. The former
serves to update (atomically) the number of available adt@rts. The latter serves to update
(also atomically) the available space in the buffer. Notg th the case of Figure 3.2 data is
transferred through the bus. Therefore, the load and thre sttivities (data transfers) are
synchronized by the conditional synchronization protdcalthey are only possible when the
bus protocol is fulfilled.

Finally, there is a small part in Figure 3.2 where the resesttaring protocol is illustrated.
This is a single bus protocol that allows only a single bus@wRor example, after the read
interface has discovered that data tokens are availableeimemory buffer, it claims the
bus. When it has been given control over the bus, it loads altee flom the global memory
into the local memory of the read interface. After that, thad interface releases the bus,
allowing a next bus request to take over the bus. The respeattivities are depicted by the
following Dewey sequencé.0 — 2.4;3.2 — 2.5;2.6 — 4.1 (the semi-colon ’;’ sign forces
the load data transfer between the bus claim and the busegle@n the contrary, the write
interface side is blocked on the bus request - therefore ét fingt wait for the read interface
to finish its data transfers. After that, it gains contrabyes new data into the global memory
buffer and releases the bus afterwards. This is illustrbyeithe following Dewey sequence:
4.2 — 5.5:5.6 — 3.4:5.7 — 4.3.

3.4 Architecture Model Behavior

The behavior of our architecture model is with respect tetaspects only. The performance
analysis is then based on that behavior.

Time in our model is configurable via a set of parameters. &lpasameters determine the
way conditions necessary for some actions in the model aieeased. This orders these
actions in the model and affects the possible states arel statsitions in the model. To

deal with the conditions, ordering and state in our architecmodel, we define the follow-

ing elements: Threads of Execution, Asynchronous Intexaithi Communication Channels,
Synchronous Inter-thread Communication Channels and @osmtt Finite State Machines.

Lastly, we describe the time-performance measurementimode

3.4.1 Architecture Model Element Behaviors

Finite State Machine. A Finite State Machine (FSM) is a sequential MoC defined by an
ordered relation among the actions described by the 5-tygld", X, Y, A) where: S is a

3.4 Architecture Model Behavior 55

set of FSM stated is a set of FSM transition condition predicatées,is a set of state entry
actions,Y is a set of state exit actions antlis a set of transition actionf8]. ¢

Thread of Execution. A Thread of Execution is an ordered sequence of actions whfeln
to a single program and data memory context. Each thread ekefta own ordered sequence
which can be executed concurrently with sequences of direads [69] ©

Synchronous Inter-thread Communication Channel. A Synchronous Inter-thread Com-
munication Channel is the information exchange where oeewgion thread sends a certain
message to other blocked threads of execution and, at the siame, unblocks them. In
computer engineering this is known as a conditional synuization [70] ¢

Asynchronous Inter-thread Communication Channel.An Asynchronous Inter-thread Com-
munication Channel is the information exchange where oeeldion thread, the caller, ac-
tivates a sequence of actions in the context of the otheathoé execution, the callee, and
where - whilst this sequence is not explicitly part of thdemathread native sequence - it can
still be used to: (1) copy-back to caller all the needed ihsigformation of the callee and
(2) alter the execution flow of the callee thre@d0] ¢

Concurrent Finite State Machine. Concurrent Finite State Machines (CFSRJ are threads
of execution represented with FSM behavior, one FSM peathasd where interactions are
based on the Inter-thread Communication paradigm, bottcBygmous and Asynchronous.

3.4.2 Processor Modeling

Generally speaking, an application process is a High-Leaeguage (HLL) specification
of one or more threads compiled and linked for a particulacessor and a particular plat-
form. However, the application process in a binary form wonbt serve the architecture
exploration purpose because it is specific to a single psocgdatform pair. Consequently,
changes in the processor or platform specifications, oreéraiplication source imply new
tools (compilers) or at least recompilation. Sometimes thiacceptable because the com-
pilation process may be fast and automafgdut sometimes this is not the cade Thus,
processor components in our architecture model do not éxéoelapplication processes that
are eventually mapped onto them. Instead, our processqr@uents interpret process repre-
sentations in terms of timing behavior. The representatiomuse are Symbolic Progranis
(SP) and transformations that are applied to them are paintecdipplication-to-architecture
mapping process. See Chapter 4.

A symbolic program captures the details the functional bigiaf an application process
without implying resource-limitations. The processor rlogeeds tanterpretthe symbolic
program(s), teextractthe partial order within the stream(s) of symbolic instioies, tosched-
ule the symbolic instructions according to the resource abdiftya and to delayaccording to

I5Note that Polis Co-design Finite State Machines [29] andGancurrent Finite State Machines are identical.

18A singlemake command that can rebuild the whole image.

17For example, consider the case of a heterogeneous arahitegith both dedicated, semi-programmable and
fully-programmable processors. The changes in the dextiaat customized components would impact the recom-
pilation duration.

183ee Chapter 2.

56 Architecture Modeling

the annotations in these instructions. Therefore, the fiegitures we model within the pro-

cessor model are: symbolic instruction extraction, fetghidispatching (distribution) and

execution and resource sharing, all these in terms of tirmahyjc behavior. Based on the
above features, we determine the low-end threads of execatd the interfaces of such
threads in the processor model. In the next subsection werideghe timing behavior and

the dynamic behavior of the processor model in terms of tgead channel-events (see
Section 3.4.1).

Symbolic Instruction Extraction & Fetching

When a symbolic program (SP) is assigned to a processor nrsdahce, a part of the pro-
cessor model extracts symbolic instructions from the SPceleit the program unit (PU).
This is a thread whose behavior is described by the SP sys¢@xSection 2.4.4) rather than
by a CFSM rule. The PU thread has two parts: the parser pathartdaversal part.

The parser part createsparse treeout of the symbolic program. The parse tree models
a conventional program memory. The creation of the pargedoeresponds to the process
loading. The other part of the program unit traverses theeptiee based on the SP control
trace (see Chapter 2). This corresponds to the symbolitgin extraction. Remember,
a symbolic program is a general representation, valid fonyrdata-sets. It is the control
trace that is bound to a particular data-set. This will helpitoduce a particular sequence
of symbolic instructions. When the tree traversal hits alsgine instruction, the PU thread
writes its content into the FIFO channel to which the PU isrmoted. This corresponds to
the symbolic instruction fetching. The implementationailstof the PU thread are given in
Appendix A, Section A.3.

Symbolic Instruction Scheduling

The fetched symbolic instructions arrive queued accortbntpe order expressed in an SP.
We call a front-end controller (FECTRL) the part of the pres@ model that reacts to such an
input stream of symbolic instructions (Sl). The controtlefivers Sis with a certain degree of
concurrency. That degree should match the degree of camyravailable in the processor
model instance. For example, the processor instance caanootperform two differently
designated ead symbolic instructions in parallel. Similar criteria holdrfthe other types
of SlIs. This corresponds to the symbolic instruction schiedu The scheduled symbolic
instructions are written to the FIFO channel that convegatko a following controller in the
processor model instance (Symbolic Instruction Dispaighi

The re-ordering of input instructions into output instioos can be modeled by means of a
user-configurable delay paramet&r The implementation details of the FECTRL thread are
given in Appendix A, Figure A.6.

19The value of this parameter can also be zero. If the paramahae is zero, then re-ordering is considered to be
instantaneous.

3.4 Architecture Model Behavior 57

Symbolic Instruction Dispatching

Once fetched and scheduled, symbolic instructions have wigpatched according to their
type and sub-typ&. The part of the processor model that performs this job iBtwk-End
Controller (BECTRL) thread. The BECTRL thread reads thesdciied symbolic instruc-
tions and dispatches them to their ultimate destinatiogettis (Read Units, Execute Units, or
Write Units). It applies a block to the output until the exgen of the dispatched symbolic
instructions is completed. For example, if three differgyinbolic instructions have been
submitted to the execution simultaneously, the BECTRLatrdispatches them and applies
a block until all three are completed.

Dispatching the symbolic instructions to the destinatlmeads can be modeled by means of
a user-configurable delay parameter. The implementatitmlsief the BECTRL thread are
given in Appendix A, Figure A.7.

However, it is possible to parallelize symbolic instruatiexecution even further. For ex-
ample, it may be possible to commit the next instruction toeadRUnit without having to
wait for the completion of an Execute Unit. For this purpose,make a few modifications
in the BECTRL thread. The idea is to queue the results of tleewions in a synchronous
data-flow manner, such that these results can be used ldten meeded. If the results are
not available, then the execution of an instruction whichdsethem stalls until the results
become available. The implementation details of the mallBECTRL thread are given in
Appendix A, Figure A.7.

Symbolic Instruction Execution

As a dispatched symbolic instruction may be eitheead, aw i t e, or anexecut e, the
thread that executes it may be similarly either a Read UMrige Unit or an Execute Unit.

The Read Unit thread (RU) reacts on a read symbolic insbmetnd processes it through sev-
eral stages: (i) the RU makes a request to communicate vwatRIfRO global memory com-
ponent! which is logically identified in the instruction; (ii) it parms the pull protocot? to
read data, (iii) it creates releasing events on both theatlifier and the RIF component ports.
The RU thread is suspended in three cases: 1) on the inpbgri is no read instruction;
2) on the output, when opening the connection to the FIFO cmapt and 3) again on the
output, when it performs the pull data protocol with the R&fmponent. The data retrieval
from the RIF into the processor can be modeled by a user-aoafiie delay parameter. The
implementation details of the RU thread are given in ApperdiFigure A.9.

The Write Unit thread (WU) reacts on a write symbolic instioic and processes it through
several stages: (i) the WU makes a request to communicédighvatFIFO component which

2read 12 (...) means that data from the logical FIFO 12 are to be reaglad is a type,12 is a subtype.
Similarly, execute 12 (...) means that function 12 is to be executed. However, rather ltking function
arguments the sub-types refer to distinguishable pravgsssources. Thatisgad andwr i t e sub-types bind ap-
plication Kahn buffers to architecture FIFO components@xecut e sub-types correlate to different functionality
with the different computation elements within a processmnponents.

2ISee Section 3.3.5

225ee Section 3.3.5

58 Architecture Modeling

is logically identified in the instruction; (ii) it perforntie push protocol to write data; (ii) it

creates releasing events on both input and output chanfleésWU thread is suspended in
three cases: 1) on the input, if there is no write symbolitriredion; 2) on the output, when

opening the connection to the FIFO component and 3) agaihevautput, when it performs

the pull data protocol with the WIF component. The data sskion from the processor to
the WIF can be modeled by a user-configurable delay paramiéteimplementation details

of the WU thread are given in Appendix A, Figure A.10.

The Execute Unit thread (EU) reacts on an execute symbadiicuction and processes it
through several stages: (i) it waits for a certain amouniro&t?; (ii) it creates releasing
events on the input channel. The EU thread is suspended ongheif there is no ex-

ecute instruction. The implementation details of the Elédlar are given in Appendix A,
Figure A.11.

Interrupt Modeling

Although the KPN application model does not know about iniets, the processor model
does know. This is required for the cases of many-on-one aryfon-many mapping rela-
tions (see Section 3.3.1). The processor interrupt logmadseled using the Programmable
Interrupt Controllers threads (PIC). There are two kindghefn available: the Read Interrupt
Controller thread (RIC) and the Write Interrupt Controlieread (WIC). Both are associated
with the same CFSM, hence we refer to both of them as PICs. Tulas implement the
'master’ part of the read/write interrupt methdtls These methods are employed to sub-
mit the network data-status or the network room-statusediistributed Operating System
(DOS) channef®. Specifically, the PIC applies a block until a change is detéin the data-
status or in the room-status of the global FIFO componerg.éMents are generated directly
by the router interface components (WIF and RIF). The infgrgeneration can be modeled
by a user-configurable delay parameter. The implementdetails of the PIC threads are
given in Appendix A, Figure A.12. The PIC thread usage is exéied in Section 3.5.3,
Figure 3.7, as WIC and RIC.

Processor Synchronous-Event Channels

The processor synchronous event channels model intercbonelata paths between pro-
cessor modules which model Sl fetching, scheduling, ditpag, execution and interrupts
according to definitions for synchronous channels estaddisn Section 3.4.1. There are four
internal synchronous processor channels: (i) A Read-Vilibeking FIFO channel (RWB
FIFO), (ii) a Peek Read Write Execute channel (peek-RWH), diBlocking Dispatcher
channel (BD) and (iv) a Symbolic Instruction Operands Goasghannel (SIOC).

The Read-Write Blocking FIFO channel provides two integfasethods: (1) a method to

23Equal to the product of the configured amount of time and theumrhindicated in the instruction - so-called
budget

24Remote procedure calhise which activates the asynchronous event handling in the D@8l - see Ap-
pendix A

25See Section 3.4.2.

3.4 Architecture Model Behavior 59

read data from the channel and (2) another method to writetddhe channel. This channel
is used to transfer symbolic instructions between the Peaithand the FECTRL thread, as
well as between the FECTRL thread and the BECTRL thread. Beto8 3.5.1.

The Peek Read Write Execute channel provides four interfat@ods: (1) a method to poll
for available symbolic instructions, (2) a method to peektype of a symbolic instruction
from the channel, plus (3&4) the aforementioned RWB FIF@rutel read/write methods.
This channel is used between the FECTRL thread and the mbd@&CTRL thread. See
Section 3.5.2.

The Blocking Dispatcher channel provides four interfacehods, two for the dispatcher
(BECTRL) side and two for the execution unit (RU, WU, EU) sidée dispatcher uses one
method to deliver the symbolic instructions and the othewad for the finalization report.
The execution unit uses one method to accept a new symbstiwiation and the other to
report on finalization of that instruction. The BD channeluised between the BECTRL
thread on the one side and the configured number of the RU, VllUE&hthreads on the
other side.

The Symbolic Instruction Operands Crossbar channel pesvido interface methods: (1) a
method to get the oldest value of a symbolic instruction apdifrom a head of the operand
FIFO and (2) another method to put the latest value of a syimbwtruction operand to the
back of the operand FIFO. A thread that requests the operaloe Vs a requester’ (e.g.,
WU or EU). A thread that provides the operand value is a 'gievi(e.g., RU or EU). The
synchronization in the SIOC channel is reminiscent of latdgata Flow (IDF) MoC [24]. A
requester will remove as many operand tokens from the ofddfHfO(s) as expected in the
write or execute symbolic instruction. A provider will pride as many operand tokens to the
operand FIFO(s) as expected in the read or execute symhsticiction.

Processor Asynchronous-Event Channels

The processor synchronous event channels model interctome&ata paths between pro-
cessor modules which model Sl scheduling, dispatching;udian, and interrupts according
to definitions for asynchronous channels established itid®e8.4.1. Essentially, the asyn-
chronous channels are needed to model a processor with aatiogesystem on-top. Our
operating system model targdtemogeneoumultiprocessors, e.g., the cases of many-on-
one and many-on-many mapping relations (see Section 3.3.1)

When modeling an operating system, one has to be aware @ different operating sys-
tem types that may appear on a homogeneous multiproceddo(1J separate-supervisors,
(2) master-slave and (3) symmetric. Separate-supervigbneaster-slave are not truly par-
allel software platforms - the former has serious load4h@ley issues, the latter does not
scale well and has Amdahl’s Law implications. Unlike these,ta symmetric software plat-
form scales nicely and allows for modular (micro-kernelplementations. Moreover, the
symmetric software platform complies with the main reqoiests needed to support stream-
oriented applications [31]. This is why our operating syst@odel, Distributed Operating
System (DOS) is implemented as a symmetric software platfor

The DOS channel virtualizes the RU, WU and EU threads for egotbolic program, isolat-

60 Architecture Modeling

ing a symbolic program from all other symbolic programs withich it may share processor
resources. The interconnection and the global memory aseaaied partly by the DOS
channel, and partly by the channel contained in the routerface (WIF and RIF) compo-
nents?.

To achieve this, the DOS channel has to exclude explicitkihgcconditions because they
may produce biased symbolic program schedtfieExcluding explicit synchronization im-
plies that the asynchronous event synchronization protua®to be used in the underlying
channel implementatioff. Therefore, the DOS channel consists of a single thread;hwhi
performs the polling and a set of communicating signal hensdiwhich handle predefined
asynchronous events. The asynchronous events contaiveiglethformation about: (a) idle
symbolic processing unit coréy (b) globally available room and dat&and (c) non-empty
symbolic instruction strean¥$. The signal handlers prevent artificial deadlocks by coimgey
this feedback to the scheduler.

The multiprogramming scheme creates additional overheathe processor model. The
symbolic programs are scheduled according to secheduling policyThe switching among
the symbolic program instruction streams creates a modetohtext switchinglelay. Fur-
thermore, if the processor is a homogeneous multiprocesar the scheduling may imply
a migration delay, because a symbolic program may continue its exatotioa different
Read-Write-Execute thread than before. See Appendix AJrEig\.13 for the implementa-
tion details.

Processor Composite Modules

A composite module is a hierarchical module that convehjigmbups the low level threads
into processor model parts. This makes the processor misé#leasier to understand. We
define two composite modules: the Symbolic Program Streamutecand the Symbolic

Program Unit Core module.

The Symbolic Program Stream composite module (SPS) prewadiéerarchical model of the
context of a single process, on top of the processor modewghipports multiprogramming.
This module connects to the DOS channel explained eaieBince the DOS channel is
based on asynchronous events, minor modifications areregqin the threads which the
SPS module uses. Namely, the FECTRL thread uses an asyocisriotterface (I/F) at the
output®3. For the implementation details, see Appendix A, FiguredAThe structure of the
SPS module is depicted in Figure 3.3.

263ee Section 3.4.3.

27E.g., inSpade the available 'native’ SI trace schedules guarantee aalifiteadlock-free executions, but are
only a subset of valid schedules modeled. This implies thatther valid schedules are left unmodeled. The
explanation and exemplifications of this issue are availab[72].

283ee Section 3.4.1 for asynchronous events

29see Section 3.4.2, Figure 3.4 and Section 3.5.3, Figure 3.7.

30see Section 3.4.2 and Section 3.5.3, Figure 3.7.

31See Section 3.4.2, Figure 3.3 and Section 3.5.3, Figure 3.7.

32See Section 3.5.3, Figure 3.7.

33The asynchronous I/F at the output serves as the mastemedatithe DOS channel, or in other words, it keeps
the DOS channel up-to-date with the available symboliaurcsions in the symbolic program.

3.4 Architecture Model Behavior 61

'
FRONT END

0

PROGRAM .]

RWB FIFO *

to the DOS channel

Figure 3.3: The composite SPS processor model module @&roghit refers to the PU
thread, Front-end Controller refers to the FECTRL thread,tae RWB FIFO refers to Read-
Write Blocking FIFO).

The Symbolic Program Unit Core (SPU core) composite modeggeasents a single pro-
cessing core. This is quite useful when modeling homogeneuiltiprocessors - performed
by simply replicating this module. It connects to the DOSrufel at the bottom end’.
Since the DOS channel is based on asynchronous events, madifications are required in
the threads which the SPU-core module uses. Namely, the BEGHAread uses two asyn-
chronous I/F’s at the inpd. For the implementation details, see Appendix A, FigurebA.1
The structure of the SPU core module is depicted in Figure 3.4

'
from the DOS channel 1
—[9]

coreBECTRI
UNIT

o]

'
! towards Network Iterface

BLOCKING DISPATCHER

Figure 3.4: The composite SPU-core model modute€BECTRLrefers to a modified ver-
sion of the BECTRL thread, necessary to match the DOS asgnohs channel).

34See Section 3.5.3, Figure 3.7.

350ne asynchronous I/F at the input serves as the masteredatithe DOS channel, or in other words, it keeps
the DOS channel up-to-date with the status of the SPU corgy(fidle). The other asynchronous I/F at the input
serves as the slave routine for the DOS channel, which réadsext available symbolic instructions for the SPU
core.

62 Architecture Modeling

3.4.3 Router Interface Modeling

A router interface model defines a platform-dependent s fde the Inter-Process Commu-
nication (IPC). The IPC context we consider is a virtualatof bus and global memory
components for one or more processes mapped onto a singlessa.

Recall that the application model limits inter-process ommication to FIFO-based IPC
only. Theread andw it e symbolic instructions directly abstract the FIFO readtevri
IPC. However, such symbolicead/wr i t e instructions are executed inside the processor
model. The question is: Why do we need to model yet anothdicapipn-process related
context (router interfaces) when we already have the psacs$or that purpose? The answer
is rather intuitive: the refinement of the IPC symbolic instions also depends on other non-
processor components - mainly those in the interconneaiatgork. When data needs to
be moved between the network and a processor (or multipepsors), processors are only
partially involved. Data needs to be loaded and stored re@tobal FIFO memory. Also, on
the way to/from the global memory, arbitration for datanster lines takes place. These is-
sues were described when interface protocols were disg(Sse Section 3.3.5). Hence, the
status of these network components and their dynamics aavay which is complementary
to the processor componentsin the case of IPC. Network digsamd global memory capac-
ity influence the schedules of the SP executigread Sl's stall processor components until
sufficient data is available in the global memory awd t e SI's will stall processor compo-
nents until sufficient space is available in the global mgmohese stallings are the result of
the finite network throughput and the finite global memoryazaty. Thus, these constraints
affect the way processor components push and pull data giag¢twork and memory. By
considering both processor and network components, therl®d&ling picture is complete.

In this subsection we provide an insight into the behaviel@hents implementing the above
IPC refinements in router components. We mention them fatigwhe order in which the
IPC refinementis carried out: connection, synchronizaimhtransfer. In addition, we show
how network-generated interrupts are modeled.

Opening and Closing FIFO Connections

The opening and closing of read and write IPC connectiomajddmented inside the FIFO-
Input Controller (FICTRL) and the FIFO-Output Controll&i@CTRL) threads. The two are
essentially the same: the only differences consist of @)uhit to which they are connected
(the RU or the WU processor thread) and (ii) their purposegsétablish either a read or a
write connection). Thus, we exploit their similarities topide a general explanation of the
dynamic features of these threads.

Initially, a thread waits for a request to come from the pesoe unit. In the case of the
FICTRL thread, the request comes from the RU processordhieahe case of the FOC-
TRL thread, the request comes from the WU processor thregdSection 3.4.2). As soon
as the request arrives, the thread configures the appm@poanection based on the infor-
mation available within the interface component conféxtThe connection configuration

8Interface components are also knownrasters WIF and RIF. See the explanation of the connection opening

3.4 Architecture Model Behavior 63

is performed according to the received ‘logical’ (applioa) FIFO identification number.
Eventually, the requester is given the acknowledgementiieaconnection is ready-to-use.

The opening of the FIFO connection can be modeled by meansisgraconfigurable delay
parameter. A FIFO connection is considered to close insteattusly. The closing is done
after read/write IPC have been completed (see Figure 3t implementation details of the
FICTRL and FOCTRL threads are given in Appendix A, Figureséfand A.17.

Synchronizing FIFO Connections

The synchronization over FIFO connections is implememteide the FIFO-Input Unit (FIU)
and the FIFO-Output Unit (FOU) threads. The two are esdgntiee same: the only differ-
ences are (i) the unit they are connected to (either to thaerear to the writer side of the
FIFO component) and (ii) their purpose (to load the data footo store the data in the FIFO
component).

The FIU thread is connected to (1) the read FIFO componeatasid to (2) the pull event-
synchronization channel. The FOU thread is connected tto(tt)e write FIFO component
side and to (2) the push event-synchronization channeldditian to these, the threads can
be connected to the bus arbiter component. That is, eachhieelFO is accessed by either
of these threads, bus arbitration takes place.

The FIFO connection synchronization can be modeled by m&famaser-configurable delay
parameter. The implementation details of the FIU and FOEtis are given in Appendix A,
Figures A.18, A.19 and A.20.

Network Interrupt Modeling

We considered interrupt modeling in Section 3.4.2. The ReatWrite interrupts are gen-

erated by some bookkeeping activities in the router compisnghe data and room status
information are acquired using the FIU and FOU threads. @kt&sus acquisitions (1) must
be done in a non-blocking way (i.e., status check must netfiete with the main IPC tasks

of the router component threads) and (2) should appear dmyhe relevant room and data
changes in the FIFO appear (i.e., ideally they should beopmegd only once, when the status
has already meaningfully changed - sufficient room or dabéteg.).

These two "rules” appear to be imprecise because we may et krplicitly when to gen-
erate an interrupt. Furthermore, the processor DOS chamfahidamentally dependent on
the presence of the status information (see Section 3. #t®)rough examination of the in-
teraction between processor components and the routerar@nis provides the following
guidance. Both writing-to and reading-from the FIFOs arerapons generated at the pro-
cessor side; recall that, ‘push’ and ‘pull’ channels areckéal until processor WU and RU
threads generate requests. It is worth noting that wheingtoiata to a FIFO component,
the processor component first writes to the router compaaahthen it may possibly apply
a block. Conversely, when loading data from a FIFO compqrieatprocessor component

protocol shown in Figure 3.2.

64 Architecture Modeling

may first apply a block if there is no data and then continué wie loading sequence. This
is visualized in Figure 3.2, in the push and pull protocolussatce parts. Consequently, (1)
room status can be obtained from the FOU thread of the writteer@omponent by acquiring
room status of a FIFO at the beginning of the push sequenc@amita status requires an
independent polling mechanism which can be activated wesrtbere is a change in the
FIFO status from ‘empty’ to ‘data-has-just-arrived'.

Router-Interface Synchronous-Event Channels

The synchronous-event channels of the router-interfaocgpoment model interconnection
data paths between internal router modules. This modelsglring/closing/synchronising
connections and network-interrupts according to defingifor synchronous channels estab-
lished in Section 3.4.1 .They are thus nansgydchronous-event channel$here are two
internal synchronous event channels available: (1) A Phr@el (PULL) and (2) a Push
Channel (PUSH). They model the pull and push protocols,ecsgely. The PUSH and
PULL channels are important parts of the router-interfamapgonents.

The channels have the same structures but complementasy fidie PULL channel provides
the means for the processor RU threads to pull data from #@'Bl The FIU thread connects
to the other side of the PULL channel and provides the interfa the designated FIFO
component. Similarly, the PUSH channel provides the meanth& processor WU threads
to push data to the FIFO’s. The FOU thread connects to the sithe of the PUSH channel
and provides the interface to the designated FIFO component

3.4.4 Global FIFO Memory Modeling

To model storage in our architecture model we use the GldB& Memory component. The
global FIFO memory consists of a set of FIFO memory compaehnFIFO memory com-
ponent is a buffer with two explicit access points: One fa Writer and one for the reader.
Data being written are always appended (unless there isom)rdata being read are always
removed from the front (unless there is no data). Lack of roomiata in the buffer sets the
synchronization primitivesheck- r oomandcheck- dat a to a blocking state. Since they
are part of the FOU and the FIU threads inside of routerdatercomponents, any further
gueuing and removing activity for that buffer is blocked.td® soon as such condition dis-
appears, the corresponding threads in the peer interfanpawents’ unblock any pending
data operation for that buffer and triggeirgnal - dat a orsi gnal - r oomprimitives. As

a result, FIFO components convey data according to a conditisynchronization protocol
(check-room/signal-datandcheck-data/signal-roomsee Section 3.3.5).

A FIFO component is always connected to two configured reinterface components such
that only the particular FIU thread inside of read routeeiface can load data from the FIFO
memory and that only the particular FOU thread inside ofewiguter-interface can store data
into the FIFO memory - the FIFO connection cannot migrate diféerent router-interfaces

37A peer of a FOU thread in a WIF interface component conneaighe writer side of a FIFO is a unique FIU
thread in a RIF interface component connected to the re@keosthe same FIFO and the other way around.

3.4 Architecture Model Behavior 65

nor over different threads within a single router-integfa@he execution of the conditional-
synchronization protocol primitives can be modeled by rseafna user-configurable delay
parameter. If these primitives require such user-configamait is implied that they are
implemented in software (e.g., a dedicated processor, isilitle’ to a user, executes these
primitives). Otherwise, the primitives are implementechardware, using particular logic
blocks.

3.4.5 Bus Arbitration Modeling

The Arbiter component models the bus contention. It cossibt1l) a semaphore [66] with
its initial value set to a number of bus-lines and 2) a pnogtieue [73]. When a bus-line
is requested and the semaphore value is not zero, the sereaioe is decremented. In
this case, a bus-requester does not block and can procded wansfer over the bus-lines.
Otherwise, if the current bus-semaphore value is zero, ttheebus-requester applies a block
until the bus-semaphore is incremented, the latter beirigdacation that bus-lines have been
released. To make the bus schedule realistic, each bushclemtgueues its request based on
the time-stam{f value. A requester releases the bus when it completes iitsacéion. This
event increments the bus-semaphore value and wakes upiiigvéblocked) requesters.
However, only the contender with the oldest request willtgetnext bus access. It is worth
noting that the criteria by which the requests in the queaer@naged, correspond to the bus
schedule. Depending on the implementation of this feauifisrent bus schedules can be
derived.

3.4.6 Measuring Performance

Our architecture model is abstract and non-functional. rfElagon is simple - during the ex-
ploration process we are interested in performance numhets produced data. Therefore,
the application functionality is modeled by a set of abgteachitecture instructions, each of
which corresponds to a particular computation delay. Talhicapplication processes ex-
change tokens (data types) which must be translated inkitecture data types, e.g., bits,
bytes, words, double words, etc. As a consequence, a sipgleation SI may have to
be translated in a sequence of architecture Slis. Hence rshatip is to define an abstract
instruction set.

Abstract Instruction Set. An abstract instruction set (AIS) is a pdif’, S) used to specify
symbolic instructions, wherE' is a set of functions, the execution of which the architectur
model needs to simulate arfis a set with specifications of processor and network word
sizeso

Apart from architecture Sls, the architecture model insteaxecutes various communication
related delays. They can either be fixed assigned delayspiicitty generated delays. The
former are given as architecture structure component peteasn For example, an execute
S| must be specified in terms of a fixed delay. The latter reduttm the model instance
execution (simulation) and various time behaviors of thegonents. For example, a delay

38A time-stamp marks the 'time’ when the bus-request haseatrat the arbiter component.

66 Architecture Modeling

that appears as a consequence of blocking on either memdagaavailability falls into this
category.

We use fixed delays for scheduling, process migration, gbeteitching, interrupt, commu-
nication connection switching, a single bus word transfexpmmunication setup and both
data/room checking and signaling. Some of these may beédnarare not applicable for
some platform instances (e.g., hardware acceleratorsapdocessors do not need schedul-
ing, context switching or other multi-programming functaities).

CFSM Performance Measurement

The measuring mechanism of performance numbers is closkied to a dynamic TLM
model of the component CFSMs and the inter-thread commtioicehannels. We collect
and accumulate both the explicit (fixed) and the implicitagslby summing and subtracting
the end-to-end time differences for each architecturetfanality deemed to be a delay. This
produces a 'running’ time of an individual CFSM in a certaiats. The CFSM running time
is a sum of running times in all its states.

For example, looking at Figure A.9 from Appendix A, the ex@mu of a singler ead sym-
bolic instruction by an RU thread inside of a processor camepd results in the unrolled
sequence of FSM state$DLE — SETUP — STALL+— RUN — IDLE, where ="
defines the total order between the states from left to righe delay of theSET'U P state
can be assigned by means of user-configuration, and the afeltaeyST A L L state is implicit
due to the fact that it depends on the conditional synchatioiz with a separate component
(a read router-interface component connected to the pgocesmponent). Finally, depend-
ing on the user configuration, thieU N state can contribute to both the explicit delay (so
called "budget” of ar ead Sl) and the implicit delay (storing data coming from the algs
in the specific internat ead operand FIFO). Each time rmead Sl arrives, all states are
affected according to (1) the assigned delay parameter$2nahplicitly generated delays
due to conditional synchronization. As a result of thesaygkethe RU CFSM running time
is altered, the other CFSMs interfacing the RU module are aliered and finally, the total
system simulated time is altered.

Equations 3.1 and 3.2 more formally express the measfikestands for the running time
of stateS delay; expresses a fixed-parameter delaiy¢lexes through all delays of stefp
updateaccounts for a collection of implicit delays caused by ctindisynchronizationj(
indexes through all updates of st&eandT), stands for the running time of the moduke
with statesS), (kindexes through all states of the modig

Ts = Z delay; + Z update(j) (3.1)

J

Ty =Y Ts, (3.2)
k

3.4 Architecture Model Behavior 67

Component Performance Measurement

However, running time must be calculated differently forcanponent than for a module
since modules may run concurrently. The running time of tramonent cannot be derived
by a simple sum of all running times. Rather, we look for an-eménd delay because it
gives us the running time of the component. The start timeusd as a minimum of start-up
time-stamps of all modules within the component. Each me#udcquires this start-up time
at the start of the execution. The end time is found as a maxiwiustop time-stamps of all

modules within the component. Each module acquires thgstgtoe when it is blocked and

there are no inputs availabie

For example, looking into the processor with compile-tinigepining of symbolic instruc-
tions (see Section 3.5.1), each of its CFSM modules, PU, FECBECTRL and the sets
of RUs, WUs and EUs, have their specific start-up time-staamasstop time-stamps. The
processor component running time is determined by a diffe¥detween the highest stop
and the lowest start-up time-stamp values. If an RU moduteaHawest start-up time-stamp
and the PU module has the highest stop time-stamp, then tlvesime-stamps determine
the processor component running time.

Equation 3.3 expresses more formally this end-to-end mea%y stands for the running
time of the componer® (which may be a processor or a interfacejz (| Tx,) represents

3
theend.time of the componenB (i indexes through all modules & component]’s, refers
to the stop time stamp of the modulandmaxextracts the maximal value) amdin (| 7o,)

represents thstart time of the componerB (i indexes through all modules chomponent,
To, refers to the start time stamp of the modugndmin extracts the minimal value).

Tp = max(U Tg,) — mm(U To,) (3.3)

The running time of the whole architecture is calculatechia following way: we look for

the maximum end time of all componefitsand the minimum start time of all componefis

and we define the difference between this maximum and miniemithe running time of the
architectureV (i.e., Ty in Equation 3.4).

Tw = max(U Tpe,) — mm(U Tpo,) (3.4)

39A module is described by a single CFSM.

40This phenomena we named the artificial deadlock.

41TBE,i in Equation 3.4, whereindexes through all components in the architecture&stands for an end time
stamp.

42TBO7, in Equation 3.4, whereindexes through all components in the architecture @istinds for a start time
stamp.

68 Architecture Modeling

Architecture Timing Model

Based on the CFSM timing model and the component timing medehave the following
definition of the timing model.

Timing Model. The timing model of the architecture model instance is ddfasethe 3-tuple
(A, D, T) where, A is the abstract instruction set for that instande,is a set of assigned
delays for each state of a CFSM, for each CFSM in a componengdch component in
the architecture and is a set of calculated performance measureméenis U, 75, Tw)
obtained during the system simulatien.

It is worth noting that4 and D (abstract instruction set and assigned delays) are edtedli
through a mapping prepossessing phase calidithration. This is not a trivial task at alll,
and due to that, it is probably impossible to automate. Thibredion has a major impact
on accuracy of an architecture model instance, since itivéndrthe configuration of that
instance. There is some research work done in the area tirai@din of DSE [74], but
none of it's results can be acquired "as is” in our architeztmodel. An exemplification of
calibration issues is given in the next chapter, Sectior84.5

3.5 Examples

In this section we present examples of different flavors ahpgonents (processor-types,
router-types, bus-types) which can be instantiated basedeostructural and behavioral ar-
chitecture elements described earlier.

3.5.1 Model of the Processor Compile-Time Pipelining

The processor with compile-time pipelining of symbolictiistions is an architecture com-
ponent which: (1) represents a model of the single processerof an embedded multipro-
cessor, (2) can execute only a single SP, (3) can execute syartyolic program instructions
in parallel but only when they are specified in the SP as bwrfdlef mutually independent
Sls -compile timeand (4) can reuse internal resources to read (write) diftdfd#-Os - appli-
cation (logical) FIFO identifiers are decoupled from thenitfecation of architecture FIFO
components [32].

The processor with compile-time pipelining of symbolictiastions consists of the following
threads: the extraction and fetching thread (PU in Sectidr2B the symbolic instruction
scheduling thread (FECTRL in Section 3.4.2), the symbaigtruction dispatching thread
(BECTRL in Section 3.4.2) and a specified number of executiogads of read, execute and
write type (RU, EU and WU in Section 3.4.2, respectively).

The topology description of this processor type componant (vhich threads are intercon-
nected by which channels) is as follows (see Figure 3.5):

43This term is commonly used by the compiler community whew tieéer to scheduling a set of partially assem-
bly instructions on top of a VLIW processor [64].

3.5 Examples 69

e the PU thread is connected to the FECTRL thread through aweitelblocking chan-
nel (RWB),

e the FECTRL thread is connected to the BECTRL thread througla-write blocking
channel (RWB),

e the BECTRL thread is connected to a configured number of RU,WU threads by
the blocking dispatcher channel (BD).

READ-WRITE BLOCKING FIFO
(channel)
FRONT END

CONTROLLER| E ®c
I

(module)

BACK END
ONTROLLER
(module)

RWB FIFO

Aad
(channel) + BLOCKING DISPATCHER (channel)
0 o]

WRITE
UNIT
(module)

READ
UNIT
(module)

EXECUTE
UNIT
(module)

COMPILE-TIME PROCESSOR MODEL

TOWARDS INTERCONNECT
Figure 3.5: Internal structure of the processor with comiiine instruction scheduling.

The configuration parameters of this processor componergiaen in the mapping chapter,
Chapter 4.

3.5.2 Model of the Processor Run-Time Pipelining

The processor with run-time pipelining of symbolic instiians is an architecture component
which: (1) represents a model of the single processor car embedded multiprocessor, (2)
can execute only a single SP, (3) can execute many symbolijzgm instructions in parallel
irrespective of whether or not they are specified in the SRiadlbs of mutually independent
Sls - if they are not, then the parallelism is establishediaitimeand (4) can reuse internal
resources to read (write) different FIFOs [75].

The processor with run-time pipelining of symbolic instiians consists of the following
threads: the extraction and fetching thread (PU), the syimlnstruction scheduling thread
(FECTRL), the symbolic instruction dispatching thread (edified version of BECTRL,
Section 3.4.2), the dispatching threads for each type obsjiminstruction (R-BECTRL,
E-BECTRL, W-BECTRL) and a specified number of executionaldseof read, execute and
write type (RU, EU and WU, respectively). In addition, thegpessor with run-time pipelin-
ing of symbolic instructions makes use of the following chels: the read-write channel with
non-blocking methods to examine the possibility of parttieval of an SI-bundl&* and a

44This is a Peek-RWE channel, Section 3.4.3. Note that thisr@laransports partially ordered instructions -
Sl-bundle.

70 Architecture Modeling

data-operand-flow channel which keeps the data

The topology description of this processor model (i.e.,clilihodules are interconnected by
which channels) is as follows (see Figure 3.6.):

e the PU thread is connected to the FECTRL thread through aweiéelblocking chan-
nel (RWB),

e the FECTRL thread is connected to the BECTRL threads threugéek read-write-
execute channel (Peek-RWE),

e the BECTRL thread is connected to the R-BECTRL thread thn@ugead-write block-
ing channel (RWB),

e the BECTRL thread is connected to the E-BECTRL thread thinaugead-write block-
ing channel (RWB),

e the BECTRL thread is connected to the W-BECTRL thread thinmugead-write block-
ing channel (RWB),

e the R-BECTRL thread is connected to a configured number offReats through a
particular instance of the blocking dispatcher channel)(BD

e the E-BECTRL thread is connected to a configured number oftiEeads through a
particular instance of the blocking dispatcher channel)(BD

e the W-BECTRL thread is connected to a configured number of Wads through a
particular instance of the blocking dispatcher channel)(BD

e the RU threads are connected to the EU and WU threads and thler&ats are con-
nected to the WU threads through a symbolic instructionapecrossbar (SIOC).

The configuration parameters of this processor componergiaen in the mapping chapter,
Chapter 4.

3.5.3 Model of the Programmable Multi-Processor

The programmable multi-processor is an architecture compbwhich: (1) represents a
composition of multiple identical (homogeneous) singlegassor cores in an embedded
multiprocessor, (2) can execute multiple SPs, (3) can regitee SP executions over dif-
ferent processor cores at run-time, (4) can execute manp@jgrprogram instructions in
parallel only if they are specified in the SP as ordered Slqanchn reuse internal resources
to read (write) different FIFOs. Later in this thesis we Useprogrammable multi-processor
component when modeling many-on-many mappitigs

The programmable processor component is shown in FigutelBconsists of the follow-
ing composite modules, threads and channels: a set of catmposdules which model the

45This is an SIOC channel, Section 3.4.3.
46See Chapter 4, Section 4.5.3.

3.5 Examples 71

TOWARDS INTERCONNECT

y

FRONT END,
CONTROLLEH @]

(]

(®

RWB FIFO

T
<
Pl
[7)
%)
[e]
x
(8]
0
a
z
<
x
wi
[N
[e]
z
<]
=
)
=]
x
=
%)
z
o
)
o
o
=
>
)

Figure 3.6: The processor with run-time instruction sctiadu

multiple program memory spaces (see SPS in Section 3.h&}erating-system channel
(see DOS in Section 3.4.2), the modules to report on the mktstatus (see RIC and WIC
in Section 3.4.2) and a set (a configured number) of singlegasor cores (see SPU-core in
Section 3.4.2).

The topology description of the processor model (i.e., Whiaits are interconnected by
which channels) is as follows (see Figure 3.7):

e the number of SPS modules (each SPS module corresponds rigla application
process) are connected to the number of SPU-cores (eactc@RlEorresponds to
a single processor core in a multiprocessor) through theitdised operating-system
channel (DOS),

e the RIC thread is connected to the SPU-cores through the bhasel,
e the WIC thread is connected to the SPU-cores through the D@snel.

The configuration parameters of this processor componergiaen in the mapping chapter,
see Chapter 4.

3.5.4 Model of the Routing Interfaces for a Point-to-Point Network

The point-to-point routing interfaces are architectureaponents which: (1) model the rout-
ing over an interconnect of exclusive data-transfer lii@s,move data from the processor
IPC context to the network IPC context and vice-versa, (Brhyonize data accesses to the
global FIFO memory buffers and (4) move the data to and froengllobal FIFO memory.
There is no resource contention in this case - the performahthe network architecture,
considered in isolation of the application model (représton), is fully dependent on the
global FIFO memory capacity.

72 Architecture Modeling

PROGRAMMABLE MULTI-PROCESSOR MODEL

SPS1 SPS 2
MODULE MODULE
Ll Ll
SPU-core N

DISTRIBUTED OPERATING SYSTEM
0 0
SPU-core 0 PU-core 1
MODULE MODULE MODULE

o @@ - (@@ - @@ oo

TOWARDS INTERCONNECT

SPS 0
MODULE

SPSM
MODULE

wiC
MODULE

RIC
MODULE

Figure 3.7: The programmable (multi)processor.

There are two complementary types of point-to-point ragtirterface: 1) The read network
interface (RIF), through which all refinedead symbolic instructions are routed and 2) write
network interface (WIF), through which all refined i t e symbolic instructions are routed.

The RIF router (Figure 3.8) consists of: one pull channell(Puh Section 3.4.3), a config-
ured number of FIFO input-controller modules (FICTRL in &@t 3.4.3) and a configured
number of FIFO input-modules (FIU in Section 3.4.3). The bemof FICTRL modules in
the RIF component is equal to the number of RU modules in thegasor component con-
nected to that RIF component. The number of FIU modules ifrifrecomponent is equal to
the number of FIFO components connected to that RIF compgdhen

The configuration parameters of this processor componergiaen in the mapping chapter,
Chapter 4.

The WIF router (Figure 3.9) consists of: one push channeB5Ruh Section 3.4.3), a config-
ured number of FIFO output-controller modules (FOCTRL iotiém 3.4.3) and a configured
number of FIFO output-modules (FOU in Section 3.4.3). Theaber of FOCTRL modules

in the WIF component is equal to the number of WU modules inptlegessor component
connected to that WIF component. The number of FOU moduléseWIF component is

equal to the number of FIFO components connected to that \Miponents.

The configuration parameters of this processor componergiaen in the mapping chapter,
Chapter 4.

47If the number of FICTRL modules ig and the number of FIU modules j§ then the rule which applies is:
r<f.

48If the number of FOCTRL modules is and the number of FOU modules fis then the rule which applies is:
w < f.

3.5 Examples

data flow

1

'

'

'

'

'

'

'

' data connection of RU1 '

- '

o ;

H '

' '

\ '

' '

\ '

| '

\ '
'
i

0

|
'
'
'
'
'
'
'

PULL CHANNEL
data FIFO1

connection

data FIFOf
connection

SITNAON NY YOSSIO0Hd SAIVYMOL

data flow

1

'

'

'

'

'

:

'

' data connection of WU1 '

— '

o ;

H '

' '

\ '

| '

\ '

| '

\ '
'
'

0

|
'
'
'
'
'
'
'

PUSH CHANNEL
data FIFO1

connection

data FIFOf
connection

SITNAOW NM HOSSTO0Hd SAIVMOL

Figure 3.9: Point-to-point write routing interface.

STIANNVHD OdId SaYVYMOL

STIANNVHO OdId SaYVYMOL

74 Architecture Modeling

3.5.5 Model of the Routing Interfaces for a Shared Bus Netwdt

The shared bus routing interfaces are architecture conmpeménich: (1) model the routing
over shared data-transfer lines, (2) move data both wayseeet the processor IPC con-
text and the network IPC context, (3) synchronize data acte¢he global FIFO memory
buffers and (4) move data to and from the global FIFO memadngré is possibly a resource
contention when using shared bus and that affects perfarenafithe network architecture.

The model of shared bus router component is based on thefpejtint component model
introduced in Section 3.5.4 and conveniently modified toamahhe shared bus communica-
tion case. The changes affect the FIU and FOU modules inkel&tF and WIF routing
components respectively: before data transfer can take pthe shared data transfer lines
must first be claimed and, after data transfer has finishedshiared lines must be released
(see the bus-protocol example in Section 3.3.5, illustratd-igure 3.2).

3.5.6 Model of the Routing Interfaces for a Burst Bus Network

The burst bus routing interfaces are architecture compsnelnich: (1) model the routing
over the shared data-transfer lines, (2) move both waysdmstwhe processor IPC context
and the network IPC context, (3) translate data-tokenstiodipacket size of the burst bus, (4)
cache data in the routing interfaces, (5) synchronize datess to the global FIFO memory
buffers and (6) move data to and from the global FIFO memopréudefined chunks of data.
In this case, there is not only a resource contention buetaer also data delays caused by
buffering of data which affects performance of the netwadbéecture.

The model of the burst-bus router component is based on #redtbus component model
introduced in Section 3.5.5 and conveniently modified toamahe burst bus communica-
tion case. The changes affect the FIU and FOU modules inkiel&tF and WIF routing
components respectively. However, unlike the modificaionSection 3.5.5, which were
symmetrical (the same change applies for both the RIF coemt@nd the WIF component),
the burst bus changes are asymmetrical. The change at thedviponent side accounts for
the fact that the WIF component must provide more concuyrand smarter buffering inter-
nally than is the case for the WIF componentin the pointdd¥pconnection (Section 3.5.4)
and the WIF component in the shared-bus connection (Seg8tto8). The change at the RIF
component side is rudimentary; in the burst bus case the Fiduhe of an RIF component
may have already retrieved more data than it really needbatonthen the next symbolic
r ead instruction arrives the RIF component will immediatelyidef the already retrieved
data to the processor.

There are pros and cons when transferring data using backefs. The pros are: 1) Data is
retrieved by a burst-RIF component earlier than what is eeéy the processor RU modules
- this implies that data is delivered faster than with nonsbbuses; 2) The number of bus-
transactions is less than the number of transactions inake of non-burst buses. This is
because data is already fetched (or cached within an RIF aoer) so less bus-transfers are
needed. There are two cons. Firstly, since the data is taesfin bursts, WIF components
must buffer a few consecutive transfers to the same FIFGebuBuffering is dictated by

3.6 Related Work 75

the burst-word size which may not ideally match the size efdata indicated inri t e
symbolic instructions. In order not to cause a hangup in thie ¥émponent due to lack of
data in the burst packet, the burst-translation (buffgrisgyuarded by a buffering interval.
So, if for along time there are no mone i t e symbolic instructions targeting the particular
FIFO, the burst data-transfer will take place with the ant@mfrdata being buffered. This
means that infrequent and smalti t e symbolic instructions will de-grade the network
performances. Secondly, if the amount of buffered data igoal to the burst-packet size
(the case of insufficient data in WIF), the remaining spacéhe packet, when the burst
occurs, will be filled with useless data. Therefore, the ifficy and the throughput may be
lower than expected.

3.5.7 A Heterogeneous System

A heterogeneous system consist of a heterogeneous mukgsor and a heterogeneous com-
munication network. It can be modeled using all the previpdsscribed components. Here,
we give a brief description (example) of such a system.

Let us assume that the aim is to model a coprocessor-baseetdeib system, consisting
of a programmable processor (see Section 3.5.3), globalameatcessible via burst bus
(see Section 3.5.6), coprocessors (see Sections 3.5.158)&nd a dedicated memory used
for communication between processor and coprocessorsSgsmn 3.5.4). The structural
model of this systerf® is shown in Figure 3.10. The communication network is sunctad
by a dashed line. The top-part of the network in Figure 3.1l0dsetwork part with dedicated
channels. The bottom part of the network in Figure 3.10 idbtiebased network part.

The ability to model heterogeneous embedded system actilniés is crucial because - as we
will see in Chapter 4 - heterogeneous embedded multiprocesse the ultimate architec-
tures for mapping streaming applications. In additionjgfesrs may acquire very important
information about the ‘cost vs. performance’ ratio using tieterogeneous embedded sys-
tem modeling scheme. That is, they are able to estimatevéhgther mapping some part of
the application onto a pure hardware processors and dedichainnels is justified from the
performance improvement point of view or not, as well as Wwhett is acceptable from the
cost impact point of view or not.

3.6 Related Work

Closely related to the architecture modeling describedhim thesis are the other symbolic
instruction driven architecture modelSpade andSesane. The difference comes from
the representation used to capture these symbolic ingtnsctinstead of symbolic programs
these two models use linearly (i.e. totally) ordered tracHse symbolic instruction traces
drive the (non-functional) architecture model which iptets the transformed symbolic in-
struction in terms of performance and cost values.

49The programmable processor is markedVis pr oc. , coprocessors are marked @snpi | e- T, the global
memory is light-shaded and the dedicated memory is dariezha

76 Architecture Modeling

compile-T compile-T SPU : compile-T
processor processor processor

Figure 3.10: Model of a heterogeneous system.

3.6.1 Spade Architecture Modeling

In this section we present a brief description of the architee modeling in the Spade
methodology. The methodology was mentioned briefly in Céafit Section 1.6.1. For
the methodology, we refer to [7] and [33].

The Spade architecture modeling resemblepianeeringapproach. It was the first to make
use of the separation of concerns by using application asfdtacture symbolic instructions.

Therefore, the architecture model focussed fully on tinmattper than on functional perfor-
mance.

4 I
TD Execution Unit

LM

2INdaxa
peal

Direct I/F

Bus I/F

Bus

Architecture model
_ J

Figure 3.11: Thé&pade TDU related execution unit

3.6 Related Work 77

The Spade architecture model is based on ttrace-driven(TD) approach [76]. The ar-
chitecture components are generic building blocks wittamyt functional behavior but with
a parametrized timing (delay) behavior. The processorsnardeled using th&pade TD
execution unit (TDU). The network interfaces, intercortimts and memory are basically
Point-to-Point(PtP) FIFO connections, which may be temporally schedujea $emaphore
(a bus model).

A TDU accepts symbolic instructions from the architectuaeé of symbolic instructions (see
Figure 3.11). The traces of symbolic instructions are noewtd in Chapter 2, Section 2.1.
The symbolic instructions may either be the non-refined stiminstructions ead, wite
andexecut e from the application trace, or may be their refined versioneck- dat a,

| oad, si gnal -roomcheckroomst or e, si gnal - dat a andexecut e obtained by
applying trace transformations in the mapping layer [3@]bbth cases, there is a strict or-
der among the symbolic instructions within a trace: eitlyenisolic instructions are strictly
ordered, or at least, there is a strict order between theed-execut e-st or e sequences.
Hence, rather than re-arranging (rescheduling) the Istoctiered trace, a TDU executes the
symbolic instructions in the given order. This implies thatential concurrency hiddenin the
application process cannot be exploited by TDUs: neitherrames keep such information,
nor do TDUs make use of such information. Indeed, in [30] ao§gbssible trace transfor-
mations were presented as a possible way out of the abovietiest However, recall that
trace symbolic instructions do not capture process cootma$tructs. Possible trace transfor-
mations are, therefore, limited in number. Consequettity/number of realistic architectures
that can be modeled usir@pade architecture modeling is rather limited.

3.6.2 Sesame

In this section we present a brief description of the architee modeling in the Sesame
methodology. For the methodology, we refer to [36].

The main differences betwe@pade andSesane architecture are: (1) thBesamne archi-
tecture models are implemented rather usingliserete event simulation languaf$b] than

the cycle-driven simulation languadé] and (2) theSesane architecture models are based
on refined application symbolic instructions [30]. Thisoalk for significant modeling-space
and simulation-time improvements ovgpade. Nevertheless, the architecture components
still follow the basicSpade idea: they are essentially non-functional timing (delagcks.

Comparing to other the models described in this thesis, wecoaclude that the concept of
Sesane’s virtual processors [36] is strongly influenced by the swiidprogram paradigm [11,
32]. However, unlike our model, which refines applicatiomsyplic instructions into archi-
tecture symbolic instructions in the architecture commisietheSesane model expects
this to be done in the mapping model, before reaching thetaotbire component. More-
over, each symbolic trace is bound to a dedicated archieectomponent and this makes
context-switching and context-migration unrealistic weeimpossibl&C. Finally, the virtual
processors are essentially bound by the particular SyncliData Flow (SDF) graph [77]:
the input trace-sequence is essentially a repeatablepafteead, execut e andwri t e

50In other words, homogeneous multiprocessing cases or euttitasking cases are not realistically modeled.

78 Architecture Modeling

symbolic instructions. If the trace-sequences are randoaneonot periodic, the SDF graph
becomes increasingly complex. At this poiBgsane tries to solve this problem by fol-
lowing the main ideas of symbolic programs and control oint re-uses the CDFG-like
selectionanditeration constructs, but it names them differentigASE- BEA N/ END and
REPEAT- BEG N END [36]. However, the SDF graph may be sensitive to the datdeset
cause the separation of concerns has not been applied aadles,tso that both the data-set
dependent and data-set independent elements are stillimgla srace of symbolic instruc-
tions. Thus, the same application, which is highly dataetelent, may produce a different
r ead-execut e-wr i t e sequence when processing a different data input (e.g. ereiift
JPEG image or a different MPEG stream), which also implies tie architecture instance
below the virtual processor may vary (may differ) from on¢éadset to the another data set.
In such a case, the number of the SDF graphs needed is namadfetee, which also implies
that the model is not reusable because it is not generic. ®rdhtrary, in our model this
issue cannot appear because the architecture model conipahéhe simulation time decide
what is ther ead-execut e-wr i t e sequence to be executed and, thus, they are insensitive
to any relative pattern within this sequence.

Chapter

Mapping Modeling

E Pluribus Unum1

4.1 Summary

This chapter deals with methods to relate application nwttearchitecture models. These
methods transform the representation of the applicatiodahto the representation of the
architecture model. Together they constitute what we t&lrhapping of the application
on the architecture. The application representations aialynprocess representations in
the form of symbolic programs. The architecture repredimms are architecture specific
symbolic programs that differ from the application spedfimbolic programs. The mapping
transformations aim to bridge the mismatch between the ywibslic programs. The chapter
presents the various mapping steps and mapping techniqadediustrates the process by
means of case-studies.

4.2 Introduction

Because we separate the application model from the artinieemodel, there is in general
no match between these models, except for the fact that fhiecaiion is specified in a par-

allel language [78] or model of computation [18] and the dettture is specified in terms of
interconnected components [32]. These components in tétecture behave in general in
a different way to the process counterparts in the apptinafl he two behaviors have thus to

1From many, (comes) Onén original: color est e pluribus unusThe phrase originally came from "Moretum”,
a poem attributed to Publius Vergilius Maro - known in Englas Vergil - (70 B.C.-19 B.C.) a classical Roman
poet who completed Aeneid. Much later, the motto was seldoyethe first Great Seal committee in 1776, at the
beginning of the American Revolution.

80 Mapping Modeling

be related in one way or another. In other words, a transftiomaf the application behavior
into the architecture behavior needs to be performed inrdoddeal with unavoidable mis-
match between the two models. This transformation wetbalimapping of the application
on the architectureln our case, we want to apply transformations on the syralpsbgram
representations of application processes and their acthie component counterparts. The
mapping process starts out with the assignment of applicatiocess and communication
channels to architecture processor components and stooaggonents, respectively. Once
an application process is assigned to an architecture ggsoceomponent, the symbolic pro-
gram that represents the application process has to bddraresl to the corresponding ar-
chitecture processor component symbolic program thatrigposed of processor component
native instructions which are - in general - different frohe tinstructions in the applica-
tion symbolic program. Of course, the 'native instructioofsthe processor component are
purely symbolic - that is, they do not encompass any funetibehavior, only latency and
throughput annotations. To illustrate a gap between agipdic and architecture symbolic in-
structions we provide the following example: An applicatiostructionr ead may translate
to an architecture instruction tupleheck- dat a, | oad- dat a, si gnal - r oom as given

in [30]. The mapping of an application to an architecturedissidered to be the third indepen-
dent part in a system model. Thus, in Design Space Exploratiol Performance Analysis
of a System, one can, and in general will, deal with altemeatin all three parts: applica-
tion model, architecture model and mapping transformatiati at the appropriate level of
abstraction and in aexploration-driverembedded system design process. The latter is differ-
ent from a synthesis-driven embedded system design pralteesgh the exploration-driven
approach should not be such that a designer cannot rely opérform synthesis.

As a matter of fact, the user of a DSE methodolégould be able to recognize DSE map-
ping based on his understanding of what the mapping standa o traditional synthesis
driven design process. That is, there should be a strongitdaace between: (1) The map-
ping actions in traditional embedded system design presessd (2) DSE mapping steps.
In a traditional synthesis-driven embedded system desigoegs, applications are speci-
fied using a high level language(HLL) and architectures (SoC) are chosen based on their
availability, stated performance, reconfigurability, aogport for a software development kit
(SDK). In the most general sense, SDK includes tools sucbm@piters, linkers and OS im-
ages. The traditional mapping (for embedded system syis)hésen follows as an iterative
process consisting of:

1. Binding - the assignment of the application processesduitacture processing units
and the application IPC to architecture communicationussss,

2. Porting - rewriting the HLL specification in order to mekethardware description
language (HDL) or SDK requirements and the architectureifea,

3. Translation - manual and automatic (tool) actions whidhproduce architecture spe-
cific object (instruction) code for each bound and portediaeation entity,

4. Building - the creation of theystem imagevhich can be loaded and executed on that
particular architecture,

2The builder of an embedded system.
3C, C++, Java, Matlab, ...

4.3 Mapping Specification 81

5. Integration - making of loaders and start-up scripts andexlding them together with
the system image into the SoC, and finally,

6. Performance Test & Verification - running the integrate $ystem with whatever
set of data in whatever environment in order to verify theawatr and to test the
performances.

We argue that the DSE mapping described in this thesis rdesmiost of the traditional
mapping for synthesis steps, and thus, it fits the user'smbetter than some other DSE
methods [34]. The user does not need to fundamentally chaisgenderstanding of 'map-
ping’, since the traditional design-for-synthesis stejegeeserved. The only requirement for
the user is to keep in mind thatsgstemis a simulation program andot a synthesized sys-
tem image, as well as that the modeled architecture is ctegiized in terms of latencies and
throughput and not in terms of functionalites. In any cale,ttiple (application model,
architecture model, mapping trans formations) is again a model, the system-model.

4.2.1 Chapter Organization

This chapter is organized as follows. Firstly, we roughlyaduce the mapping specification
in Section 4.3. Secondly, in Section 4.4 we define and ilustthe steps needed to create
the mapping specification. Thirdly, in Section 4.5 we shome@xploration cases and their
results. Finally, in Section 4.6 we list and explain the maamtributions of our approach
versus some related mapping modeling approaches.

4.3 Mapping Specification

The mapping of an application model instance onto an artbite model instance is com-
pleted when a designer createa so-callednapping specificatianRoughly speaking, the
mapping specification establishes unambigueokload-versus-resouragelations, namely:
(1) a relation between the computational workload of aniapfibn representation and the
computation resources of an architecture model, and (2ptae between the communica-
tion workload of an application representation and the camigation resources of an archi-
tecture model.

Once the mapping specification is ready, it is parsed aBgsa enCfile is generated. By
compiling this file with the library of architecture modetegé Chapter 3) the simulation pro-
gram is created. By running this simulation program on aipagr data-set (see Chapter 2)
we get simulation numbers for that data-set.

In the following section we identify the steps needed to ldisth a mapping specification,
and consequently, to create a simulated system program.

4In order to create a mapping specification a designer may ts#-aet, follow a mapping methodology, or rely
on hisknow-howi.e. mapping-experiences.

82 Mapping Modeling

Application Mdel

size n’ size m’ size &

Lmeoniy msam TR
Producer

wite read

port port

burst-word 4 burst-word 3 burst-word 2 burst-word 1

TTTTTTTTTTtIIIIIIIIIg LT
100% 70%
data |ines data |ines
Processor connect bus Iines connect Processor
w w
= z Consurer
Producer push synch nmem synch ‘ FI FO ‘ nmem synch pull synch

bus synch bus synch
Arbiter

Archi tecture Model

Figure 4.1: Mapping of the application model onto the aesdtiire model

4.4 Mapping Steps

Figure 4.1 illustrates that a mapping is needed to assompgikcation models with architec-
ture models.

The application model is the Kahn Process Network (KPN)ré&foge, the application behav-
ior is preserved, but no resource constraints have beedeteget (See Chapter 2). Having
such application model helps to create multiple data-detggly; the output of a KPN for

a given input data is invariant to the KPN schedule. Henaeaghplication simulation data
can be generated independently of mappings. If the apit&PN does not change, the
symbolic programs do not change either, so the applicatioualation data is limited to data-

dependent control traces.

The architecture model is based on a library of compones Chapter 3). The architecture
components exchange data based on architecture Sls. Howleese Sls are different to
the Sls coming from the application representation. Aegdtiire components are unaware of
functional behavior, they can only produce latency (delaysl throughput (synchronization).
Moreover, the data used by the architecture componentsrease granularity, while the
data in the application has varying length, it is abstractl ihis generally too complex for
immediate use in the architecture. Therefore, it is necgdsdranslate annotations coming
from symbolic programs into architecture Sis.

4.4 Mapping Steps 83

In practice, the mapping is an iterative process consisifrey set of subsequent steps (see
Section 4.2) rather than a high-level, coarse-grained,atithic job. Similarly to the prac-
tice, a DSE mapping shown in Figure 4.1 cannot be a monoijitihicince the gap between
application model and architecture model is too big. Thaeefwe have to identify steps
for our mapping model similar to the existing steps in thiscatied 'traditional mapping
for synthesis’. Identifying the mapping modeling steps épehdent on the following two
aspects: (1) what is the modeling goal (accuracy vs. alistrgand (2) what are the flow
types (platform vs. budgeting). We have indicated in Chaptéhat our modeling method
aims at both abstraction and accuracy. Regarding the sespedt, our method flow is rather
platform-based since the mapping input is fixed to a larger&xand the main architecture
functions are described in terms of architecture primgigachitecture model is a repository
of parametrized library components). As a matter of fadg igthe one of the reasons our
mapping model resembles realistic mapping implementatieps.

We recognize the following four steps in our mapping modaglin

e Binding - the assignment of the components of applicatipnegentation to the com-
ponents of architecture representation,

e Matching - translating abstract data types and high-lepelieation behaviors into
architecture model data and instruction types,

e Refinement - translating application symbolic programs arthitecture symbolic pro-
grams of suitable granularity and quality, and

e Transforming - pre-processing architecture symbolic paots and architecture con-
trol traces in order to expose more parallelism among syinfidtructions of sym-
bolic programs, to create smaller symbolic programs, tacedhe number of loops in
symbolic programs, to reduce number of conditional comssrietc.

The order in which these steps are applied may vary for diffemappings. Some steps may
be performed more than once or they may not be performed-atiappending on a mapping
case. For example, matching, transformation and refinesteps may be repeated many
times in order to create an appropriate mapping.

4.4.1 Binding Step

The application KPN model executes the application on alsidgta set, resulting in the
pairs (symbolic program,control trace), where onlycontrol trace depends on the data
set (see Chapter 2). The architecture model is a network@fdonnected architecture com-
ponents (see Chapter 3). Binding is the assignment of: {hjpsyjic programs and control
traces to processor components, and (2) KPN channels tidemttine communication com-
ponents (routers, FIFOs and arbiters). For example, inxtaeple shown in Figure 4.1 the
binding is of type 1-on-1, wherér oducer process is bound tBr oducer Processor
and Consurmer process is bound t€onsuner Processor, and the channel between
Pr oducer andConsuner isboundto &l FOcomponent, betwed?r oducer Proces-
sor andConsumner Processor.

84 Mapping Modeling

4.4.2 Matching Step

Having symbolic programs bound to the architecture compnleaves many issues open
such as: (1) the relationship between the width of the psmresomponent words and the
annotated size in the symbolic instructions of the symbpitmgram(s) bound to that pro-
cessor, (2) the types of the processor component primitigesus the number of different
execut e symbolic instructions of the symbolic programs(s) boundhtat processor, and
(3) the relationship between the width of the communicainarface words and the anno-
tated message size iread andwr i t e symbolic instructions of the symbolic program(s).
Therefore, the usual step that follows the binding step rsuastation of the data types and
primitives (symbolic instructions) from the bound symisglrograms to the data types and
primitives (symbolic instructions) of the CFSMs of the dtebture components (see about
abstract instruction seandtime measuremeiirt Chapter 3, Section 3.4.6). We call this step
Matching.

Firstly, we need to examine an Sl-subtype for each symbdicuctions-type. In the case of
anexecut e Sl the Sl-subtype differentiates among different compatefiunctions, and in
the cases afead andwr i t e Sls the Sl-subtype differentiates among different targ¢feors.
When all possible Sl-subtypes belonging to Sls within an &hid to a particular processor
component are detected, we need to associate the input@odtut arguments with these
Sl-subtypes. In the case okad andw i t e Sis these are single arguments since only a
single data item can be read from or written to a FIFO. In tteead anexecut e Sl these
will in general be a list since aemxecut e can take many inputs and produce many outputs.
However, there are two exceptions whereexrecut e contains either one-or-more outputs
or one-or-more inputs: A source process (or processeseddpplication KPN, and a sink
process (or processes) of the application KPN. Finally wedrie examine budgets in these
Sls®. Budgeting of an S| determines the volume of communicatimomputation which the
Slwill model. Inthe cases afead andwr i t e Sis the budget number represents a token size
to be read from or written to the target FIFO. In the casexagcut e Sl, the budget number
represents the worst case execution time for the annotatagwtation function. Therefore,
the budget says either how many times an EU CFSM in the procesmponent is going to
repeat a computation delay, or how many times an RU CFSM or &~EM in the processor
component is going to repeat a communication delay. It ighwooting that the computation
delay may refer to a single instruction, a basic block, or #nmé routine (depending on
the choice) whilst the communication delay refers to thedfar of a single communication
word to-or-from a processor. For instance, in the exampdevshin Figure 4.1, the matching

is done between the sizes of the application messagses A msg M msg Nand their sizes
size a, size m, size n; respectively) and the burst-words in the architectbregst-word 1
burst-word 2 burst-word 3 andburst-word 4. Note that some burst-words are 100% filled
with valid data, while some others are not - neverthelessf shem cause the same delay.

Obviously, the most critical task in this step is to estdbtise budget such that the matching
between an Sl and an architecture primitive is as good adip@ss this level of abstractich

This is also known as aalibration. The calibration is not directly part of DSE, but it is
rather a pre-processing step for DSE. It is a matter of redgtiarameters at two levels of

5See Figure 4.1, differertti zes model different communication budgets in the applicatiwdel part.
6Remember, in Chapter 3, we defined our model$raasaction-Level Models

4.4 Mapping Steps 85

abstraction: (1) The abstraction level of the applicatiaydel, and (2) the abstraction level
of the architecture model. In this sense, we could say tretdalibration’ is a form of
matching and that it could be done for all components in thitecture model library, once
and forever. However, actual architectures cannot alwaypbcified in terms of the available
library components, and the calibration step is really dlitfiin these cases. Therefore, the
matching step for calibration purposes must be repeatechag times as needed (e.g., until
simulation results of the calibration case reach saturatio until simulation results of the
calibration case reach some reasonable or sought acguracy.

4.4.3 Refining Step

This step always exists due to the fact that there is a migniettween the application model
representation and the architecture model representakon example, the symbolic pro-
grams may base computation and communication on tokenaréhatomic for the application
model whereas they are composite tokens in the architestadel. Furthermore, the com-
ponents communicate using primitives other th@ad andwr i t e. In Chapter 2 we have
already defined the horizontal refinement as the creatiorooé imstructions of the same type
that act on the tokens of granularity which are smaller tharotriginal instruction. Similarly,
we have defined the vertical refinement as the creation of meteictions of different types
that act on the tokens of the same granularity as the origisalction. For example, in the
example shown in Figure 4.1 we show the vertical refinememidrEn: 1) ead andwri t e
symbolic instructions visible as read/write ports at thplaation side, and 2) complex par-
tially ordered sequences plush- pul |, si gnal -wai t dat a-room connecti on,
bus cl ai m gr ant synchronization protocols arttht a andbus transfers.

Obviously, the refining step is closely linked with the manchstep. For example, by means
of the horizontal refinement we change the size-annotatighe Sls, while we determine
the appropriate size-annotation by matching. In this drape exemplify these refinement
strategies.

4.4.4 Transforming Step

In a sense, binding, matching, and refining are also tramsftions. Nevertheless, the Trans-
forming Step refers to the transformations which affectdhger among Sls in a symbolic
program. In general we consider two sorts of transformatiqi) platform-independent,
and (2) platform-dependent. The former do not require aior gnowledge of architecture
(buffer sizes, timing-info, or similar) while the latter d@latform-independent transforma-
tions are in a way part of the application modeling. The SRrgta shown in Chapter 2,
Figure 2.13, is a platform-independent detection of vasiari partially ordered Sls within
a symbolic program. However, in order to derive some moréistipated S| scheduling,
we need architecture timing and architecture constramtwell. Therefore, the platform-
dependent transformations can take place only after bjndiatching, and refining steps.

86 Mapping Modeling

4.5 Mapping Cases

The target architectures in the case-studies have beenl@daasing the components intro-
duced in Chapter 3. To reach the appropriate mappings, lrywee had to iteratively con-
duct different experiments and several interviews with 8e€igners. The reason lies in the
“specifications” which SoC designers had produced: theyeweit generic and not abstract
enough for any TLM architecture modeling paradigm. Thaths, values of parameters in
our model are difficult to derive from the detailed SoC speatfons and descriptions which
are derived by the designer without any reference to the mode

This is related to ’calibration’. The calibration is bothnacessityand aproblem (1) It

is necessary because abstract models are parametrizedraed$§those need to be given
values which must be obtained from the actual component(@ntlis a problem because it
is often difficult to extract parameter values from (lowdgwcomponent specifications.

Each of the following three cases is conducted to show ofyeeirtain aspects of our archi-
tecture and mapping modeling paradigm. For the simple caseritbed in Section 4.5.1, the
main goal was to show efficiency and accuracy of our mappintpotelogy given that: (1)
the platform is implemented in a so-called Field Programim@ate Array (FPGA), and (2)
the application model is represented by means of Symbatigrams. The case described in
Section 4.5.2, illustrates mapping-refinements of theiaigapplication-specification with-
out rewriting the original code. Finally, the case desdtibe Section 4.5.3 illustrates how
such high-level architecture exploration methods canessfally be used to model a hetero-
geneous multiprocessor on chip (MPSoC).

4.5.1 Case-study: Adaptive QR Matrix Decomposition

The objective of this case is to model embedded system mggpihich can be explained as:

"Create the accurate one-on-one mappings of Kahn PNs onlté pnocessor with compile-
time pipelining of symbolic instruction§ where the application process networks are pre-
created and cannot be changed.”

The restriction on changing application process netwarkdies that the mapping transfor-
mations can happen only at the level of symbolic programes, five must apply the Trans-
forming Step). Thus, in this sub-section we give (1) a desiom of the mapping case we
conducted and (2) experimental results to support our sl@bout accuracy, efficiency and
the exploration power of the mapping approach presentdusritiesis.

The case is based on an algorithm commonly used to solve arspeeified set of linear
equations in a least squares sense. This algorithm is knewdaptive QR matrix decom-
position [79]. In signal processing practice, this alduritis used for calculating weights in
an adaptive beam-forming system [80]. We performed sys¢sl-exploration of different
mappings of the QR algorithm onto an FPGA platform as desdrih [52]. For an under-
standing of this case it is necessary to give a specificatign ia the form of a sequential
algorithm inMat | ab. See Figure 4.2. The(m,n) are entries of an upper triangular matrix

’See Chapter 3, Sections 3.3.1 and 3.5.1.

4.5 Mapping Cases 87

R of size N x N that is updated at eadhstep, thez(k, p) are entries of a vector of size
N that are taken from a source consistingMdfsensing devices called antenna data in the
remainder of this section, ariidp) is a vector of sizeéV that represents the orthogonal matrix
Q of size N x N in the decompositioX = @R, whereX is the stack of all vectors of size
N collecting thex(k, p) entries. For the case of simplicity we have assumedXhap, and

R are real-valued.

1 for k=1:1:K,

2 for j=1:1:N,

3 [r(i i) x(k,j),6(j)I=Vectorize(r(j,j),x(k,j));

4 for i=j+1:1:N,

5 [r(i i), x(k,i),6(j)]=Rotate(r(j,i),x(k,i),6(j));
6 end

7 end

8 end

Figure 4.2: A QR matrix decompositidviat | ab code sample.

Description of The Case

We modeled three different mappings of the adaptive QR #lgoronto an FPGA platform.
For the first mapping, the algorithm is modeled as a procesgonle of four communicating
processes. The network is shown in Figure 4.3, part 1. Fagbend mapping, the algorithm
is modeled as a process network of eight communicating psese The network is shown
in Figure 4.3, part 2. Finally, for the third mapping, theaithm is modeled as a process
network of twelve communicating processes. The networkasvé in Figure 4.3, part 3. All
the networks were derived automatically from the sequkalkigrithm in Figure 4.2, using
the COMPAANtool-set [53].

We represented the networks using symbolic programs anotdraces. We modeled the
FPGA platform using components from the repository of tfehiecture model components
depicted in Figure 3.1. In the experiments, we use the fatigvarchitecture plus mapping
specifications (for each mapping there is one architectiuierpapping specification):

1. Binding: The number of processor components in the architecturaisl égthe num-
ber of processes in the QR process network. In other wordb,agaplication process is
mapped onto a single processing unitin a 1-on-1 fashiondisedo-onen Chapter 3,
Section 3.4.2).

2. Binding: The number of FIFO components in the architecture is equileamumber
of channels in the QR process network. Each application FElr@dnel is mapped onto
a single FIFO component in a 1-to-1 fashion.

3. Binding: There is no resource sharing, neither for computation (amaijmg system
is not needed since there are no different threads on anggsig unit) nor for com-
munication (a bus is not needed since all buffers are destigat

4. Transforming: The number of simultaneousad andwr i t e operations in the ar-
chitecture is explicitly shown in the symbolic programsx(tfee example in Chapter 2,

88 Mapping Modeling

Figure 4.3: The three application QR process networks {agon of these process networks
is not subject of this thesis, for more information about fiiaase refer to [59].)

Figure 2.13).

5. Matching: Each operationr(ead, wri t e, execut e) takes a single processing unit
cycle when executed in the architecture.

6. Matching: From the architecture network point of viemead andwr i t e operations
cause additional delays: a cycle for switching and a cyaleaf&IFO buffer access.
The FIFO buffer access cycle appears only when blocking efrtRO takes place.

7. Matching: FIFO buffersin the architecture are sized so as to providegh space (in
this case study, for the three mappings the FIFO buffer sirealways 256 tokens).

Based on the above mapping specification, the nine simalg@tiograms for the nine QR-
on-FPGA mappings have been synthesized: (1) There aredpptieation process networks
as shown in Figure 4.3; (2) There are two different SP reptagens for each application
network - the first one contains totally ordered symbolidringtions, the second contains
partially ordered symbolic instructions; (3) There aresthdifferent architecture and map-
ping specifications for each application-architecture piragp candidate. The first contains

4.5 Mapping Cases 89

specifications for the multiprocessor which cannot exesimt@ltaneously multiple symbolic
instructions of the same typedad, execut e,wr i t €). The second contains specifications
for the multiprocessor which can execute simultaneouslitipte symbolic instructions of
the same type. The third contains specifications for theiproltessor which can both ex-
ecute simultaneously multiple symbolic instructions ¢f #ame type and pipeline commu-
nications to FIFO components. These different mappingipations are the result of the
Calibration - we needed three iterations to determine theecbmatching & transforming
parameters before the synthesized simulation programsdec us with a relative error of
about +1.5%. We describe these results in the next section.

Results
T T T T T T
"SP-TLM-1" —+——
"SP-TLM-2" ---x---
"SP-TLM-3" --->---
100000 | B
€
>
<}
o
) Xome
O 10000 | T Tt .
T
%
1000 1 1 1 1 1 1

4 6 8 10
Number of processors

12 14

Figure 4.4: The simulation results of the adaptive QR matezomposition case-study.

Number of processors FPGA cycle count| TLM cycle count| relative error
4 29281 29458 0.6%
8 9771 9884 1.2%
12 6111 6202 1.5%

Table 4.1: Cycle-count: the FPGA mapping vs. the SP-TLM-ppireg

90 Mapping Modeling

QR onto the FPGA QR with the TLM model
10 hours 10 seconds

Table 4.2: Required mapping & simulation times: QR on FPGAQ®R on TLM. We con-
sider mappingequal tocompilation and we considesimulationequal toexecution The
necessary preparations and adaptations of the applicatiorarchitecture models have not
been taken into account.

We run the executables of our nine mappings, and the reselshawn in Figure 4.4. There
are three SP-TLM label® which refer to three gradually differing mapping cases: -‘SP
TLM-1" refers to mappings of totally ordered SPs onto muttigessors which cannot exe-
cute simultaneously multiple symbolic instructions of gzame type; “SP-TLM-2" refers to
mappings of partially ordered SPs onto multiprocessorglvhan execute simultaneously
multiple symbolic instructions of the same type; and, “SEMF3” refers to mappings of
partially ordered SPs onto multiprocessors which can bed¢icte simultaneously multiple
symbolic instructions of the same type and pipeline comigations to FIFO components.

To quantify the results we show the comparison of the mappasg “SP-TLM-3" versus
actual FPGA mappings of the adaptive QR matrix decompasitidables 4.5.1 and 4.5.1.

Table 4.5.1 shows the number of cycles needed to completaigars of the different QR
networks on the FPGA platform [52] vs. the number of cyclesdssl to complete the exe-
cutions of different QR networks on the TLM based model of fhiatform. As can be seen,
the TLM architecture model is able to predict the perforneaatthe real FPGA platform
executing the adaptive QR algorithm with a relative erroabdut +1.5%. For the case in
hand, a larger error would have revealed a major flaw in théooktTable 4.5.1 shows that
simulation speed is excellent.

8“SP-TLM” stands forSymbolic Progranonto Transaction Level Architecture Model

4.5 Mapping Cases 91

4.5.2 Case-study: Mapping 2D-IDCT Specification to IP-prinitives

The objective of this case is to model embedded system mggpihich can be explained as:

"Create the flexible one-on-one mappings of a particulaliegiion Kahn PN onto: (1) multi-
processor with compile-time pipelining, and (2) multi-pessor with run-time pipelining
of symbolic instructiong, where: (1) the application process network is pre-created
cannot be changed, and (2) the granularity of computatiopd€ammunications between the
application model and the chosen architecture modelsrdiifmificantly.”

The restriction on changing application process netwarkdies that the mapping transfor-
mations can happen only at the level of symbolic programse rEstriction on granularity
enforces the Refining Step (see Section 4.4.3). Thus, irsthissection we give (1) a de-
scription of the mapping case we conducted and (2) a refineaiehe 2D-IDCT mapping
model without modifying the high-level specification. l®rth noting that with this case we
model ‘fictive’ architectures, and due to this, we cannosoeeabout the accuracy of the case
results as we did with the case in Section 4.5.1. Here, weeason only about performance
impacts of refinement and transformation choices on thelabedisystem in isolation, i.e, in
the scope of simulation models, and which are already dlaila [75].

The Two Dimensional Inverse Discrete Cosine Transform [RDT) is part of image com-
pression methods, one of which is a standard described n P&1-IDCT appears in many
Multimedia applications and is a critical path functionT50

At some level of abstraction, the 2D-IDCT application isafied as a 3-process PN [18],
as shown in Figure 4.5 (process&sur ce andSi nk do not play any role here - they are
illustrated for the sake of delivering input data and cdilegoutput data).

Figure 4.5: The 2D-IDCT Kahn Process Network

In this graph,1D- | DCT is the One Dimensional Inverse Discrete Cosine Transforinichv
transforms a time-domain block of:8 8 image pixels to a frequency-domain block ok8

8 values in aow-by-rowfashion.Tr anspose performs the transpose of the output blocks
of the first1D- | DCT and then delivers the transposed blocks to the set®@ad DCT. The
secondlLD- | DCT then also applies row-by-row transformations, which, dué transposi-
tion, corresponds to @lumn-by-columiransformation on the output of the firkD- | DCT.
The (unbounded) channels between the two producer-comgaing exchange these blocks.

9See Chapter 3, Sections 3.3.1, 3.5.1, and 3.5.2.

92 Mapping Modeling

Symbolic Program Representation of the 2D-IDCT Khan PN

The listing in Figure 4.6 below, is a Symbol Program that espnt all three processes in
Figure 4.5.

main {
| oop condition O (in)
{
read m (ip, 64);
execute f (ip oo, b);
wite n (oo, 64);

O~NOTAWNPE

—

Figure 4.6: Symbolic program template for both the IDCT1Md #re Transpose tasks.

The numbers “64” and “b” indicate the token size in number ia&|s read from (written
to) the input (output) channel, and the execution budgédtive to ther ead andwri t e
execution budgets, of the function being executed by thegs® respectively. The 1D-
IDCT and the Transpose functions have different bud§e#ss indicated earlier, each SP is
associated with an accompanying control trace. From thetstre of the SP in Figure 4.6,
it can be seen that the corresponding control trace is tiivithis case because there is only
one control point.

Architecture Specifications & Mapping Descriptions

We conducted two different experiments: (1) mapping of tBelRCT specification onto

a multiprocessor witltompile-time pipeliningprocessors, and (2) mapping of the 2D-IDCT
specification onto a multiprocessor witln-time pipeliningorocessors. In these experiments,
we use the following architecture plus mapping specificegidor each mapping there is one
architecture plus mapping specification):

1. Binding: We assumed a 1-on-1 mapping of SPs onto processors andadjgplichan-
nels onto FIFO components.

2. Binding: There is no resource sharing, neither for computation (@naijmg system is
not needed) nor for communication (a bus is not needed sihoefters are dedicated).

3. Refining: 1D-IDCT processors operate on rows (8-pixel data-toketherathan on
blocks § x 8 = 64 data-token). That is, the architectuwkeck-dat a andcheck-
r oomFIFO synchronization primitives operate on rows, andshgnal -r oom and
si gnal -dat a FIFO synchronization primitives operate on blocks. Coseby, in the
other tasks (Source, Transpose, Sink) ¢heck-dat a andcheck-r oomsynchro-
nization primitives operate on blocks, and thiegnal -r oom andsi gnal -dat a
synchronization primitives operate on rows.

10The execution budget parameter of the 1D-IDCT tasks is 8ttamexecution budget parameter of the Transpose
task is 1.

4.5 Mapping Cases 93

4. Refining: 1D-IDCT implementations in the processors are as in [82],@n be rep-
resented by a sequence of four differertecut e symbolic instructions.

5. Matching: FIFO buffers in the architecture are sized such that theyigeoenough
space (in this case study, for the three mappings the FIFferzizes are always 256
tokens).

Compile-time Transformation of Symbolic Programs

time

N
€ B - e
T S
T N S
OB @
————— O @@ @ e
N
R CRCRCECNOR TR

loop iterations

Figure 4.7: The transformed loop body of the IDCT1D SP

The idea of this transformation is to schedule the execwuifdhe SP shown in Figure 4.6 as
shown in Figure 4.7. After applying this transformation 8f¢ template has changed and the
resulting SP template is shown in Figure 4.8.

The transformation illustrated in Figures 4.7 and 4.8 ixalted “software pipelining”, al-
lowing overlapping of symbolic instructions at run-timé]5Each symbolic instruction, de-
limited by the " terminal, may express parallelism (mutual independean&ng symbolic
operations delimited by the|” terminal. This implies that no dependency checks (argumen
checking) in the architecture model are performed at rometi Notice that mutually inde-
pendent symbolic operations in an explicit parallel synbioistruction need not have equal
evaluation times. The next symbolic instruction is onlyesdtled when the slowest symbolic
operation in the current symbolic instruction terminates.

Run-time Transformation of Symbolic Programs

Another way of modeling the behavior shown in Figure 4.7 islébect at run-time a pos-
sible overlappingof r ead, execut e, andwr i t e symbolic instructions. The appropriate

94

Mapping Modeling

processor model is provided in Chapter 3 Section 3.5.2. fidrestormation applied here is
a simple refinement: an expansion of the loop-body in the 8Plee shown in Figure 4.6.
The processor model, on the other hand, is now more compleaulse it has to produce at
run-time the pipelined execution order (compared to thegitextime processor where the
compiler is more involved). The result of the refinement & 8P is shown in Figure 4.9. It
is worth noting that the execution flow of this SP is the samia &gure 4.7.

1 main {

2 | oop condition 0 in
3 {

4 read m (ip, 8);
5

6 read m (ip, 8) ||
7

8 read m (ip, 8) ||
9

10 read m (ip, 8) ||
11 execute fs (i2 I3,
12

13 read m (ip, 8) ||
14 execute f3 (i2 I3,
15

16 read m (ip, 8) ||
17 execute f3 (i2 I3,
18

19 read m (ip, 8) ||
20 execute f3 (i2 I3,
21

22 read m (ip, 8) ||
23 execute f3 (i2 I3,
24

25 execute fi (io I3,
26 execute f4 (i3 oo,
27

28 execute fo (i1 Ia,
29 wite f, (o0, 8);
30

31 execute f3 (i2 I3,
32

33 execute f4 (i3 oo,
34

35 wite f, (o0, 8);
36

37 }

execute fi (io I, 2);
2) 11

2) 11

execute fi1 (ip I,

execute fi1 (io I,
2);

execute fi1 (ip I,
2) 11

2) ||

execute fi4 (i3 oo,

2) 11

execute fi4 (i3 oo,

2) |1

execute fs4 (i3 oo,

2) |1

execute fi1 (io I,

2) 11

execute fi1 (ip I,

2) 11

execute fi1 (ip I,

2) || execute fi4 (i3 oo,
2) || execute fo (i1 Ia,
2) || wite fn (o0, 8);
2) || execute fs (i2 Is,
2) || execute fi (i3 oo,
2) || wite fn (o0, 8);

execute fo (i1 I, 2);

execute fo (i1 Is, 2) ||

execute fo (i1 Ia,

2);

2) 11

I,
(00,

execute fo (i1
2) || wite fn

execute fa (i1
2) || wite fn

execute fa (i1
2) || wite fn

2) 11

2) 11l
8);

2) 11
8),

2) 11
8);

Is,
(o0,

1o,
(00,

execute f3 (i2 I3,

2) 11

2) |1

execute f4 (i3 oo,

2) 11

2) Il wite f'n (OOv 8),

Figure 4.8: Unrolled and pipelined symbolic program tertgala

4.5 Mapping Cases 95

1 main {

2 I oop condition O (in) /I the original loop

3

4 loop condition 1 (i) /I the newly introduced loop
5

6 read m(io, 8); /I the refined read (lines)

7

8 execute fi1 (ip Ii, 2); /I the first pipeline stage
9 execute fa (i1 I2, 2); /I the second pipeline stage
10 execute fs (i2 I3, 2); [/l the third pipeline stage
11 execute f4 (i3 oo, 2); /I the fourth pipeline stage
12

13 wite n (oo, 8); /I the refined write (lines)
14 }

15

16 }

Figure 4.9: Unrolled symbolic program template.

4.5.3 Case-study: JPEG Decoding Network on MPSoC

The objective of this case is to model embedded system mggpihich can be explained as:

"Create the acceptable mapping models of (1) a realistiticgifpn onto (2) a complex and
challenging distributed shared memory architecture witti without operating system in-
cluded*!, where the mapping excluding operating system is done irtomae fashion sim-
ilarly as in the earlier cases, and the mapping includingatpey system is done in many-
on-many fashion, and where the communication mechanisheimbdeled architecture can
modify the mechanisms available in the architecture corepolibrary.”

Theacceptableccuracy means that the maximal difference between outaimo numbers
and the numbers given to us as the real architecture perfmnaas to be within-20%.
The idea is to have a realistic application, which is dynaamid rich with dependencies (see
Chapter 2, Section 2.3) mapped onto a model of a realistte-bigdi MPSoC architecturé.
Our choice of the realistic is a JPEG decoder. JPEG is an yeréor Joint Picture Experts
Group [50]. The architecture modeled here is called Wasahitecture [83].

For our JPEG-oMasabi study, we identify two sub-cases: in the first case, we ekalys
use hardware accelerator resources (all-in-hardwarg;daséhe other, we rely only on soft-
ware core resources (all-in-software case). The ratidvetkénd this choice is the following:

e We need to accurately model tddsabi communication network at system-level and
to do that we create a one-on-one all-in-hardware mappisg lbacause it will help us
to translate the low-levalsabi specifics into the high-level manifestations which
we can model with our architecture components.

e We need to accurately model tM&sabi processors (software cores and hardware
accelerators) at a high level of abstraction and to do thatreate ecalibration sub-
case - Producer-Consumer, which will expose the irreggaatsiors of theNasabi

11See Chapter 3, Sections 3.5.3.
12By realistic architecturewe mean the ILP-level simulated high-end multiprocessodeho

96 Mapping Modeling

processors. Later, using this sub-case we will extrapaldtttional high-level mani-
festations from these low-level irregularities.

e We need to model a symmetrical shared memory multiprocessbto do so we will
re-use previously estimated parameters ofMasabi processor and communication
network and we will model the operating system based solutico-called many-on-
many all-in-software mapping case.

As a first step, we gather a propdasabi parameter which is set to be suitable for our
architecture models. Moreover, we investigate some @aibihe actual architecture behavior
that may be overlooked in our models.

As mentioned earlier, in order to capture the system-leaehimeters and the behavior of
the communication network ilasabi , we run the all-in-hardware case. This relies on
the fact that hardware accelerators behave according teansetated delays. Such delay-
annotations relate the computation load of the JPEG apiglicand can be roughly estimated
from the C/C++ code. In this way, botsabi and our models experience the same com-
putation load. From th&sabi related documentation argpace- Cake!? Instruction
Set Simulation (ISS) we can estimate the communication ortywarameters. This can be
regarded as the Matching Step for the communication network

Only at this point do we proceed with the all-in-softwareeca8y means of previously
estimated network parameters, we calibrate the computhdaa. In this way, we identify
the model parameters and the behaviors related to MIPSeetharOperating System.

We expected that the default communication network behaaptured by our model would

not be accurate enough to predict iIdesabi communication network behavior. For this
reason we also have conducted a simple Producer-Consupeiraent to expose and refine
the actuaMasabi communication network behavior.

The remainder of the section is organized as follows: firatéypresent the JPEG decoder
model; secondly, we set out thBAsabi block diagram. Then we study the Producer-
Consumer sub-case. Finally, we summarize results andatedibe pros and cons of the
model which is highlighted in this case.

The JPEG Application Specification

We reuse the JPEG decoder specification already introdnd&@8]. The application is mod-
eled using Kahn Process Networks. A graphical representati this process network is
given in Figure 4.10.

Big bobbles with text labels represent processes (e.g., BMKds for de-multiplexer, VLD
stands for variable length decoder, etc.). Little white btk bobbles with numbers repre-
sent ports (e.g., 0l stands for output port 1, while i5 stdadsput port 5, etc.); rectangles
with 3 edge boundaries represent unbounded FIFO chanagidabels specify types of to-
kens being transferred through these FIFOs, and arrowsateldata-flow direction.

Bspace- Cake is going to be introduced later in this section.

4.5 Mapping Cases 97

Figure 4.10: The JPEG decoder process network

Note that each FIFO is enumerated with an integer number.sé&prently, data streams
through FIFOs 1, 3, 5, 6, 7 (in sequence), then 9, 10, 11 (ialled, then 15, 16, 17, (in par-
allel), then 21, 22, 23, (in parallel), and finally, 24, 25,(#6parallel). The remaining FIFOs
serve to provide once-per-picture parameter initial@aithrough so-called "headers”. It is
worth noting that these headers are not fixed, but rathereaieed by the Frontend process.
That s, the network is not tuned for processing a particlP&EG image format. In the signal
processing community this is also known as "parametrizéa-tlaw modeling” [84].

98 Mapping Modeling

The spaceCake - Wasabi Block Diagram

MIPS MIPS MIPS MIPS

$I | $D $I |$D $l | $D $l | $D

Quazi—concurrent Interconnection Network MMU

Embedded

ASIC ASIC ASIC MIPS

$L2

Figure 4.11: Block diagram of the Wasabi MPSoC architecture

Our primary objective is to model théasabi architecture as a target architecture. The
Wasabi multiprocessor system on a chip (MPSoC) is designed in tilgp®PResearch Lab-
oratories (for more data refer to [83]). This MPSoC représarsingle tile of a more complex
system, called pace- Cake, see [67]. This is the reason both names appear when we dis-
cuss the modeled architecture.

The Wasabi tile is a MPSoC consisting of: a number of programmable MIP&@ssor
cores with an integrated L1 Harvard cache (i.e., separaigtduiction and data caches), a
shooping bus-based interconnection network (ICN) whichneets the cores and the L2
cache, and a memory-management unit (MMU) interface to thehip DDR * memory.
Apart of MIPS-es, dedicated processor cores (or accels)atray also be used in Wasabi.
Thus, this architecture is heterogeneous, and suitablmédtimedia and video processing
applications such as JPEG compression.

The block based architecture view is given in Figure 4.11teNbat the ICN in Figure 4.11
provides a certain level of concurrency, which is very iaging for our modeling environ-
ment. Also, note the Embedded MIPS block in the same figureserites as a software
synchronization core in situations where hardware acatles have been employed. This
block should not be overlooked, since it is a source of uriptakility, given the amount of
interaction it has with the caches.

Producer-Consumer Calibration Sub-case

Figure 4.12 illustrates the case when our default commtinicaetwork behaviot® is used
to model thespaceCake Wasabi communication network. The parameters are set accord-
ing to the detaileMasabi description [83]. The-axis represents the total amount of tokens

14DDR - Double Data Rate - is a synchronous dynamic random accesmmeechnology used for high speed
storage of the working data of a computer or other digitattedmic device.
15Thedefaultbehavior is described in Section 4.5.1.

4.5 Mapping Cases 99

being exchanged via the FIFO channel. Tkexis reports processor component cycles. Such
data have been measured by executing the Producer-Consatwerk®.

Performace of producer—consumer network
10 T T T

Processor cycles (in millions)

lo- 1 1 1
10 10 10° 10 10
Number of tokens

Figure 4.12: The Producer-Consumer performance numbésabi (solid) and our not-
calibrated model of\asabi (dashed)

The results show that our architecture model scales liperith the total amount of the
tokens being exchanged via the FIFO channel. This is cleentyhe case for théasabi
MPSoC.

After interviews with designers, we have reached the falhgveconclusions (not immediately
visible from [83]):

1. When used in the all-in-hardware mod&sabi engages Embedded MIPS to syn-
chronize hardware accelerators. Its behavior varies andatebe deterministically
described (i.e. a statistical model is necessary),

2. When accelerators access the network (ICN) for writihgy touffer as many requests
as possible. This became clear when we run different ines&an€ PC application,
with the producer having different write patterns: tokdteiatoken, 10-tokens-after-
10-tokens, and 100-tokens-after-100-tokens. The regufterformance numbers did
not change.

3. Whenever accelerators access the network (ICN) for mgadhey always take full

16The network given as the application model in Figure 4.1.

100 Mapping Modeling

cache-lines (128 bytes), even when less than 128 bytes ailalde. In such cases,
dummy data is used to fill up the cache line.

4. The network setup time should not be overlooked, sinakég up to several millions
of PU cycles (depending on the application network size)is Blestually explains the
horizontal part of th&Asabi characteristic shown in Figure 4.12. The network setup
time can be measured when the source node (producer) dossmbany data token
to the destination node (consumer) - e.g., an unconneckd.Fl

5. All synchronization operationglieck-room/datasignal-data/room are executed by
the Embedded MIPS. Rather than simply blocking (as we assim&ur architecture
model), the synchronization operations take extra cycles.

) Performace of producer—consumer network
10 T

=
(=]
-
T

Processor cycles (in millions)

-13.7% -

-153%]

10° ! ! !

10° 10° 10
Number of tokens

10

Figure 4.13: The Producer-Consumer performance numiéssabi (dashed) and our cal-
ibrated model (solid)

The outcome of this calibration case was that our basic nraglapproach remains the same
- no compromise on that. Only new states have been addeditorhadules of components
from our architecture library. Thus, considering the ihsgglisted above, we enriched the
models of our interface components (FIFO In and Out CFSM$jtea’s bus-related oper-
ations and FIFO synchronization operations (see Chaptee&jon 3.5.6 and Appendix A,
Figures A.18 and A.19). Finally, we added a setup delay irbteclaim operation. This
delay is now executed the first time a FIFO interface accahsdsus. During the setup phase
no units can operate over the network. Thus, all units sirbfdgk and wait for the expiration
of the setup delay.

4.5 Mapping Cases 101

The simulation results of the calibrated model are showniguife 4.13. Thex andy axes
maintain the same meaning as before. Note that unlike inr€ig12, the absence now of the
‘setup time’ gap makes the error seem bigger for larger nusnietokens. However, this is
not true, since both theandy axes are logarithmic. It is sufficient to compare the dewrati
for a million cycles in Figure 4.12 and Figure 4.13. One calize that the degree of error
does not significantly change.

Architecture Specification & Mapping Description for All-i n-Hardware

The architecture plus mapping specifications for the alkdndware experiment are estab-
lished based on the calibration sub-case. Here follows tie¢ ¢hescription of these specifi-
cations (for each mapping there is one architecture plupmgspecification):

1. Binding: We assumed a 1-on-1 mapping of SPs and unbounded channe¢sIHEG
application specification (see Figure 4.10) onto processod FIFO components of the
propenMasabi architecture instance (similar to the one in Figure 4.1d3pectively.
This implies that the number of processor components inrttatacture specification
is equal to the number of processes in the application spatdh (i.e., 14), and that
the number of FIFO components in the architecture speddité equal to the number
of unbounded channels in the application specification @#).

2. Binding: Computation resources are not shared, but the commuma&sources are
shared. As determined by the calibrated case, the glob& RiEmory buffers are ac-
cessed throughlaurst-bus Consequently, the routing interfaces are modeled aaegrdi
to the example in Section 3.5.6.

3. Matching: FIFO buffers in the architecture are sized such that theyigeoenough
space (in this case study, for the mappings shown in Figuté the FIFO buffer sizes
are always a maximum 65536 tokens, where token equals oeg/dyich also matches
the architecture specs given in [67, 83]).

4. Matching: The conditional synchronization protocol operations far EIFO buffers
(check-roomcheck- dat a andsi gnal - dat a/si gnal - r oom are 'executed
in software’ by Embedded MIPS. This creates a performanpadatnsince these oper-
ations cannot run in parallel. Therefore, their cost is regfligible and they have to be
explicitly modeled. (Based on the calibration case and falsthe mappings shown in
Figure 4.14, we estimated that tbheck- r oomicheck- dat a operations consume
100 nanoseconds and that thiegnal - dat a/si gnal - r oomoperations consume
50 nanoseconds).

5. Refining: The calibration sub-case shows that data-transfers happmigh the burst-
bus highway. Théurstmeans that the data-transfers are packetized to utilizeube
The busmeans that the interconnection lines are shared. higfewaymeans that a
number of parallel data-transfers over interconnectioediare possible.

6. Refining: The simultaneous memory requests are also transferrechdwes. These
requests are conveyed to Embedded MIPS, so they will uléipée resolved as syn-
chronization operations running in software.

102 Mapping Modeling

7. Matching: The burst-line length is as in [67,83] (i.e., 128 bytes), #mel network
setup time is as determined in the calibration sub-case 2957510 nanoseconds).
The depth of simultaneous memory requests is one, which sntbame is only one
Embedded MIPS able to queue and process these requests.

8. Matching: The cost of the single read, execute, and write budgets éggessed
in form of SIs: read M (i nput, 1), execute N (input output, 1), and
write P (ouput, 1)) for each accelerator is as determined in the calibratidn su
case (2500 picoseconds).

9. Refining: For the read routing interface components, there is a sigmifiswitching
delay due to the buffering of consecutiveads in order to utilize traffic over a burst-
bus. This is not the case for the write routing interface congmts, so there is no
significant switching cost there. Hence, the architectnteraapping specifications for
the routing interface components are asymmetric in theesehthe aforementioned.

10. Matching: The cost of the read routing component switching is as déteuin the
calibration sub-case (9999 picoseconds). The costs dfdlael- dat a andst or e-
dat a transfer operations when writing-to and reading-from Fi¢gbnponents is de-
termined as the same for both read and write routing intertamponents (209 pi-
coseconds).

Results for All-in-Hardware

Once the architecture specification is sufficiently acat@aimodel th&\Asabi communica-
tion behavior, the all-in-hardware modeling, mapping antlgation can be performed. The
results are provided in Figures 4.14 and 4.15. The first cbpdrts the performance numbers
for a set of eight JPEG images of various size. Xlaxis lists these images. The first row
below the axis gives the amounts of raw input data for eaclg@n@he second row provides
the spatial resolution (number of pixels) generated at thipud. The third row simply lists
the JPEG file names. Tlyeaxis represents the number of processor component cyatei-in
lions, where each cycle corresponds to the previously astidnbudget of the singleead,
execut e, andwr i t e. In Figure 4.14 the left-side bars correspond to the defauither

17 communication behavior, the middle bars correspond ts freceCake Wasabi all-in-
hardware execution, and the right-side bars corresporttetadlibrated model of the com-
munication behavior. Similarly, in Figure 4.15 the leftksibars correspond to the default
model communication behavior, while the right-side barsespond to the calibrated model
communication behavior.

From Figure 4.14 one can see the improvement gained by tliteratadn. However, the
amount of error is noticeable. This is illustrated in Figdté5. The cause is the unpre-
dictable behavior of the Embedded MIPS, which loads andsteemaphores used for the
synchronization in a manner not supported byAheher models yet. However, one should
also notice that the error slope is significantly reduceerafte calibration (see Figure 4.15).
The images are ordered with respect of the spatial resalutgo if an imaginary line is

17Ar cher is the name used for the authentic models and methods desdnilthis thesis - see Chapter 5.

4.5 Mapping Cases 103

JPEG decoding network execution times

80 -

70

60

50

40

30

Performace (in millions of cycles)

20

0 4
1883 9533 25638 28971 27710 326321 150072 116357
50x67 190x266 330x222 330x222 400x301 640x429 669x1004 1286x864
philips tiger wtcview brooklin_1 university street shuttle brooklin_2

Pictures

Figure 4.14: Performance of the JPEG decoder network: odehvaithout calibration (left-
side bars)\)\asabi (middle bars) and our model with calibration (right-sided)a

Relative errors of archer (without and with setup) versus cake

40,00% T
20,00% +

0,00%

1 9! 25 28 27 150072 116357

50; 190; 330; 330; 400; 669x1004 1286x864
-20,00% +

phil i wtc brool unive shuttle brooklin_2

-40,00% 1

Relative error in %

-60,00% +

-80,00% +

-100,00% +

-120,00% +
Pictures

Figure 4.15: Simulation relative error: our model withoaliloration (left-side bars), and our
model with calibration (right-side bars)

104 Mapping Modeling

drawn over the top of the bars, the slope in the first case ¢adibrated) is steeper than in the
last case (calibrated). Additionally, for the lower trafficlumes, it is obvious that the setup
time parameter plays the main role. However, for the highadfit volumes, the effect of
this parameter disappears, and other effectsPseducer-Consumer Calibration Sub-case
start to compensate calibrated behavior towards the\desabi numbers. The conclusion
is that the Embedded MIPS, which Wsabi executes all synchronization operations for
the all-in-hardware, introduces unpredictable behavior.

The All-in-Software Subcase

In this paragraph we proceed with the all-in-software cage. all-in-hardware case showed
thatWasabi is a highly unpredictable architecture due to the specifititey and synchro-
nization mechanisms. It should not come as a surprise tbadlthin-software case experi-
ences unpredictability, as a consequence of the operatitgrs usage in the architecture, i.e.,
resource-sharing, scheduling and preemption of taskgasftthe programmable homoge-
neous configuration of théasabi multiprocessor. One can argue whether or\ias abi

is a domain-specific embedded architecture or a GPP.

Using the results of the preceding case, we can state thatéthabi communication net-
work parameters are determined with an accuracy of abo@b -0 small JPEG pictures
(on the left hand side of bar-charts Figures 4.14 and 4.18)dout +15% for large JPEG
pictures (on the right hand side of bar-charts Figures 4rit#4al15). From the perspective
of cycle-accurate simulations and synthesis-driven ntidlogies, this error is probably un-
acceptable. However, it is fair to say that 50% off the exgiémns in this case also comes
from the fact that we modeled an existing architecture wilichnot emerge from system-
level simulations and exploration-driven methodologies rather from a guru approach (see
Section 1.2.2). On the contrary, in the cases where the Iyfgarchitecture has not been
finalizedyet, we believe that our models can lead to successful desifhe architecture
that would result from DSE would be a composition of libragmponents that do not need
calibration and have much improved accuracy. This is the shewn in Section 4.5.1, where
the architecture and mapping came as a result of DSE.

Here, we do not repeat the complete example from the albichivare case. Rather than
evaluating the case for the eight different JPEG picturesfaeus only on the worst case
determined in the all-in-hardware case - the small JPEGuigdthe picture data: 1. name
philips-logo.jpg 2. size on the file-system 1883 bytes, 3. resolutior®D, 4. Y:Cy:C, is
4:1:1). The architecture specification and mapping setre@s follows:

1. The multiprocessor is now modeled differently as comghdoethe all-in-hardware
mapping model. It is not necessary for the number of processoponents to equal
the number of processes in the application specification.

2. The network model is copied from the all-in-hardware miagpodel. The number of
FIFO components equals the number of unbounded applicetiannels, as well. The
behavior of the Network-on-chip (NoC) is almost the samenathé all-in-hardware
mapping model, except for the following two differences). tfie all-in-software map-
pings have increased the throughput for the simultaneousanerequests (i.e., it goes

4.5 Mapping Cases 105

from one-request-per-time in the all-in-hardware cas¢héonumber-of-requests-per-
time, where th@umbeiis the number of MIPS cores in the multiprocessor), and) th
all-in-software mappings reduce network start-up delapprtionally to the number
of MIPS cores in the multiprocessor.

3. The processor components of the MPSoC model are homogeaed allow fomi-
gration of the execution threads of the mapped symbolic programss ditiginates
from the fact that the MIPS-es Masabi support migrations of the mapped applica-
tion processes.

4. The control delays and function-call delays now have rem component parameter
values because the symbolic programs are mapped to softamdethus processor
instructions and data caches play important roles.

5. The operating system parameters, such as: migratioy é&lacheduling delay®,
interrupt delay®, and context-switching del&y (see Chapter 3, Section 3.4.2) may be
required??. It is worth noting that these delays are now at the level o & hundreds
of nanoseconds, which illustrates the fact that instead@élarators (all-in-hardware),
we have relied on the many-on-many processor componentilaBiimnanoseconds
are expected delays caused by the Sl construasid, wri t e, andexecut e, as
well asfuncti on cal |l ,conditi on,etc.

6. WhenWasabi is configured for all-in-software mappings, the synchratian opera-
tions (check-room/datgsignal-data/roomare executed by the homogeneous MIPS-es,
since there is no independent Embedded MIPS involved. Thess is no need for ex-
tra cost cycles for the synchronization operations.

The results of this sub-case are shown in Figure 4.16. Itigesvperformance numbers in
millions of cycles for the chosen JPEG image. Thaxis lists the number of MIPS-es in
the MPSoC. Thg axis represents the number of processor component cyateslions (as
in the all-in-hardware sub-case). JPEG-Cake stands fos plaeeCake Wasabi all-in-
software execution. JPEG-1 and JPEG-2 correspond to tferelift architecture choices for
our modeling of thé\asabi architecture.

As already mentioned, we simulated two mappings: the first(GREG-1) has inherited the
NoC settings from the all-in-hardware case, and the secnad?EG-2) has been calibrated
regarding the set-up time (see the text above). Obviousiy,nmodel is able to simulate
the trend of the MPSoC behavior, but the irregularities (gredictabilities) caused by the
cache-plus-operating-system combination definitelycaffee accuracy of the simulation.
That is, the simulation errors in the JPEG-1 mapping casdefiritely affected by the fluc-
tuation in the results of the all-in-hardware case: in-lestw-50% and +20%. Based on
these performance measures, the immediate assumptionl Wwetthat the most optimistic

18A migration delayis the time needed to migrate a context of one symbolic progneecution from one processor
component to the other.

19A scheduling delaglefines the time period between two consecutive OS scheidutarations.

20An interrupt delayis the time needed to run an Interrupt Service Routine (ISR).

21A context-switching delaig the time needed to deliver the next symbolic instructithe processor-component
core.

22It is possible to ignore them as well, i.e., to assign zeloea

106 Mapping Modeling

error-margin (probably unrealistic) for the all-in-softre case would be the same as or even
larger (a more realistic assumption) than the error-mdagithe all-in-hardware case.

The JPEG-2 mapping sub-case illustrates how calibrationro@rove architecture param-
eters such as the network set-up time. By reducing the séthneby 40% (which is the
error-margin determined for small JPEG pictures) we carraggagh the performance num-
bers of the cycle-accurate results (JPEG-Cake). Of cotlmiseshould be an iterative process,
aimed at matching the performance numbers of the cyclerategimulation to the perfor-
mance numbers of our model. After the desired accuracy ieath’® the case should be
reproduced for all other data-sets.

"JPEG-Cake" —+—
"JPEG-1" -
"IPEG-2" %

Performance (in millions of cycles)

Number of MIPS-es in the MPSoC

Figure 4.16: Performance of the all-in-software JPEG dewpdetwork: (PEG-Cakg
the cycle-accurate execution model of tiMasabi, (JPEG-) our model without-any-
calibration, andJPEG-2 our model with the initial calibration.

At this point we do not experiment further with this caseylag additional all-in-software

calibrations as part of future work. In this thesis, becausare aware of architecture model
restrictions (such as non-supported cache modeling, @t yvere more interested to show
mapping capabilities . As a part of the future work, the répog of architecture components
or the components themselves should be enlarged and eshf@h@emory-managementand
cache-models. With such enhancements we could definiteigwe highly accurate results
for the mappings onto the resource-shared and resourcagedmplatforms. At this moment
such platforms can only be modeled, which is neverthelessnarkable result which other

23What thedesired accuracyneans is design-space exploration specific and it may diffen application to
application.

4.6 Contribution 107

exploration methodologies are unable to offer [36].

4.6 Contribution

The intention of this section is to underline the differenbetween our exploration method
and other closely related exploration methods [7, 36], ditldeasame time, to point point out
the added advantages of our mapping method.

Our method is a simulation based exploration method, and@sisrelies on: i) high-level
and abstract models (representations) of both applicaon architectures, ii) a repository
of non-functional architecture components, iii) discret@nt component implementations
(e.g.,Syst enC) instead of cycle-accurate component implementatiordg, famally, iv) the
exploration-aimed Y-chart [14] (see Chapter 1, Section?).2

However, amongst other simulation based exploration nusthzentioned earlier [7, 36], this
is also a very distinctive method . The three major diffeesnare:

1. Rather than using so-called trace-driven approach wdreapplication process behav-
ior is captured by the symbolic instruction trace, our mdtbhaptures an application
process behavior using a generic CDFG-like representasgmbolic program - and
the corresponding sequential control trace.

2. Rather than relying on heuristic solutions for modelirfg [@], our method is able to
model OS without any model-imposed restrictions.

3. As opposed to restricting the possible application dansaiarchitecture set to only
control-dependency-free applications with rudimentaryno multi-tasking software
architectures at all [36], our method is not restricted i tiay.

Our application model is able to separate concerns cledutlye data-set insensitive informa-
tion is captured in symbolic programs, and ii) the data-ees#ive information is captured
in sequential control traces. Changing the data-set ctsamgg the control trace values. Yet,
the symbolic programs do not need to change because thegtarset insensitive. The same
single symbolic program can be reused for any data-set gs=a®it is produced by the appli-
cation process from which the symbolic program originatedmember that the annotated
control points in the process are in 1-to-1 relation withteolnpoints within the symbolic
program (see Chapter 2, Section 2.4). It is possible to ksfaiive generality and reuse of

the same single mapping for as many data-sets as desirezh(pad the control structure is
not changed).

Our architecture model is based on a library of generic,tegkl, abstract architectural com-
ponents. They represent a mix of various formalisms (Comaoating Sequential Processes,
Kahn PN, Synchronous Data-Flow, State-Charts, and ROOAMte), ideas (Master-Slave
Protocols, Trace-Transformations, Transactional Pa#)¢technologies (Data-Structures
& Algorithms, Compilers & Translators, Design-Patternardtlel Programming by Multi-

threading, Object-Orientation, and Component-Based Dpweent), and implementations

108 Mapping Modeling

(Open-Sources, Library-Reuse, and Discrete-Event Siioaja If, for instance, mutual-
exclusion or condition-synchronization is needed, the@ppate formalisms and technolo-
gies inside or in between those components support the paogieitecture model specifica-
tion because the components are not CSP-only or SDF-onlabn¥only - they are hybrids.
Furthermore, the roles of each component are orthogonia¢tmte of the other components.
Thus, computation-related mapping affects one kind of camept, while communication-
related mapping affects the other kind of component. Rmnalbmponents are easily ex-
tensible because, as explained earlier, they are able #olyclgeparate computation-only,
communication-only, resource-sharing and resourceeagdbeoncerns. Therefore, each en-
hancement can easily be added without affecting the eresitory of components.

The architecture components interpret (unroll) and refiapped symbolic programs at run-
time, making the modeling context close to the real architeccontex*. Performing un-
rolling and refinement at run-time is particularly benefiéta the modeling of real system
software . For run-time refinement, various synchronizatssues remain open, and since
they are open, they need to be closed as well. If we were toversynchronization from
the architecture, the model becomes poorer (or restrieted) worse still, the omission of
this significant component is simply overlooked. Moreoggnchronization is in general a
costly operation from the performance point of view, anddeame do not exclude it from the
architecture model.

Our method resembles the standard synthesis-driven mggppirite closely (see Section 4.1).
Even-more, one can identify similarities with real-desigm even recode our abstract map-
pings to the real (synthesizable) code. As such, our methbadth iterative and waterfall-
like [61]. It is not able to “prune exploration space effidighas for instance the method
described in [36] does. Yet, it connects well with real dasjgas described above there are
almost no restrictions when dealing with streaming appiticgarchitecture combinations and
it supports reuse to a large extent. Therefore, we belieafitlis a better (more complete)
candidate for efficient architecture exploration than fustance the methods [7,36]. The
reason has its roots in the product-development of today’'sumer-electronics industry;
embedded designers are asked often to provide quick rouighe¢ss of some real applica-
tion standard (e.g., JPEG, MPEG-2, MPEG-4, etc.) runningane high-end MPSoC ar-
chitecture (e.gWasabi -like MPSoC). In such cases, an embedded system desigradtyusu
performs an example-case which represents the implen@mnteith the most challenging ap-
plication specification and maps it on the architecture@gtion simulator of the designer’s
choice. Now, if the simulator is too low level, this trial widwrequire an unjustifiably greater
expenditure of time and effort. This fact justifies the usédigh-level abstract exploration
methods such ours or any other similar [7, 36]. Nevertheletise exploration method can-
not handle/model neither the application specificationtherarchitecture specification, then
the method will simply be avoided. Moreover, if a designar eatablish some correlation
between: 1) the mapping steps he is asked to execute in theraxpn method and 2) the
mapping steps he has to perform in the real synthesis prdoeséll be in favor of this type
of high-level exploration method. Our method allows forth# above:

e Itis not selective with respect to mapping cases, neitlwenfthe aspect of the applica-

24sesane, for example, really decouples trace refinement from thhitecture, making the mapping layer re-
sponsible for the modeling of a system software

4.6 Contribution 109

tion behavior nor from the aspect of the architecture fesstur

e It resembles the real synthesis flow, as in [85] as well as¢hbaode transformations
from [56], [86] and [55].

e Itis easily extensible, since its components are ortholjgeth- changing one compo-
nent will not affect the sequencing in the others.

e It relies on discrete-event simulation, so it is fast eno(gly., compared to cycle-
accurate approaches).

e It can be easily further automated in two directions: bydxgtruning of design-space
by generating Pareto curves [37], and by introducing an@piate memory-hierarchy
model (cache modeling).These two improvements will naetfits current robustness,
generality and re-usability.

Chapter

Big Picture & Conclusion

What concerns me is not the way things are, but rather the &aple think things are*

5.1 Summary

The main aim of this chapter is to provide the complete viewetdtions between models,
model representations and simulations for performancky/sisaas part of a Design Space
Exploration (DSE) process.

Models and model representations are on a level of absiraathere flexibility, accuracy
and cost of simulations are well balanced, see Figure 1.1sh&svn in Figure 1.2, perfor-
mance analysis is conducted on the association with eaeh ottan application model and
an architecture model. This association is in terms of mogf@esentations generated by the
application model and interpreted by the architecture madewell as in terms of transfor-
mations to better match the two representations.

Our application model representations are Symbolic ProgrgsP), see Chapter 2, and our
SP interpreting architecture model is tAecher 2 model, see Chapter 3. We call the per-
formance analysis approach tlhe cher Symbolic Program approach, or simply t&&
approach

1The words of Epictetus Emckmnras - (55 A.D.-ca.135 A.D.), Greek philosopher associated withStoics.
2TheAr cher stands for ARCHitecture ExploRation.

112 Big Picture & Conclusion

5.2 Big Picture

The Symbolic Program approach, which we introduced in thesis, is positioned between
the Symbolic Instruction Trace (SIT) approach, as in$pade [7] and theSesane [36]
exploration driven approaches and the Control Data-FloapBr(CDFG) approach, as in
the MTG DF+ [25, 38] design-driven approach. The SP approach and itsiggueg has
been shown in Figure 5.1. On the left-hand side, the typailience of activities using SIT
is depicted. Similarly, on the right-hand side, the typitav of activities using CDFG is
shown. Finally, in the middle, the SP flow is shown; SPs all@signers (1) to perform
design-steps as in the case of detailed design (indicatéddashed lines), (2) to run fast
simulations of architectures being explored, and (3) teehaere accurate numbers than in
the case of TD simulations.

Application model (Kahn PN)

(annotated) YAPI code (annotated) YAPI code YAPI (source) code YAPI (source) code

s N 7 X N N
. Prog.
Data Trace Data Ctrl. Trace Symb. Prog. CDFG
%) Generator Generator Generator Generator
o
w
s Control Symbolic
= Trace Program
o
: Trace Ctrl. Trace Symb. Prog.
s Transformations T T { Transformations
@
o] "
& TD Approach Control Symbolic
z Trace’ Program’
< Instruction Data Instruction
CDFG Approach
E Stream Stream N Stream PP
Architecture _ [Architecture Trace Architecture
v i H Generator H Specification
ISpecification Simulator i H
N J i ;
SP Approach |
i Instructions
Architecture Architecture Architecture | Architecture
Specification i Simulator H Data Simulator Specification
Low ACCURACY High ACCURACY
High SIMULATION SPEED Low SIMULATION SPEED

Figure 5.1: The Symbolic Program approach vs. SIT & CDFG aaghnes (repeated Fig-
ure 2.1).

Applications are modeled using Kahn’s MoC. Process behgwie captured in Symbolic In-

struction Traces (left), Symbolic Programs plus separ@mutrol Traces (center), or Control
Data-Flow Graphs (right). The SP approach allows for a perémce analysis with accepted
as well as simulation speed, whereas the other two apprea&ither have low accuracy or
low simulation speed, respectively. The SP approach s, thybrid approach. Applications
processes are abstracted by means of (1) generic non-akec@DFG-like representations
of a process and (2) a symbolic instruction trace that captoonditional construct outcomes
that are the result of the execution of a single data-set. betavioral models of archi-

5.2 Big Picture 113

tecture components are derived from Sl traces which in teerdatermined by interpreting
transformed application SPs in the light of control outcemich are derived from control
traces. Itis worth noting here that the SP representati@®aeating separation of concerns
between control-traces and symbolic program data-strestln Figure 5.1 these are marked
asData Strean{data-dependent part) ahtstruction Streanfdata-independent part). This is
exactly the reason whir cher can reuse application representations in mappings without
changing underlying architecture specifications and why $esane cannot guarantee the
same. Moreover, this also ends-up in many other flexikslifer architecture, architecture
and mapping modelings we presented in the preceding clsapter

The architecture models in the three approaches are veplesiieft), very flexible (center),
and very detailed (right). See also Chapter 3.

5.2.1 Symbolic Program Flow Details

Figure 5.2 shows the flow of the SP approach in more detailser Af parallel application
(process network) specification is obtained, each proseparsed and SP abstractions are
derived. The SP abstractions assume that some basic blbthes ariginal application pro-
cess are going to be substituted by symbolic instructioms tlaat some control points of the
original application process are going to be annotated. gigder is the one who selects
whether a basic block or a control point is going to be anedtat not. This is indicated with
the label “Abstraction of details”.

Once the application sources and abstraction assumptiemeady, a tool based on the gen-
eral purpose C/C++ parser [87] can translate them into tha-skt independent SPs and
control annotated application sources. The workstationb®/ in Figure 5.2, with the label
“Parser” above it, represents this tool. The control aredtapplication sources are then
compiled and run on a single data set in order to check fumaticorrectness. The resulting
simulation is an untimed simulation, since no architectestrictions are applied yet. The
workstation symbol in Figure 5.2, with the label “Untimedrilation” above it, represents
the above. At this point the annotated control points gererantrol trace outcomes. These
control traces represent the data-set dependent part 8Rhiepresentation.

In parallel with the previous steps, an architecture spetifin is obtained. The specification
is given in terms of platform parameters, i.e., a number d@sutypes of units, properties of
units such as delays, policies and the platform topology.

The key Y-chart part, the mapping, connects the SP appitagpresentation (both SPs
and control traces) with the architecture specificatian, maps application processes onto
architecture units. The product of this binding is a soutmedile which can be compiled and
run on an architecture simulator. When it comes to symbabggams, they are translated to
the corresponding data structure. This data structuretésm dnown as a parse tree. At the
same time, control traces which correspond to symbolicqamog are connected with these
parse trees. These two inputs are forwarded to each archi#gemmponent on top of which
a process from the process network is mapped.

Each architecture component is instantiated according erehitecture specification. Also,
architecture components are generic Transaction Leveklitggl(TLM) [3] building blocks.

114 Big Picture & Conclusion

They describe only a timing behavior, and not a functiondldvéor. A set of parameters
that is given in the architecture specification is directéiated to the timing behavior of a
particular component.

Units (type, #, delays,
Topology, Policies

Process

Network

Source

(abstracted

CDFGs)
e g — =\
\

Untimed
Simulatio

Selected Control Control

Annotated
PN Source

ontrol Points & Traces’

Basic Blocks

Abstraction of details

\Still image, motion image, etc

Qutcomes

Data Input Performance

Numbers for thel
Data Set

(" (Single Data
Set)

Figure 5.2: The flow of the Symbolic Program approach. Thetsare: (1) an application
process network, (2) intra-process-level abstractiadisa (data set, and (4) an architecture
specification. The data-set independent parts of the ajgit model are captured in (5)
SPs, and the data-set dependent part of the applicationl su@deaptured in (6) control trace
outcomes.

After mapping is done, application and architecture arsiondlated, with functional behav-
ior being captured by the non-timed application model, ao-functional behavior being
captured by the timed architecture model. See also Chaptdh& mapping step is not
fully automated because DSE feedback loops are not takeragaount here. Therefore, in
Figure 5.2 the mapping step is shown as a puzzle - it requidesigner input.

After the simulation has completed one can choose to perfiansformations and changes
on SPs and control traces, architecture specificationgtarsets (which again affects control
traces) in order to see how different application-architeccombinations will behave when
evaluated in subsequent simulations.

5.3 Conclusion 115

5.2.2 Directions for Improvements

The Symbolic Program approach has its pros compared witlapipeoaches in the same
field. We have emphasised them many times in this thesis. HHawide approach has many
points of improvement as well. The most critical one is theesitze of both the front-end
and back-end tools that interface to the designer. Byfrtiv@-endtool we mean a tool that
automates the following designer actions: (1) derivatinSP texts, and (2) annotations of
control-points of interest. By thigack-endool we mean a tool that collects the performance
numbers ofV simulations of interests and then performs (semi-)autanaatalysis of these
numbers.

5.3 Conclusion

The main goal of this thesis was to produce a modeling apprsaitable for efficient and
accurate DSE of complex MPSoC systems.efficientwe mean that a fast system simulation
model is derived from high-level representations of agtian(s) and architecture(s). By
accuratewe mean that the resulting simulation numbers are within% 2€-or-margin with
respect to the RTL model.

In Chapter 1 we showed complexities, issues, and direcibBSE of MPSoC systems. We
recognized that the best way to deal with the DSE issues isrfonm sufficient exploration
at higher levels of abstraction before going to lower-lsvaatd concrete designs (See Sec-
tion 1.2.2). We identified thdtigherlevel of abstraction as the so-called "Level of approx-
imate performance models”. It is aligned with the Transactievel Modeling paradigm, it
requires the least level of platform details and it resultiast and accurate simulations (See
Section 4.5.1 in Chapter 4).

In Chapter 2 we introduced a novel DSE application repregiemt - Symbolic Programs.

We defined symbolic programs as abstractions of behavioishwiere earlier given either

as control data-flow graphs or as source-code descriptibhs. main idea behind them is
the abstract execution [51]. We also defined a minimal sekpfessions that is sufficient
to expose hierarchy and partial-order and to preserve floenmation needed for the high-

level architecture model later on. We pointed out that threlsylic program syntax may not
express parallelism as easily as CDFGs do, but symbolicrgnagican be maintained more
efficiently than CDFGs. The efficiency of maintenance of apliggtion representation is

directly proportional to the efficiency of a DSE method.

In Chapter 3 we presented our authentic architecture méoleBSE of embedded systems.
These models are built in a generic way, so they can be useddelnaarious architecture
characteristics. Further, the models capture most of tredlpism that designers express. We
verified our model by regenerating the accurate resultseoé#ilier case studies [33,52,58].
The models support both Intra-task level parallelism argkdavel parallelism. Byntra-task
level parallelism we mean compile-time and run-time padraer executions. Byask-level
parallelism we mean multi-programming by means of multigassing. The models have
been implemented usirgy st entC[8], which makes it reusable in a wider DSE community.

116 Big Picture & Conclusion

In Chapter 4 we described the mapping approach using ouicafiph representation and our
architecture models. We illustrated the mapping approgciméans of a few case-studies.
The results of these cases we use to quantify the level ofacgand DSE efficiency of our
DSE method.

5.3.1 Primary Contributions

e A proper concurrent application representation for the simulation-based MPSoC
DSE.We have introducegymbolic programss an application representation that can
be used for design-space exploration of heterogeneougpnuakssor embedded mul-
tiprocessors without biases regarding mapping layers iotual-processors”. Th&P
representation properly separates application charsiitsrfrom data-set dependen-
cies which makes it possible to reuse symbolic programs ifterdnt data-sets. To
our knowledge no representation in the related work thaséxlwat the same level of
abstraction and at the same level of the application contglean achieve such reuse.

e A basic repository of the generic architecture models for tle simulation-based
MPSoC DSE.We have created afr cher library of components, where all architec-
ture model components are divided into the four basic gropmessorsinterfaces
arbitersandmemory buffer¢See Chapter 3). In our opinion, each embedded SoC ar-
chitecture can be specified by components of these groupsiinid each group there
is a diversification based on lower-level component charéstics. To our knowledge,
no TLM DSE library in the related work is able to achieve sueheyality.

e Mapping steps that closely mimic the activities of an MPSoC esigner in real-life
casesWe have defined our mapping approach based on the Y-charteWoywe have
used common design steps to define our mapping approach tiagimeinventing new
steps (See Chapter 4). Therefore, our mapping approacghy/tuorrelated with what
a designer would and does in reality use, whilst some othanoaghes are not [7, 36].

5.3.2 Secondary Contributions

e Introduction of level of approximate performance models. We have introduced a
new level of abstraction in th&bstraction Pyramid This level is the level of approx-
imate performance models and it is closely linked to the TUdpraach (See Sec-
tion 1.3.2). The TLM approach is important because it becpareof theSyst enC
standard [62].

e Positioning of the simulation-based MPSoC DSE approachesithi respect to ac-
curacy and simulation speed.We have been first to rationalise the pros and cons of
simulation-based DSE approaches. This reasoning haseesulan approach allow-
ing designers (1) to perform design-steps as in the casetailet: design, (2) to run
fast simulations of architectures being explored, andy8ptve more accurate numbers
than in the case of TD simulations (See [11]). This reasomiag the starting point
of development of some other simulation-based DSE metlads asSesane. As

5.3 Conclusion 117

a matter of fact, thdig-pictureof DSE approaches from Chapter 2 has been reused
in [36]. Thus,Sesarne is incorrectly regarded as the originator of such positigni

e Modeling of the specific code-transformations such as the Dection-of-variants
transformation. The result published in [55] represents the formal reseafdhis
transformation and it is more specific to the compiler tedbgies. In this thesis
we showed our work that has been done independently of tmsaflaresearch, more
through the prism of Architecture Modeling for Design Sp&ogloration. Particu-
larly, we identified the problem in [32] - as described in thedeling of the 'detection
of variants’ SP transformation in Chapter 2, Section 2.8rid we reported on our
case-study for the Proof-of-Concept (PoC) in [11]. We aeWedge the originality
and contribution of the formal approach presented in [5588, @e point that such de-
signer’s decision can be modeled using our approach.

Bibliography

[1] F. Vahid. The softening of hardwarlEEEE Computer Magaziné\pril 2003.

[2] C. Rowen. Reducing soc simulation and development tiBEE Computer Magazine
December 2002.

[3] DATE panel. Transaction level modelingDesign Automation and Test in Eurgpe
March 2003.

[4] P. Laplante.Real-Time Systems Design and Analisys: An Engineer’s HaoldbEEE
Computer Society Press, 1993.

[5] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Sourcele in C
Willey, 1996.

[6] R. Lauwerenis (IMEC), I. Bolsens (Xilinx), C. Rowen (T&hca), Y. Tanurhan (Actel),
K. Vissers (Chameleon Systems), S. Wang (Axis Systems)elfdm Reconfigurable
computing - different perspectives. Rroc. of Design Automation and Test in Europe
(DATE)’03, Munich, Germany, March 2003.

[7] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettek methodology for archi-
tecture exploration of heterogeneous signal processistgisys.Journal of VLSI Signal
Processing for Signal, Image and Video Techno)@$(3):197—-207, November 2001.

[8] Synopsys, Inc., CoWare Inc., Frontier Design, Inc. Riomal specification for systemc
2.0 - final. January 17th 2001.

[9] A. van GemundPerformance Modeling of Parallel Systenf®hD thesis, Delft Univer-
sity of Technology, Delft, the Netherlands, 1996.

[10] V. Zivkovic, and P. Lieverse. An Overview of Methodologieslaiools in the Field of
System-Level Designl.ecture Notes In Computer Scien@268:74-88, 2002.

[11] V. Zivkovi¢, et al. Fast and Accurate Multiprocessor Architee Exploration with
Symbolic Programs. IiProc. of Design Automation and Test in Europe (DATE)’03
pages 656—661, Munich, Germany, March 2003.

120 Bibliography

[12] L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, XeGtert. Embedded software
in network processors - models and algorithnhigcture Notes in Computer Science
2211:416-434, 2001.

[13] VY. Le Moullec, N. B. Amor, J.-P. Diguet, M. Abid, J.-L. Rippe. Multi-granularity
metrics for the era of strongly personalized SOCsPioc. of Design Automation and
Test in Europe (DATE)'03ages 674—679, Munich, Germany, March 2003.

[14] Bart Kienhuis. Design Space Exploration of Stream-based Dataflow Archites:
Methods and ToolsPhD thesis, Delft University of Technology, January 1999.

[15] J.D. Gajski, and R. Kuhn. Guest editors introductioevwvIsi tools.IEEE Computer
pages 11-14, 1983.

[16] National Institute of Standards and Technology. Marfelomputation.
[17] C. A. R. Hoare. Communicating sequential processek).§B86—-677,1978.

[18] Gilles Kahn. The sementics of a simple language for Ifrogramming.Proceed-
ings IFIP congress 74July 1974.

[19] E.A. Lee and T.M. Parks. Dataflow process networks.Ptaceedings of the IEEE
volume 83, pages 773-801, May 1995.

[20] K.M. Kavi, B.P. Buckles, and U.N. Bhat. A formal defirati of data flow graph models.
IEEE Transactions on ComputeiS-35(11):940-948, November 1986.

[21] E. A. Lee and D. G. Messerschmitt. Pipeline InterleaRedgrammable DSP’s: Syn-
chronous Dataflow Programmini@EE Transactions on Acoustics, Speech, Signal Pro-
cessing, Vol.ASSP-3September 2001.

[22] Thomas M. ParksBounded Scheduling of Process NetwolRBD thesis, University of
California at Berkeley, December 1995.

[23] J. T.Buckand E. A. Lee. Scheduling Dynamic Dataflow Giaywith Bounded Memory
Using the Token Flow Model. Iinternational Conference on Acoustics, Speech, Signal
ProcessingApril 1993.

[24] J. T. Buck. Static Scheduling and Code Generation froynddnic Dataflow Graphs
with Integer Valued Control Streams. Trhe 28th Asilomar Conference on Signals,
Systems, and Compilei®ctober 1994.

[25] N. Cossement, R. Lauwereins, and F. Catthoor. DF*: Ateesion of synchronous
dataflow with data dependency and non-determinisni-oham on Design Languages
September 2000.

[26] D. Harel. Statecharts: A visual fromalism for complgst®ems. pages 231-274, 1987.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatasification of finite state
concurrent systems using temporal logic specificationgep44—263, 1986.

Bibliography 121

[28] B. Selic, G. Gullekson, and P. WardReal-time Object-oriented ModelingWilley,
1994.

[29] F. Balarian, E. Sentovich, M. Chiodo, P. Guisto, H. HisiB. Tabbara, A. Jurecska, L.
Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Yiitetie Hardware-Software
Co-Design of Embedded Systems - The POLIS Apprdéawer Academic, 1997.

[30] P. Lieverse, P. van der Wolf, and E. Deprettere. A traaadformation technique for
communication refinemenProceedings of 9th Int. Symposium on Hardware/Software
Codesign (CODES’01pages 134—139, April 2001.

[31] J. Regehr, M. B. Jones, and J. A. Stankovic. Operatisesy support for multime-
dia: The programming model matter$echnical Report MSR-TR-2000-89, Microsoft
Research, Microsoft Corporatigseptember 2000.

[32] V. Zivkovic, et al. Design Space Exploration of Streaming tubcessor Architec-
tures. InProc. of Signal Processing System (SiPS)®an Diego, October 2002.

[33] P. Lieverse, T. Stefanov, P. van der Wolf, and E. Deprett System level design with
Spade: an M-JPEG case studylnternational Conference on Computer Aided Design
(ICCAD’01), San Jose CA, USA, November 2001.

[34] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Heeriper and E.F. Deprettere. Ex-
ploring Embedded-Systems Architectures with ArtemiBEE Computer34(11):57—
63, November 2001.

[35] A. D. Pimentel. The parallelisation of the object-aried simulation language pearl.
Master’s thesis, Amsterdam, The Netherlands, August 1993.

[36] A.D. Pimentel, C. Erbas, and S. Polstra. A systemataragch to exploring embedded
system architectures at multiple abstraction levéi<EE Transactions on Computers
55(2), February 2006.

[37] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improyithe Strength Pareto Evo-
lutionary Algorithm for Multi-objective Optimization. IrEvolutionary Methods for
Design, Optimization, and ContrdBarcelona, Spain, 2002.

[38] F. Thoen, J. Van Der Steen, G. de Jong, G. Goossens, and Mdn. Multi-thread
graph: a system model for real-time embedded software egithInEDTC '97: Pro-
ceedings of the 1997 European conference on Design andpeegt 476, Washington,
DC, USA, 1997. IEEE Computer Society.

[39] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, 8udndor, Sonia and S. Yuhong.
Taming heterogeneity - the Ptolemy approach.Poceedings of the IEEE, Special
Issue on Modeling and Design of Embedded Softw2(62.

[40] M. Gries. Methods for Evaluating and Covering the Desgpace During Early Design
Developmentintegration. the VLSI JournaB8(2):131-183, 2004.

122 Bibliography

[41] K. Lahiri, A. Raghunathan, S. Dey. Fast Performancelysia of Bus-Based Systems-
On-Chip Communication Architectures. Rroc. of IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD),%an Jose, CA, USA, November 7-11
1999.

[42] K. Richter and R. Ernst. Event model interfaces for hegeneous system analysis. In
Proceedings of Design, Automation, and Test in Europe Cenée (DATE’'02)pages
506-513, Paris, France, March 2002.

[43] P. Paulin, C. Pilkington, and E. Bensoudane. StepNP:yste3n-Level Exploration
Platform for Network ProcessorsEEE Design and Test of Computed9(6):17-26,
2002.

[44] R. Morris, E. Kohler, J. Jannotti, and M.F. Kaashoek. eT®lick Modular Router.
SIGOPS Oper. Syst. Re83(5):217-231, 1999.

[45] R.A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacha¥y.E. Dougherty, |. Nair,
J. Darringer, and S. Paliwal. SEAS: a system for early aimlg$ SoCs. In
CODES+ISSS '03: Proceedings of the 1st IEEE/ACM/IFIP in&tional conference
on Hardware/software codesign and system synthpages 150-155, Newport Beach,
CA, USA, 2003.

[46] S. Mohanty, V. K. Prasanna, S. Neema, and J. Davis. Rigsijn space exploration of
heterogeneous embedded systems using symbolic searchuétirdmranular simulation.
SIGPLAN Not.37(7):18-27, 2002.

[47] A.S. Cassidy, J.M. Paul, and D.E. Thomas. Layered, Muiteaded, High-Level Per-
formance Design. IiProceedings of the conference on Design, Automation artdres
Europe (DATE’'03)pages 954-959, Munich, Germany, March 2003.

[48] G. De Micheli. Synthesis and Optimization of Digital CircuitsicGraw-Hill, 1994.

[49] A. Aho, R. Sethi, and J. Ullman.Compilers: Principles, Techniques and Taols
Addison-Wesley, 1986.

[50] G. K. Wallace. The jpeg still picture compression starmd IEEE Transactions on
Consumer Electronigpage xxx, 1991.

[51] J. Larus. Abstract execution: A technique for efficlgritacing programs . Software—
Practice and Experienc@0(12):1241-1258, December 1990.

[52] T. Harriss, R. Walke, B. Kienhuis, and E. Deprettere. mpdation from matlab to
process networks realized in fpgurnal on Design Automation of Embedded Systems,
Kluwer, 7(4), 2002.

[53] A. Turjan, et al. The Compaan Tool Chain: Converting Matinto Process Networks.
In Proc. DATE’02 Paris, France, xxx 2002.

[54] J. Levine, T. Mason, and D. Browirex & yacc O’Reilly, 1995.

Bibliography 123

[55] S. Derrien, A. Turjan, C. Zissulescu, B. Kienhuis andOeprettere. Deriving effi-
cient control in process networks with compaan/lawecepted for publication in the
International Journal of Embedded Systems InderscierdteS)

[56] M. Lam. Software pipelining: An effective schedulingchnique for vliw machines.
Proceedings of the SIGPLAN 88 Conference on Programmingluage Design and
ImplementationJune 1988.

[57] T. Stefanov and E. Deprettere. Deriving process neéta/énrom weakly dynamic appli-
cations in system-level desigi®roceedings of IEEE/ACM/IFIP Int. Conf. on HW/SW
Codesign and System Synthesis (CODES-ISS®a8gs 90-96, October 2003.

[58] E. de Kock. Multiprocessor mapping of process netwnigeg decoding case study.
Proceedings of 15th Int. Symposium on System Synthes& @B $ages 68—-73, 2002.

[59] Todor StefanovConverting Weakly Dynamic Programs to Equivalent Procestsvidrk
SpecificationsPhD thesis, Leiden University, December 2004.

[60] Alexandru Turjan.Compiling nested loop programs to process netwoiRBD thesis,
Leiden University, March 2007.

[61] I. Somerville.Software Engineering, 6th Editioldddison-Wesley, August 11 2000.

[62] T. Grotker, S. Liao, G. Martin, and S. Swarsystem Design with System®&Iluwer
Academic Publishers, Boston, 2002.

[63] J. Carter.Programming SQL, Computer Studies SeriBfackwell Scientific Publica-
tions, 1992.

[64] J. A. Fisher. Trace Scheduling: A Technique for Globaticode CompactionEEE
Transactions on Computer€-30(7):478-490, July 1981.

[65] J. L. Hennessy and D. A. Patterson. Computer architecta quantitative approach,
3rd edition. 2002.

[66] E. Dijkstra. Cooperating sequential processeschnical Report EWD-123, University
of Eindhoven, The Netherlands965.

[67] P. Stravers and J. Hoogerbugge. Homogeneous mulépsig and the future of silicon
design paradigms. IRroc. of VLSI-TSA'012001.

[68] M. Dewey.A Classification and Subject Index for Cataloguing and Agiaig the Books
and Pamphlets of a LibraryProject Gutenberg - http://www.gutenberg.org/etexdi?,
2004 (originally from 1876).

[69] B. Lewis and D. BergMultithreaded Programming With PThreadSun Microsystems
Press and Prentice Hall, 1998.

[70] Synopsys, Inc., CoWare Inc., Frontier Design, Inc.t8y& version 2.0 user’s guide.

[71] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mehi@osenblum. Disco: Run-
ning commodity operating systems on scalable multiprarss&\CM Transactions on
Computer System&5(4):412—-447,1997.

124 Bibliography

[72] P. Lieverse. Many-to-one mapping and schedulBgade Project - Memo 12 (Internal
Document)September 1999.

[73] B. R. Preiss.Data Structures and Algorithms with Object-Oriented DadRaitterns in
C++. Wiley, September 1998.

[74] Sylvain Alliot. Architecture Exploration for Large Scale Array Signal Pessing Sys-
tems PhD thesis, Leiden University, March 2003.

[75] V. Zivkovic, et al. Mapping Specification-level primitives tP-primitives: A Case
Study. InProc. of the Third International Workshop on Systems, Aechiires, Model-
ing, and Simulation (SAMOS)'03amos, Greece, July 2003.

[76] R. A.Uhlig, T.N. Mudge. Trace-driven memory simulatioA survey ACM Computing
Surveys, Vol.292), June 1997.

[77] S. Bhattacharyya, P. Murthy, and E. Le8oftware Synthesis from Dataflow Graphs
Kluwer Academic Publishers, 1996.

[78] E. de Kock, et al. Yapi: Application modeling for sigrn@aocessing systems. Froc.
of Design Automation Conference (DAC),Q®s Angeles, USA, June 2000.

[79] J. Proakis et alAlgorithms for Statistical Signal Processingrentice Hall, Inc., 2002.

[80] M. Goriss, et al. Adaptive beam-forming system for aftiequency interference rejec-
tion. In IEEE Proc. Rad.xxx, xxx 1999.

[81] W. A. Chen, C. Harrison, and S. C. Fralick. A fast compiotzal algorithm for the
discrete cosine transornEEE Transactions on Communications, Vol. COM-25, No. 9
pages 1004-1011, 1977.

[82] C. Loeffler, et al. Practical fast 1-d dct algorithmshvitl multiplications. IrProc. of
ICASSP’89pages 988-991, 1989.

[83] P. Stravers et al. Coherent memory network for was@éthnical Report ??7?, Philips
Research Laboratorie®November 14 2003.

[84] Dong-lk Ko and Shuvra S. Bhattacharyya. Modeling ofditdbased dsp systems.
VLSI Signal Process. Sys#0(3):289-299, 2005.

[85] A. Gerstlauer and D. D. Gajski. System-level abstatemantics.Proceedings of
15th Int. Symposium on System Synthesis (ISSPag¢s 231-236, 2002.

[86] W. Wolf. Computers as Components - Principles of Embedded Compsiisigm De-
sign Morgan Kaufmann Publishers, 2001.

[87] Terence John ParLanguage Translation Using PCCTS & C++: A Reference Guide
1996.

Appendix

Implementation Details

A.1 Symbolic Porgram Definition Section

Figures A.1, A.2, A.3, and A.4 form the definition section bétYacc notation of the SP
text syntax. Figure A.2 shows the pattern matching ruledHerlexical analyzer of the SP
parser. The lexer takes an input stream (e.g., a file contaithie SP-text) antbkenizest,

i.e., divides it up into lexical tokens. This tokens are cameld (processed further) in the
parser according to the syntax rules. ®Bauni on declaration in Figure A.1 identifies all
of the possible C types that a symbol of SP can have. Some s tigpes are basic types,
such as nt (e.g., integer) ot ext (e.g., string). The other are more abstract (complex).
Figure A.3 provides the input of what values are associaifutakensor terminal symbols.
Concretely, only th&\UMandI D tokens have values associated with themselves (an integer
and a string, respectively). Figure A.4 declares the type®n-terminals. A type may be
any of the types declared ¥ uni on in Figure A.1 and it is surrounded with >, while

the non-terminal is stated afterwards.

A.2 Symbolic Program Rules Section

Figure A.5 illustrates the grammar rules of the SP text. Ttesrshown resemble the SP
abstractions from the most general one (i.e., the SP it¢effes: 1-3) towards the leaf ones
(e.g., an SI matchdas ace_event , or the parameters of an Sl maictient i f i er - Lines:
32-41). The actions (indicated inside of the C commentsjiseel to create the data-structure
of the particular SP.

An SP representation must contain tinei n text-sectiof, but may contain zero or more

1This is the main CDFG of a process.

126

Implementation Details

1 %nion

2 {

3 t ext text _field;

4 int int_field;

5 synbol i c_program programfield;

6 mai n mai n_field;

7 function_list function_list_field,

8 function function_field;

9 conpound_statement conpound_statenent _field;

10 statenent _|ist statement _list_field;

11 st at ement statement _field;

12 sel ection_statenment sel ection_statenent_field;
13 iteration_statenent iteration_statenent_field;
14 junp_stat enent junp_statenent _field,

15 flow type flow type_field,

16 | abel _var | abel _var_field;

17 program cal | programcall _field;

18 condi tion condi tion_field;

19 vari abl e variable_field;

20 trace_stat ement trace_statenent _field,

21 parall el _trace parallel _trace_field;

22 trace_event trace_event _field;

23 event _type event _type_field;

24 identifiers identifiers_field,

25 identifier identifier_field,

26 identifier_type identifier_type_field;

27}

Figure A.1: The symbol values types used in the SP text syntax

functi on text-section% (see the Yacc code in Figure A.5 - Lines: 1-7). Eadhi n
or functi on is essentially &onpound_st at enent , i.e., an ordered set of statements
(Lines: 8-10).

A st at ement can be any of the procedural programming language constractom-
putation or communication loadt-r ace_st at enent , the already explained compound
statement conpound_st at enent , an if-construct sel ecti on_st at enent, a loop
construct -i t er ati on_st at enent, a go-to construct } unp_st at enent , a label -

| abel _var, and a sub-routine callpr ogr amcal | (see Lines: 11-29).

Note thatt r ace_st at enent is actually the extended SlI; it is either a single symbolic
instruction -trace_event, or a bundle of partially ordered symbolic instructions. A
trace_event may be either of one oREAD, WRI TE, or EXECUTE, or it is an SKI P
(empty) instruction (Lines: 32-35). The first valudUM either enumerates the application
FIFO channels (in the casesREEAD or WRI TE) or determines the operation (in the case of
EXECUTE). The non-terminal represents one or more argumeritslent i f i er s (Lines:
36-37). Ani denti fi er has a unique name (string) in the SP scope. It may or may not
be explicitly characterized dNPUT or OUTPUT(Lines: 38-41). Follows the load of a sym-
bolic instruction (given by the third value-token of a syribanstruction -NUM); it shows
either the communication load in terms of wotdsr the computation load in terms of some
abstract Worst-Case-Execution-Path

2These are the abstracted CDFGs of the sub-routines of agsroce

3This information will impact the real-platform communiiat. Thus, it is a number that can be securely trans-
lated into the multiples of the chosen platform commundgativord size later-on.

4This information will impact the mapping stage; therefdnés thumber must somehow depict the number of

A.3 Symbolic Program Interpretation 127

1 "goto" {l exReport ("GOTO", (text) yytext);
2 return GOTO }

3 "break" {l exReport ("BREAK", (text) yytext);
4 return BREAK; }

5 "continue" {l exReport (" CONTI NUE", (text) yytext);
6 return CONTI NUE; }

7 "return" {l exReport ("RETURN', (text) yytext);
8 return RETURN, }

9 "call" {l exReport ("CALL", (text) yytext);
10 return CALL; }

11 "function" {l exReport ("FUNC', (text) yytext);
12 return FUNG; }

13 "main" {l exReport ("MAIN', (text) yytext);
14 return MAIN; }

15 "condi tion" {l exReport("COND', (text) yytext);
16 return COND; }

17 "1 oop" {l exReport ("LOOP", (text) yytext);
18 return LOOP; }

19 "read" {l exReport ("READ", (text) yytext);
20 return READ; }

21 "execute" {l exReport ("EXECUTE", (text) yytext);
22 return EXECUTE; }

23 "wite" {l exReport ("WRI TE", (text) yytext);
24 return WRITE; }

25 "skip" {l exReport ("SKIP", (text) yytext);
26 return SKIP; }

27 || {l exReport ("OR", (text) yytext);
28 return OR }

29 "in" {l exReport ("I'N', (text) yytext);

30 return IN }

31 "out" {l exReport ("QUT", (text) yytext);
32 return OUT; }

33 [:();,] {l exReport ("char", (text) yytext);
34 return yytext[0]; }

35 [0-9] + {l exReport ("NUM', (text) yytext);
36 yylval.int_field = (int)

37 strtol ((text) yytext, NULL, 0);
38 return NUM }

39 ([a-zA-Z_0-9])* {lexReport("ID"', (text) yytext, &ylval);
40 return ID; }

41 . {skip((text) yytext);}

42 n {skip((text) yytext);}

Figure A.2: The regular expression rules used by the lexaratch the tokens.

A.3 Symbolic Program Interpretation

The interpretation of an SP by the Program Unit CFSM is donenlegns of a parse-tree
traversal plus the particular control-trace.

A parse tree is a data structure used for storing the pargedTee start symbol is stored
at the top, as a root, while the terminals are stored as leavas tree body (branches and
nodes) is formed from the other non-terminals availabléégarsed text. In the case of SP
shown in Figure 2.13, theai n non-terminal is almost the rodtand, e.g.ski p at Line 20

is one of the leaves.

The tree-traversal we use is tpest-order depth-first traversalThat means first the nodes

low-level operations required on the potential platforms.
5Actually, the root is an invisiblsynbol i ¢_pr ogr amnon-terminal which wraps theai n construct.

128

Implementation Details

% oken
% oken
% oken
% oken
% oken
% oken
% oken
% oken
% oken
10 % oken
11 % oken
12 % oken
13 % oken
14 % oken
15 % oken
16 % oken
17 % oken
18 % oken

©oO~NOOUAWNPE

% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
% ype
10 % ype
11 Y% ype
12 % ype
13 % ype
14 % ype
15 % ype
16 % ype
17 % ype
18 % ype
19 % ype
20 % ype
21 % ype
22 Y% ype

©CO~NOU_WNE

of the left subtree are visited, then the nodes of the rightree are visited, and in the end
the root is visited. The control trace is always determingthn factors: the data set and the
SP structure. Consequently, there may be many controlsiaeeause there may be many
different data sets. However, all of them must resemble Ehst@icture, i.e., there must direct

<int_field> NUM
I'N
out
<text_field> D

Figure A.3: The token values used in the SP text syntax.

<program fiel d>
<mai n_fiel d>

<function_list_field>

<function_field>

<conpound_st at ement _fi el d>
<statement _list_field>

<statement _fiel d>

<sel ection_statenment _fiel d>
<iteration_statenment_field>
<junp_statenment _fiel d>

<flow_type_field>

<l abel _var_fiel d>
<programcal |l _fiel d>
<condi tion_field>
<variabl e_fiel d>

<trace_statenment _fiel d>
<paral l el _trace_fiel d>

<trace_event_fiel d>
<event _type_fiel d>
<identifiers_field>
<identifier_field>

<identifier_type_field>

symbol i c_program
nmai n

function_list
function
conmpound_st at ement
statement _| i st

st at ement

sel ecti on_st at ement
iteration_statenent
j unp_st at ement
flow type

| abel _var

program cal |

condi tion

vari abl e
trace_stat enent
parallel _trace
trace_event

event _type
identifiers
identifier
identifier_type

Figure A.4: The non-terminal type values used in the SP gxbs.

the tree-traversal correctly. That is, the value of the domdnode (e.g., loop condition 1)
must match the current control-trace event value (e.gdition 1 equals true).

For example, given the following contents of the contrakt:

(conditionl = true) < (condition2 = true) < (condition3 = true) < (conditiond = false)

with the SP shown in Figure 2.13, the following partially erdd symbolic instructions are

generated:

A.3 Symbolic Program Interpretation 129

1 synbolic_program: main function_list {/* action */}
2 | main {/* action */}

3 | function_list main {/* action */};
4 main : MAIN conpound_statenment {/* action */};

5 function_list : function {/* action */}

6 | function_list function {/* action */};
7 function : FUNC I D conpound_statenment {/* action */};
8

conmpound_statement : ' {' statement_list '}’ {/* action x/};
9 statenment_list : statement {/* action */}
10 | statement_list statenent {/* action */};

11 statenment : trace_statenent {/* action */}

12 conpound_statement {/* action */}
13 sel ection_statement {/* action %/}
14 iteration_statenent {/* action %/}

| abel _var {/* action */}

programcal |l {/* action */};

18 sel ection_statenent : condition conpound_statement {/* action x/};

19 iteration_statenent : LOOP condition conpound_statement {/* action */};
20 junp_statenent : GOTO | abel _var {/* action */}

|
|
|
15 | junp_statement {/* action */}
|
|

21 | flow type {/* action */};
22 flow_ type : BREAK {/* action */}

23 | CONTINUE {/+* action =/}

24 | RETURN {/* action */};

25 label _var : NUM':" {/* action */};

26 programcall : CALL ID {/* action */};

27 condition : COND variable {/* action */};
28 variable : NUM' (' identifiers ")’ {/* action */};

29 trace_statenent : parallel _trace ';’ {/* action */};

30 parallel _trace : trace_event {/* action */}

31 | parallel _trace OR trace_event {/* action */};
32 trace_event : event_type NUM' (' identifiers ',” NUM')' {/* action */}
32 | SKIP {/* action */};

33 event_type : READ {/* action */};

34 | EXECUTE {/* action */}

35 | WRITE {/* action */};

36 identifiers : identifier {/* action */}

37 | identifiers identifier {/* action */};

38 identifier : identifier_type ID {/* action */}

39 | ID {/* action */};

40 identifier_type : IN {/* action */}

41 | OQUT {/* action */};

Figure A.5: The production rules of the SP text syntax.

.; read 11 (a, 1) || read 12 (b, 1) ;

As a conclusion, all control information is disappeared #relpartially ordered symbolic
trace is passed further to the architecture processor model

The SP parse tree plays the role of the process object cedepliogram code). The con-
trol trace models the data-input and execution. By assgyappropriate delays (e.g., jump-
delays, or loop-delays, etc.) to different parse-tree sa@eious processor execution effects
can be modeled. Additionally, the traversing algorithm nis@yconstructed that it delays
depending on the contents of the control trace; e.g., in #se of(conditionl = true) it
delays while in the case @tonditionl = false) it does not delay. The last control trace
execution scheme is co-related with the cache-hit and eaisemodeling. Although we do
not discuss modeling of the cache related behavior in tlesishit is true that our model, in
general, provides some features for modeling the same.

130 Implementation Details

A.4 Processor Unit Threads

1 CFSM initialize state <« |IDLE

2 begin

3 do forever

4 if state = IDLE

5 blocking acquire of a next symbolic instruction bundle
6 state « RUN

7 fi

8 if state = RUN

9 serialize the acquired bundle based on the number of RU, EU, W U using FCFS
10 wait for a configured delay

11 do until queue of serialized bundles = 0

12 blocking transmit of the topmost serialized bundle
13 remove the transmitted bundle from the queue
14 done

15 state <« |DLE

16 fi

17 done

18 end

Figure A.6: Implementation of the FECTRL Concurrent FirState Machine.

1 CFSM initialize state <« WAIT

2 begin

3 do forever

4 if state = WAIT

5 blocking acquire of a next symbolic instruction bundle
6 state «— RUN

7 fi

8 if state = RUN

9 wait for a configured delay

10 dispatch symbolic instructions from the bundle based on R, E , W attributes
11 state <« |IDLE

12 fi

13 if state = IDLE

14 block until all dispatched symbolic instructions finished
15 state «— WAIT

16 fi

17 done

18 end

Figure A.7: Implementation of the BECTRL Concurrent Firiiiate Machine.

A.4 Processor Unit Threads 131

1 CFSM initialize state <« WAIT

2 begin

3 do forever

4 if state = WAIT

5 if dispatched read instructions = finished

6 check for the next read symbolic instructions

7 fi

8 if dispatched execute instructions = finished

9 check for the next execute symbolic instructions

10 fi

11 if dispatched write instructions = finished

12 check for the next write symbolic instructions

13 fi

14 blocking acquire of next symbolic instruction based on the a bove checks
15 state «— RUN

16 fi

17 if state = RUN

18 if any new acquired

19 wait for the configured delay

10 do forall acquired read symbolic instructions

21 dispatch read instruction

22 done

23 do forall acquired execute symbolic instructions

24 dispatch execute instruction

25 done

26 do forall acquired write symbolic instructions

27 dispatch write instruction

28 done

29 fi

20 state «— |IDLE

21 fi

22 if state = IDLE

23 block until all dispatched symbolic read instructions fini shed Vv
24 block until all dispatched symbolic execute instructions f inished \%
25 block until all dispatched symbolic write instructions fin ished
26 state «— WAIT

27 fi

28 done

29 end

Figure A.8: Implementation of the Modified BECTRL ConcurrEinite State Machine.

132 Implementation Details
1 CFSM initialize state <« |IDLE

2 begin

3 do forever

4 if state = IDLE

5 get next execute symbolic instruction (operand, opcode, si ze)
6 state «— SETUP

7 fi

8 if state = SETUP

9 blocking open connection to the physical FIFO based on port, RU index, data size
10 state «— STALL

11 fi

12 if state = STALL

13 signal that read is ready

14 blocking check whether write is ready

15 state «— RUN

16 fi

17 if state = RUN

18 dountil data size =0

19 load data unit

20 wait for the configured data unit delay

21 decrement size

22 done

23 signal close connection

24 if run-time pipelining

25 unbl ocki ng put out put operand

26 fi

27 signal that synbolic instruction execution has been finished
28 state <« |IDLE

29 fi

30 done

31 end

A5

Figure A.9: Implementation of the RU Concurrent Finite 8tstachine.

Interface Component Unit Threads

©CoO~NOTAWNPRE

©oO~NOUAWNRE

CFSM initialize state <« |IDLE

begin
do forever
if state = IDLE
get next execute synbolic instruction (operand, opcode, size)
if run-time pipelining
bl ocki ng get operand
fi
state «— SETUP
fi
if state = SETUP
bl ocki ng open connection to the physical FIFO based on port, W index
state «— RUN
fi
if state = RUN
dountili data size =0
store data unit
wait for the configured data unit del ay
decrenent size
done
state <« STALL
fi
if state = STALL
signal that wite is ready
bl ocki ng check whether read is ready
signal cl ose connection
signal that symbolic instruction execution has been finished
state « |DLE
fi
done
end

Figure A.10: Implementation of the WU Concurrent Finitet8tislachine.

CFSM initialize state « |IDLE

beg

in
do forever
if state = |DLE
get next execute synbolic instruction (operands, opcode, budget)
if run-time pipelining
doforall input operands in array of operands
bl ocki ng get input operand
done
fi
state «— RUN
fi
if state = RUN
dountil budget = 0
wait for the configured unit delay
decrement budget
done
if run-time pipelining
doforall output operands in array of operands
unbl ocki ng put output operand
done
fi
signal that synbolic instruction execution has been finished
state « |DLE
fi
done

Figure A.11: Implementation of the EU Concurrent FinitetStdachine.

data size

©CO~NOU_WNER

CFSM initialize state «— WAIT
begin
do forever

if state = WAI'T

end

fi

if this is Read Interface PIC
acquire all read ports with available data from Read Interface
fi
if thisis Wite Interface PIC
acquire all wite ports with available roomfromWite Interface
fi
state <« | NTERRUPT

if state = | NTERRUPT

fi
done

do forall acquired ports

deliver port status to DOS through a master
done
state «— WAIT

Figure A.12: Implementation of the PIC Concurrent Finitat&tMachine.

O©O~NOU A WNPE

CFSM initialize state « | NPUT

begin
do forever
if state = | NPUT
bl ock until reschedul e conditions appear
state <« OUTPUT
fi
if state = OUTPUT
do foreach SPU-core in set of all cores
if set of all Synmbolic Prograns = emptyset
break
fi
if SPU-core # busy
reschedul e for this SPU-core
if rescheduling result in set of all cores
find Synbolic Program schedul ed on this SPU-core
unbl ock Synbolic Instruction fetching for that Synbolic Program
unbl ock this SPU-core
fi
fi
done
state <« | NPUT
fi
done
end
RIRQ.1qve()
begin

end

queued as feasible Synbolic Prograns for the read ports with data

30 WIRQave()
begin

31

37
38
39

end

queued as feasible Synbolic Prograns for the wite ports with room
if roomfor any of postponed symbolic wite instruction

unbl ock CFSM (reschedul i ng condi tion appeared)
fi

FETCHgpave(index)
begin

if for indexed Synbolic Programexists an already fetched but

post poned instruction

40
41

end

bl ock Symbolic Instruction fetching for indexed Synbolic Program
fi
acquire next Synbolic Instruction fromthe indexed SP Stream
if this instruction may be feasible based on data/roomavailability
unbl ock CFSM (reschedul i ng condition appeared)
fi

TRAP.ores(i ndex)
begin

end

mark the indexed SPU-core as # busy
bl ock the indexed SPU-core

Figure A.13: Implementation of the DOS composite channel.

1 CFSM initialize state <« |DLE

2 begin

3 do forever

4 if state = IDLE

5 bl ocki ng acquire of a next symbolic instruction bundle

6 state «— RUN

7 fi

8 if state = RUN

9 serialize the acquired bundl e based on the number of RU, EU, WJ using FCFS
10 wait for a configured del ay

11 dountli queue of serialized bundles = 0

12 deliver the topnost serialized bundle through a master
13 renove the transmitted bundle fromthe queue

14 done

15 state « |DLE

16 fi

17 done

18 end

Figure A.14: Implementation of the OS-based FECTRL CFSM {ke modification at Line
12).

1 CFSM initialize state <« WAIT

2 begin

3 do forever

4 if state = WAIT

5 acquire a next symbolic instruction bundle through a master
6 state «— RUN

7 fi

8 if state = RUN

9 wait for a configured del ay

10 di spatch synbolic instructions fromthe bundl e based on R, E, Wattributes
11 state <« |IDLE

12 fi

13 if state = |DLE

14 bl ock until all dispatched symbolic instructions finished
15 state «— WAIT

16 fi

17 done

18 end

Figure A.15: Implementation of the OS-based BECTRL CFSM (ke modification at Line
5).

©oO~NOU A WNPE

©oO~NOUAWNRE

CFSM initialize state « |IDLE

begin
do forever
if state = IDLE
bl ocking wait for the connection opening request fromthe correspondi ng RU
state «— RUN
fi
if state = RUN
establish the read connection between the RU and the FI FO
wait for a configured del ay
acknow edge that the read connection is opened
state «— WAIT
fi
if state = WAIT
bl ock until close read connection request signal ed
close the read connection
state <« |IDLE
fi
done
end

Figure A.16: Implementation of the FICTRL Concurrent Fen8tate Machine.

CFSM initialize state « |IDLE

begin
do forever
if state = IDLE
bl ocking wait for the connection opening request fromthe correspondi ng W
state «— RUN
fi
if state = RUN
establish the wite connection between the WJ and the FI FO
wait for a configured del ay
acknow edge that the wite connection is opened
state «— WAIT
fi
if state = WAIT
bl ock until close wite connection request signaled
close the wite connection
state <« |IDLE
fi
done
end

Figure A.17: Implementation of the FOCTRL Concurrent Farfitate Machine.

©CO~NOTO_WNE

do forever

CFSM initialize state « |IDLE
begin

if state = IDLE
bl ocking wait until the next read connection is established
state <« HANDSHAKE

fi

if state = HANDSHAKE

bl ocki ng check for read to becone ready and register the data-size required

state <« STALL

fi

if state = STALL
non- bl ocki ng test on the anpunt of data in the FIFO

if

fi
if

fi
if

fi

configured for burst
if data-size > cached-size

bl ocking wait for (data-size - cached-size)
fi

not configured for burst
bl ocking wait for data-size in the FIFO

bus configured V dat a-si ze > cached-size
bl ocking cl ai mof the bus

state <« RUN

fi

if state = RUN

if

fi
if

fi
if

fi

configured for burst
if cached > data-size
get data-size data-units fromcached data
cached, data-size «— O
fi
if cached > 0
get cached data-units
data-size «— (dat a-si ze - cached)
cached «— 0
fi
if data-size >0
if burst-word > data-size
cached « (burst-word - data-size)
fi
dountil burst-word # O
get data-unit fromthe FIFO
wait for a configured delay unit
decrenent burst-word
done
data-size «— O
fi

not configured for burst

dountil data-size # 0
get data-unit fromthe FIFO
wait for a configured delay unit
decrenent data-size

done

configured bus A bus was cl ai ned
non bl ocki ng bus grant

signal room appeared in the FI FO
signal witten data ready
close the read connection

state « |DLE

Figure A.18: Implementation of the FIU Concurrent FinitatStMachine.

in the FIFO

©CO~NOTO_WNE

CFSM initialize state +« |IDLE

begin

do forever

if state = IDLE
if not configured for burst

bl ocking wait until the next wite connection is established

roomsize «— budget
fi
if configured for burst
bl ock until the buffering event appears
roomsize «— budget
if the roomsize required < burst-word
counter = (bust-word - roomsize)
dounti the roomsize required < burst-word
wait until counter time units el apses

if counter > (bust-word - roomsize)
counter = (bust-word - roomsize)

fi

if counter < (bust-word - roomsize)

decrenment counter
fi
if counter = 0
break
fi
done
fi
fi
state <« HANDSHAKE

if state = HANDSHAKE
if not configured for burst

bl ocking check for wite to beconme ready and register the roomsize required

fi
if configured for burst
bl ock until BUFFERI NG CFSM si gnal s
fi
state « STALL
fi
if state = STALL
bl ocking wait for roomsize in the FIFO
if bus configured
bl ocking cl ai mof the bus
fi
state «— RUN
fi
if state = RUN
if not configured for burst
dountl roomsize # 0
put data-unit to the FIFO
wait for a configured delay unit
decrement roomsize
done
if configured bus
non bl ocki ng bus grant
fi
signal data appeared in the FIFO
signal read data ready
close the wite connection
fi
if configured for burst
if burst-word > roomsize
dountil burst-word # roomsize
wait for a configured delay unit
decrement burst-word
done

Figure A.19: Implementation of the FOU CFSM (cont

. in Figr20).

66 fi

67 dountil burst-word # O

68 put data-unit fromthe FIFO
69 wait for a configured delay unit
70 decrement burst-word

71 done

72 if configured bus

73 non bl ocki ng bus grant

74 fi

75 roomsize «— O

76 signal data appeared in the FIFO
77 fi

78 state <« |IDLE

79 fi

80 done

81 end

82 # The BUFFERI NG i s an additional CFSMthread; exists only for the burst-bus!
83 BUFFERI NG initialize state +« |DLE

84 begin

85 do forever

86 if state = IDLE

87 non- bl ocki ng test on the anpunt of roomin the FIFO (for DOS)
88 bl ocking wait until the next wite connection is established
89 bl ocki ng check for wite to beconme ready and regi ster the roomsize required
90 state <« HANDSHAKE

91 fi

92 if state = HANDSHAKE

93 bl ock access for setting up budget

94 if requested roomfromRU > bur st - wor d

95 budget bur st -word

96 fi

97 if requested roomfromRU < burst-word

98 budget requested room from RU

99 fi

100 requested roomfromRU « (requested roomfrom
RU - budget)

101 unbl ock after setting up budget

102 if initialization # true

103 delay for a set-up del ay

104 fi

105 state « STALL

106 fi

107 if state = STALL

108 non- bl ocki ng test on the amount of roomin the FIFO
109 if (budget > roomtested) V

110 (budget > bur st - wor d)

111 signal to main CFSMthat buffering is done

112 bl ock until main CFSMsignals that enptying is done
113 fi

114 if (budget < roomtested) A

115 (budget < burst-word)

116 signal to main CFSMthat buffering is done

117 fi

118 state «— RUN

119 fi

120 if state = RUN

121 if requested roomfromRU # 0

122 state <« HANDSHAKE

123 fi

124 if requested roomfromRU = 0

125 signal data appeared in the FIFO

126 signal read data ready

127 close the wite connection

128 state «— |IDLE

129 fi

130 fi

131 done

132 end

Figure A.20: Continuation of the FOU Concurrent Finite 8tisiachine.

Index

1-on-1, 83
1D-IDCT, 42, 92
2D-IDCT, 42,91

abstract execution, 115

abstract instruction set, 65

Abstraction Pyramid, 5

all-in-hardware, 95, 102

all-in-software, 95, 96, 104

Analytical Exploration Methods, 7

analytical methods, 19

API, 23

application model component, 25

Application Programming Interface, 23

application representation, 26, 31

approximate-accuracy, 6

Arbiter, 65

arbiter, 63

Architecture Modeling, 117

artificial deadlock, 67

Asynchronous Inter-thread Communication
Channels, 54

Back-End Controller, 57
basic-block, 26

BD, 58

BDF, 10

BECTRL, 57
behavior-capturing capabilities, 32
Binding, 80, 83

Binding Step, 83
black-boxes, 7

Blocking Dispatcher, 58
blocking reads, 10

Boolean Data-Flow, 10
bounded, 10

budget, 31, 84

Budgeting, 84

Building, 80

bundles, 68

burst bus routing interfaces, 74
bus-claim, 50

bus-release, 50

cache-hit, 129

cache-miss, 129

Calibration, 89

calibration, 68, 84, 86

CDFG, 7, 23, 78,112

CDFSM, 11

Click, 20

Co-Designed Finite State Machine, 11
co-simulation, 16

Communicating Sequential Processes, 10
compile-time, 10

component interfaces, 52, 53
Concurrent Finite State Machines, 54
Concurrent FSM Models, 11
context-switching delay, 105

Control Data Flow Graph, 7, 23
Control Data-Flow Graph, 112
control data-flow graphs, 115

control point, 26

Control Trace, 25

control trace, 29, 56, 82, 129

Control Traces, 16

control-driven, 11

cost vs. performance, 75

142 Index
CSP, 10 FIFO-Output Controller, 62
CT, 29 FIFO-Output Unit, 63

cycle-accurate, 6
cycle-accurate simulations, 104
cyclo-static, 18

data-dependent, 27

data-driven, 11

Data-Flow combine STAte machine con-
trolled Reconfiguration, 18

Data-Flow combined STAte machine con-
trolled Reconfiguration, 10

Data-Flow Graphs, 10

Data-Flow Process Networks, 10

data-set, 56

data-structure, 125

DDF, 22

Depth First Traversal, 31, 33

Design Space Exploration, 4, 23, 80, 111,
117

detection of variants, 39, 117

deterministic, 10

DF*, 10, 18

DFG, 10, 24

Distributed Operating System, 58, 59

domain-specific, 104

DOS, 58,59, 71

DSE, 4, 19, 23, 111

elementary nodes, 7
Embedded MIPS, 98, 99
Entity-Relation, 48

ER, 48

EU, 58

event stream models, 20
event-driven, 10
Execute Unit, 58

expert level, 5
exploration-driven, 80
exploration-driven methodologies, 104

FECTRL, 56

FICTRL, 62

Field Programmable Gate Array, 86
FIFO, 10

FIFO-Input Controller, 62
FIFO-Input Unit, 63

First-In-First-Out, 10
FIU, 63

FOCTRL, 62

FOU, 63

FPGA, 13, 86
front-end controller, 56
FSM, 9, 22

General Purpose Platforms, 3

Global FIFO Memory, 64

globally-asynchronous, locally-synchronous,
10,11

GPP, 3, 104

Graphical User Interfaces, 3

GUI, 3

guru, 104

hardware description language, 80
hardware platforms, 12

hash-function, 30

HCDFG, 7

HDL, 20, 80

heterogeneous, 98

heterogeneous communication network, 75
heterogeneous multiprocessor, 75, 86
heterogeneous system, 75

Hierarchical Control Data Flow Graph, 7
high level language, 80

high level parallel language, 5

highway, 101

HLL, 20, 55, 80

horizontal refinement, 85

I/F, 60

IDF, 10, 17, 59

ILP, 95

information preservation, 35
input data set, 20, 29, 32
Instruction Set Simulation, 96
Instruction Set Simulators, 20
Integer Data Flow, 59

Integer Data Flow graph, 17
Integer Data-Flow, 10
Integration, 81

Inter Process Communication, 49

Index

143

inter process communication, 26
Inter-Process Communication, 62
interface, 60

intermediate representation, 26
interrupt delay, 105

Interrupt Service Routine, 105
interrupt-driven, 11

intra-process, 38

Intra-task, 18, 38, 115

Inverse Discrete Cosine Transform, 42
IP, 2

IPC, 49, 62

ISR, 105

ISS, 20, 96

Joint Picture Experts Group, 95
JPEG, 95

Kahn Process Network, 82
Kahn Process Networks, 10
KPN, 10, 16

LO,5

Level of approximate performance mod-
els, 6,115

Level of behavioral models, 5

Level of cycle-accurate models, 6

Level of specifications and requirements,
5

Level of synthesizable models, 6

many-on-many, 48, 58, 59, 70, 95, 105
many-on-one, 48, 58, 59
mapping, 79

mapping process, 14
mapping specification, 81
mapping steps, 79

mapping techniques, 79
mapping transformations, 79
Matching, 83, 84

Matching Step, 84, 96

MD5, 30

MESH, 21

Message Digest 5, 30
migration delay, 105

MILAN, 21

MIPS, 105

MoA, 21

MoC, 9

model of the applications, 14
Models, 14

Models of Architecture, 21
Models of Computation, 9
MPSoC, 86, 98

MTG, 18

MTG-DF*, 18
Multi-Granularity Metrics, 7
Multi-Thread Graph, 18

National Institute of Standards and Tech-
nology, 9

Network Calculus Theory, 7

Network-on-chip, 104

NIST, 9

NoC, 104

non-deterministic, 10

non-functional, 114

non-recurrent costs (prototyping, debug-
ging, re-design), 13

Non-Recurring Engineering, 4

non-timed, 114

NRE, 4

Object-Oriented Language, 11
one-on-many, 48

one-on-one, 48, 86, 91
one-to-one, 95

Operating System, 96
operating system, 104, 105
operating system model, 59

PA, 3

Pareto, 17, 109

parse tree, 113, 127

partial-order, 115

partially ordered, 33

PCB, 4

Peek Read Write Execute, 58
peek-RWE, 58

Performance Analysis of a System, 80
performance exploration, 37
Performance Test & Verification, 81
Performance/Cost Analysis, 14
Personal Assistant, 3

144 Index
PIC, 58 real-time systems, 11

Platforms, 12 reconfigurable in space, 13

PN, 10 reconfigurable in time, 13

PoC, 117 Refinement, 83

Point-to-Point, 10

point-to-point routing interfaces, 71

Porting, 80

principle of separating internal control from
function, 11

Printed Circuit Board, 4

process, 25

process merging, 42

Process Network, 10

process splitting, 42

process-level, 38

processor model, 55

processor with compile-time pipelining, 67,
68, 86, 91

processor with run-time pipelining, 69, 91

Producer-Consumer, 95, 98

Program Unit, 31

program unit, 56

programmable, 13

Programmable Interrupt Controllers, 58

programmable multi-processor, 70

Proof-of-Concept, 117

Ptolemy, 19

PtP, 10, 77

PU, 56

PULL, 64

pull, 63, 64, 72

Pull Channel, 64

PUSH, 64

push, 63, 64, 72

Push Channel, 64

QoS, 3,4
Quality-of-Service, 3, 4

Read Interface, 49

Read Interrupt Controller, 58

read network interface, 72

Read Unit, 57

Read-Write Blocking FIFO, 58
Real-Time, 4

Real-time Object Oriented Modeling, 11

Refining Step, 85, 91
Register Transfer Bus Cycles, 6
rendezvous, 10
Representations, 14

RIC, 58

RIF, 49, 58, 60, 72
ROOM, 11
ROOM-charts, 11

router interface model, 62
RT, 4

RTL, 6

RU, 57

running time, 67

RWB FIFO, 58

scheduling delay, 105

SDF, 10, 22,77

SDK, 80

SEAS, 21

separation of concerns, 32, 76
Sequence-Parallel, 31

Sesame, 17, 77

shared bus routing interfaces, 74
Sl, 16, 23, 56

Signal Processing Worksystem, 22
Simulation-based Exploration, 11
Simulation-based Exploration Methods, 7
sink, 84

SIOC, 58

SIT, 25,112

SoC, 1, 20, 80

software development kit, 80
software pipelining, 93

software platforms, 12

source, 84

source-to-source, 38

SP, 16, 25, 55,111

SP approach, 15

SP Behavior, 29

SP Structure, 28

Spade, 16, 76

SPS, 60

Index

145

SPU, 49

SPU core, 60

SPW, 22

State-charts, 11

static and dynamic data-dependent control,
27

StepNP, 20

storage, 51

stream-based applications, 13

streaming, 11

strictly ordered, 33

super-scalar, 49

Symbolic Instruction Operands Crossbar,
58

Symbolic Instruction Trace, 25, 112

Symbolic Instructions, 16, 23

Symbolic Introduction, 16

Symbolic Program, 25, 55, 115

symbolic program, 18, 55, 82, 86, 91, 107

Symbolic Program approach, 15

Symbolic Program Stream, 60

Symbolic Program Unit Core, 60

Symbolic Programs, 16, 24,111

symbolic programs, 79

Synchronous Data-Flow, 10

synchronous data-flow, 57

Synchronous Inter-thread Communication
Channels, 54

synchronous message passing, 10

synthesis Y-chart, 9

synthesis-driven, 80

synthesis-driven methodologies, 104

system-level, 37

timing model, 68

TL, 11

TLM, 2,12, 86, 113
Trace-Driven, 21
trace-driven approach, 107
Trace-Driven Execution, 16
Transaction Level Modeling, 113, 115
Transaction-Level Model, 12
Transformations, 14
Transforming, 83, 85
Transforming Step, 85, 86
Translation, 80
tree-traversal, 127

unbounded, 10

Variants, 39

vertical refinement, 85

Very Long Instruction Word, 49
virtual processor representation, 17
virtual processors, 77

VLIW, 49

Wasabi, 95, 98

WIC, 58

WIF, 49, 58, 60, 72

worst case execution time, 36, 84
Write Interface, 49

Write Interrupt Controller, 58
write network interface, 72

Write Unit, 57

WU, 57

Y-chart, 14, 23, 51, 107, 113, 116

System-level Performance Analysis and Desigr-chart approach, 7, 14

space Exploration, 16
system-level simulations, 104
system-model, 81

Task-Level, 21
Task-level, 18, 38, 115
TD, 77,116

TDE, 16

TDU, 77

Temporal Logic, 11
Threads of Execution, 54
timed, 114

Y-chart model, 8, 13
Yacc, 38

Samenvatting

Moderne embedded systemen zijn ontworpen om met veel caerglen reken-intensievere
applicaties om te kunnen gaan dan 10 jaar geleden. Dit koorhemnelijk door de vooruit-
gang op het gebied van geavanceerde signal-verwerkingsdg@ide ontwikkelingen van
geavanceerde applicaties. Door een toename in het aggabdverwerkingselementen die
geintegreerd kunnen worden op &€én IC maakt het systeeshdntwerp uiterst complex en
uitdagend.

Deze ontwerptaak wordt bereikt door nieuwe ontwerp-pgrads, geaccumuleerde kennis
en de expertise op het gebied van parallel-computing. Uje@Oriented Technologies
geiévolueerde onwerpparadigmas worden steeds beter systden level verkenning en on-
werpmethodologien te ondersteunen. Even belangrijk, fiog@pplicaties en architecturen
en de vertaling van taken naar parallele architecturenvapsterkt door de solide en rijke
methoden die in de laatste twee decennia door parallel-atngpkringen waren onderzocht
en voorgesteld.

Parallele computing vindt dus eigen weg uit de wetenscHalkgapplicatie domeinen en
gaat verder naar de andere domeinen, onder andere multierediraadloze) communicatie
domeinen. In deze domeinen, onder parallel computing systerdt bedoeld een hetero-
gene systeem wiens onderdelen zijn communicatie eenheatenerschillende typen and
meestal gedistribueerde geheugen eenheden. Een platdorgidenlijk alles zijn: van mul-
tiprocessoren met taak-teogewijd processoren en eenvijdgeommunicatie netwerk, tot
een (semi-) programmeerbare multiprocessor die meerdecegsen in parallel kan draaien
door het gebruik van beide interleaving en overlapping.

Ondanks dat de mogelijkheden voor het ontwerpen van de @x@ph geavanceerde embed-
ded systeem platformen zeer groot zijn, een passende nudtiggeldie voldoet aan alle door
de markt gesteld eisen is nog niet naar voren gekomen. Dategden dat het specificaties
opstellen, onderzoeken en ontwerpen van de applicatigpradessor systeem platformen
gebaseerd op de gebruikers behoeftes is nog altijd quattijsbeveelheid werk een kostbaar
proces dat moet ingezet worden.

Ons antwoord op de bovengenoemde uitdagingen is de Archeaka aanpak beinvioedt

148 Index

door de 'Abstratie pyramide’ en Y-chart. Het hoofd doel vaszel aanpak is om de per-
formance analyse te ondersteunen door de executie magedim parallel (streaming) ap-
plicaties op candidate multiprocessor architecturen.eCaanpak heeft drie kernelementen:
(1) representatie van de applicatie, (2) platform - gehasebibliotheek van de (architec-
ture) componenten, en (3) een mapping methodologie. SymBodgram representatie dat
was geiintroduceerd door het onderzoek gepresenteeitpnogfschrift is een brug tussen
de twee werelden, die van de architecten en die van de orgvgerpit Proefschrift brengt
abstractie van functionele details maar toch zorgt voorble¢étoud van andere elementen
zoals communicatie, computatie, control en dependendeshar architectuur represen-
tatie ondersteunt het modelleren van brede scala van aysieghitecturen (bij voorbeeld
all-in-hardware, all-in-software, hybrid multiprocesswith dedicated network, shared-bus,
or highway, burst-bus, or hybrid network). Ten slotte, omagping methodologie werkt met
alle bovengenoemde representaties en toch vertaalt apel&ymbolic Programs tot Archer
architectuur executie threads. Het waardevol om te veremadidit deze transfromaties lijken
op de stappen dat de designers en de ontwerpers nemen inc@gspk@n mapping van hun
applicatie specificaties op de echte-wereld architectud@svas aangetoond door een paar
voorbeelden waar de verschillende digitale en beeld véingistandaarden op de verschil-
lende Multi-Processor (MP) Systems-on-Chip (SoC) zowegéwijde (application specific)
als programmeerbare (met embedded OS) architecturesgiijmpiementeerd.

Curriculum Vitae

Vladimir DobrosavZivkovi¢ was born on October 18, 1970 in Aleksinac, Serbia (Federal
Republic of Yugoslavia).

In 1989 he received his high school diploma at The Gymnasiuktedhematics and Natural
Sciences “Svetozar Markovic, in Ni§, Serbia (Federaluéip of Yugoslavia).

Between years of 1989 and 1990 he served a mandatory sefvibe ugoslav People’s
Army.

In October 1990 he started his studies in the Faculty of Edeat Engineering at the Univer-
sity of Ni§, Serbia.

In November 1995, Vladimir received his Dipl.Ing. (GradehEngineer) degree in Electron-
ics and Telecommunications from the Faculty of ElectromgiBeering at the University of
NiS.

In January 1996, he commenced post graduate studies. Fragntill2000, VIadimir took
part in a Technology Innovation Projects run by the Serbianisity of Science and Tech-
nology. These projects were in the industrial control ant@mation and data acquisition
fields.

During his post graduate studies, he worked at the sameyeasib Research and Teaching
Assistant.

He received his M.Sc. (Magistar) degree from the Facultylet&onic Engineering at the
University of Ni5 in May 2000 after successfully defendimg master thesis titled "Graphical
Functions in Real Time Operating Systems with Rigid Time itations”.

In August 2000, he joined the Leiden Embedded Research C@ERC) which is a part
of the Leiden Institute of Advanced Computer Science (LIA@SLeiden University, the
Netherlands, where he was appointed to the post of Reseasibtént.

Starting from March 2001 till June 2004, he was also a guasstareher at Philips Research
(Natlab) Eindhoven where he participated in projects ruthieyEmbedded Systems Group.

He was involved in thed\r cher project, a Philips Semiconductors (now NXP) sponsored

150 Index

project, which deals with ARCHitecture ExploRation of Erdded Multiprocessor Systems.
As a member of thé\r cher project he conducted research in the context of application
representations for stream-oriented media and DSP afiplisamodeling of the the parallel
multiprocessor architectures, and mapping the former thadater. In particular, he worked
on replacing abstract symbolic instruction trace methoills symbolic programs and im-
proving abstract and system-level architecture modelds fdsearch work ended in June
2004 and the results are documented in this Ph.D. thesis.

In June 2004, Vladimir became Principal Embedded Systeninérgin Irdeto (formerly
Irdeto Access) Hoofddorp, the Netherlands, a Conditioradess company. He worked on
designing and developing Smartcard (DVB) and SoftclieRiT{{) products, for which he
was using advanced applied cryptography, code-prote@swell as software and hardware
tools and standards.

In February 2008, Vladimir joined IBM Netherlands, as an &sdvy Software Engineer and
Event Source Architect, as a part of the IBM Software TivaloGp.

