

Random walks in dynamic random environments Avena, L.

Citation

Avena, L. (2010, October 26). *Random walks in dynamic random environments*. Retrieved from https://hdl.handle.net/1887/16072

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/16072

Note: To cite this publication please use the final published version (if applicable).

Random walks in dynamic random environments

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,
op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties
te verdedigen op dinsdag 26 oktober 2010

door

klokke 16:15 uur

Luca Avena

geboren te Rome in 1981 Samenstelling van de promotiecommissie:

Promotor: prof. dr. W.Th.F. den Hollander (MI, Universiteit Leiden)

Overige leden: prof. dr. F. Comets (Université Paris 7)

prof. dr. F.M. Dekking (TU Delft)

prof. dr. A.C.D. van Enter (Rijksuniversiteit Groningen)

prof. dr. F. Redig (Radboud Universiteit Nijmegen)

prof. dr. P. Stevenhagen (MI, Universiteit Leiden)

prof. dr. E. Verbitskiy (MI, Universiteit Leiden)

Random walks in dynamic random environments

Luca Avena

THOMAS STIELTJES INSTITUTE FOR MATHEMATICS

Typeset using LaTeX

Printed by Ipskamp Drukkers, Enschede.

Cover design by Dmitry Nadezhkin.

Permission to use the picture of the simulation of the random walk has been kindly granted by SigBlips, www.SigBlips.com.

Contents

P	refac	e		ix	
1	1 Introduction: Random walks in random environments (RWRE)				
	1.1	Static	RE	1	
		1.1.1	One dimension	2	
			1.1.1.1 Ergodic behavior	2	
			1.1.1.2 Scaling limits	3	
			1.1.1.3 Large deviations	4	
			1.1.1.4 An example	5	
		1.1.2	Higher dimensions	7	
	1.2	Dynar	mic RE	10	
		1.2.1	Early work	10	
		1.2.2	Space-time i.i.d. RE	11	
		1.2.3	Time-dependent RE	12	
		1.2.4	Space-time mixing RE	12	
	1.3	RW or	n an Interacting Particle System (IPS)	13	
		1.3.1	IPS	13	
			1.3.1.1 Definition	13	
			1.3.1.2 Examples	14	

Contents vi

		1.3.2	RW on IPS	16
	1.4	Relate	ed models	17
2	Law	of lar	ge numbers for a class of RW in dynamic RE	19
	2.1	Introd	uction and main result	20
		2.1.1	Model	20
		2.1.2	Cone-mixing and law of large numbers	21
		2.1.3	Global speed for small local drifts	22
		2.1.4	Discussion and outline	24
	2.2	Proof	of Theorem 2.2	25
		2.2.1	Space-time embedding	26
		2.2.2	Adding time lapses	27
		2.2.3	Regeneration times	28
		2.2.4	Gaps between regeneration times	30
		2.2.5	A coupling property for random sequences	31
		2.2.6	LLN for Y	32
		2.2.7	From discrete to continuous time	35
		2.2.8	Remarks on the cone-mixing assumption	37
	2.3	Series	expansion for $M < \epsilon$	38
		2.3.1	Definition of the environment process	38
		2.3.2	Unique ergodic equilibrium measure for the environment process .	39
			2.3.2.1 Decomposition of the generator of the environment process	40
			2.3.2.2 Expansion of the equilibrium measure of the environment	
			process	44
		2.3.3	Expansion of the global speed	46
	2.4	Exam	ples of cone-mixing	48
		2.4.1	Spin-flip systems in the regime $M < \epsilon$	48

vii

		2.4.2	Attractive spin-flip dynamics	49
		2.4.3	Space-time Gibbs measures	50
	2.5	Indepe	endent spin-flips	50
3	Ann	nealed	central limit theorem for RW in mixing dynamic RE	53
	3.1	Introd	uction and main result	53
	3.2	Proof	of Theorem 3.2	55
		3.2.1	A chain with complete connections	55
		3.2.2	Invariance principle for the chain with complete connections	60
		3.2.3	Invariance principle for the random walk	61
		3.2.4	Examples of mixing dynamic RE	63
	3.3	CLT in	n the perturbative regime	64
4	T	rge deviation principle for one-dimensional RW in dynamic RE: at- ctive spin-flips and simple symmetric exclusion 67		
4	•	_		67
4	•	tive sp		
4	trac	tive sp	oin-flips and simple symmetric exclusion	68
4	trac	etive sp	oin-flips and simple symmetric exclusion uction and main results	68 68
4	trac	Introd 4.1.1 4.1.2	bin-flips and simple symmetric exclusion uction and main results	68 68 69
'4	trac	Introd 4.1.1 4.1.2	bin-flips and simple symmetric exclusion uction and main results	68 68 69
'	trac	Introd 4.1.1 4.1.2 4.1.3	Coin-flips and simple symmetric exclusion The	68 68 69 72 73
'	trac 4.1	Introd 4.1.1 4.1.2 4.1.3	coin-flips and simple symmetric exclusion uction and main results	68 68 69 72 73 76
'	trac 4.1	Introd 4.1.1 4.1.2 4.1.3 4.1.4 Proof	coin-flips and simple symmetric exclusion uction and main results	68 68 69 72 73 76
'	trac 4.1	Introd 4.1.1 4.1.2 4.1.3 4.1.4 Proof 4.2.1	coin-flips and simple symmetric exclusion uction and main results	68 68 69 72 73 76 76 79
'3	trac 4.1	Etive sp. Introd 4.1.1 4.1.2 4.1.3 4.1.4 Proof 4.2.1 4.2.2 4.2.3	coin-flips and simple symmetric exclusion uction and main results	68 68 69 72 73 76 76 79 80
	4.1 4.2	Etive sp. Introd 4.1.1 4.1.2 4.1.3 4.1.4 Proof 4.2.1 4.2.2 4.2.3	bin-flips and simple symmetric exclusion uction and main results	68 68 69 72 73 76 76 79 80 82

Contents viii

		4.3.3	A quenched symmetry relation	84
	4.4	Proof	of Theorem 4.4	89
		4.4.1	Traffic jams	89
		4.4.2	Slow-down	92
5		of lar	ge numbers for one-dimensional transient RW on the excluses	97
	5.1	Introd	uction and result 9	97
		5.1.1	Slow-mixing REs and the exclusion process	97
		5.1.2	Model and main theorem	98
	5.2	Proof	of Theorem 5.1	98
		5.2.1	Coupling and minimal walker	99
		5.2.2	Graphical representation: symmetric exclusion as an interchange process	00
		5.2.3	Marked agents set	01
		5.2.4	Right walker and a sub-additivity argument	03
		5.2.5	LLN	05
	5.3	Conclu	nding remarks	07
Bi	bliog	raphy	10	09
		5- ~PJ		, ,
Sa	men	vatting	g 11	17
A	cknov	wledge	ments 11	19
Cı	urric	ulum V	Vitae 12	20

Preface

In the past forty years, models of Random Walks in Random Environments (RWREs) have been intensively studied by the physics and the mathematics community, giving rise to an important and still lively research area that is part of the field of disordered systems. RWREs on \mathbb{Z}^d are Random Walks (RWs) evolving according to a random transition kernel, i.e., their transition probabilities depend on a random field or a random process ξ on \mathbb{Z}^d called Random Environment (RE). What makes these models interesting is that, depending on the RE, several unusual phenomena arise, such as sub-diffusive behavior, sub-exponential decay of probabilities of large deviations, and trapping effects. The REs can be divided into two main classes: static and dynamic. We refer to static RE if ξ is chosen at random at time zero and is kept fixed throughout the time evolution of the RW, while we refer to dynamic RE when ξ changes in time according to some stochastic dynamics. For static RE, in one dimension the picture is fairly well understood: recurrence criteria, laws of large numbers, invariance principles and refined large deviation estimates have been obtained in a series of papers. In higher dimensions many results have been obtained as well, but still many questions remain open. In dynamic RE the state of the art is poorer, even in one dimension. In this thesis we will focus on a class of RWs in dynamic REs constituted by interacting particle systems. The analysis of these models leads us to derive new results and to formulate challenging questions for the future.

The thesis is organized as follows. In Chapter 1 we review what is known in the literature, both for static and dynamic RE, and we introduce the class of models we are interested in. In Chapter 2 we prove a strong law of large numbers under a certain space-time mixing condition on the RE, both in one and in higher dimensions. Furthermore, by using a perturbation argument, we give a series expansion in the size of the drift for the asymptotic speed of RWs with small drifts in highly disordered REs. Chapter 3 focuses on the scaling limits of such processes. By adapting to our context a proof of Comets and Zeitouni [36] for multi-dimensional RWs in static REs, we show that, under a certain space-time mixing condition, an annealed invariance principle holds in any dimension. We further give an alternative proof of this invariance principle in the context of highly disordered REs under small drift assumptions. Chapter 4 deals with the large deviation analysis for the empirical speed of one-dimensional RWs in dynamic REs. We prove a quenched and an annealed large deviation principle and we exhibit some qualitative properties of the associated rate functions. In particular, we give examples of fast

<u>Preface</u> x

and slow-mixing REs for which, respectively, exponential and sub-exponential decay of large deviation probabilities occur. In Chapter 5 we prove a law of large numbers for transient RWs on top of a simple symmetric exclusion process and we conclude with a brief discussion about possible extensions to more general slow-mixing REs, which are part of an ongoing project.