

Cell-cell interactions in the gastrointestinal tumour-microenvironment Hawinkels, L.J.A.C.

Citation

Hawinkels, L. J. A. C. (2009, January 27). *Cell-cell interactions in the gastrointestinal tumour-microenvironment*. Retrieved from https://hdl.handle.net/1887/13432

Version: Corrected Publisher's Version

License: License agreement concerning inclusion of doctoral thesis in the

Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/13432

Note: To cite this publication please use the final published version (if applicable).

Outline and aim of the thesis

In normal tissue homeostasis as well as in pathological conditions cells are influenced by surrounding cells both via direct cell-cell contact and soluble factors. Interactions of malignant cells with the tumour-microenvironment have been shown to be very important in the progression of carcinomas. However, the tumour-microenvironment is very complex and although animal models provide the complexity of the different cell types in a living animal, they do not necessarily reflect of the human tumour-microenvironment due to interspecies differences in for example growth factors and their receptors. Therefore, when studying cancer cells one should preferentially take their human tumour-microenvironment into account. This thesis evaluates cell-cell interactions by using various *in vitro* 3-dimensional cell culture models. After analysis of the human tissue by determination of protein expression levels and cellular localisation by immunohistochemistry, *in vitro* human cell models, closely resembling the *in vivo* situation, are developed. The aim is to elucidate the interaction between colon cancer cells with two prominent cell types in the tumour-microenvironment: angiogenic endothelial cells and myofibroblasts.

Chapter 3 describes the expression and cellular localization of TGF- $\beta1$ in gastric cancer, focusing on the active TGF- $\beta1$ molecule, as this is presumably the key mediator of myofibroblast differentiation. In **chapter 4** these observations are confirmed in a larger series colorectal cancer samples and a new method to quantify the myofibroblast content in these samples is described. These chapters reveal that enhanced active TGF- β levels are clinically important and correlate to the presence of myofibroblasts. Subsequent studies described in **chapter 5** evaluate the activation mechanism of TGF- β and illustrates that the interaction between tumour cells and fibroblasts leads to myofibroblast differentiation and subsequent upregulation of MMPs in both tumour cells and myofibroblasts, reflecting a double paracrine tumour-promoting mechanism.

The contribution of myofibroblast and neutrophil derived MMPs to the initiation of the angiogenic switch by liberation of VEGF from colon cancer extracellular matrix, is described in **chapter 6**, showing a key role for neutrophil-derived MMP-9 in the initiation of the angiogenic switch. Besides MMP-9 also endothelial MMP-7 contributes the angiogenesis as described in **chapter 7**. To be able to quantify MMP-7 activity levels, **chapter 8** describes the development of a MMP-7 bioactivity assay. Furthermore the contribution of cathepsin S to the angiogenic process, by liberating pro-angiogenic molecules for colon cancer extracellular matrix and a new method for the identification of specific inhibiting peptides using phage display is described in **chapter 9**. Finally, **chapter 10** describes the role of the TGF- β coreceptor Endoglin as an additional factor in colorectal cancer angiogenesis. This receptor is

mainly expressed by angiogenic endothelial cells and has been implicated in the proangiogenic effects of TGF- β . The role of MMPs in the cleavage of this membrane receptor into soluble Endoglin is also investigated. The different studies in this thesis are summarized and discussed in **chapter 11.**