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Abbreviations used frequently
HPV, human papilloma viruses; hrHPV, high-risk human papilloma viruses; KCs, keratinocytes; 
PRRs, pattern recognition receptors; TLRs, Toll-like receptors; NLRs, Nod-like receptors; 
RLRs, RIG-I-like receptors; NF-κB, nuclear factor kappa-light-chain-enhancer of activated 
B cells; TRAFs, TNF-receptor-associated factors; NEMO, NF-κB essential modulator; DUBs, 
deubiquitinating enzymes; UCHL1, ubiquitin carboxyl-terminal hydrolase L1; APCs, antigen-
presenting cells; Tregs, regulatory T cells; PD-1, programmed death 1; B7-H1/PD-L1, B7 
homolog 1/ programmed cell death 1 ligand 1; B7-DC/PD-L2, B7 homolog DC/ programmed 
cell death 1 ligand 2; CXCR7, C-X-C chemokine receptor type 7; EGFR, epidermal growth 
factor receptor. 
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1 Human papilloma viruses

Human papilloma viruses (HPV) are non-enveloped double stranded DNA viruses (7-8 
kb) that infect human skin and mucosa and are the causative agents of mostly benign 
proliferative lesions such as common (genital) warts 1. However, persistent infection 
with ‘high-risk’ HPV subtypes is associated with the development of anogenital 
malignancies such as cervical, vulvar, penile and anal cancer, and also a growing subset 
of oropharyngeal cancers 2, 3. The association is the strongest for cervical cancer as 
illustrated by the finding that HPV DNA can be detected in over 99% of cervical cancers 
4. Notably, cervical cancer is the second most common cancer in women worldwide, 
with an estimated death toll of almost 300,000 women annually, mostly in developing 
countries 5.

More than 180 types of HPV are known and 15 are thought to be high-risk and 
tumorigenic 6. HPV16 is the most common high-risk type, and responsible for about 
half of all tumors; HPV18 accounts for another 10-15%; and HPV types 31, 33, 45, 52, 
and 58 account for an estimated 2-5% each 7. 

1.1 Squamous epithelia

The surface of the human body that is exposed to the outside milieu is largely covered 
by stratified squamous epithelia, which are built up of multiple layers of keratinocytes 
(KCs) to create a robust physical barrier. Examples of such epithelia are the skin and the 
lining of the oropharyngeal and the lower female reproductive tracts. Tightly regulated 
division of the undifferentiated KCs in the basal layers results in the continuous 
production of new cells that gradually differentiate as they move to the upper layers 
in the epithelium, where they can serve as replacement for the cells that are lost from 
the epithelial surface due to wear and tear. The apical layers are not only exposed to 
physical stress, but also to a great variety of infectious pathogens, including bacteria 
and viruses. Similarly, the cells in the basal layers can be targeted by pathogens through 
wounds and micro-abrasions. 

1.2 The viral life cycle

HPV infects the keratinocytes in the basal layer of the epidermis and mucosal epithelium, 
and the viral life cycle is tightly regulated through the differentiation program of 
keratinocytes 3. Following infection and uncoating, the virus genome is  maintained as 
episomes at a low copy number  in the basal cells of the epithelium, where proliferation-
inducing early genes (including E6 and E7) are expressed, resulting in lateral expansion 
of the infected cells. Later, the suprabasal layers of epithelium support viral replication 
where hundreds to thousands HPV genomes are present within a single cell. The L1 and 
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L2 capsid proteins are  expressed in the most superficial layers of the epithelium where 
viral assembly takes place, and finally new infectious viral particles are released 1, 3.

1.3 Malignant transformation

For high-risk HPV infections, E6 and E7 effectively block the negative regulators of the 
cell cycle, whereby the cells remain active in cell cycle progression with the cessation 
of differentiation and apoptosis. As such, the infected cells acquire genomic instability 
and genetic alterations, ultimately driving malignant transformation of an infected cell 
into an invasive cancer cell. 

E6 and E7 start oncogenesis by inactivating tumor suppressors. The tumor suppressor 
protein E6 targets TP53 for degradation via the ubiquitin proteasome pathway, 
preventing apoptosis and enabling potentially transformed cells to replicate 8. The 
tumor suppressor protein E7 contributes to oncogenesis through its interaction with the 
retinoblastoma tumor suppressor family members RB1, RBL1 and RBL2 and targets 
them for degradation 9.

2 Innate Immunity

The mammalian innate immune system provides a first line of defense against microbial 
attack through antimicrobial factors, phagocytosis and the induction of inflammation. 
Mucus covers the internal surface of the anogenital tracts and functions to trap infectious 
microorganisms and pollutants. Mucus contains mucins and various other microbicidal 
molecules, including antimicrobial peptides (calprotectin, lysozyme, lactoferrin), 
secretory leukoprotease inhibitor, and human β-defensins), immunoglobulins, and 
complement factors that directly bind to and kill microorganisms before they reach the 
host epithelial cell layer. 

Invading viruses and microbes contain pathogen-associated molecular patterns 
(PAMPs) that are recognized by the host’s pattern recognition receptors (PRRs).  Two 
main classes of PRRs have been described in mammalian cells: 1) membrane-bound 
receptors, such as Toll-like receptors (TLRs) and C-type lectin receptors (CLRs), and 
2) cytoplasmic sensors, including NOD-like receptors (NLRs), pyrin and HIN domain-
containing (PYHIN) family members, RIG-I-like receptors (RLRs) and an increasing 
range of cytosolic nucleic acid sensors 10. All of these receptors activate conserved 
signaling cascades that lead to activation of NF-κB via the canonical route, while RLRs 
and some TLRs activate interferon regulatory factors (IRFs) that together with NF-κB 
induce the production of type I interferons (IFN) and other effector molecules. Other 
PRRs initiate the assembly of cytoplasmic signaling complexes, termed inflammasomes, 
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which activate inflammatory caspases and cause maturation and secretion of IL-1β and 
IL-8. Each member of the PRR family recognizes distinct PAMPs. TLRs recognize 
a diverse array of PAMPs including bacterial lipoproteins, lipopolysaccharide (LPS), 
flagellin, peptidoglycan, nucleic acids as well as viral glycoproteins and nucleic acids, 
such as double-stranded RNA (dsRNA), uncapped single-stranded RNA (ssRNA) and 
viral DNA. NLRs recognize peptidoglycan fragments and RNA while RLRs comprising 
retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated protein 5 
(MDA5) and LGP2 (also known as DHX58) detect several different ssRNA and dsRNA 
viruses 10. 

2.1 Expression of pattern recognition receptors in keratinocytes

KCs are equipped with sensors for pathogens, including TLRs, protein kinase R 
(EIF2AK2), and the RNA helicases RIG-I (DDX58) and MDA5 (IFIH1) which enable 
them to generate pro-inflammatory and anti-viral signals in response to PAMPs. Of 
these receptors, TLR1, 2, 4, 5, 6 and 10 are expressed at the cell surface and specialized 
in the detection of macromolecules that constitute the building blocks of pathogenic 
micro-organisms, while TLR3, 7, 8 and 9 protrude into the lumen of intracellular 
vesicles and detect nucleic acids of foreign origin 11. RIG-I and MDA5 are cytosolic 
sensors 12. The vast majority of published studies have shown that KCs express TLR 1, 
2, 3, 5, 6, but lack TLR 7 and 8, while different conclusions were reached with respect to 
the expression of TLR4 and 9 in these cells 13-19.  In KCs, activation of these PRRs leads  
to direct NF-kappa-B activation and results in the upregulation of pro-inflammatory 
cytokines including IL-8, CCL2, CCL20, CCL27, and/or activation of type I interferon 
(IFN) response genes including transcription factors IRF3 and IRF7 regulating the 
production of antiviral cytokines 16. 

2.2 Ubiquitins regulate cell signaling

Post-translational modification of proteins by ubiquitination regulates many cellular 
processes including the generation of innate and adaptive immune responses to 
pathogens20, 21.  Ubiquitin is a highly-conserved 76-amino-acid polypeptide that can be 
covalently attached to cellular proteins through an enzymatic cascade involving three 
classes of enzyme termed E1, E2 and E3.  E1 enzyme activates ubiquitin. Activated 
ubiquitin is transferred to an E2 ubiquitin-conjugating enzyme. The E2 enzyme-
ubiquitin complex interacts with an E3 ubiquitin ligase that facilitates transfer of the 
ubiquitin to a lysine (K) residue on substrate protein. Ubiquitination can be reversed by 
deubiquitinating enzymes (DUBs). In humans, there are two E1 enzymes, about 50 E2 
enzymes and 600 E3 enzymes and about 100 DUBs.
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A protein can be modified on one lysine residue with a single ubiquitin 
(monoubiquitination) or with a chain of ubiquitin (polyubiquitination). Lysine 48 (K48)-
linked polyubiquitination usually targets protein for proteosomal degradation, whereas 
K63-linked polyubiquitination is involved in activating proteins in signal transduction 
cascades (Figure 1). 

Figure 1 | The Ubiquitin-Proteasome System (UPS). First, ubiquitin activating enzyme, 
E1, forms a thioester linkage with the C-terminal glycine residue of ubiquitin (Ub) in an ATP-
dependent manner. Ub is then transferred to ubiquitin conjugating enzyme, E2. Finally, E2 enzyme 
binds to ubiquitin ligase enzyme, E3, and the complex mediates isopeptide linkage formation 
between carboxy terminal glycine residue of Ub and lysine  ε-amino group of the substrate. 
Repetition of this catalytic cycle leads to polyubiquitination of the substrate. Ub primarily binds 
to the substrate either through its N-terminal or other internal lysine residues (K6, K11, K27, K29, 
K33, K48 and K63). While K48 polyubiquitination marks the protein for proteasomal degradation, 
K63 polyubiquitination activates the protein leading to the activation of signaling pathways. 
Deubiquitinating enzymes (DUBs) remove Ub from polyubiquitinated proteins and recycle Ub 
during protein degradation (Adapted from S.H. van der Burg, unpublished). 

However, pathogens have evolved many ways to exploit the ubiquitination system of 
the hosts. A common evasion strategy for viruses is to target key immune proteins 
for degradation. By degrading host’s adaptor and signaling molecules, viruses disable 
many immune response pathways including the production of interferons and other 
innate host defense mechanisms. Additionally, viruses inhibit the ligation of ubiquitin 
or remove ubiquitin from host cell proteins to favor propagation and pathogenesis 
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of viruses. For instance, the NS5 proteins of dengue virus inhibits IFN signaling 
by selective ligation of K48-linked polyubiquitin chains in STAT2, thus promoting 
the degradation of STAT2, an essential component of ISGF3 complex required for 
ISG induction 22, 23. Moreover, Epstein-Barr virus encoded BPLF1 protein acts as a 
deubiquitinase and removes ubiquitin from TRAF6 to inhibit NF-κB signaling during 
lytic infection resulting in enhanced lytic replication of the virus 24. 

2.3 Regulation of innate immunity by ubiquitination

TLR pathways use two main adaptor proteins: myeloid differentiation primary response 
protein 88 (MYD88) and TIR-domain-containing adapter-inducing interferon-β (TRIF). 
MYD88-dependent pathways are used by all TLRs except TLR3 while TRIF-dependent 
pathways transmit signals from TLR3 and TLR4. Downstream of both MYD88 and 
TRIF-dependent pathways, ubiquitination plays critical roles in the activation of NF-
κB and the mitogen-activated protein kinase (MAPK) signaling cascades. Following 
activation of MYD88-dependent pathways, MYD88 recruits kinases of the IL-1 
receptor-associated kinase (IRAK) family, which then recruit TNF-receptor-associated 
factor 6 (TRAF6), a ubiquitin E3 ligase. Together with a ubiquitin E2 complex containing 
UBC13 and UEV1A, TRAF6 catalyze the synthesis of K63-linked polyubiquitin 
chains (Figure 3). These polyubiquitin chains bind to TAK1-binding protein 2 (TAB2) 
and TAB3 leading to the activation of the TGF-β-activated kinase 1 (TAK1) and the 
downstream MAPK cascade. K63-linked polyubiquitin also bind to the NF-κB essential 
modulator (NEMO), a regulatory subunit of the IκB kinase (IKK) which contains the 
IKKα and IKKβ catalytic subunits. Binding of K63-linked polyubiquitin chains to both 
the NEMO and TAK1 complexes facilitates the phosphorylation of IKKβ by TAK1, 
leading to the activation of IKK. IKK phosphorylates NF-κB inhibitor (IκB) proteins 
which are then recognized by the SCF-βTrCP ubiquitin E3 ligase complex targeting the 
IκB for K48-linked polyubiquitination and subsequent degradation by the proteasome. 
This allows NF-κB to enter the nucleus to turn on the target genes 20 (Figure 2).

In TRIF-dependent pathways downstream of TLR3, receptor-interacting protein 1 
(RIP1) undergoes K63-linked polyubiquitination by ubiquitin E3 ligases such as TRAF6. 
RIP1 polyubiquitination recruits TAK1 and NEMO, leading to the activation of NF-κB. 
TRIF also recruits another ubiquitin E3 ligase, TRAF3, which activates the kinases 
TBK1 and IKKε, leading to interferon responsive factor 3 (IRF3) phosphorylation and 
type I IFN production. Additionally in IFN-induction pathway, TRAF3 and TRAF6 are 
recruited, TRAF3 undergoes K63-linked polyubiquitination leading to IFN induction 
by unknown mechanisms 20.
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Figure 2 | Ubiquitination-mediated signaling in TLR pathways. TLR stimulation recruits 
MYD88, IRAK4, and IRAK1 further activating TRAF6. Activated TRAF6 synthesizes K63 
polyubiquitin chains which bind either to TAK1 complex leading to the activation of MAPK 
pathway or to IKK complex through K63 polyubiquitination of NEMO resulting in the activation 
of IKK complex. Activation of both the TAK1 and IKK complexes facilitate the phosphorylation of 
IKKβ inducing further phosporylation of NF-κB inhibitor (IκB) proteins. SCF-βTRCP ubiquitin 
E3 ligase complex then targets IκB proteins for  proteasomal degradation through ligation of K48 
polyubiquitin chains, thus allowing NF-κB to enter the nucleus to turn on target genes involved 
in immune responses (Adapted from Jiang and Chen, Nature Reviews Immunology 12, 35-48 
(2012)20.

Ubiquitination plays crucial roles too in the RIG-I and melanoma differentiation-
associated gene 5 (MDA5)-mediated pathways that sense viral RNA 21, 25.  Viral 
RNA binds RIG-I and induces a conformational changes that exposes the N-terminal 
CARD domains of RIG-I which binds the unanchored K63 polyubiquitin chains 
synthesized by TRIM25 and Riplet ubiquitin E3 ligases. RIG-I then interacts with and 
activates the mitochondrial membrane protein MAVS, further recruiting K63-linked 
polyubiquitinated TRAF6, TRAF3, TRAF2/5, and cIAP1/2 ultimately activating IKK 
and TAK1 complexes 21, 25 similar to TLR signaling as described above. 
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2.4 Regulation of innate immunity by deubiquitination

DUBs are proteases that cleave ubiquitin from target proteins and therefore oppose 
the function of ubiquitin E3 ligase. Consistent with a key role of ubiquitination in 
activating immune signaling cascades, several DUBs have been shown to negatively 
regulate immune responses. A20 and CYLD are two best known DUBs that inhibit 
PRR pathways 20. 

Overexpression of A20 inhibits NF-κB activation in response to TNF or IL-1 stimulation. 
Mice lacking A20 die shortly after birth due to multi-organ tissue inflammation and 
cachexia 26 due to uncontrolled activation of NF-κB. Mechanistically, A20 inhibits NF-
κB via its DUB domain by removing or inhibiting the K63-linked polyubiquitination 
on key NF-κB signaling molecules such as TRAF6, RIP1 and RIP2, thereby, inhibiting 
proinflammatory outcomes of PRR pathways. Additionally, A20 contains one of the 
C-terminal zinc finger domains (ZnF4) that harbor intrinsic E3 ligase activity selectively 
conjugating K48-linked polyubiquitin chains onto target molecules and cause their 
degradation. Therefore, A20 is a novel ubiquitin-editing enzyme with both DUB and 
E3 ubiquitin ligase activity 20. 

Additionally, CYLD is a tumor suppressor, and loss of CYLD function has been linked 
to several types of skin tumor. CYLD contains a ubiquitin protease domain which 
specifically cleaves K63-linked polyubiquitin chains, thus functioning as a suppressor 
of NF-κB signaling. CYLD is a NEMO-interacting protein that inhibits IKK and NF-
κB by removing K63-linked polyubiquitin chains from TRAF2, TRAF6, and NEMO. 
Other CYLD substrates important for NF-κB regulation include TAK1, Bcl3, and RIP1 
27. HPV E6 has been shown to degrade CYLD in cervical cancer cell lines 28 possibly 
contributing to the development of cancer. 

2.5 HPV and innate immunity

Anogenital HPV infections are very common and the cumulative lifetime incidence 
of infections is estimated to be as high as 80-85% 29. However, most of the lesions are 
cleared and low-grade CIN lesion often regress spontaneously indicating that in the 
majority of individuals the immune system succeeds in controlling the viral infection 
before malignant disease develops. The prevalence of persistent HPV infections and 
HPV-positive lesions is greatly increased in immunosuppressed subjects, such as 
transplant recipients and HIV-positive patients, indirectly indicating that the immune 
systems plays a major role in controlling the HPV infections 30-33. 
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In healthy individuals, the duration of a transient anogenital detectable HPV infection, 
before it is controlled and viral DNA becomes undetectable, ranges from 7-14 months 
34, 35. This indicates that active viral infections are capable of persisting in the host for 
quite some time. This lag time suggests that HPV is able to evade and/or interfere with 
the innate and adaptive immune defenses 36. Effective avoidance of immunity might 
be related to the characteristic infectious cycle of HPV.  HPV life cycle is non-lytic 
and therefore does not elicit a strong proinflammatory signals to attract and activate 
the APCs as would be generated by dying cells of the host. Additionally, there is no 
blood-borne or viremic phase of the life cycle. This suggests that HPV-infected KCs 
need to sense the infection in order to activate an immune response. 37. Additionally, 
HPV does not infect DCs, nor does it express its protein in DCs, therefore, DC need to 
cross-present the HPV early antigens derived from HPV-infected KCs in order to mount 
immunity against HPV 38. Thus priming of antiviral immunity depends on highly 
specialized APCs, such as the Langerhans cells (LCs) that can access HPV proteins 
in the epidermis. Clinical observations show that the number of LCs is significantly 
reduced at sites of HPV infected premalignant lesions 39, 40. Adhesion molecules, such 
as E-cadherins, are necessary to mediate contact between LCs and keratinocytes but 
HPVs reduce the expression of E-cadherins on keratinocytes cell surface 41, suggesting 
that innate immune signaling, required for the recruitment of APC, is altered by HPV. 

HPV oncoproteins have been shown to downregulate the expression of type I interferons 
and pro-inflammatory cytokines of keratinocytes 42. For instance, retrovirally 
transfected HPV16 E6/E7 in keratinocytes show reduced production of MIP-3α, the 
most potent chemotactic agent for LC precursors, which results in reduced migration of 
LCs to the site of HPV infection t and helps HPV to persist 43. 

The type I interferons (IFN-α, and IFN-β) have antiviral, anti-proliferative, anti-
angiogenic, and immunostimulatory properties and act as a bridge between innate and 
adaptive immunity 44. Both in vitro and in vivo data suggest that HPV has evolved 
mechanisms to avoid the effects of type I IFN. IFN-α does not effectively inhibit 
transcription of E6/E7 RNA in several cervical epithelial cell lines immortalized by 
recombinant HPV16, HPV18, and HPV33 DNA 45. Furthermore, pre-malignant lesions 
from patients non-responsive to treatment with IFN-α have higher levels of E7 mRNA  
compared to patients that respond to treatment, suggesting that HPV E7 may inhibit IFN 
signaling 46. E7 binds to IRF-9 and prevents the translocation of IRF-9 to the nucleus, 
thus inhibiting IFN-α-mediated signal transduction by preventing the formation of 
the ISGF-3 transcription complex that functions by binding to the interferon-specific 
response element (ISRE) in the nucleus 47, 48. Moreover, E7 binds to IRF-1 and inhibits 
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the activation of IFN-β through recruitment of histone deacetylase to the promoter, 
thereby preventing transcriptional activation 49.  Additionally, HPV18 E7 inhibits the 
transactivating function of IRF-1 resulting in reduced expression of IRF-1 target genes, 
such as the TAP1, IFN-β, and MCP-1 genes 50. The HPV E6 protein also targets the 
interferon pathway. By binding to IRF-3 and preventing its transcriptional activation, 
E6 prevents transcription of IFN-α mRNA 51. E6 also binds to TYK2 which prevents 
its binding to the cytoplasmic region of IFN-α receptor 1, and inhibits phosphorylation 
of TYK2, STAT1, and STAT2, thereby impairing the JAK-STAT signaling pathway 
resulting in reduced secretion of IFNs 52. More recently, microarray analysis showed 
that HPV16 E6 53 and HPV31 downregulates multiple IFN-responsive genes. E6 
decreased expression of IFN-α and IFN-β, downregulates nuclear STAT-1 protein, and 
decreased binding of STAT-1 to the ISRE 53. In addition, HPV16 E6 has been shown to 
degrade pro-IL-1β in a proteasome dependent manner which is mediated via ubiquitin 
ligase E6-AP and p53 55. 

2.6 Our questions 

So far studies addressing HPV-mediated immune evasion have used retrovirally 
transduced HPV E6 and/or E7, mimicking the situation of KC transformation by HPV or 
have even used HPV-transformed KC or cervical cancer cell lines. While these studies 
are of interest with respect to the effects of HPV proteins on the immune response 
during malignant transformation, they are less likely to reflect how HPV escapes 
during infection because during cellular transformation the HPV E6 and E7 genes are 
integrated into the cellular genome and the production of infectious viruses is stopped. 
Furthermore, the expression of the different HPV early proteins (E1, E2, E4, E5, E6 
and E7) is different in early infected and HPV-transformed cells. During the productive 
phase with infectious virions when the viral genomes are maintained as episomes in 
keratinocytes, HPVs need to avoid and/or suppress host immunity in order to establish 
a persistent infection. Thus, although the immunomodulating roles of HPV E6 and E7 
in the setting of cell transformation, or quasi-infection56 have been studied, there is a 
complete gap in the literature when it comes to the effects of HPV on the responses of 
KC when the episomal HPV genome is present. 

To circumvent this problem we made use of an unique experimental set up in which 
primary keratinocytes expressing episomal HPV genes were used. When these cells 
are grown in an organotypic raft culture system, they show differentiation-dependent 
production of infectious viruses mimicking the situation like early natural infection of 
HPV57. In addition, we also infected primary keratinocytes with native HPV virions. 
Thus, in contrast to the published studies focused on the effect of HPV proteins on the 
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immune response during malignant transformation, our set up specifically allowed us 
to focus on the immune evasive effects of HPV infection at the early phase of infection.

The questions we wanted to answer were: 

1) Do KCs express functional PRRs, how is this altered during KC differentiation, and 
is this altered upon infection of KCs with HPV?

2) Which (groups of) immune genes are deregulated in KCs upon HPV infection and if 
so what are the molecular mechanisms underlying the HPV effect? 

We investigated this in uninfected and hrHPV-infected KCs using genome-wide 
analyses and biochemical approaches in Chapters 2 + 3. 

3 Adaptive immunity against HPV infection

Adaptive immunity consists of T cells and B cells crucial for the formation of 
immunological memory enabling the immune system to respond rapidly and effectively 
to a specific pathogen that has been encountered previously. APCs capture HPV proteins 
and digest them into peptides. The APCs then migrate to the lymph nodes where HPV 
peptides are presented to the T cells. Simultaneously, DCs or macrophages expressing 
TLRs, NLRs, RLRs, C-type lectins 58 are activated by binding to the viral PAMPs 
through innate immune receptors present on cell surface. Moreover, CD4+ T cells 
recognizing their cognate peptides may activate DCs via CD40-CD40L interaction 
59. The activated immune cells release inflammatory cytokines including IL-1, IL-6, 
TNF-α, and IL-12, which induce local inflammation and function as chemoattractants 
to other immune cells or to polarize the immune response for instance to a TH1 (by IL-
1, IL-12) type, important for the induction of adaptive immune responses.

After the recognition of an antigen, CD4 T cells may differentiate into for instance Th1, 
Th2 cells or T regulatory cells, largely determined by the cytokine milieu in the local 
microenvironment and the activation status of the DCs. T regulatory cells will suppress 
adaptive immune responses, Th1 cells promote cell-mediated immune responses, and 
Th2 cells sustain humoral effector responses. B cells are responsible for producing 
antibodies which function to neutralize and opsonize viral antigens. The growth, 
maturation, and production of antibodies by B cells are dependent on interaction with 
APCs and the cytokines profile secreted by CD4 helper T cells. HPV has many targets 
(E2, E6, E7, L1 and L2) against which antibodies can be generated during natural 
infection. While antibodies directed against E2, E6, E7 are weak and unable to mediate 
protective immunity against HPV infection, L1 and L2 capsid proteins are targets 



22

In
tr

od
uc

tio
n

of neutralizing antibodies and may prevent viral infection 60. The majority of these 
antibodies are of the IgG1 class, a frequent response against viral antigens 61.  Eight to 
nine months after natural infection sero-conversion and neutralizing antibodies can be 
detected, but their levels are low,  not apparent in all women 62, and not likely to prevent 
against subsequent infections. 

The control of HPV infection requires an effective T cell response comprising both 
virus-specific CD8+ CTLs and CD4+ IL-2/IFN-γ-producing Th1 cells 63. In healthy 
individuals, circulating HPV16-specific CD4+ Th1 and Th2 cells and CD8+ CTLs 
reactive to a broad array of epitopes in the viral early (E2, E6, E7) and late (L1) antigens 
can be detected that are able to migrate to areas where viral antigens are presented 
63. Furthermore, spontaneous regression of  HPV-induced lesions is associated with 
the presence of circulating CD4+ and CD8+ T cells specific for HPV early antigens 
and coincident with the infiltration of the lesions by CD8+ CTLs and CD4+ T cells in 
numbers that surpass those of CD25+ Tregs 63. 

By contrast, most individuals with HPV-induced progressive disease show an 
undetectable or a weak circulating T cell response to the HPV early antigens 64-68. 
Additionally, progressive disease is associated with a loss of locally present IFN-γ and 
an increase in immunosuppressive IL-10 69. In addition, T cells expressing TGF-β have 
been detected in HPV-induced lesions 70. IL-10 and TGF-β may directly suppress HPV-
specific immunity since IL-10 can strongly inhibit the production of pro-inflammatory 
cytokines and TGF-β has a potent negative effect on the proliferation and Th1-
differentiation of T cells 69. Moreover, there is a steady increase in the number of tumor-
infiltrating Foxp3+ Tregs , IDO+ cells, and macrophages 69, further suppressing the 
anti-tumor immunity. Intratumoral CD4+ and CD8+ T cells in this suppressive milieu 
generally lack the expression of granzyme B and thus are functionally impaired 71. 

3.1 Mechanisms of escape of HPV from adaptive immunity

In hrHPV-induced cancer, HPV E7 downregulates the expression of the transporter 
associated with antigen protein (TAP1) which is essential in mounting MHC Class 
I presentation of HPV peptides by transformed cells 72, 73 resulting in suppression of 
HPV’s antigen presentation s thereby impeding the recognition of transformed cells by 
effector CTLs. Additionally, HPV16 E5 downregulates MHC/HLA class I 74, 75.

The function of regulatory T cells (Tregs) is the induction of tolerance, but they 
also suppress anti-tumor responses. The number of Tregs is increased in HPV-
induced tumors probably attracted by tumor-produced CXCL12 76. Tregs inhibit the 



23

C
ha

pt
er

 1

proliferation and cytokine (IFN-γ and IL-2) secretion of activated naïve CD4 T cells 
and Th1 cells 77. As for APCs, Tregs alter their protein expression necessary for efficient 
antigen presentation and evoke the production of indoleamine 2,3-dioxygenase (IDO) 
by dendritic cells, which is an enzyme toxic to T cell populations 78. Treg derived 
products like TGF-β, carbon monoxide, galectins, and IL-10 are considered to be 
immunosuppressive 79-83. Notably, IL-10 producing HPV-specific Tregs highly capable 
of inhibiting the proliferation and cytokine (IFN-γ and IL-2) production of recently 
activated naïve CD4+ T cells, Th1 cells, and CD8+ CTLs have been isolated from 
premalignant lesions and cancer 66, 84 indicating that local immune suppression milieu 
may be a result of erroneously skewed HPV-specific T cell response. Importantly, high 
numbers of intratumoral Tregs are associated with poor prognosis of cervical cancer 
85-87 implying role of Tregs in suppression of anti-tumor immunity. 

3.2 T cell co-inhibitory molecules in cancer

Effective activation of T cells requires two signals: the first is mediated by the 
recognition of an antigen presented via the major histocompatibility complex (MHC) 
on antigen presenting cells (APC) by a corresponding antigen-specific T cell receptor 
(TCR). Second, co-signaling occurs via T cell co-signaling receptor molecules binding 
to ligand molecules expressed on the APCs, which can further enhance or dampen 
primary signaling pathways. Co-signaling is  involved in all phases of T cell function 
including priming, activation, expansion, effector function and contraction.

The best characterized co-signaling molecules includes member of the CD28 and B7 
superfamily, which are involved in both co-stimulatory and co-inhibitory processes. The 
interaction between CD28 and B7 family molecules are critical for immune response for 
infection and diseases 88-90. For example, T cell activation depends on binding of CD28 
to B7-1 (CD80) and B7-2 (CD86) on APCs while cytotoxic T-lymphocyte antigen-4 
(CTLA-4, CD152), another member of CD28 family downregulates T cell activity by 
binding B7-1 and B7-2 88-90.

Molecules of the B7-H1/PD-1 pathway are also critical modulators of the immune 
responses. Programmed Death-1 (PD-1, CD279) is a member of the CD28 family 
expressed on activated T cells, B cells, dendritic cells and macrophages 91. PD-1 has two 
ligands B7-H1 (CD274, PD-L1) and B7-DC (CD273, PD-L2) of the B7 family. While 
B7-H1 expression is inducible on a variety of cell types in lymphoid and peripheral 
tissues, B7-DC is more restricted in myeloid cells including dendritic cells 91. The major 
role of B7-H1/PD-1 pathway is to tune down inflammatory immune responses in order 
to protect tissues and organs from collateral damage. 
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Co-inhibitory molecules associated with inactivation of T cells include PD1, TIM3, 
CTLA4, CD160, LAG3 and 2B4 92. Initial studies indicated that PD-L1- PD1 was a 
crucial pathway in the regulation of CD8+ T cell exhaustion, as blockade of PD-L1- PD1 
interactions in chronic infection or tumor microenvironment restored CD8+ effector 
function, whereas blockade of other individual co-inhibitory pathways alone (TIM3, 
CTLA4, and LAG3) showed less effective in rescuing T cells 93, 94. However, combined 
blockade of PD-L1- PD1 with these co-inhibitors, notably has a synergistic effect in 
reversing T cell exhaustion 94-96. More recently it was shown that the expression of these 
molecules are a sign of T-cell activation rather than exhaustion, only when the cognate 
ligands are expressed T-cell function may be downregulated 97. Notably, the expression 
of multiple co-inhibitory receptors by T cells is associated with a progressive loss in 
proliferation, production of proinflammatory cytokines (IL-2, TNF-α and IFN-γ), 
cytotoxicity and the ability to become memory cells  94.

3.3 PD-1 is a co-inhibitory receptor that can be expressed on activated T cells

PD-1 is a 50-55 kDa type I transmembrane glycoprotein composed of an extracellular 
Ig domain and a 20 amino acid stalk. Its cytoplasmic tail contains two conserved 
tyrosine-based signaling motifs, an immunoreceptor tyrosine-based inhibition motif 
(ITIM), followed by an immunoreceptor tyrosine-based switch motif (ITSM), both of 
which are phosphorylated upon PD-1 engagement and can have inhibitory function 
98. PD-1 signaling interferes with the earliest tyrosine phosphorylation events in TCR 
signaling, thereby suppressed the activation of PI3K/Akt resulting in the inhibition 
of T cell expansion. Additionally, PD-1 engagement recruits both SHP-1 and SHP-2, 
SH-2-domain containing protein tyrosine phosphatases, which dephosphorylate and 
deactivate Ras-MEK-ERK and AKT pathways that ultimately result in cell cycle arrest 
of T cells 99.  

The role of PD-1 in suppressing the antiviral response was first demonstrated by the 
rapid clearance of adenoviral infection in PD-1 knockout mice compared to wild type 
100. In contrast, Barber et al. 101 in the model of chronic LCMV infection showed that 
antigenic persistence resulted in high level of PD-1 expression on CD8 T cells which 
is associated with loss of effector function, and what they called an immune exhausted 
phenotype. A similar role for PD-1 has been reported in other chronic viral infection 
such as Hepatitis, SIV and HIV 102-104. T cells chronically exposed to antigen within 
tumor microenvironment may also develop such a functionally inactive phenotype 92. 
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3.4 PD-1 in anti-tumor immunity

There is accumulating evidence that tumors exploit PD-1-dependent immune suppression 
for immune evasion. The aberrant expression of B7-H1 and B7-DC has been found in 
many solid tumors and hematological malignancies. Additionally, PD-1 expression on 
tumor infiltrating lymphocytes (TILs) has been reported, suggesting that these T cells 
might be functionally suppressed. Importantly, a strong correlation between B7-H1 
expression on tumor cells and unfavorable prognosis has been demonstrated for many 
cancers including kidney, ovarian, esophageal, bladder, gastric and pancreatic cancers 
and melanoma 105. In renal carcinoma, patients with high tumor and/or lymphocyte B7-
H1 levels were 4.5 times more likely to die of their cancer than patients with low levels 
of B7-H1 expression 106. Ovarian cancer patients with tumors positive for both B7-H1 
and B7-DC showed dramatically lower survival rate than patients with tumors negative 
for both of these ligands (46% versus 83% for 5-year survival) 107.  New studies focus on 
the role of other co-inhibitory markers and how they are exploited by cancers to evade 
host immunity 89. 

3.5 PD-1 and regulatory T cells (Tregs)

Tregs play a critical role in the maintenance of immune tolerance. CD4+ Foxp3+ 
Tregs are the most studied suppressive T cell population. The Foxp3 knockout mice 
develop severe autoimmune conditions and the mutations of the human gene FOXP3 is 
associated with fatal human immune dysregulation, polyendocrynopathy, enteropathy, 
X-linked syndrome (IPEX) 108, 109 indicating the crucial roles of Foxp3+ Tregs in 
peripheral tolerance. Foxp3+ Tregs can be divided into “natural” Tregs and “induced” 
Tregs. While “natural” Tregs develop as committed regulatory cells from the thymus, 
the “induced” Tregs arise in the periphery by polarization of naïve CD4+ T cells for 
instance when the microenvironment produces TGF-β and IL-2 110 or IL-10 111.

Tregs are often associated with solid tumors in both human and murine models. Increased 
number of Tregs is associated with a poorer prognosis in many human cancers 112. 
Foxp3+ Tregs highly express PD-1 and B7-H1 113. Surprisingly, B7-H1 binding to PD-1 
on natural Tregs has been shown to inhibit Treg suppressive function, whereas PD-1 
ligation on the conventional T cells has been shown to promote their differentiation 
into induced Tregs 114-116. The ability of PD-1 to deliver signal through B7-H1 on Tregs 
remain unclear. Moreover, the exact function of co-stimulatory and co-inhibitory 
molecules on both natural Tregs and induced Tregs needs further clarification 92. 
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3.6 Cancer immunotherapy targeting PD-1 and B7-H1

Monoclonal antibody-mediated immune checkpoint blockade of the inhibitory immune 
receptors CTLA-4, PD-1, and PD-L1 has shown to be successful in treating patients 
with advanced cancer 117. Treatment with CTLA-4 blocking monoclonal antibody 
ipilimumab improved the overall survival of untreatable metastatic melanoma patients 
118. Strikingly, the durability of objective responses by CTLA-4 blockade leading to a 
possible cure for some patients has fuelled new enthusiasm on cancer immunotherapy 
in general.

Consequently, a number of clinical trials are examining the blockade of PD-1 by 
monoclonal antibody therapy  (anti-PD-1 mAb; Bristol-Myers Squibb [New York, 
NY, USA], CureTech/Teva [yavne, Israel] and Merck [Boston, MA, USA]) and B7-H1 
(anti-B7-H1 mAb; Bristol-Myers Squibb, Genentech [San Francisco, CA, USA]) in the 
treatment of refractory solid tumors. Two large Phase I trials blocking PD-1/B7-H1 
interactions in patients with advanced cancers including melanoma and non-small cell 
lung cancer (NSCLC) have reported highly promising results. Topalian et. al. used an 
IgG4 monoclonal antibody (BMS-936558) that targets PD-1 while Brahmer et. al. used 
a monoclonal antibody that targeted B7-H1. Tumor response rates were between 18-
28% for patients treated with anti-PD-1 antibody and 6-17% for the anti-B7-H1 antibody 
119, 120. Moreover, combined blockade of CTLA-4 (with ipilimumab) and PD1 (with 
nivolumab) in advanced melanoma was associated with rates of objective response that 
exceeded the previously reported results with either ipilimumab  or nivolumab alone 
121, albeit that in another study with the anti-PD-1 antibody lambrolizumab a similar 
response rate was observed 122. 

3.7 Our questions 

The transition from normal epithelium, via low grade and high grade lesions to cervical 
carcinoma is associated with locally present influx of CD4+ and CD8+ T cells 69, 
nevertheless, these T cells are not always able to mount an effective anti-tumor response. 
Several mechanisms could affect the efficacy of the T-cell response, in particular the 
presence of regulatory T cells, the presence of immune suppressive myeloid cells and/
or the expression of co-inhibitory receptors and their ligands. Earlier our lab showed a 
role for intratumoral regulatory T cells  in hampering T-cell reactivity 65, 84, 87, 123and later 
the role of myeloid cells was addressed 85, 124. Therefore, in Chapter 4 of this thesis, we 
focused our studies on the expression of B7-H1/PD-L1 and B7-DC/PD-L2 by the tumor 
cells and the expression of PD1 by CD4, CD8 and regulatory T cells. 
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4 Chemokines in cancer related inflammation

Chemokines are immune-cell attracting cytokines (about 8-17 kDa) that binds to and 
activate a family of chemokine receptor. So far, over 50 chemokines have been described. 
On the basis of the position of four conserved cysteine residues, the chemokines can 
be divided into four families (CXC, CX3C, CC and C). Functionally, chemokines can 
be divided into inducible or inflammatory chemokines and constitutively expressed or 
homeostatic chemokines. Inflammatory chemokines are critical for attracting a diverse 
set of effector leukocytes to inflammatory sites and as such they play a key role in the 
innate immune response by recruiting neutrophils, monocytes/macrophages, dendritic 
cells (DC), and natural killer (NK) cells. Homeostatic chemokines play major roles in 
migration of antigen-presenting cells (APC) and lymphocytes into the lymph node, as 
well as in migration of effector T cells to reach tissues, thus play critical roles for an 
effective adaptive immune response. Recently, chemokines and their receptors have 
been identified as mediators of chronic inflammation which play a key role in the tumor 
growth, angiogenesis, and metastasis. 

4.1 Chemokines, tumor-associated leukocytes and tumor microenvironment

Cancer cells create a favorable microenvironment by interacting with the stromal 
cells (including cancer associated fibroblast, CAFs, mesenchymal stem cells, MSCs) 
and triggering the homing of leukocytes (including tumor-associated macrophases, 
TAMs, and tumor-associated neutrophils, TANs). Intratumoral CAFs secrete altered 
types of chemokines including CXCL12 which promotes cancer cell proliferation and 
angiogenesis by recruiting endothelial cells into carcinomas 125, 126. Moreover, CAFs 
secrete TGFβ which in turn increase the levels of CXCR4 in cancer cells, thus activating 
CXCR4/CXCL12 axis resulting in increased proliferation of cancer cells by activating 
Akt 125. Recent work has also shown that MSCs produce chemokines like CCL5, when 
they come in contact with cancer cells 127, 128. Secreted CCL5 acts on CCR5 present at 
the surface of breast cancer cells promoting their metastasis to the lung 127. Cancer cells 
can also recruit circulating cells including monocytes and macrophages to the tumor. 
CC chemokines, especially CCL2 and CCL5, are major attractants of monocytes and 
macrophages to the tumor microenvironment and their levels correlate with the number 
of the infiltrating myeloid cells 129-131. Macrophages in tumors (TAMs) are usually of 
the M2-type, promote tumorgenesis and are associated with poor prognosis 124, 132, 133. 
Lymphocytes particularly TH2 lymphocytes are the other major leukocytes found in 
cancers. Their recruitment is controlled by CC and CXC chemokines. Infiltrating TH2 
lymphocytes are tumor promoting and are associated with poor prognosis 134. In human 
cervical cancer, TAM secreted VEGF-C was proposed to be involved in peritumoral 
lymphoangiogenesis, and ultimately to lymphatic metastasis 135. 
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4.2 Tumor cell survival, and proliferation, tumor growth and progression.

The expression of chemokine receptors by tumor cells affects their own proliferation and 
survival 136, 137. Early studies show that antibodies against CXCR2 inhibited melanoma 
cell growth in vitro implying the role of CXCR2 in tumor growth 138. Similarly, CXCR4/
CXCL12 chemokine/chemokine receptor pairs have been shown to be very efficient in 
enhancing tumor cell growth 139-141. Additionally, the stable expression of CXCR7 was 
shown to increase the survival of breast cancer cells in vitro without affecting their 
in vitro proliferation 142. Knockout of CXCR7 in cancer cells and use of the CXCR7 
antagonist CCX754 reduces tumor growth in vivo. Altogether this suggests critical role 
for CXCR7 in growth and survival of cancer 142, 143. Moreover, it has been reported that 
chemokines and growth factors can influence each other in some tumors. Estrogens 
increases the expression of CXC12 which activates CXCR4/CXCL12 signaling pathway 
that in turn promotes estrogen receptor transcriptional activity 144.

4.3 Tumor cell invasion and metastasis

The expression of chemokines and their receptors have been implicated in the distinct 
tropism of metastatic sites or cancer cells. The binding pairs CXCR4/CXCL12, CCL19-
CCL21/CCR7 and CCL27/CCR10 are involved in metastasis in bone, lymph node and 
skin respectively 145 due to high concentrations of chemokines produced by the site of 
metastasis that attract cancer cells to these locations or through generating a gradient of 
chemokines by the tumor cells creating autologous chemotaxis and a continuous cycle 
of recruitment of the cancer cells actively promoting their own metastasis and tropism 
146. Pancreatic ductal adenocarcinoma cells have been shown to express high levels of 
CX3CR1 and migrate towards a gradient of its ligand, CXC3CL1, produced by neurons 
and nerve fibers causing the cancer cells to metastasize in brain 147. Clinical studies 
showed that CCR9-expressing human melanomas metastasize to the small intestine 
which expresses high level of CCL25, the ligand for CCR9 148. T cell acute lymphocytic 
leukemia (T-ALL) shows high risk of metastasis in the central nervous system (CNS). 
Silencing of CCR7 or its ligand CCL19 is sufficient to inhibit CNS metastasis in T-ALL 
149. Additionally, cancer stem cells expressing CXCR4 have been identified at the invasive 
front of the tumor which determines that metastatic phenotype of individual tumors 150. 
CXCR4 and CCR7 expression are associated with lymph node metastasis as well as 
poor prognosis in patients with cervical cancer 151-153. The distribution and the intensity 
of expression of CXCL12, CXCR4, CXCL16, and CXCR6 increases as neoplastic lesions 
progress through CIN1, CIN2, and CIN3 to invasive cervical cancer. Moreover, among 
those molecules only CXCR6 is associated with long-term outcomes in that the patients 
with high CXCR6 expression had significantly shorter overall survival than  those with 
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low CXCR6 expression and the expression of CXCR6 is associated significantly with 
lymph node metastasis 154.

4.4 Oncogene pathways involved in chemokine production and chemokine receptor 
signaling

Chemokines bind to G-protein-coupled receptors (GPCRs) and activate a series of 
downstream effectors and signal transduction pathways including PI3K, Jak-STAT 
155. In cancers, inactivating mutations of tumor-suppressors or activating mutations 
of oncogenes have been associated with deregulated production of chemokines in 
cancer cells which in turn cause tumor initiation and progression. Ras is frequently 
mutated in human cancers, which activates EGFR-ras-raf signaling pathways leading 
to the production of tumor-promoting chemokines including CXCL1 and CXCL8 156, 157. 
Myc is over-expressed in many human tumors and myc-activated tumor cells produce 
chemokines that can recruit mast cells to induce new vessel formation and tumor growth 
158, 159. Moreover, wild type p53 but not the cancer-specific mutants (R175H or R280K) 
represses CXCR4 expression resulting in reduced invasion of cancer cell lines through 
matrigel suggesting that mutation of tumor suppressor p53 increases the production of 
tumor-promoting CXCR4 160. Oncogenic changes not only produce tumor-promoting 
chemokines, but may also suppress homeostatic chemokines production. EGFR-Ras 
signaling in cutaneous tumor cells reduces their ability to express CCL27, resulting in 
impaired recruitment of anti-tumor T-lymphocytes to the site of tumors 161. Transgenic 
mouse models, expressing the early genes from HPV 16 under the control of the human 
keratin 14 promoter, have shown that HPV-induced lesions release the chemokine 
CCL2 which enhances macrophage recruitment into tumors via CCR2 162. In human 
neoplastic cervical epithelial cells, HPV 16 E5, E6 and E7 oncogenes have been shown 
to induce the inflammatory cyclo-oxygenase (COX)-prostaglandin axis, by elevating 
the expression of COX-2 which is involved in oncogenesis 163. These studies directly 
link HPV oncogenes with the activation of inflammatory cascades in promoting 
cervical cancer. Thus, HPV is not associated with inflammation at the initial phase of 
infection, however, it is likely that following HPV DNA integration and transformation, 
hrHPV-transformed cells drive dysregulated inflammatory cascades, such as the 
COX-prostaglandin pathway in transformed epithelial cells promoting immune cell 
infiltration, chronic inflammation and ultimately to tumor progression 164. 

4.5 Our questions

Chemokine receptors have been studied in the context of outcome of cervical cancer 
patients 151 (and discussed above). Our genome-wide mRNA expression profiling data 
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showed that CXCR7 expression is upregulated in hrHPV-infected KCs. Hence, we 
wondered if CXCR7 was also expressed in HPV+ tumors and whether its expression 
would be associated with disease outcome. Therefore, we studied a series of cervical 
cancers for the expression of CXCR7 and the co-dependency of expression of its putative 
receptors EGFR and CXCR4, the expression of its predominant ligand CXCL12 as well 
as associations with clinical outcome in cervical cancer patients in Chapter 5. 
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Abstract

Despite the presence of intracellular pathogen recognition receptors that allow infected cells to attract the immune system,
undifferentiated keratinocytes (KCs) are the main targets for latent infection with high-risk human papilloma viruses
(hrHPVs). HPV infections are transient but on average last for more than one year suggesting that HPV has developed means
to evade host immunity. To understand how HPV persists, we studied the innate immune response of undifferentiated
human KCs harboring episomal copies of HPV16 and 18 by genome-wide expression profiling. Our data showed that the
expression of the different virus-sensing receptors was not affected by the presence of HPV. Poly(I:C) stimulation of the viral
RNA receptors TLR3, PKR, MDA5 and RIG-I, the latter of which indirectly senses viral DNA through non-self RNA polymerase III
transcripts, showed dampening in downstream signalling of these receptors by HPVs. Many of the genes downregulated in
HPV-positive KCs involved components of the antigen presenting pathway, the inflammasome, the production of antivirals,
pro-inflammatory and chemotactic cytokines, and components downstream of activated pathogen receptors. Notably, gene
and/or protein interaction analysis revealed the downregulation of a network of genes that was strongly interconnected by
IL-1b, a crucial cytokine to activate adaptive immunity. In summary, our comprehensive expression profiling approach
revealed that HPV16 and 18 coordinate a broad deregulation of the keratinocyte’s inflammatory response, and contributes
to the understanding of virus persistence.
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Introduction

Cervical cancer is the second most common cancer in women

worldwide. More than 520,000 women are diagnosed with

invasive cervical cancer each year [1]. Cervical and other

anogenital carcinomas arise as result of an uncontrolled persistent

infection with a high-risk type human papillomavirus (HPV), in

particular types HPV16 and HPV18 [2,3]. A detectable

cervicovaginal HPV infection in young women is close to 1–2

years [4] before it is cleared, suggesting that HPV can evade host

immunity. Indeed, the infection cycle of HPV is one in which viral

replication and release is not associated with overt inflammation

[5,6] and HPV-specific adaptive immune responses are often weak

or lacking in patients with progressive HPV infections [7–10].

Stratified squamous epithelia consist of undifferentiated (basal

layer) and increasingly differentiated KCs. The basal KCs are the

primary target of HPV infection [11]. In these cells, innate

immunity acts as the first line of defense against invading viruses.

KCs express pathogen recognition receptors (PRRs) including

TLR9, which responds to viral DNA [12], as well as TLR3,

protein kinase R (EIF2AK2), and the RNA helicases RIG-I

(DDX58) and MDA5 (IFIH1), which recognize single-stranded

and double-stranded RNA (dsRNA) [13]. Ligand binding to these

PRRs leads to direct NF-kappa-B activation resulting in the

upregulation of pro-inflammatory cytokines, and/or activation of

type I interferon (IFN) response genes including transcription

factors IRF3 and IRF7 regulating the production of antiviral

cytokines [13–22].

Expression of specific viral oncoproteins, E6 and E7, is required

for maintaining the malignant growth of cervical cancer cells [23].

To understand how HPV infection may alter KCs and evade PRR

activation, direct protein interactions including the binding of the

HPV E6 oncoprotein to IRF3 have been studied [24,25]. An

OncoChip expression study showed that retrovirally expressed E6
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and E7 efficiently downregulated type I IFN responses in

keratinocytes, but surprisingly also upregulated the expression of

pro-inflammatory cytokines [26]. Another early microarray study

described downregulation of interferon-inducible genes in KCs

containing episomal HPV type 31 [27]. These studies indicated

that HPV-derived proteins could meddle with host immunity but

the full spectrum of interference is within the limitations of these

studies not visible.

We aimed at understanding the effects of high-risk HPVs on the

immune response in KCs. First, we confirmed expression of the

viral RNA receptors in undifferentiated and differentiated cells,

while DNA sensor TLR9 was restricted to differentiated cells, and

showed that HPV does not interfere with expression levels of the

PRRs. Next, we focused our studies on undifferentiated KCs, since

these are the target cells for latent infection with HPV. We

generated expression profiles of several different control KCs and

KCs harboring episomal copies of entire HPV16 or 18 genomes

[28,29] on microarrays representing 24,500 well-annotated

transcripts to study differences in the baseline gene expression

by the presence of HPV. In addition, we studied differences in

response to triggering the viral RNA PRRs with the synthetic

dsRNA poly(I:C). Although HPV is a DNA virus, non-self dsDNA

can serve as template for transcription into dsRNA by polymerase

III and induce type I interferon and NF-Kappa-B through the

RIG-I pathway [30–32]. Here, we show that HPVs were able to

dampen a network of genes associated with activation of the

adaptive immune response encoding antimicrobial molecules,

chemotactic and pro-inflammatory cytokines, and proteins that

are involved in antigen presentation, and that most of them are

interconnected via IL1B.

Materials and Methods

Ethics statement
The use of discarded human foreskin, cervical and vaginal

keratinocyte tissues to develop cell lines for these studies was

approved by the Institutional Review Board at the Pennsylvania

State University College of Medicine and by the Institutional

Review Board at Pinnacle Health Hospitals. The Medical Ethical

Committee of the Leiden University Medical Center approved the

human tissue sections (healthy foreskin, healthy cervix, HPV16- or

18-positive cervical neoplasias) used for staining. All sections and

cell lines were derived from discarded tissues and de-identified,

therefore no informed consent was necessary.

Cell culture
Human epidermal KCs were isolated from foreskin, vagina, or

cervix of unrelated donors [33] and established on a layer of

lethally 137Cs-irradiated mouse 3T3 fibroblasts. Passage 4–5 of

primary KCs - devoid of contaminating cells - were grown in

serum-free medium (Defined KSFM, Invitrogen, Breda, The

Netherlands). Partial differentiation was induced by 1.8 mM Ca2+
for 24 hrs, terminal differentiation by placing KCs in single-cell

suspension into serum-free medium containing 1.75% methylcel-

lulose and 1.8 mM Ca2+ for 24 hrs [33]. KC cell lines

maintaining episomal copies of HPV16 and HPV18 were created

via an electroporation technique described previously [28,29] but

without antibiotic selection. The cell lines were 100% HPV-

positive. Southern analyses confirmed the recircularization and

subsequent maintenance of episomal viral genomes at approxi-

mately 50–100 copies per cell (data not shown). The HPV-positive

lines growed at similar rates with population doubling times of ,2

days) and, when placed in raft culture, all underwent the late stages

of the virus life cycle, such as genome amplification, late gene

expression, and virus production (data not shown). HPV-positive

cells were grown in monolayer culture using E medium in the

presence of mitomycin C-treated 3T3 fibroblasts [28,29] for

passage 6–7, and adapted to serum-free medium for one passage

before experimentation. All cells used were tested and found free

of mycoplasm. Where indicated, cells were stimulated with

poly(I:C) (25 mg/ml, InvivoGen, San Diego, USA). CCL5 and

IL-1B concentrations in supernatants were determined using the

Quantikine ELISA kits (R&D Systems, Minneapolis, USA).

Immunohistochemistry
Standard immunohistochemical staining was performed using

antibodies against human RNASE7 (Sigma-Aldrich, Zwijndrecht,

Netherlands, dilution 1:1600) and TLR9 (clone 26C593.2,

Imgenex, San Diego, USA, 1:800). Four-mm sections of forma-

lin-fixed, paraffin-embedded tissues were deparaffinized, endoge-

nous peroxidase was quenched with 0.3% H2O2 in methanol for

20 minutes, and antigen retrieval was performed by boiling the

sections for 10 minutes in Tris-EDTA buffer (pH 9.0). For TLR9

antibody stainings, antigen retrieval was performed by boiling the

sections for 10 minutes in citrate buffer (pH 6.0). Isotype control

antibody against mouse IgG1 (1:1000 dilution, code X0931,

DAKO, Glostrup, Denmark) was used. Primary antibodies were

incubated overnight at room temperature. The Powervision

detection system was applied (DAKO, Heverlee, Belgium).

Mayer’s haematoxylin was used for counterstaining of the slides.

Total RNA isolation and quantitative RT-PCR
Total RNA was isolated using TRIzol (Invitrogen, Breda, The

Netherlands) followed by the RNeasy Mini Protocol (Qiagen,

Venlo, The Netherlands). Total RNA (0.2 mg) was reverse

transcribed using SuperScript III (Invitrogen) and oligo dT

primers (Promega, Madison, USA). Triplicate PCR reactions

were performed with 20 pmol of gene-specific primers and Taq

DNA polymerase (Promega) using PCR conditions and primers as

described previously for TLRs [34] and SPRR2A [35]. Pre-

designed primers and probe mixes for TLR3, CCL5, IL1B,
RNASE7, NLRP2, and GAPDH were from Applied Biosystems

(Foster City, USA). Threshold cycle numbers (Ct) were deter-

mined with 7900HT Fast Real-Time PCR System (Applied

Biosystems) and the relative quantities of mRNA per sample were

calculated using the DDCt method with GAPDH as the calibrator

gene. The relative levels of mRNA were determined by setting the

mRNA expression level of the lowest expressing control KCs to 1,

unless otherwise indicated.

cRNA synthesis and microarray hybridization
We used four primary KC cultures, HVKp1 and HVKp2 (both

vaginal), HFKc1 and ESG2 (both foreskin), as well as four KC cell

lines stably maintaining episomal HPV16 or 18, HVK16 (vaginal),

HVK18 (vaginal), HCK18 (cervical), and HPV16 (foreskin). Cells

were harvested at three conditions: unstimulated, 4 hrs and 24 hrs

of 25 mg/ml poly(I:C). Total RNA for these 24 samples was

isolated as stated above, and analyzed on an RNA 6000 Nano

Lab-on-a-Chip in the 2100 Bioanalyzer (Agilent Technologies,

Waldbronn, Germany), showing RIN scores above 9.6. Total

RNA (50–100 ng) was reverse-transcribed, amplified and biotin-

labeled using the Ambion Illumina TotalPrep RNA Amplification

kit (Applied Biosystems, Streetsville, ON, Canada). Concentration

measurements were done using the NanoDrop ND-3300 (Isogen

Life Science, De Meern, The Netherlands), 750 ng of labeled

cRNA was hybridized to Sentrix HumanRef-8 V2 BeadChips

(22K, Illumina, San Diego CA, USA), and scanned with

BeadArrayer 500GX (Illumina). The samples were randomized
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for two cRNA synthesis batches and (sub)array location. Raw

probe level intensity values were summarized and exported with

Illumina probe annotations using Illumina BeadStudio v3.2 (Gene

Expression Module BSGX Version 3.2.7). Non-background

corrected data were variance stabilizing transformed followed by

robust spline normalization [36] using the lumi v1.6.2 [36,37] and

lumiHumanAll.db v1.2.0 [38] BioConductor v2.2 packages in R

v2.7.1 (R Development Core Team, www.R-project.org). All

microarray data is MIAME compliant and the raw data has been

deposited in the MIAME compliant database Gene Expression

Omnibus with accession number GSE21260, as detailed on the

MGED Society website http://www.mged.org/Workgroups/

MIAME/miame.html.

Analysis of differential gene expression
We fitted a linear model in limma v2.14.7 [39] with ‘virus’

(HPV-positive) and ‘stimulation’ (4 and 24 hrs) effects. We used a

nested variable within ‘virus’ for the individual cell lines, where

HVKp1 and HVK16 were the reference cells for the HPV-

negative and HPV-positive groups, respectively. Multiple-testing

corrected p-values [40] and log2 fold changes were extracted for

different contrasts. For Table S1, the 4 and 24 hrs timepoints were

combined into one F-test in limma. One-dimensional hierarchical

clustering of log2 fold changes derived from limma was done in

Spotfire DecisionSite 9.1 v19.1.977 using correlation as similarity

measure and complete linkage.

Functional genomics analyses
Functional annotation of the groups of co-regulated genes

identified by hierarchical clustering was performed using Anni 2.0

[41]. We used GenMAPP v2.1 [42] to overlay expression on the

TLR signaling pathway, which was based on automatic extraction

from KEGG [43] hsa04620 (7/17/09) with improved layout using

PathVisio v1.0 beta software [44]. The edited pathway is available

from GenMAPP and WikiPathways [45].

We used CORE_TF (www.lgtc.nl/CORE_TF) based on Trans-

Fac 11.2 and Ensembl 49 [46] to identify over-represented

transcription factor binding sites in promoters compared to a

random set of 2966 promoters (1000 bp upstream+exon 1).

Microarray probe EntrezGene IDs were converted to Ensembl

Gene IDs using IDconverter [47], entries resulting in multiple or

missing Ensembl Gene IDs were removed. The match cutoff was set

to minimize the sum of false positives and false negatives; position

weight matrices with a p-value for over-representation#0.01 and a

frequency below 50% in the random set were selected.

The network was constructed using Ingenuity Pathways

Analysis (IPA 7.6; IngenuityH Systems, Inc., www.ingenuity.

com). The 663 HPV signature genes were filtered for the more

extreme log fold changes to obtain a gene signature strongly

affected by HPVs, and to get the number of genes below 500,

which is the maximum limit of IPA for making a network. Genes

not connected were deleted, the remaining HPV signature genes

that were initially excluded as stated above were included to

generate the final network consisting of 212 connected genes. All

edges are supported by at least one reference from the literature,

from a textbook, or from canonical information stored in the

Ingenuity Pathways Knowledge Base.

Results

Expression of viral pathogen recognition receptors in KCs
We determined the mRNA expression of Toll-like receptors and

retinoic acid-inducible gene I (RIG-I)-like receptors in undiffer-

entiated, partially and fully differentiated KCs. Expression of the

small proline-rich protein 2A (SPRR2A) was used as a molecular

marker of KC differentiation (Fig. S1A). Undifferentiated KCs

were found to express TLR1, TLR2, TLR3, TLR5, TLR6, TLR10,
RIG-I and MDA5 (Fig. 1A, 1B). Among the viral PRRs, TLR7,

TLR8 and TLR9 were not detectable while TLR3, RIG-I and

MDA5 were expressed. In parallel experiments, transcripts of

TLR4 and TLR7-9 were readily detected in mRNA samples from

Ramos B-cells and monocytes (Fig. S1B). The expression in KCs is

largely in line with previous reports by others [13]. HPV-positive

KCs showed essentially the same pattern of PRR expression

(Fig. 1A, 1B). Additionally, real-time RT-PCR showed similar

levels of TLR3 in HPV-negative and HPV-positive KCs (Fig. 1C).

Upon differentiation KCs also expressed the DNA sensor TLR9,

which was confirmed by immunohistochemistry in human foreskin

and cervical epithelia (Fig. S2). TLR9 was also expressed in the

differentiated layers of HPV-positive cervical epithelial neoplasias

(Fig. S3). The absence of TLR4 expression in differentiated KCs,

which was confirmed by expression microarray (see below), is

consistent with work by others showing that TLR4 was only found

in HaCat cells, but not in primary human KCs [16,48]. The

pattern of TLR expression in differentiated HPV-positive KCs was

similar to that in HPV-negative cells. Thus, HPVs did not affect

mRNA expression of the tested PRRs.

Figure 1. KCs express pathogen recognition receptors. Total RNA of indicated KCs was subjected to RT-PCR (35 cycles) with specific primers
for human TLR1-10, GAPDH (indicated by a G) (A), RIG-I or MDA5 (B). Control KC correspond to HFK2. Size markers (1 kb plus DNA Ladder, Invitrogen)
from high to low: 1000, 850, 650, 500, 400, 300, 200, 100 bp; 1.8% agarose gel. (C), TaqMan RT-PCR results showing TLR3 mRNA expression in HPV-
negative (HFK2 and HVK2) and HPV-positive (HPV16 and HVK18) KCs. Fold-changes are relative to HFK2. Data are mean 6 SD, n = 3.
doi:10.1371/journal.pone.0017848.g001
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HPV signature genes
We subsequently studied whether HPVs affected the signalling

of PRRs using genome-wide expression profiling. Control KCs

(n = 4) and KCs with episomal HPV16 or HPV18 genomes (n = 4)

of foreskin, vaginal or cervical origin from eight different

individuals were used to include biological variation. Since HPVs

infect basal KCs, we focused on the viral PRRs expressed in

undifferentiated cells, including TLR3, RIG-I and MDA5, which
respond to the synthetic dsRNA poly(I:C) [13]. In agreement with

the RT-PCR data, the presence of HPV did not change the

expression of these PRRs (Table S1).

To obtain a robust signature of genes affected by HPVs, we

selected differentially expressed genes between HPV-positive and -

negative KCs at 0, 4 or 24 hrs of poly(I:C) stimulation with a false

discovery rate (FDR) of 0.05 (1529 probes). Furthermore, we

applied an absolute log2-fold change filter $1 to select genes that

were at least two-fold up- or downregulated (663 probes

representing 634 unique genes), designated ‘‘HPV signature

genes’’ (union of genes in Venn diagram Fig. 2A, Table S2).

The majority of HPV-specific differentially expressed genes were

shared between all three (213) or two (150) conditions, with most

overlap between 0 and 4 hrs. Notably, 219 genes were changed in

the virus-positive group only after 24 hrs of poly(I:C) stimulation,

showing that the effect of HPVs was more pronounced after

poly(I:C) stimulation.

Poly(I:C) response in control KCs
We first focused on the effect of poly(I:C) stimulation in control

KCs. While after 4 hrs (Fig. 2B left) we found 123 differentially

expressed probes that were mainly upregulated, the response was

more balanced and involved over 700 genes after 24 hrs of

stimulation (Fig. 2B right). Many genes were upregulated,

including pathogen-sensing receptors (RIG-I, MDA5, PKR),
adaptor molecules (MYD88, TICAM1/TRIF, TICAM2/TRAM),

and interferon regulatory factors (IRF1, IRF6, IRF7), see Table S1.
These results are similar to a previous report showing that

poly(I:C) stimulation induces antiviral and inflammatory responses

in KCs [13]. Overlay of differential expression after 24 hrs of

poly(I:C) stimulation on the TLR signaling pathway (KEGG

hsa04620) showed upregulation of the Jak-STAT signaling

pathway, triggered by temporary upregulation of IFNB1 after

4 hrs poly(I:C) through the TRAF3/TBK1 signal transduction

route, resulting in upregulation of STAT1 and chemotactic

cytokines CXCL10 and CXCL11. In addition, via TRAF6 the NF-

kappa-B signaling pathway was triggered, activating cytokines/

chemokines TNF, IL1B, IL6, IL8, CCL3, CCL4, and CCL5 (Fig.

S4). The cytoplasmic RNA sensing receptors MDA5 and RIG-I,

which are not shown in the TLR signaling pathway, initiate

signaling pathways that differ in their initial steps from TLR3

signaling, but converge in the activation of TBK1 and NFKB

[13,49].

Deregulation of poly(I:C) response in HPV-positive KCs
The differentially expressed genes in the HPV-positive cells

upon poly(I:C) stimulation largely overlapped with those in control

KCs (Fig. 2B). Next, we studied the effect of the virus in the

context of the TLR signaling pathway. Activation of the TLR

signaling pathway in HPV-positive KCs upon 24 hrs of poly(I:C)

stimulation was largely similar to the response in control cells (Fig.

S5). However, when directly comparing HPV-positive and –

negative cells after 24 hrs of stimulation, relative downregulation

of the adaptor TICAM1 and several cytokines (IL1B, IL6, CCL5/
RANTES) was evident. These results suggest that the dsRNA PRR

signaling pathway is less activated in HPV-positive cells (Fig. S6).

Co-regulated genes downregulated by HPVs
We extended our analyses to the full set of HPV signature genes,

and identified genes with similar expression patterns over the sample

groups by unsupervised clustering (Fig. 2C, Table S2). The gene

dendrogram was cut at six clusters to generate profiles of co-regulated

genes (Fig. 2C, 2D). To identify transcription factors possibly involved

in the coordinated expression changes, we analyzed the promoter

sequences of the genes in each of these clusters for enrichment of

predicted transcription factor binding sites [46].

The first three clusters contained genes that were downregulat-

ed in HPV-positive compared to HPV-negative cells. Binding sites

for early growth response (EGR) family transcription factors,

involved in differentiation and mitogenesis, were significantly

enriched in these clusters (Table S3). Cluster 1 genes (164 probes),

including inflammasome components (NLRP2, PYCARD), were

downregulated in HPV-positive KCs irrespective of poly(I:C)

stimulation. Many of these downregulated genes, including several

others in expression clusters 2 and 3, are involved in epidermis

development and KC differentiation, fitting with the biological

effect of HPV in delaying differentiation [50]. Cluster 2 genes (194

probes), including antimicrobials (DEFB103B, LOC728454, AQP9,
RNASE7, SRGN), antigen presenting molecules (HLA-A, -B, -C, -G,
HCP5), pro-inflammatory cytokines and chemokines (CCL5/
RANTES, CSF2/GM-CSF, TGF-alpha, IL23A), interferon-inducible
genes (IFI27, IFITM1), and TICAM1 showed lower expression in

the group of unstimulated HPV-positive cells. Moreover, the

upregulation of these genes at 24 hrs of poly(I:C) stimulation as

found in control KCs was suppressed in HPV-positive cells. Plots

with microarray log2 intensities for four probes, CCL5/RANTES,
IL1B (cluster 3, see below), TICAM1 and RNASE7 show the HPV

effect as well as the biological variation inherent to using KCs

derived from different individuals and different tissues, combined

with two different HPV types (Fig. 3A). Downregulation of CCL5
and TICAM1 was confirmed by qRT-PCR (Fig. 3B and 3D), and

ELISA showed lower CCL5 secretion in HPV-positive KCs upon

poly(I:C) stimulation (Fig. 3C). For the small number of cluster 3

genes (15 probes), including pro-inflammatory cytokines (IL1B,
IL1A, IL6), baseline expression (most likely activated by serum

components) and upregulation at 4 and 24 hrs of poly(I:C)-

stimulation were suppressed in HPV-positive cells. These genes

were already upregulated after 4 hrs of stimulation, and showed

promoter enrichment of binding sites for Rel/NFKB family

members and STAT5 (Table S3).

Interestingly, the majority of expression cluster 2 and 3 genes

followed a similar pattern of suppressed poly(I:C) response, suggesting

that many of these genes are downstream targets of PRR signaling.

We focused on the antimicrobial molecule RNASE7, a member of

the RNase A superfamily with broad-spectrum antimicrobial activity

and ribonuclease activity [51,52], which was not known to be affected

by viral infection. qRT-PCR confirmed RNASE7 upregulation upon

poly(I:C) stimulation in control KCs, and suppression of poly(I:C)-

mediated upregulation in the presence of HPVs (Fig. 4A). Normal

cervical epithelial cells expressed RNASE7 throughout the epithelia,

and high expression was observed in the basal layer, the in vivo
equivalent to undifferentiated KCs (Fig. 4B). In contrast, RNASE7

protein was not expressed in any of the layers of undifferentiated cells

within a representative HPV-induced CIN3 lesion. These data

suggest that by suppressing the gene activation of antimicrobial

molecules such as RNASE7, HPVs evaded the innate antiviral

responses of the host.

Co-regulated genes upregulated by HPVs
Clusters 4–6 contained genes that were specifically upregulated

in the HPV-positive compared to HPV-negative cells. Cluster 4

hrHPVs Suppress Immune Response in Keratinocytes
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genes (167 probes) included heat-shock response genes, cell cycle

regulators and genes involved in replication initiation, transcrip-

tion and splicing. These HPV-activated genes were downregulated

upon poly(I:C) stimulation, but not to the same level as in control

KCs. Binding sites for MEF2A, involved in the activation of stress-

induced genes, and E2F, a family of transcription factors with a

crucial role in the control of cell cycle that is indirectly activated by

HPV E7, were enriched (Table S3). Cluster 5 (112 probes)

contained cancer-related genes including tumor-promoting cyto-

kines/chemokines and their receptors, e.g. CXCR7, of which the

expression was higher in HPV-positive KCs irrespective of

poly(I:C) stimulation. Many transcription factor binding sites were

enriched, including motifs binding the oncoprotein MYC (Table

S3). Finally, the smallest cluster 6 (11 probes) included several

antiviral response genes (TRIM5, ZC3HAV1, IFIT2, RARRES3,
CXCL16) that were stronger upregulated in HPV-positive than in

Figure 2. HPVs affect gene expression of KCs both at baseline and upon PRR stimulation. (A), Venn diagram depicting the overlap
between 663 HPV signature genes with adjusted p-value#0.05 and absolute log2-fold change$1 altered by HPVs at baseline (unstimulated) and 4
and 24 hrs of poly(I:C) stimulation. Numbers in red represent upregulated genes while green indicates downregulated genes. (B), Venn diagrams
showing the overlapping genes between control and HPV-positive KCs in their response to poly(I:C) stimulation for 4 hrs (left panel) and 24 hrs (right
panel). Significance thresholds and colors as in (A). (C), One-dimensional hierarchical clustering of 663 HPV signature genes based on Pearson
correlation using a complete linkage algorithm. Rows represent genes, columns represent ordered experimental groups each including four
independent biological replicates. Limma log2-fold changes of the indicated conditions compared to the HPV-negative, unstimulated group are
shown in the heatmap using red and green for up- and down-regulation, respectively. Black indicates no change. Six clusters based on cutting the
gene dendrogram (red dashed vertical line) are indicated with color bars to the right. (D), Profile plots of co-regulated genes grouped according to
the six expression clusters. Colors of the gene profiles match the bars to the right of the heatmap in (C). The y-axis shows the log2-fold change
compared to HPV-negative, unstimulated KCs, the x-axis shows the ordered sample groups.
doi:10.1371/journal.pone.0017848.g002

hrHPVs Suppress Immune Response in Keratinocytes

PLoS ONE | www.plosone.org 5 March 2011 | Volume 6 | Issue 3 | e17848



47

C
ha

pt
er

 2

hrHPVs Suppress Immune Response in Keratinocytes

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e17848



48

hr
H

PV
s 

Su
pp

re
ss

 Im
m

un
e 

R
es

po
ns

e 
in

 K
er

at
in

oc
yt

es

control KCs. Enriched binding sites included IFN-stimulated

response element (ISRE), bound by transcription factor ISGF-3,

and binding sites bound by interferon-response factors (IRFs).

In summary, the presence of episomal HPVs caused downreg-

ulation of genes involved in innate and adaptive immune responses

as well as KC differentiation, while upregulated genes were

involved in cell cycle, RNA and DNA metabolism. Overall, these

data showed that HPVs induced coordinated changes in KC gene

expression, detectable in unstimulated ‘baseline’ cells (mainly

expression clusters 1, 5, majority of cluster 4) or after poly(I:C)

stimulation (mainly expression clusters 2, 3, 6).

HPVs deregulate cellular networks
Understanding the network topology of gene and/or protein

interactions may identify highly interconnected gene ‘‘hubs’’

targeted by HPVs. Therefore, we explored connections among

the HPV signature genes based on literature and high-throughput

database information collected in Ingenuity Pathways Analysis

[53]. On the resulting network of 212 genes, we overlaid the

expression log2-fold changes of HPV-positive versus control KCs

after 24 hrs of poly(I:C) stimulation (Fig. 5). The center of the

network was formed by the most interconnected gene IL1B,

necessary for activation of the adaptive immune response [54],

and IL6. IL1B and IL6 were downregulated, and connected to

genes encoding cytokines and antigen presentation molecules that

were also lower expressed in HPV-positive cells. We studied IL1B

in more detail, since it represented a central target for HPV-

mediated suppression of both the innate and adaptive immune

responses of KCs. RT-PCR data validated the microarray data

showing that both the baseline and PRR-stimulated levels of IL1B

were downregulated in HPV-positive KCs compared to control

cells (Fig. 6A). Also, both the baseline and PRR-stimulated IL-1b
secretion was lower in HPV-positive KCs (Fig. 6B). Secretion of

IL-1b requires activity of both the TLR/NF-kappa-B and the

inflammasome pathways [55]. The TLR/NF-kappa-B pathway

activates pro-IL-1b expression, which is cleaved to active IL-1b by

the inflammasome. In addition to the downregulation of pro-IL-

1b, HPVs specifically downregulated the genes encoding inflam-

masome components NLRP2 in three of the four HPV-positive

lines (Fig. 6C) and PYCARD/ASC, but not NALP3, possibly

contributing to the observed lower level of IL-1b. The most

interconnected upregulated gene of the network was CDKN2A,
involved in cell cycle progression. Thus, by targeting highly

interconnected genes, HPVs reprogrammed the gene network of

KCs in favor of immune escape and cell proliferation of HPV-

positive cells.

Discussion

We studied systematic differences in genome-wide expression

profiles of control and HPV-positive undifferentiated (basal) KCs

focusing on immune-related effects. The parallel analysis of several

control and HPV16- and 18-positive KCs from several genital

tissues ensured that the results can be generalized. The HPV-

positive KCs expressed the full array of HPV genes and mimic

latent HPV infection in vivo, which is also reflected by the fact that

these cells display the entire differentiation-dependent HPV life

cycle upon culture in organotypic raft cultures [28,29]. Our studies

revealed that while KCs are well equipped to respond to viral

pathogens, latent infection with HPV results in suppression

downstream of the PRRs as reflected by lower expression levels

of effector molecules involved in innate and adaptive immune

response.

No difference was observed in expression levels of viral RNA

PRRs TLR3, TLR9, RIG-I, MDA5 and PKR between control and

HPV-positive KCs. We found that viral DNA PRR TLR9 was

lacking in the basal layers in stratified squamous epithelia, but

expressed in the suprabasal layers of the non-neoplastic epitheli-

um. Previous studies suggested that E6/E7 expression affected

Figure 3. HPVs cause expression changes in immune-related genes. (A), Microarray log2 intensities (y-axis) for the expression levels of four
example genes in HPV-negative and HPV-positive KCs, unstimulated or stimulated with poly(I:C) for 4 or 24 hrs. The eight individual KC cultures are
color-coded. A star indicates a significant difference between HPV-positive and control KCs (see Materials and Methods for details). TaqMan RT-PCR
showing CCL5 (RANTES) (B) and TICAM1 (C) mRNA expression in control (HVKp1 and HVKp2) and HPV-positive (HVK16 and HVK18) KCs at baseline and
after poly(I:C) for 24 hrs. Data are mean6 SD, n= 3. (D), CCL5 secretion of control (HFK1 and HFK2) and HPV-positive (HPV16, HCK18, and HVK16) KCs
measured by ELISA. Data are mean 6 SD over three replicate samples.
doi:10.1371/journal.pone.0017848.g003

Figure 4. HPV inhibits RNASE7 expression in stimulated KCs and cervical neoplasia. (A), TaqMan RT-PCR showing RNASE7 mRNA
expression in control (HVKp1 and HVKp2) and HPV-positive (HVK16 and HVK18) KCs. Data are mean6 SD, n = 3. (B), RNASE7 protein is downregulated
in cervical intraepithelial neoplasia 3 (CIN3). Immunohistochemical staining of paraffin-embedded sections showing RNASE7 protein expression in
normal healthy ectocervical epithelium (left) and CIN3 (right). Original magnification 1256. Stainings shown are representative of at least three
samples of different individuals.
doi:10.1371/journal.pone.0017848.g004
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neither the expression nor the function of TLR9 [17], whereas

others reported that E6/E7 expression resulted in loss of TLR9

expression [12]. Our data showed that forced differentiation of

HPV-positive KCs resulted in the expression of TLR9, however,

as HPVs inhibits differentiation this may appear as TLR9 loss

similar to what was seen previously [12]. Thus, TLR9 is absent in

the cells targeted by HPV, but other viral PRRs are expressed,

including RIG-I that has been shown to indirectly function as a

PRR for DNA viruses [30–32], suggesting that in essence

undifferentiated KCs can sense HPV infection.

As there were no overt differences in the expression levels of

PRRs, we focused on the interference of HPVs with the

downstream pathogen-sensing machinery. First, our data showed

that HPVs downregulated genes that have a direct antimicrobial

function. Moreover, the presence of HPVs was associated with the

downregulation of an array of pro-inflammatory and chemotactic

cytokines, and antigen-processing and presenting molecules, and

IL-1b and IL6 were the hubs in the center of this HPV signature

gene network. Notably, the expression level of most of these genes

was already lower at baseline. Poly(I:C), which triggers viral PRRs

including TLR3 and importantly also RIG-I, increased their

expression level in HPV-positive KCs albeit not to the same level

as in control KCs. Previously it was shown that HPV31-positive

KCs responded less well to interferon stimulation [27] and this fits

with our own data showing that interferon-inducible genes (cluster

2) are downregulated. Apparently, this is not the only immune

signaling pathway that is downregulated by HPV as our data

reveal that also the TLR and the RIG-I-like receptor signaling

pathways are suppressed in HPV-positive KCs. Notably, the

failure of HPV31-positive KCs to respond to interferon was

associated with downregulation of STAT1 (25). Specific down-

regulation of STAT1 was found only in our HPV16-positive KCs

Figure 6. HPVs downregulate IL1B and inflammasome components. (A), TaqMan RT-PCR showing pro-IL1B mRNA expression in control
(HVKp1 and HVKp2) and HPV-positive (HVK16 and HVK18) KCs. (B), IL-1b protein secretion of control (HFK1 and HFK2) and HPV-positive (HPV16,
HCK18 and HVK16) KCs as measured by ELISA. (C), TaqMan RT-PCR showing NLRP2 mRNA expression in HPV-negative (HFK1, HVK1, HVK2, HFK2) and
HPV-positive (HPV16, HCK18, HVK16 and HVK18) KCs. In all three panels, data are mean 6 SD, n = 3.
doi:10.1371/journal.pone.0017848.g006

Figure 5. HPVs deregulate a gene network in KCs. A network was constructed of 212 connected HPV signature genes using interaction data
curated from literature and high-throughput screens in Ingenuity Pathways Analysis. (A), Overlay with gene expression changes of 24 hrs of poly(I:C)-
stimulated HPV-positive KCs versus 24 hrs of poly(I:C)-stimulated HPV-negative KCs. (B), Zoom-in to central region of the network highlighting highly
interconnected genes. Molecules are represented as nodes, and the biological relationship between two nodes is represented as an edge (line).
Green, downregulated genes; red, upregulated genes; gray, not differentially expressed at the 24-hrs comparison; solid line, direct interaction; dashed
line, indirect interaction.
doi:10.1371/journal.pone.0017848.g005
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(data not shown) suggesting that there may be a number of type-

specific interactions with the host’s immune system. Together

these data suggest that HPVs dampen but do not block PRR

signaling, and imply that the attraction of innate immune cells to

the site of HPV infection, the subsequent initiation of adaptive

immunity as well as the recognition of HPV-infected KCs is

slowed down but not prevented. This clearly corresponds with the

fact that it may take months or even a year to control HPV

infections [4], and the increase in HPV-infected subjects capable

of mounting an HPV-specific immune response in time [56].

Furthermore, it fits with the detection of HPV-specific memory

responses after infection [9,57,58].

In particular, we found that HPVs downregulated toll-like

receptor adaptor molecule 1 (TICAM1), a critical molecule in the

TLR3 pathway that mediates NF-kappa-B and interferon-

regulatory factor (IRF) activation via downstream molecules

TRAF3, TRAF6 and RIP1 [59]. Notably, the other poly(I:C)

recognizing PRRs also malfunction in HPV-positive KCs

suggesting that HPVs affect the TBK1 and NF-kappa-B signaling

pathways downstream of the PRRs and implying that downreg-

ulation of TICAM1 is just part of the immune evasion strategy of

HPVs. This is also illustrated by our finding that HPVs

downregulated inflammasome components – needed to convert

pro-IL-1b to the active form of IL-1b [60] - contributing to the

lower secretion of IL-1b by HPV-positive cells. Of all candidate

downstream targets IRF1 [25], IRF3 [24], the coactivator CPB

[61], the IkB kinase complex [62], and the interferon-stimulated

gene factor 3 (ISGF3) transcription complex [63] have been

named as targets for either E6 and E7 proteins of HPV responsible

for downregulating NF-kappa-B and TBK1 signaling. Others,

however, have shown that E6 – instead of downregulating - may

promote NF-kappa-B signaling [26,64]. Importantly, all of these

studies relied on the overexpression of either one or both

oncoproteins, which is more relevant for our understanding of

HPV-transformed cells. The strength of our study lies in the use of

KCs with episomal expression of the full array of HPV genes

reflecting latent infection [28,29]. It would be of great importance

to perform a genome-wide study of HPV-positive KCs during

differentiation and interaction with (innate) immune cells thereby

closely mimicking the situation in situ, but such an experiment

would be technically challenging.

Non-cleared infection with high-risk HPVs leads to cervical and

other anogenital carcinomas in which the virus genome integrates

in the host genome [2,3]. The replication cycle of the virus is

tightly coupled to the differentiation of basal KCs to stratified

squamous epithelia and it is well known that HPVs inhibit KC

differentiation [11]. In our expression data, this was reflected by

concerted upregulation of cell cycle regulators and DNA/RNA

synthesis, and downregulation of epidermis development and KC

differentiation genes. CDKN2A, a critical cell cycle regulator

upregulated by HPVs, was identified as one of the highly-

connected hub genes in the network of HPV signature genes.

Similar results were described by Nees et al. using a cDNA

oncochip [26].

We have shown that HPV16 and 18 dampen a cellular

immune-related network in HPV-positive KCs, and affect a much

broader spectrum of PRR responses than the previously described

IRF route. Our study provides a framework for future exploration

into the molecular mechanisms involved in HPV-downregulated

immunity. The biological variation in gene expression between

different donors might reflect genomic variation that could play a

role the balance between clearance and persistence of HPV.

Additionally, it would be of interest to study if other viruses

capable of causing persistent infection or low-risk HPVs that cause

benign genital warts use similar mechanisms to escape host’s

immune responses.

Supporting Information

Figure S1 Positive controls for keratinocyte differenti-
ation and PRR expression. (A), Reverse transcription PCR

detection of the small proline-rich protein 2A (SPRR2A), a

molecular marker of KC differentiation after 20, 25 and 30 PCR

cycles in undifferentiated (1), partially differentiated (2) and fully

differentiated (3) normal foreskin keratinocytes. SPRR2A expres-

sion was absent from undifferentiated KCs, low in Ca2+-treated
KCs and high in KCs cultured in suspension with Ca2+ and

methylcellulose, confirming that the KCs consisted of undifferen-

tiated (basal) cells and differentiated in vitro. (B), Reverse

transcription PCR detection of TLRs 1–10 and GAPDH (‘‘G’’)

in mRNA samples from Ramos B-cells and monocytes.

(PDF)

Figure S2 TLR9 expression in stratified squamous epithelia

progressively increases with KC differentiation stage. (A), Total

RNA of the indicated cells was subjected to RT-PCR (35 cycles)

with specific primers human TLR1–10 or GAPDH as indicated by

a ‘‘G’’. (B), TaqMan real-time PCR was performed for TLR9 on

total RNA samples from indicated cell types. TLR9 expression was

normalized against GAPDH mRNA levels. Data represent an

average of three independent experiments. (C), Immunohisto-

chemical staining of paraffin-embedded healthy foreskin sections

and (D) sections of healthy ectocervical epithelium with human

TLR9-specific monoclonal antibody (left panels) or isotype control

antibody (right panels) in combination with peroxidase-conjugated

secondary antibody. Cell nuclei were counterstained with

haematoxylin. Original magnification 1256. Stainings shown are

representative of at least three samples of different origin.

(PDF)

Figure S3 TLR9 is expressed in differentiated cell layers of HPV-

positive cervical epithelial neoplasia. Immunohistochemical staining

with TLR9-specific or isotype control antibody of paraffin-embedded

sections of normal and dysplastic genital epithelia. Staining was

performed as described in the legend to Figure S2. Original

magnification 1256. Sections of the following epithelial samples are

shown: A) normal cervical epithelium, B) CIN1, C) CIN2.

(PDF)

Figure S4 TLR signalling in KCs. Toll-like receptor signalling

pathway (KEGG hsa4620) overlaid with differentially expressed

genes between 24 hrs poly(I:C) stimulated and unstimulated

uninfected keratinocyte cultures. Differentially expressed genes

(FDR#0.05) were colored bright red (log2 fold change$1) or dim

red (log2 fold change between 0 and 1) for upregulation upon

poly(I:C) stimulation, or bright green (log2 fold change#21) or dim

green (log2 fold change between 0 and 21) for downregulation.

Grey boxes represent genes not fulfilling the above criteria, while

white boxes are genes not represented by probes on the array.

(PDF)

Figure S5 TLR signalling in HPV-KCs. Toll-like receptor

signalling pathway (KEGG hsa4620) overlaid with differentially

expressed genes between 24 hrs poly(I:C) stimulated and un-

stimulated HPV-infected keratinocyte cultures. For explanation of

colors, see Figure S4.

(PDF)
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(data not shown) suggesting that there may be a number of type-

specific interactions with the host’s immune system. Together

these data suggest that HPVs dampen but do not block PRR

signaling, and imply that the attraction of innate immune cells to

the site of HPV infection, the subsequent initiation of adaptive

immunity as well as the recognition of HPV-infected KCs is

slowed down but not prevented. This clearly corresponds with the

fact that it may take months or even a year to control HPV

infections [4], and the increase in HPV-infected subjects capable

of mounting an HPV-specific immune response in time [56].

Furthermore, it fits with the detection of HPV-specific memory

responses after infection [9,57,58].

In particular, we found that HPVs downregulated toll-like

receptor adaptor molecule 1 (TICAM1), a critical molecule in the

TLR3 pathway that mediates NF-kappa-B and interferon-

regulatory factor (IRF) activation via downstream molecules

TRAF3, TRAF6 and RIP1 [59]. Notably, the other poly(I:C)

recognizing PRRs also malfunction in HPV-positive KCs

suggesting that HPVs affect the TBK1 and NF-kappa-B signaling

pathways downstream of the PRRs and implying that downreg-

ulation of TICAM1 is just part of the immune evasion strategy of

HPVs. This is also illustrated by our finding that HPVs

downregulated inflammasome components – needed to convert

pro-IL-1b to the active form of IL-1b [60] - contributing to the

lower secretion of IL-1b by HPV-positive cells. Of all candidate

downstream targets IRF1 [25], IRF3 [24], the coactivator CPB

[61], the IkB kinase complex [62], and the interferon-stimulated

gene factor 3 (ISGF3) transcription complex [63] have been

named as targets for either E6 and E7 proteins of HPV responsible

for downregulating NF-kappa-B and TBK1 signaling. Others,

however, have shown that E6 – instead of downregulating - may

promote NF-kappa-B signaling [26,64]. Importantly, all of these

studies relied on the overexpression of either one or both

oncoproteins, which is more relevant for our understanding of

HPV-transformed cells. The strength of our study lies in the use of

KCs with episomal expression of the full array of HPV genes

reflecting latent infection [28,29]. It would be of great importance

to perform a genome-wide study of HPV-positive KCs during

differentiation and interaction with (innate) immune cells thereby

closely mimicking the situation in situ, but such an experiment

would be technically challenging.

Non-cleared infection with high-risk HPVs leads to cervical and

other anogenital carcinomas in which the virus genome integrates

in the host genome [2,3]. The replication cycle of the virus is

tightly coupled to the differentiation of basal KCs to stratified

squamous epithelia and it is well known that HPVs inhibit KC

differentiation [11]. In our expression data, this was reflected by

concerted upregulation of cell cycle regulators and DNA/RNA

synthesis, and downregulation of epidermis development and KC

differentiation genes. CDKN2A, a critical cell cycle regulator

upregulated by HPVs, was identified as one of the highly-

connected hub genes in the network of HPV signature genes.

Similar results were described by Nees et al. using a cDNA

oncochip [26].

We have shown that HPV16 and 18 dampen a cellular

immune-related network in HPV-positive KCs, and affect a much

broader spectrum of PRR responses than the previously described

IRF route. Our study provides a framework for future exploration

into the molecular mechanisms involved in HPV-downregulated

immunity. The biological variation in gene expression between

different donors might reflect genomic variation that could play a

role the balance between clearance and persistence of HPV.

Additionally, it would be of interest to study if other viruses

capable of causing persistent infection or low-risk HPVs that cause

benign genital warts use similar mechanisms to escape host’s

immune responses.
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with specific primers human TLR1–10 or GAPDH as indicated by

a ‘‘G’’. (B), TaqMan real-time PCR was performed for TLR9 on

total RNA samples from indicated cell types. TLR9 expression was

normalized against GAPDH mRNA levels. Data represent an

average of three independent experiments. (C), Immunohisto-

chemical staining of paraffin-embedded healthy foreskin sections

and (D) sections of healthy ectocervical epithelium with human

TLR9-specific monoclonal antibody (left panels) or isotype control

antibody (right panels) in combination with peroxidase-conjugated

secondary antibody. Cell nuclei were counterstained with

haematoxylin. Original magnification 1256. Stainings shown are

representative of at least three samples of different origin.
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Figure S3 TLR9 is expressed in differentiated cell layers of HPV-

positive cervical epithelial neoplasia. Immunohistochemical staining

with TLR9-specific or isotype control antibody of paraffin-embedded

sections of normal and dysplastic genital epithelia. Staining was

performed as described in the legend to Figure S2. Original

magnification 1256. Sections of the following epithelial samples are

shown: A) normal cervical epithelium, B) CIN1, C) CIN2.
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Figure S4 TLR signalling in KCs. Toll-like receptor signalling

pathway (KEGG hsa4620) overlaid with differentially expressed

genes between 24 hrs poly(I:C) stimulated and unstimulated

uninfected keratinocyte cultures. Differentially expressed genes

(FDR#0.05) were colored bright red (log2 fold change$1) or dim

red (log2 fold change between 0 and 1) for upregulation upon

poly(I:C) stimulation, or bright green (log2 fold change#21) or dim

green (log2 fold change between 0 and 21) for downregulation.

Grey boxes represent genes not fulfilling the above criteria, while
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Figure S5 TLR signalling in HPV-KCs. Toll-like receptor

signalling pathway (KEGG hsa4620) overlaid with differentially

expressed genes between 24 hrs poly(I:C) stimulated and un-

stimulated HPV-infected keratinocyte cultures. For explanation of

colors, see Figure S4.
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Figure S6 Differential TLR signalling between HPV-KCs and

KCs. Toll-like receptor signalling pathway (KEGG hsa4620)

overlaid with differentially expressed genes between HPV-infected

and uninfected keratinocytes, both after 24 hrs poly(I:C) stimula-

tion. Differentially expressed genes (FDR#0.05) were colored

according to their log2 fold change (see legend Figure S4) for

upregulation (red) or downregulation (green) in HPV-positive cells.

(PDF)

Table S1 Differential expression of pattern recognition receptors

and signalling molecules in HPV-infected and uninfected kerati-

nocytes.

(PDF)

Table S2 HPV signature genes.

(XLS)

Table S3 Enrichment of transcription factor binding sites in

HPV signature gene promoters.

(PDF)
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Abstract

Persistent infection of basal keratinocytes with high-risk human papillomavirus (hrHPV) may cause cancer. Keratinocytes are
equipped with different pattern recognition receptors (PRRs) but hrHPV has developed ways to dampen their signals resulting in
minimal inflammation and evasion of host immunity for sustained periods of time. To understand the mechanisms underlying
hrHPV’s capacity to evade immunity, we studied PRR signaling in non, newly, and persistently hrHPV-infected keratinocytes. We
found that active infection with hrHPV hampered the relay of signals downstream of the PRRs to the nucleus, thereby affecting
the production of type-I interferon and pro-inflammatory cytokines and chemokines. This suppression was shown to depend on
hrHPV-induced expression of the cellular protein ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) in keratinocytes. UCHL1
accomplished this by inhibiting tumor necrosis factor receptor-associated factor 3 (TRAF3) K63 poly-ubiquitination which lead to
lower levels of TRAF3 bound to TANK-binding kinase 1 and a reduced phosphorylation of interferon regulatory factor 3.
Furthermore, UCHL1 mediated the degradation of the NF-kappa-B essential modulator with as result the suppression of p65
phosphorylation and canonical NF-kB signaling. We conclude that hrHPV exploits the cellular protein UCHL1 to evade host innate
immunity by suppressing PRR-induced keratinocyte-mediated production of interferons, cytokines and chemokines, which
normally results in the attraction and activation of an adaptive immune response. This identifies UCHL1 as a negative regulator of
PRR-induced immune responses and consequently its virus-increased expression as a strategy for hrHPV to persist.
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Introduction

Human papillomaviruses (HPVs) are absolutely species-specific

small double-stranded DNA viruses. Persistent infections with a

number of HPVs, predominantly types 16 and 18, can induce cancers

of the anogenitalia as well as of the head and neck region. These so-

called high-risk HPVs (hrHPVs) are widespread within all human

populations where they are commonly transmitted by sexual contact

[1]. The undifferentiated keratinocytes of the squamous epithelia are

the primary target for hrHPV [2] where it establishes an infection that

can last for up to 2 years, indicating that hrHPV has evolved

mechanisms to effectively evade the innate and adaptive immune

mechanisms protecting themajority of immunocompetent hosts [3,4].

Viruses and microbes contain pathogen-associated molecular

patterns that are recognized by the host’s pattern recognition

receptors (PRRs), comprising the Toll-like receptors (TLRs),

nucleotide oligomerization domain-like receptors and retinoic

acid-inducible gene I (RIG-I)-like receptors (RLRs) [5]. While all

of these receptors activate signaling cascades that lead to activation

of NF-kB via the canonical route, only RLRs and some TLRs

activate interferon regulatory factors (IRFs) which induce the

production of type I interferons (IFN) and other effector molecules

[6]. The signals from the PRR to the cell nucleus are coordinated

via ubiquitination, including that of the different tumor-necrosis

factor receptor-associated factors (TRAFs) and the NF-kB
essential modulator (NEMO). Poly-ubiquitination of TRAF and

NEMO allows downstream signaling whereas disassembly of

the formed poly-ubiquitin chains by deubiquitinating enzymes

provides a mechanism for downregulating immune responses

[6,7].

PLOS Pathogens | www.plospathogens.org 1 May 2013 | Volume 9 | Issue 5 | e1003384
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Keratinocytes (KCs) express TLRs 1–3, TLR5, TLR6, TLR10,

RIG-I, protein kinase R (PKR), and MDA5 independent of their

differentiation status and gain the expression of TLR9 upon full

differentiation indicating that these cells may respond to pathogenic

challenges [8,9,10]. Thus, KCs should be able to sense the presence

of hrHPV genomic DNA directly via TLR9 or indirectly via RIG-I

[5,11,12]. The expression levels of these PRR were not altered in

hrHPV+KCs [10]. However, via genome-wide expression profiling

of keratinocytes activated through TLR3, PKR, RIG-I and MDA-5

we found that the presence of hrHPV dampens a network of genes

encoding chemotactic, pro-inflammatory and antimicrobial cyto-

kines suggesting that HPV’s immune evasion strategy may rely on

countering PRR-mediated cell signaling [10].

To understand the mechanisms underlying hrHPV’s capacity to

dampen PRR signaling we utilized a system that resembles the

natural infection with HPV as closely as possible. It comprises the use

of primary KCs that stably maintain the hrHPV genome as episomes

following transfection. These hrHPV+ KCs grow at similar rates as

non-transfected KC and have been shown to mimic HPV infection

in vivo as they undergo the entire differentiation-dependent HPV life

cycle documented by genome amplification, late gene expression,

and virus production, upon culture of hrHPV+ KCs in organotypic

raft cultures [13,14,15]. In addition, we used non-infected primary

KC cultures and primary KCs newly infected with authentic HPV16

virions. These primary KCs were compared with respect to PRR

signaling under different conditions and resulted in the identification

of the cellular enzyme ubiquitin carboxyl-terminal hydrolase L1

(UCHL1) that was specifically upregulated by hrHPV in primary

keratinocytes to dampen innate immunity. UCHL1 acted on the

PRR-signaling pathway adaptor molecules TRAF3 and NEMO and

its inhibition restored PRR-induced production of IFNb and pro-

inflammatory and chemotactic cytokines.

Results

High risk HPV is associated with a decreased induction of
type I IFN and pro-inflammatory cytokines following
stimulation of keratinocytes via different pattern-
recognition receptors
Undifferentiated uninfected primary KCs and hrHPV+ KCs

were tested for their capacity to respond to triggers of innate

immunity by incubation with Pam3CSK4 (TLR1/2), poly(I:C)

(TLR3, RIG-I, PKR and MDA-5) [9], lipopolysaccharide (LPS,

TLR4), flagellin (TLR5), R848 (TLR7/8), or CpG (TLR9). The

supernatant of non-infected keratinocytes contained higher levels

of MIP3a and IL-8 but not MIP1a than hrHPV+ KCs at the basal

level. Activation with poly(I:C) induced the production of high

amounts of MIP3a, IL-8 and MIP1a in KCs but not in hrHPV+
KCs. Flagellin especially triggered the production of MIP3a by

KCs but not in hrHPV+ KCs, although IL-8 was still produced

(Figure 1A). The function of TLR9, expressed only at high protein

levels in differentiated keratinocytes as measured by immunohis-

tochemistry [10] and by RT-qPCR (Figure 1B), was tested by the

capacity of CpG oligodeoxynucleotides (CpG ODN) to trigger the

expression of mRNAs of pro-inflammatory cytokines and

chemokines. Because suspension in methyl cellulose – to differen-

tiate keratinocytes – does not allow the harvest of supernatant,

secreted protein levels could not be measured. However, the

experiments clearly showed that CpG ODN-stimulation resulted

in the gene expression of IFNB1 (IFNb), IL-8 and CCL20 (MIP3a)
in differentiated KCs but not in undifferentiated KC cultures

(Figure 1C). As a control, KCs were also stimulated with poly(I:C)

as TLR3, RIG-I and MDA-5 expression is independent of KC

differentiation [10] and this resulted in the induction of pro-

inflammatory cytokine expression in both undifferentiated and

differentiated KCs (Figure S1). In contrast to differentiated

uninfected KCs, the hrHPV+ KCs that expressed TLR9 after

differentiation, failed to induce the expression of IFNb, IL-8 and
MIP3a upon incubation with CpG (Figure 1C), indicating that

PRR-signaling can be suppressed in undifferentiated and differ-

entiated hrHPV+ KCs.

As the basal KCs are the target for hrHPV and TLR9 is not

functionally expressed in basal KCs and hrHPV+ KCs displayed

an impaired production of cytokines in response to poly(I:C),

subsequent studies were performed in the context of poly(I:C)

stimulation. In addition to the secretion of cytokines, also the gene

expression levels of MIP3a, CCL5 (RANTES) and IFNb in hrHPV+
KCs were lower when compared to uninfected KCs upon 3 or

24 hours of poly(I:C) stimulation (Figure 2A).

The production of pro-inflammatory cytokines and chemokines

upon activation of the NF-kB pathway requires the phosphory-

lation and nuclear translocation of the subunit p65 [6]. The levels

of phosphorylated p65 were lower in poly(I:C) stimulated hrHPV+
KCs than in non-infected KCs (Figure 2B), suggesting that the

functional impairment of PRR signaling occurs upstream of this

molecule. The IKK complex is a key component of the poly(I:C)-

induced NF-kB pathway, with NEMO (IKKc) functioning as a

scaffold. The degradation of NEMO may form a mechanism for

viruses to avoid innate immune signaling [16,17]. Therefore, the

effect of hrHPV on the protein levels of NEMO was analyzed.

Following treatment of non-infected KCs and hrHPV+ KCs with

cycloheximide (CHX) – to prevent new protein synthesis – it

became clear that NEMO degradation was enhanced in hrHPV+
KCs (Figure 2C and Figure S2), thereby explaining the decreased

phosphorylation of p65 observed.

The production of type I IFN (e.g. IFNb) requires the activation
of cytosolic IRF3 by phosphorylation and subsequent translocation

to the nucleus. Analysis of poly(I:C) stimulated KCs and hrHPV+
KCs suggested that also the levels of phosphorylated IFR3 levels

were decreased in HPV+ KCs (Figure 2D).

The high risk HPV viral transcript is needed to impair PRR
signaling
To confirm that the impairment in the production of IFNb and

pro-inflammatory cytokines did not simply reflect biological

differences between the different primary KCs used but indeed

Author Summary

A persistent infection with high-risk human papillomavirus
(hrHPV) may cause cancer. Whereas keratinocytes – the cells
infected by hrHPV – are equipped with different receptors
allowing them to recognize invading pathogens and to
activate the immune system, hrHPV has developed ways to
evade the host’s immune response for sustained periods of
time. We showed that hrHPV accomplishes this by interfer-
ing with the signaling of the pathogen receptors, thereby
hampering the production of cytokines that are known to
attract and activate the immune system. HrHPV accomplish-
es this by upregulating the expression of a cellular protein
called ubiquitin carboxyl-terminal hydrolase L1 (UCHL1). This
protein suppresses the activation of signals downstream of
the pathogen receptor leading to reduced transcription
factor activation and downstream gene expression, in
particular that of type I interferon and pro-inflammatory
cytokines. This lowers the attraction of immune cells and
thereby the chance of hrHPV-infected cells to be recognized
and eliminated and as such enables hrHPV to persist.
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was caused by hrHPV, we infected primary keratinocytes with

infectious HPV16 virions (Figure 3A) for 24 hours and then

stimulated the non-infected and newly infected KCs with poly(I:C)

for another 24 hours after which the levels of IFNb, RANTES and

MIP3a transcripts were measured (Figure 3B). After 24 hours of

infection there was a small but discernible increase in the levels of

these genes indicating that the keratinocytes initially react to the

presence of the virus. However, the levels already dropped at

48 hours post-infection indicating that the virus rapidly exerted its

PRR-signaling inhibitory effects. In addition, at the same time

Figure 1. The presence of high risk human papillomavirus interferes with pattern recognition receptor (PRR) signaling of
keratinocytes. (A) Cytokine production of non-differentiated uninfected or HPV16+ keratinocytes after stimulation with different indicated PRR
stimuli as measured by ELISA. (B) TLR9 expression as measured by qRT-PCR on total RNA samples from undifferentiated (und) and terminally
differentiated (terminal dif) uninfected KCs, and HPV16 and HPV18 positive KC cultures. (C) IFNb, IL-8 and MIP3a expression levels in unstimulated or
CpG ODN-stimulated uninfected KCs, and two different HPV (16 or 18) positive KC cultures as examined by qRT-PCR. KCs were either left
undifferentiated (und) or terminally differentiated (terminal dif) after which they were stimulated with CpG (10 mg/ml) for 7 hours. (B–C) Gene
expression was normalized using GAPDH mRNA expression levels.
doi:10.1371/journal.ppat.1003384.g001

HPV Upregulates UCHL1 to Suppress Immune Responses
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point these newly hrHPV-infected keratinocytes displayed a

hampered activation of IFNb, RANTES and MIP3a following

24 hours of stimulation with poly(I:C) (Figure 3B). Moreover, we

repressed the polycistronic viral mRNA transcript [18,19] in

hrHPV+ KCs by the use of siRNA targeting HPV16 E2 as this

allows the destruction of the whole RNA chain. Indeed the

suppression of HPV early gene E2 expression translated into an

overall decrease in viral early gene expression (Figure 3C) and an

increase in the transcription of IFNb, RANTES and MIP3a
following poly(I:C) stimulation (Figure 3D).

Together these data demonstrate that the innate immune

response to viral and bacterial-derived PRR stimuli of both

undifferentiated and differentiated hrHPV+ keratinocytes is

suppressed by HPV at a point downstream of the PRR receptors

but upstream of the transcription factors that relay the PRR

signals to the nucleus.

The ubiquitin-modifying enzyme UCHL1 is over-
expressed in hrHPV-positive keratinocytes and
responsible for suppressing the production of type I IFN
as well as pro-inflammatory and chemotactic cytokines

Our data suggest that hrHPV+ keratinocytes manifest a

generalized inability to respond to stimulation through interfer-

ence at, or downstream of the cytosolic part of the PRR signaling

pathways. We therefore re-analyzed the genome-wide expression

profiles (Gene Expression Omnibus accession number GSE21260)

of several different uninfected KC cultures and hrHPV+ KC

cultures reported previously [10] by Ingenuity Pathways Analysis

(IPA) and found a highly significant enrichment of genes belonging

to the protein ubiquitination pathway (Table S1; p = 6.6961025).

In this pathway, the gene for the enzyme ubiquitin carboxyl-

terminal hydrolase L1 (UCHL1) was the most upregulated gene in

Figure 2. Canonical NF-kB signaling is impaired upstream of the transcription factor p65. (A) Poly(I:C) induced cytokine expression in
HPV16+ KCs compared to non-infected KCs. MIP3a, RANTES and IFNb expression was measured by qRT-PCR. Gene expression was normalized using
GAPDH mRNA levels and standardized against 0 h of stimulation with poly(I:C). (B) Poly(I:C) stimulated phosphorylation levels of p65 in HPV16+ KCs
compared to non-infected KCs. Total p65 levels and p65 phosphorylation status were determined in whole cell extracts by western blotting. b-actin
served as loading control. (C) NEMO degradation in HPV16+ KCs compared to non-infected KCs. Monolayer cultures were treated with 100 mM
cycloheximide (CHX) and harvested after 0, 3, 6, 9, 12, 18 and 24 hours. Whole cell extracts were analyzed by western blotting using antibodies
against NEMO and b-actin (control for protein degradation). (D) Poly(I:C) stimulation-induced phosphorylation levels of IRF3 in hrHPV+ KCs compared
to KCs. Total IRF3 levels and IRF3 phosphorylation status were determined in whole cell extracts by western blotting. b-actin served as loading
control.
doi:10.1371/journal.ppat.1003384.g002
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hrHPV+ KCs compared to uninfected KCs (Figure 4A and B).

The upregulation of UCHL1 in hrHPV+ KCs was confirmed by

RT-qPCR in both foreskin and vaginal epithelial hrHPV+ KC

cultures and expression was not influenced by poly(I:C) activation

(Figure 4C). Furthermore, UCHL1 upregulation at the protein

level was tested and shown for three different hrHPV+ KCs by

Figure 3. Expression of human papillomaviral transcripts are required to impair cytokine expression of poly(I:C) stimulated
keratinocytes. (A, B) Cytokine expression at the initial stage of HPV16 infection. Primary basal layer human foreskin keratinocytes were infected
with native HPV16. (A) Viral early gene E6 expression was analyzed 1 and 2 (24 h poly(I:C)) days after infection by PCR. NC: negative control, PC:
positive control, HPV16+ KCs. (B) MIP3a, RANTES and IFNb expression was measured by qRT-PCR. Gene expression was normalized against GAPDH
mRNA levels and standardized against the 0 h poly(I:C) stimulated non-infected cells. Similar results were observed in two independent experiments.
(C, D) Poly(I:C)-induced cytokine expression in HPV+ KCs transfected with control siRNA (siControl) or siRNA targeting HPV16 E2 (siHPV16 E2). E1, E2,
E6, E7 (C) as well as MIP3a, RANTES, and IFNb (D) expression was analyzed by qRT-PCR. Gene expression was normalized against GAPDH mRNA levels
and standardized against no poly(I:C) siControl. For all three genes the response to poly(I:C) was significantly higher when HPV16 E2 was suppressed
(p,0.001, one-way ANOVA).
doi:10.1371/journal.ppat.1003384.g003
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Figure 4. HPV induces expression of UCHL1 in keratinocytes. (A) Summary of all differentially expressed genes within the Protein
Ubiquitination Pathway. Differentially expressed genes between four uninfected KC and four hrHPV+ KC cultures with adjusted p-value#0.05
identified 24 hours after poly(I:C) stimulation by microarray analysis (log2 ratios) are shown. (B) UCHL1 microarray gene expression values (log2
intensities) after 0, 4, and 24 hours of poly(I:C) stimulation in four primary KCs and four hrHPV+ KCs (circles). The box represents the 25th and 75th

percentiles, the median is indicated with a horizontal line within the box, and the whiskers represent the minimum and maximum. (C) UCHL1
expression in HPV16+ human foreskin keratinocytes (HFK; left panel) and HPV16+ human vaginal keratinocytes (HVK; right panel) when compared to
uninfected KCs. KCs were either left unstimulated or stimulated with poly(I:C) for 24 hrs. UCHL1 expression was normalized against GAPDH. (D) UCHL1

HPV Upregulates UCHL1 to Suppress Immune Responses
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upregulated 2 days post-infection of HPV16 in primary keratino-

cytes when compared to mock-infected primary keratinocytes

(Figure 4E), whereas knock-down of the polycistronic viral mRNA

transcript in hrHPV+ KCs by siRNA for HPV16 E2 resulted in a

decreased UCHL1 expression (Figure 4F). Thus, the cellular

deubiquitinase UCHL1 is upregulated by hrHPV.

Although UCHL1 had not been associated with the inhibition

of PRR signaling, its enhanced expression in hrHPV+ KCs fits

well with the general role of deubiquitinases in controlling PRR

signaling [6]. To test whether hrHPV-induced UCHL1 inhibits

PRR signaling, we used lentiviral vectors expressing short-hairpin

RNA (shRNA) against UCHL1 and this resulted in a downregu-

lated expression of UCHL1 transcripts and protein levels in

hrHPV+ KCs (Figure 5A and B). Upon stimulation with poly(I:C),

hrHPV+ KCs expressing shRNA against UCHL1 (shUCHL1) but

not hrHPV+ KCs expressing a control shRNA (shControl)

restored poly(I:C)-mediated induction of type I interferon and

proinflammatory cytokines (Figure 5C). Similar results were

obtained using transiently transfected RNA interference (RNAi)

oligos targeting UCHL1 but not with control RNAi oligos (Figure

S3). An increase in the expression levels of IL8 and MIP3a was

detected in hrHPV+ KCs in which UCHL1 was downregulated.

Gene expression increased to the same levels found in UCHL1-non

silenced hrHPV+ KCs cells stimulated with poly(I:C) (Figure S3).

This suggests that downregulation of UCHL1 increases the gene

expression of IL-8 and MIP3a in hrHPV+ KCs. Conversely,

transfection of uninfected KCs to overexpress UCHL1 resulted in a

decreased expression ofMIP3a, RANTES and IFNb upon poly(I:C)

stimulation (Figure 5D and E). Based on control experiments in

which KCs were transfected with green fluorescent protein

expressing plasmids, the transfection efficiency of keratinocytes

was 30–40% (not shown), indicating that in a large part of the

keratinocytes the activation of cytokine-encoding genes is not

impaired and explaining the expression levels of these cytokine-

encoding genes that are still detected.

All together, these data clearly demonstrate that UCHL1 can

downregulate the PRR-mediated activation of both the type I IFN

and proinflammatory cytokine and chemokine pathways.

Knock down of UCHL1 increases the phosphorylation of
IRF3 and NFkB p65 and alleviates NEMO degradation
We then asked whether the restoration of PRR signaling, as

indicated by an increased induction of type I interferon and

proinflammatory cytokines by the knock down of UCHL1 in

hrHPV+ KCs would also be reflected in the levels of phosphor-

ylated p65 (p65-p) and IRF3 (IRF3-p) upon poly(I:C) stimulation.

Therefore, the p65-p and IRF3-p levels were analyzed in whole

cell extracts of HPV16+ KCs stably expressing shRNA against

UCHL1 or control shRNA and following 3 h or 24 h of

stimulation with poly(I:C). Knock down of UCHL1 in hrHPV+
KCs resulted in increased p65 phosphorylation at 3 and 24 hours

after poly(I:C) stimulation (Figure 6A) coinciding with enhanced

cyto- and chemokine production (Figure 5C). In addition, analysis

of hrHPV+ KCs treated with cycloheximide revealed that NEMO

degradation was alleviated when UCHL1 was knocked down by

shUCHL1 as compared to the shControl hrHPV+ KCs

(Figure 6B). Furthermore, higher levels of phosphorylated IRF3

were detected in hrHPV+ KCs in which UCHL1 was knocked

down as compared to hrHPV+ KCs expressing the shControl after

3 hours of poly(I:C) stimulation (Figure 6C).

UCHL1 alters the poly-ubiquitination of TRAF3 and NEMO
TRAF3 ubiquitination is critical for type I IFN production and

is a likely target for ubiquitin-modifying enzymes such as UCHL1.

As the biochemical experiments to understand the nature of this

interaction would require substantial amounts of primary KCs,

which can only grow for a few passages thereby restricting their

use in biochemical studies, we switched to the HEK293T cell

system that is widely used for these purposes. To investigate the

interaction between UCHL1 and TRAF3 we overexpressed

UCHL1 and Flag-tagged TRAF3 in HEK293T cells. After FLAG

immunoprecipitation, we confirmed that UCHL1 co-immunopre-

cipitated with TRAF3 (Figure 7A). TRAFs are activated by

oligomerization and auto-ubiquitination, a process that results in

lysine 63 (K63)-linked poly-ubiquination of TRAF, and this event

can be induced by either their overexpression or by receptor

activation. In contrast K48-linked poly-ubiquitination results in

proteasome-mediated degradation of ubiquitinated TRAFs [6].

To test whether UCHL1 modified TRAF3 ubiquitination status,

Flag-tagged TRAF3 and haemagglutinin A (HA)-tagged ubiquitin

were overexpressed in control or UCHL1 overexpressing

HEK293T cells. Poly-ubiquitination of TRAF3 was clearly visible

by immunoblot analysis but strongly reduced when UCHL1 was

also overexpressed (Figure 7B, Figure S4). No reduction in poly-

ubiquitination was detected when as a control the growth

regulated ubiquitin-specific protease 8 (USP8), which similar to

UCHL1 displays carboxyl-terminal hydrolase activity, was over-

expressed (Figure 7B). The UCHL1-associated decreased detec-

tion of poly-ubiquitinated TRAF3 was not the result of increased

TRAF3 degradation as blocking the proteasomal degradation

pathway by the inhibitor MG132 did not result in a reappearance

of poly-ubiquitinated TRAF3 (Figure 7C). Instead, experiments in

which HA-tagged ubiquitin mutants ‘K63 Only’ and ‘K48 Only’

(where all lysine residues, except at position K63 and K48,

respectively, were mutated to arginine) showed that UCHL1

removed K63-linked poly-ubiquitins but not K48-linked poly-

ubiquitins (Figure 7D), consistent with the known deubiquitinating

capacity of UCHL1 [20]. K63-linked ubiquitination is required for

TRAF3 to bind its partner TBK1 to activate the downstream type

I IFN-signaling pathway. As expected, UCHL1-mediated deubi-

quitination of TRAF3 resulted in less TRAF3 bound to TBK1 in

UCHL1 overexpressing cells when compared to control cells

(Figure 7E). These data clearly show that UCHL1 binds and

deubiquitinates TRAF3 resulting in a decreased TRAF3-TBK1

complex formation.

Poly-ubiquitination of TRAF6 and its downstream partner

NEMO is critical for the PRR-induced activation of proinflam-

matory cytokine genes [6]. Since the overexpression of UCHL1

protein levels in HPV16+ human foreskin keratinocytes (HPV16) and HPV16+ or HPV18+ human vaginal keratinocytes (HVK16 or HVK18, respectively)
when compared to non-infected KCs (HFK) as detected by western blotting (WB) in whole cell extracts. b-actin served as loading control. (E) UCHL1
expression at the initial stage of HPV16 infection. Primary basal layer human foreskin keratinocytes were infected with native HPV16 (HPV16 infected
keratinocytes) or not (Mock). UCHL1 mRNA expression was analyzed by qRT-PCR 2 days after infection. Gene expression was normalized against
GAPDH mRNA levels and standardized against the non-infected cells. Similar results were observed in two independent experiments. (F) UCHL1
expression in HPV+ KCs transfected with control siRNA (siControl) or siRNA targeting HPV16 E2 (siHPV16 E2). UCHL1 expression was analyzed by qRT-
PCR. Gene expression was normalized against GAPDH mRNA levels and standardized against siControl. Similar results were observed in more than 3
independent experiments.
doi:10.1371/journal.ppat.1003384.g004
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Figure 5. UCHL1 is responsible for suppressing poly(I:C) mediated gene activation of IFN-I and proinflammatory cytokines in
hrHPV-infected KC. (A–C) UCHL1 knock-down effect of poly(I:C) mediated gene expression of IFN-I and proinflammatory cytokines. HPV16+
keratinocytes were transduced with lentiviral vectors expressing shRNA against control mRNA (TurboGFP; shControl) or targeting mRNA of UCHL1
(shUCHL1). Cells were either left unstimulated, or were stimulated with poly(I:C) for 3 or 24 hrs. (A) UCHL1mRNA expression was analyzed by qRT-PCR
and (B) UCHL1 protein levels were analyzed by western blotting in whole cell extracts, b-actin served as loading control. (C) MIP3a, RANTES and IFNb
mRNA expression was analyzed by qRT-PCR. Gene expression was normalized against GAPDH mRNA levels and standardized against 0 h of
stimulation with poly(I:C). (D, E) UCHL1 overexpression effect on the activation of poly(I:C) mediated gene expression of IFNb and proinflammatory
cytokines. Uninfected keratinocytes were transfected with a vector harboring the UCHL1 gene, an empty control or only received the transfection
agent (TFRO). Cells were either left unstimulated, or were stimulated with poly(I:C) for 24 hrs. (D) UCHL1 protein levels were upregulated in the
UCHL1-transfected cells as detected by western blotting in whole cell extracts, b-actin served as loading control. (E) MIP3a and RANTES mRNA
expression was analyzed by qRT-PCR. Gene expression was normalized against GAPDH mRNA levels and standardized against the TFRO at 0 h of
stimulation with poly(I:C).
doi:10.1371/journal.ppat.1003384.g005

HPV Upregulates UCHL1 to Suppress Immune Responses

PLOS Pathogens | www.plospathogens.org 8 May 2013 | Volume 9 | Issue 5 | e1003384



64

H
PV

 U
pr

eg
ul

at
es

 U
C

H
L1

 to
 S

up
pr

es
s 

Im
m

un
e 

R
es

po
ns

es

clearly affected proinflammatory cytokine synthesis (Figure 5) the

interaction of UCHL1 with TRAF6 and NEMO was tested. Co-

expression and immunoprecipitation experiments in HEK293T

cells showed that UCHL1 bound to TRAF6 but not to NEMO

(Figure 7A). In contrast to what we observed for TRAF3, UCHL1

displayed a modest effect on the poly-ubiquitination of TRAF6

Figure 6. UCHL1 reduces phosphorylation levels of IRF3 and p65 and degrades NEMO in hrHPV-positive KC. (A) UCHL1 knock down
effect on poly(I:C) stimulated p65 phosphorylation in HPV16+ keratinocytes. Monolayer cultures of shControl or shUCHL1-expressing HPV16+ KCs
were stimulated for 0, 3 or 24 hours with Poly(I:C). Whole cell extracts were analyzed by western blotting for p65, p65-p and b-Actin (as loading
control). The relative expression of p65-p was quantified by measuring its density and by normalizing it to that of b-Actin. The expression levels of
p65-p in the 0 h Poly(I:C) cells were set to 100% for both shControl and shUCHL1 cells. The p65-p levels in the 3 h and 24 h Poly(I:C) cells were
calculated against the levels measured at 0 h Poly(I:C) (right panel). (B) NEMO protein levels after knock down of UCHL1 in HPV16+ KCs. Monolayer
cultures of shControl or shUCHL1-expressing HPV16+ KCs were treated with 100 mM cycloheximide (CHX) for 16 hours. Whole cell extracts were
analyzed by western blot using antibodies against NEMO and b-Actin (control for protein content). The relative expression of NEMO was quantified
by measuring its density and by normalizing it to that of b-Actin. The expression of NEMO in the DMSO control was set to 100% (right panel). (C)
UCHL1 knock down effect on poly(I:C) stimulated IRF3 phosphorylation in HPV16+ keratinocytes. Similar to A, however cell extracts were analyzed by
western blotting using antibodies against IRF3, IRF3-p and b-Actin (as loading control). The relative expression of IRF3-p was quantified by measuring
its density and by normalizing it to that of b-Actin. The expression of IRF3-p in the 3 h Poly(I:C) control cells (no knock down of UCHL1) was set to
100% (right panel).
doi:10.1371/journal.ppat.1003384.g006
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(Figure 8A). However, poly-ubiquitination of NEMO was reduced

in UCHL1 overexpressing cells (Figure 8B, Figure S4) but not in

USP8 overexpressing cells (Figure 8D). Inhibition of proteasome

function by MG132 suggested that the reduced poly-ubiquitina-

tion of NEMO was the result of enhanced degradation of NEMO

in cells overexpressing UCHL1 (Figure 8C, compare lanes 2 and

4), albeit that the total protein levels of NEMO in these transfected

cells remained unaffected. This is not unexpected as also in the

endogenous setting (Figures 2 & 6) the degradation of NEMO

could only be visualized when the hrHPV+ KCs where pretreated

with cycloheximide to prevent new protein synthesis.

Collectively, these data support the notion that UCHL1 can

suppress the PRR-signaling pathways necessary for type I IFN and

pro-inflammatory cytokine production by the removal of the

activating K63 ubiquitins from TRAF3 and the forced degrada-

tion of NEMO.

Discussion

We have employed a unique model for hrHPV infection to

examine the potential mechanisms underlying the capacity of

hrHPV to evade host immunity by suppression of the innate

immune response [10]. We utilized primary KC cultures that were

newly infected with HPV16 virions or primary KCs stably

maintaining the episomal hrHPV genome to show that despite

the expression of multiple PRRs the production of IFNb and pro-

inflammatory cytokines and chemokines is suppressed by hrHPV

as a consequence of reduced PRR signaling. We provided firm

evidence that this suppression depends on the hrHPV-induced

upregulation of the cellular ubiquitin-modifying enzyme UCHL1

in infected primary KCs.

Finally, classical biochemical studies in HEK293T cells

[11,21,22] performed to understand how UCHL1 mechanistically

could suppress the production of type I interferons and pro-

inflammatory cytokines revealed that UCHL1 regulated the

ubiquitination of the PRR-signaling pathway adaptor molecules

TRAF3 and NEMO. UCHL1 removes activating K63-linked

ubiquitin molecules from TRAF3 resulting in a lower amount of

the downstream signaling complex TRAF3-TBK-1 to suppress the

type I IFN pathway. This puts UCHL1 within the family of other

deubiquinating enzymes that regulate the PRR pathways by

selectively cleaving lysine-63 (K63)-linked ubiquitin chains from

TRAFs (e.g. DUBA, OTUB1, OTUB2, A20) [21,22,23,24,25,26].

Furthermore, we showed that UCHL1 bound to TRAF6 and

mediated the enhanced degradation of NEMO as a mechanism to

suppress the proinflammatory cytokine NF-kB pathway. Notably,

the ubiquitin-modifying enzyme A20, a known negative regulator

of the TLR pathway, has two ubiquitin-editing domains allowing

it to remove and to add ubiquitin chains (22, 26). UCHL1 has also

been reported to have these two opposing functions (20). The

ligase activity of UCHL1 may explain the ubiquitination of

TRAF6 observed in our study. Although UCHL1 did not bind to

NEMO, it is known that other deubiquitinating enzymes (e.g.
CYLD, A20) bind to TRAFs in order to dock on the IKK complex

and to associate with NEMO [21,27]. TRAF6-dependent poly-

ubiquitination of NEMO is well known [28]. It is highly likely that

UCH-L1 acts in a similar fashion and this would fit with TRAF6-

NEMO interaction and our observations that NEMO is degraded.

Our data on the suppression of NF-kB signaling via the

degradation of NEMO by UCHL1 fits well with earlier

observations concerning the overexpression of UCHL1 in vascular

cells. Here UCHL1 attenuated TNF-a induced NF-kB signaling

and this was associated with stabilization of IkBa and a decrease in

its basal ubiquitination [29]. The activation of NF-kB signaling

requires IkBa to become degraded following an interaction with

the IkB kinase complex (IKK) which comprises NEMO. Hence,

the degradation of NEMO may explain previous observations on

UCHL1-associated stabilization of IkBa.
UCHL1 is not found to be central in the network of genes

affected by hrHPV, suggesting that it is not part of the cellular

genes affected in order to assist in HPV genome replication and

viral protein production [10]. This indicates that UCHL1 is not

directly involved in viral propagation but rather recruited by

hrHPV to suppress keratinocyte-mediated production of cytokines

and chemokines that would result in the attraction and activation

of an adaptive immune response, thereby enabling the virus to

persist and propagate.

Many viruses utilize multifunctional viral proteins in order to

evade NF-kB- and IRF-mediated immune responses, to favor viral

replication and/or to modulate cellular apoptosis and growth

pathways [30]. The group of pox viruses have evolved to inhibit

NF-kB-signaling by targeting one or more of the many different

molecules of this signaling cascade [31]. The vaccinia virus B14

protein is known to inhibit NF-kB signaling by a variety of toll-like

receptor agonists at the level of the IKK complex, of which

NEMO is a member [32]. The vaccinia virus A64R protein

inhibits TRIF-TRAF3-IRF signaling [33]. The pathogenic NY-1

hantavirus Gn protein inhibits TRAF3 signaling by blocking the

formation of TBK1-TRAF3 complexes [34] whereas the LMP1

protein of Epstein-Barr virus directly binds to TRAF3 [35].

Furthermore, foot-and-mouth disease virus 3c protease cleaves

NEMO [16] and cytomegalovirus M54 protein induces the

proteasome-independent degradation of NEMO [17]. In contrast,

human papillomaviruses, with a rather limited coding capacity in

their genomes, rely for many aspects of their life cycle on the

utilization of cellular proteins [36] and this includes the

recruitment of different cellular E3 ligases to mediate degradation

of cellular proteins through the ubiquitin-proteasomal pathway

[37]. UCHL1 is one of the most abundant proteins in the

mammalian nervous system and is involved in regulating synaptic

Figure 7. Interaction of UCHL1 with the PRR downstream signaling molecule TRAF3. (A) UCHL1 directly interacts with TRAF3 and TRAF6
but not NEMO. HEK293T cells were co-transfected as indicated and the respective TRAF3, TRAF6 or NEMO proteins were immunoprecipitated using
Flag antibody, and co-precipitating UCHL1 was detected by WB. As a control a WB analysis for Flag was performed indicating that both TRAF3 and
NEMO were present. The bottom three panels show a WB analysis of Flag and UCHL1 of non- immunoprecipitated lysate and a Ponceau S stained
loading control for WB. (B) UCHL1, but not the control ubiquitin-specific protease 8 (USP8) mediates deubiquitination of TRAF3. HEK293T cells were
co-transfected with Flag-TRAF3, HA-tagged wild-type ubiquitin (WT-Ub), and with either empty vector, WT UCHL1 or USP8. TRAF3 was
immunoprecipitated with Flag antibody and WB was done with HA or Flag antibodies (top panels). The bottom four panels show a WB analysis of
Flag, UCHL1, and USP8 of non- immunoprecipitated lysate and a Ponceau S stained loading control for WB. (C) Deubiquitination but not degradation
of TRAF3 by UCHL1. HEK293T cells were co-transfected with Flag-TRAF3, HA-tagged wild-type ubiquitin (WT-Ub), and with either empty vector or WT
UCHL1. Cells were left untreated or treated with proteasome blocker MG132. TRAF3 was immunoprecipitated with Flag antibody and WB was done
with HA or Flag antibodies (top two panels). (D) UCHL1 mainly removes K63-linked poly-ubiquitin chains of TRAF3. HEK293T cells expressing Flag-
TRAF3, HA-tagged mutant ubiquitin either K63 Only or K48 Only, and WT UCHL1 were immunoprecipitated with Flag antibody and analyzed by HA or
Flag antibodies (top two panels). (E) UCHL1 lowers TRAF3-TBK1 complex formation. HEK293T cells were co-transfected and TBK1 was
immunoprecipitated using Flag antibody, and co-precipitating TRAF3 or TBK1 was detected by WB (top two panels).
doi:10.1371/journal.ppat.1003384.g007
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Figure 8. Interaction of UCHL1 with the PRR downstream signaling molecules TRAF6 and NEMO. (A) UCHL1 overexpression results in a
modest poly-ubiquitination of TRAF6. HEK293T cells were co-transfected with Flag-TRAF6, HA-tagged WT-Ub, and with either empty vector or WT
UCHL1. TRAF6 was immunoprecipitated with Flag antibody and western Blotting (WB) was done with HA or Flag antibodies (top two panels). The
bottom three panels show a WB analysis of UCHL1 and Flag of non-immunoprecipitated lysate and a Ponceau S stained loading control for WB. (B)
The effect of UCHL1 on NEMO. HEK293T cells were co-transfected with Flag-NEMO, HA-tagged WT-Ub, and with either empty vector or WT UCHL1.
NEMO was immunoprecipitated with Flag antibody and WB was done with HA or Flag antibodies (top two panels). (C) The overexpression of UCHL1
mediates the degradation of NEMO. HEK293T cells were co-transfected with Flag-NEMO, HA-tagged WT-Ub, and with either empty vector or WT
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transmission at the neuromuscular junctions [38]. Aberrant

expression is related to Parkinson’s disease [20] and is also

implicated in oncogenesis [39]. In hrHPV+ keratinocytes UCHL1

is expressed and redirected to adopt a new function that is to serve

as a negative regulator of the PRR-signaling pathway. As such it

mimics the ubiquitin-modifying enzyme A20 which is the natural

negative regulator of the TLR pathway [22,26,40]. UCHL1

interferes with the adaptor molecules TRAF3, TRAF6 and

NEMO which all function at junctions for the immune stimulating

signals from different PRR and type I IFNR to activate NF-kB-
and IRF-mediated immune responses. Therefore, the utilization of

UCHL1 represents a truly effective use of a cellular protein as it

may suppress the immunostimulatory signals initiated through

recognition of HPV genomic DNA by TLR9 [5] and RIG-I

[11,12] as well as those obtained via the cell surface receptors for

type I IFN [41].

The high expression of UCHL1 in primary keratinocytes

carrying infectious hrHPV [13,14] is generally lost after transfor-

mation of these keratinocytes to tumor cells. Although transformed

keratinocytes expressing un-physiologically high levels of E6 and

E7 via retroviral transduction still may express UCHL1, only a

minority of spontaneously HPV-transformed cervical carcinoma’s

and none of the well known HPV-induced cancer cell lines

overexpress UCHL1 [42], indicating that under normal conditions

UCHL1 overexpression in HPV transformed cells is not a common

event. The expression of the hrHPV oncoproteins E6 and E7 is

required to maintain the transformed state of keratinocytes [2,43]

suggesting that it is not E6 or E7, but one or more of the other

viral proteins responsible for upregulation of UCHL1 (currently

under investigation). Previous studies on the innate immune

response to hrHPV relied on the overexpression of hrHPV E6

and/or E7 proteins, showing that the viral DNA-sensing TLR9

was altered [8] and that overexpressed HPV E6 or E7 could bind

to IRF3 [44] and/or the co-activator CPB [45]. Furthermore,

overexpressed hrHPV E6 and/or E7 attenuated IkB kinase

signaling [46], and interfered with the nuclear translocation of the

interferon-stimulated gene factor 3 (ISGF3) transcription complex

[47]. The fact that these studies were performed with only HPV

E6- and E7 transfected or transformed cells may explain why the

central role of UCHL1 in dampening immunity towards hrHPV+
keratinocytes was not discovered before. In addition, the loss of

UCHL1 mediated suppression of the NF-kB pathway in hrHPV

E6/E7-induced cancer cells fits well with the notion that solid

tumors require the NF-kB-mediated expression of proteins that

promote survival, proliferation, invasion and metastasis [48] which

is acquired through the E6-mediated deactivation of CYLD [49], a

negative regulator of TRAF2 and TRAF6-mediated activation of

NF-kB [21,24].

All together, our data implicate UCHL1 as a negative regulator

of the PRR pathways helping hrHPV to evade host immunity and

allowing it to persist in keratinocytes.

Methods

Cell culture
Primary cultures of human epithelial keratinocytes were

established from foreskin [50] and vaginal tissues and grown in

serum-free medium (Defined KSFM, Invitrogen, Breda, The

Netherlands). Keratinocyte lines stably maintaining the full

episomal HPV genome following electroporation were grown in

monolayer culture using E medium in the presence of mitomycin

C treated J2 3T3 feeder cells [13,14] for two passages and were

then adapted to Defined K-SFM for one passage before

experimentation. None of the cell cultures were used after passage

15 and the non-transformed state of the cells used was confirmed

by the expression of both E1 and E2 so that the cells used truly

represent the preneoplastic state in which the HPV genomes

remained episomal and were capable of the complete viral life

cycle. Keratinocytes were terminally differentiated by placing

them into serum-free medium containing 1.75% methyl cellulose

and 1.8 mM Ca2+ for 24 hours [50]. Cells were harvested by

washing out the methyl cellulose three times. HEK293T cells were

cultured in Dulbecco’s modified Eagle’s medium supplemented

with 10% fetal bovine serum, 2 mM l-glutamine and 1%

penicillin-streptomycin (Gibco-BRL, Invitrogen). Transient trans-

fections were performed using calcium phosphate or Lipofecta-

mine 2000 (Invitrogen).

HPV16 infection of non-infected keratinocytes
Primary basal layer human foreskin keratinocytes were seeded

at 7.56104 cells per well of a 24-wells plate in K-SFM and then

allowed to attach for 48 hours. Cells received fresh medium (Mock

infected) or medium containing native HPV16 isolated from raft

cultures at a MOI 100 for 24 hours. Cells were stimulated with or

without 25 ug/ml poly(I:C) in K-SFM for 0 or 24 hours and

harvested at the indicated time-points.

Plasmid construction
Full length human cDNA clones for UCHL1, TRAF3, TRAF6

and TBK1 were obtained from Open Biosystems (Surrey, UK).

The cDNA clones were PCR amplified and subcloned either into

pcDNA3.1 expression vector or into Flag-tagged pcDNA3.1

vector. Full-length Flag-NEMO construct was kindly provided

by Dr. C. Sasakawa, University of Tokyo, Japan [51]. HA-tagged

wild-type and mutant ubiquitin constructs were kindly provided by

Dr. A. Iavarone, Columbia University, USA.

RNA expression analyses
Total RNA was isolated using TRIzol (Invitrogen) according to

manufacturer’s instructions. RNA was purified using RNeasy Mini

Protocol (Qiagen, Venlo, The Netherlands). Total RNA (0.2 mg)
was reverse transcribed using SuperScript III reverse transcriptase

(Invitrogen) and oligo dT primers (Promega, Madison, USA).

TaqMan PCR was performed using TaqMan Universal PCR

Master Mix and pre-designed, pre-optimized primers and probe

mix for IL-8, MIP-1a, MIP-3a, RANTES, IL-1b, IFNb, UCHL1

and GAPDH (Applied Biosystems, Foster City, USA). Threshold

cycle numbers (Ct) were determined using the 7900HT Fast Real-

Time PCR System (Applied Biosystems) and the relative quantities

of mRNA per sample were calculated using the DDCt method as

described by the manufacturer using GAPDH as the calibrator

gene.

Stimulation of cells with TLR ligands and ELISA
56105 cells were plated in 1 ml in each well of 24-well flat

bottom plate. Cells were left unstimulated or stimulated with

UCHL1. Cells were left untreated or were treated with MG132, NEMO was immunoprecipitated with Flag antibody and WB was done with HA or Flag
antibodies (top two panels). (D) USP8 does not deubiquitinate NEMO. HEK293T cells were co-transfected with Flag-NEMO, HA-tagged wild-type
ubiquitin (WT-Ub) and UCHL1 or USP8. NEMO was immunoprecipitated with Flag antibody and WB was done with HA antibodies (top panel). The
bottom four panels show a WB analysis of Flag, UCHL1, and USP8 of non-immunoprecipitated lysate and a Ponceau S stained loading control for WB.
doi:10.1371/journal.ppat.1003384.g008
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Pam3CSK4 (5 mg/ml), Poly(I:C) (25 mg/ml), LPS (3.33 mg/ml ),

flagellin (150 ng/ml), R848 (1 mg/ml), CpG (1 mM) or TNFa
(50 ng/ml) for 24 hours. Flagellin was a kind gift from Jean-

Claude Sirard (Institut Pasteur, Lille, France). TLR ligands were

purchased from Invivogen (San Diego, USA). The supernatants

were harvested and IL-8, MIP-3a, and MIP-1a concentrations

were determined using corresponding Quantikine ELISA kits

(R&D Systems, Oxon, UK).

RNAi and shRNA
Non-targeting RNAi oligos (ON-TARGETplus Non-targeting

Pool, catalogue D-001810-10-20) and oligos targeting UCHL1

(ON-TARGETplus SMARTpool, catalogue L-004309-00) were

purchased from Dharmacon (Chicago, IL). Cells were transfected

with RNAi using N-TER Nanoparticle siRNA Transfection

System (Sigma-Aldrich, St. Louis, MO) according to manufactur-

er’s instructions. 24 hours after transfection, cells were stimulated

with poly(I:C) (25 mg/ml) for another 24 hours and experiments

were performed.

The shRNA’s used were obtained from the MISSION TRC-

library of Sigma-Aldrich (Zwijndrecht, The Netherlands). The

MISSION shRNA clones are sequence-verified shRNA lentiviral

plasmids (pLKO.1-puro) provided as frozen bacterial glycerol

stocks (Luria Broth, carbenicillin at 100 mg/ml and 10% glycerol)

in Escherichia coli for propagation and downstream purification of

the shRNA clones. pLKO.1 contains the puromycin selection

marker for transient or stable transfection. The construct against

UCHL1 (NM_004181) was TRCN0000011079 (LV079): CCG-

GCAGTTCTGAAACAGTTTCTTTCTCGAGAAAGAAACT-

GTTTCAGAACTGTTTTT and the control was: SHC004

(MISSION TRC2-pLKO puro TurboGFP shRNA Control

vector): CCGGCGTGATCTTCACCGACAAGATCTCGAGA-

TCTT GTCGGTGAAGATCACGTTTTT. HPV16+ KCs were

seeded 7.56104 cells per well to a 12-wells plate in K-SFM and

were allowed to attach over night. Medium was replaced by

infection medium (K-SFM+30% virus supernatant; MOI=5),

containing either the lentivirus LV079 in IMDM 5% FCS or as

control SHC004. HPV16+ KCs were infected over night after

which infection medium was replaced by K-SFM containing

1000 ng/ml puromycin for 48 hours to select for successfully

infected HPV16+ KCs. Then the medium was replaced by K-

SFM without puromycin and cells were grown for 24 hours. To

stimulate the PRR pathways lentivirus-infected HPV16+ KCs

were given K-SFM containing either no poly(I:C) (two wells) or

25 ug/ml poly(I:C) and were cultured for 21 hours. Then one of

the two non-stimulated wells received 25 ug/ml poly(I:C) and all

cells were cultured for another 3 hours. Cells were harvested and

total RNA was isolated.

Silencer Select siRNA against HPV16 E2 (AACACUACACC-

CAUAGUACAUtt) was designed using siRNA Target Finder

software (Ambion, Invitrogen). Blast search revealed that the

designed E2 siRNA does not match with the known human

transcriptome. E2 and Negative control #2 (NC2) siRNA

(sequence not provided by manufacturer) were purchased from

Ambion. HPV16+ KCs were transfected with 50 nM siRNA E2

or NC2 using Lipofectamine 2000 (Invitrogen) according to the

manufacturer’s instructions. 48 hours post-transfection cells re-

ceived K-SFM containing no Poly(I:C) or 25 ug/ml Poly(I:C) and

were cultured for 24 hours after which target gene expression was

assayed by qRT-PCR.

Western blot analysis and immunoprecipitation
For Western blotting, polypeptides were resolved by SDS–

polyacrylamide gel electrophoresis (SDS–PAGE) and transferred

to a PVDF membrane (Bio-Rad, Veenendaal, The Netherlands).

Immunodetection was achieved with anti-Flag (1:2000, Sigma-

Aldrich), anti-HA (1:1000, Covance), anti-TRAF3, anti-TRAF6

(both 1:500, Santa Cruz, CA), anti-ubiquitin lysine 48-specific

(1:1000, Millipore, Amsterdam, The Netherlands), anti-poly-

ubiquitin lysine 63 specific (1:1000, Millipore), anti-TBK1

(1:400, Santa Cruz), anti-NEMO (FL-419, Santa Cruz), anti-

UCHL1 (1:1000 Millipore, 1:100 Abcam or 1:1000 Santa Cruz),

anti-USP8 (#8728, Cell Signaling Technology, Danvers, MA,

USA), anti-phospho-p65 (Ser538; 1:1000, #3033 Cell Signaling

Technology) and anti-phospho-IRF3 (Ser396; 1:2000, #4947,

Cell Signaling Technology) or b-actin (1:10,000, Sigma-Aldrich)

antibodies. The proteins were visualized by a chemoluminescence

reagent (Thermo Scientific, Etten-Leur, The Netherlands). X-Ray

films were scanned using a GS-800 calibrated densitometer and

Quantity One software (Bio-Rad, Veenendaal, The Netherlands)

to quantify the intensity of the bands as a measure of the amount

of protein of interest in the blot. The relative amount was

determined by calculating the ratio of each protein over that of the

density measured for the household protein b-Actin.
For immunoprecipitation, cells were collected after 48 h and

then lysed in NP40 buffer supplemented with a complete protease

inhibitor cocktail (Roche, Almere, The Netherlands). After pre-

clearing with protein A/G agarose beads for 1 h at 4uC, whole-cell
lysates were used for immunoprecipitation with either mouse or

rabbit anti-Flag antibodies (Sigma-Aldrich), or rabbit anti-TRAF3

or rabbit anti-TRAF6. One to two mg of the antibody was added

to 1 ml of cell lysate, which was incubated at 4uC for 2–3 h. After

addition of protein A/G agarose beads, the incubation was

continued for 1 h. Immunoprecipitates were extensively washed

with lysis buffer and eluted with SDS loading buffer and boiled for

5 min. For immunoprecipitation under denaturing conditions,

proteins were extracted using regular immunoprecipitation buffer

plus 1% SDS and heated at 95uC for 5 min. The samples were

diluted (10-fold) in regular immunoprecipitation buffer before

immunoprecipitation.

Supporting Information

Figure S1 Cytokine production by poly(I:C)-stimulated
terminally differentiated keratinocytes. IL-8 and MIP3a
expression levels in unstimulated or poly(I:C)-stimulated uninfect-

ed KCs as examined by real-time PCR. KC were either left

undifferentiated (undif) or terminally differentiated (terminal dif)

with methylcellulose containing Ca2+. Gene expression was

normalized using GAPDH.

(EPS)

Figure S2 NEMO degradation depends on the expres-
sion of UCHL1. NEMO degradation is enhanced in HPV16+
KCs but not in non-infected KCs. Monolayer cultures were

treated with different concentrations of cycloheximide (CHX) for

24 hours. Whole cell extracts were analyzed by WB using

antibodies against NEMO and b-actin (control for protein

content).

(EPS)

Figure S3 Restored cytokine production after knock
down of UCHL1 by RNAi oligos. HPV16+ keratinocytes were

transfected with non-targeting RNAi oligos and oligos targeting

UCHL1. Cells were either left unstimulated, or were stimulated

with poly(I:C) for 24 hrs. IL-8,and MIP3a mRNA expression was

analyzed by qRT-PCR. Gene expression was normalized against

GAPDH mRNA levels.

(EPS)
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Figure S4 TRAF3 and NEMO are deubiquitinated by
UCHL1. HEK293T cells were co-transfected with HA-tagged

wild-type ubiquitin (WT-Ub) only, with Flag-TRAF3 and HA-

tagged wild-type ubiquitin (WT-Ub), and with Flag-TRAF3 and

HA-tagged wild-type ubiquitin (WT-Ub) and UCHL1. A similar

experiment was performed in which Flag-TRAF3 was replaced by

Flag-NEMO (top panels). The bottom four panels show a WB

analysis of Flag,Wt-Ub, and UCHL1 of non- immunoprecipitated

lysate and a Ponceau S stained loading control for WB.

(EPS)

Table S1 Enrichment of pathways between HPV-posi-
tive and uninfected keratinocytes as analyzed by Inge-
nuity Pathway Analysis (IPA).
(DOC)
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Figure S4 TRAF3 and NEMO are deubiquitinated by
UCHL1. HEK293T cells were co-transfected with HA-tagged

wild-type ubiquitin (WT-Ub) only, with Flag-TRAF3 and HA-

tagged wild-type ubiquitin (WT-Ub), and with Flag-TRAF3 and

HA-tagged wild-type ubiquitin (WT-Ub) and UCHL1. A similar

experiment was performed in which Flag-TRAF3 was replaced by

Flag-NEMO (top panels). The bottom four panels show a WB

analysis of Flag,Wt-Ub, and UCHL1 of non- immunoprecipitated

lysate and a Ponceau S stained loading control for WB.
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Tumor-Expressed B7-H1 and B7-DC in Relation to PD-1+ T-Cell
Infiltration and Survival of Patients with Cervical Carcinoma
Rezaul Karim,1,2,3 Ekaterina S. Jordanova,4 Sytse J. Piersma,3 Gemma G. Kenter,5 Lieping Chen,6

Judith M. Boer,1 Cornelis J. M. Melief,2 and Sjoerd H. van der Burg3

Abstract Purpose: The interaction between programmed cell death 1 (PD-1), expressed by acti-
vated effector or regulatory T cells, and B7-H1 (PD-L1) and B7-DC (PD-L2) results in the
inhibition of T-cell function. The aim of this study was to determine B7-H1, B7-DC, and
PD-1 expression in cervical carcinoma.
Experimental Design: A tissue microarray of a well-defined group of 115 patients was
stained with antibodies against B7-H1 and B7-DC. Three-color fluorescent immunohis-
tochemistry was used to study the number and phenotype of tumor-infiltrating T cells
expressing PD-1. Additional analyses consisted of in vitro T-cell suppression assays.
Results: B7-H1 was expressed in 19%, and B7-DC was expressed by 29% of the 115
tumors. PD-1 was expressed by more than half of both the infiltrating CD8+ T cells
and CD4+Foxp3+ T cells, irrespective of B7-H1 or B7-DC expression by tumors. The ex-
pression of B7-H1 did not show a direct impact on patient survival. However, subgroup
analysis revealed that patients with a relative excess of infiltrating regulatory T cells
displayed a better survival when the tumor was B7-H1 positive (P = 0.033). Additional
studies showed that the presence of B7-H1 during the activation of CD4+Foxp3+ regu-
latory T cells impaired their suppressive function in a functional in vitro assay.
Conclusions: B7-H1 is expressed on only a minority of cervical cancers and does not
influence the survival of patients with cervical cancer. PD-1 is expressed by a vast num-
ber of infiltrating CD8 T cells, suggesting that blocking of PD-1 could have therapeutic
potential in cervical cancer patients. (Clin Cancer Res 2009;15(20):6341–7)

Cervical cancer is the second most common cancer in women
worldwide (1). It develops as a result of an uncontrolled persis-
tent infection with a high-risk type of human papilloma virus
(HPV), in particular, types HPV16 and HPV18 (2). The occur-
rence of HPV-induced cancer is strongly associated with failure
to mount a strong HPV-specific type 1 T-helper and cytotoxic T-
lymphocyte response (3–5), the lack of CD8+ T cells migrating
into the tumor cell nests, the induction of HPV16-specific reg-

ulatory T cells, and the influx of regulatory T cells into the tu-
mor (6, 7). Moreover, the ratio between the tumor-infiltrating
CD8+ T cells and coinfiltrating CD4+Foxp3+ regulatory T cells
is an independent prognostic factor for overall survival (8), in-
dicating the key role of these different types of T cells in cervical
cancer.
Activated T cells can express the programmed cell death 1

(PD-1) receptor, which can bind B7-H1 (PD-L1) and B7-DC
(PD-L2). B7-H1 could be induced to express by a wide variety
of immune cells and nonhematopoetic cell types, whereas B7-
DC is expressed mainly on activated macrophages and dendritic
cells (9). Upon simultaneous engagement of both, the T-cell re-
ceptor and PD-1–negative immunoregulatory signals are trans-
ferred to the T cells, resulting in a decreased effector response
and T-cell tolerance (10). PD-1/B7-H1 interactions have been
shown to inhibit a wide range of immune responses against
pathogen, tumor, and self-antigens (11, 12).
More recently, it has been reported that B7-H1 and B7-DC

are exploited by tumors to evade immune responses. B7-H1
is found to express on cell surface in most human cancers,
and this expression was correlated with poor clinical prognosis
in renal, gastric, ovarian, breast, and esophageal carcinomas
(13–17). The role of B7-DC in the suppression of immune re-
sponses remains controversial (18). Because of the strong asso-
ciation between tumor-infiltrating lymphocytes (TIL) and the
prognosis of cervical cancer (6, 8) and the fact that PD-1 has
been reported to be expressed by tumor-infiltrating CD8+
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T cells, CD4+ T cells, and regulatory T cells (10), we studied the
expression and function of B7-H1, B7-DC, and PD-1 in cervical
cancer. Here, we show that PD-1 is expressed on a substantial
number of tumor-infiltrating CD8+, CD4+, and regulatory
T cells. B7-H1, however, is expressed in only a small group of cer-
vical cancer patients and does not confer a survival disadvantage.
Interestingly, when the tumors of this group of patients are infil-
trated with a high number of tumor-infiltrating CD4+Foxp3+
regulatory T cells, the expression of B7-H1 may bestow a sur-
vival benefit.

Materials and Methods

B7-H1 and B7-DC staining of tissue array. A previously described
tissue array containing 115 cervical cancer samples of patients, all of
whom underwent a radical hysterectomy, was used for the B7-H1 and
B7-DC staining (8). Standard immunohistochemical staining was done

using antibodies against human B7-H1 (clone 5H1) and B7-DC (R&D
Systems). The tissue array sections were deparaffinized, and antigen re-
trieval was done using EDTA. To reduce nonspecific binding, sections
were incubated overnight at 4°C with 10% rabbit serum. The B7-H1
and B7-DC antibodies were used in 1:200 and 1:800 dilutions, respec-
tively. The Powervision detection system was applied (DAKO). The
tissue array was evaluated and scored by two experienced researchers
(R. Karim; E.S. Jordanova) independently. Expression groups were
defined based on the presence or absence of membranous staining.

Three-color immunostaining for CD8, Foxp3, and PD-1. Eight cases
with B7-H1–positive and eight cases with B7-H1–negative cervical can-
cer specimens were selected from the tissue array based on a compara-
ble amount of tumor-infiltrating T cells to avoid a potential bias
between the two groups. The simultaneous immunohistochemical
staining of three different epitopes applied to 4-μm, formalin-fixed,
paraffin-embedded tissue sections has been reported by us before (6,
8). Briefly, the sections were incubated overnight with a mix of anti-
CD8 (4B11; mouse IgG2b; Novo Castra), anti-Foxp3 (clone 236A/E7;
Abcam), and anti–PD-1 (R&D Systems) after antigen retrieval with
EDTA. Slides were washed and incubated with a combination of the
fluorescent antibody conjugates goat anti-mouse IgG2b–Alexa-546,
goat anti-rabbit IgG1–Alexa-488, and donkey anti-goat–Alexa-647.
Alexa Fluor conjugates were obtained from Molecular Probes. The
images were captured with a confocal Laser Scanning Microscope (Zeiss
LSM510, Zeiss). Ten images were scanned per slide. For each case, one
successive negative control slide was included. The intraepithelial TIL
count was presented as the number of cells per square millimeter.

In vitro analysis of the effect of B7-H1 on PD-1–positive regulatory
T cells. A previously isolated HPV16-specific CD4+FoxP3+ regulatory
T-cell clone (7) C148.31 and an influenza-specific CD4+Foxp3- T-help-
er clone (B1.50) were stained with goat anti–PD-1 (R&D Systems), fol-
lowed by anti-goat biotin (Dako) and streptavidin-allophycocyanin
(APC) (eBioscience). PD-1 expression was analyzed by flow cytometry.
The effect of B7-H1 on the proliferative response of these two clones
was assessed by stimulating 25,000 T cells with 1 μg/mL plate-bound
anti-CD3 (OKT-3; Ortho Biotech) and 1 μg/mL plate-bound anti-CD28
(clone L293; BD Biosciences) in the presence or absence of 5 μg/mL
plate-bound recombinant human B7-H1/Fc chimera (R&D Systems).
The effect of B7-H1 on the regulatory capacity of the CD4+Foxp3+ T-
cell clone was tested in a classic suppression assay (7) in which the
clone C148.31 was stimulated with 1 μg/mL plate-bound anti-CD3 in
the presence or absence of 5 μg/mL plate-bound recombinant human

Table 1. Patient characteristics and relations to B7-H1 and B7-DC expression

Characteristic Category n (%) B7-H1, n (%) B7-DC, n (%)

Negative Positive P Negative Positive P

FIGO stage Ib1 56 (49) 43 (77) 13 (23) 0.345 45 (82) 10 (18) 0.013
Ib2/II 59 (51) 50 (85) 9 (15) 35 (59) 24 (41)

Histopathology SCC 88 (77) 68 (77) 20 (23) 0.099 67 (76) 21 (24) 0.012
ADC/ADSC 26 (23) 24 (92) 2 (8) 12 (48) 13 (52)

Lymph nodes Negative 84 (74) 65 (77) 19 (23) 0.183 60 (72) 23 (28) 0.488
Positive 29 (26) 26 (90) 3 (10) 19 (66) 10 (34)

Tumor size (mm) <40 66 (57) 55 (83) 11 (17) 0.614 49 (75) 16 (25) 0.276
≥40 42 (37) 33 (79) 9 (21) 27 (64) 15 (36)

Vasoinvasion Negative 69 (64) 54 (78) 15 (22) 0.462 45 (66) 23 (34) 0.279
Positive 39 (36) 33 (85) 6 (15) 30 (77) 9 (23)

Infiltration depth (mm) <15 65 (57) 50 (77) 15 (23) 0.338 45 (70) 19 (30) 1.0
≥15 49 (43) 42 (86) 7 (14) 35 (71) 14 (29)

HPV type HPV16 58 (58) 50 (86) 8 (14) 0.122 42 (74) 15 (26) 0.524
HPV18 24 (24) 16 (67) 8 (33) 15 (63) 9 (38)
Other 17 (17) 14 (82) 3 (18) 13 (76) 4 (24)

Abbreviations: FIGO, International Federation of Gynecology and Obstetrics; SCC, squamous cell carcinoma; ADC, adenocarcinoma; ADSC,
adenosquamous carcinoma.

Translational Relevance

The extent of tumor infiltration by T cells and the
ratio between the several different subtypes is an in-
dependent prognostic factor with respect to the sur-
vival of patients with cervical cancer. We have
studied B7-H1 and programmed cell death 1 (PD-1)
in cervical cancer because the B7-H1–PD-1 axis has
been implicated in tumor escape. Our data show that
more than half of the tumor-infiltrating CD8+ T cells
are positive for PD-1, indicating that these T cells
may have become exhausted and die in the event
they interact with B7-H1 expressed on tumor cells
or antigen-presenting dendritic cells. Given the inter-
est to target PD-1 or B7-H1 for the immunotherapy of
cancer our observation bears direct impact on the
immunotherapeutic treatment of patients with cervi-
cal cancer.
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B7-H1/Fc chimera for 24 h. Subsequently, the stimulated C148.31 reg-
ulatory T cells were washed to prevent spillover of B7-H1 and put into a
coculture with CD4+CD25- responder cells in the presence of 1 μg/mL
soluble anti-CD3 and APC (7). After 48 h, the supernatants of triplicate
wells were harvested and pooled for the analysis of IFN-γ production
by the activated responder cells using enzyme-linked immunosorbent
assay (ELISA).

Statistical analyses. Correlations between B7-H1 or B7-DC expres-
sion with clinicopathologic parameters or the (high or low) number
of tumor-infiltrating cells was done by the χ2 or, where appropriate,
the Fisher's exact test. Patient groups were based on the median (50th
percentile) of the numbers of infiltrating immune cells per square mil-
limeter because none of the data for the TIL subtypes followed a nor-
mal distribution pattern. Analyses of differences in the numbers of
subpopulations of PD-1+ TIL in B7-H1–positive or–negative tumors
were done by the nonparametric Mann-Whitney test. All reported Ps
are two sided. A P < 0.05 was considered significant. Cumulative 5-y
survival rate was calculated by the Kaplan-Meier method and analyzed

by the log-rank test. Statistical analyses were done with the SPSS soft-
ware package 16.

Results

Expression of B7-H1 and B7-DC by cervical cancer cells. To
assess the expression and impact of B7-H1 and B7-DC in cervical
cancer, we studied a group of 115 well-characterized patients
whose clinicopathologic characteristics are shown in Table 1.
The mean age of the patients was 48.5 years, with a range be-
tween 24 and 87 years at the time of surgery. Fifty-one patients
received postoperative radiotherapy because of either tumor-
positive lymph nodes or a combination of two of the following
parameters: depth of infiltration ≥ 15 mm, tumor size ≥ 40 mm,
and presence of vasoinvasion. At the end of the 5-year follow-up
period, 23 patients had died of disease, 85 were alive, 5 patients

Fig. 1. Immunohistochemical staining of human cervical cancer tissues using B7-H1 and B7-DC antibodies. Expression was defined based on the presence
or absence of membranous staining. Specimens with tumor cell surface B7-H1 expression (A, top) and tumor with no B7-H1 staining (A, bottom), and
tumor cell surface B7-DC expression (B, top) and tumor with no membranous B7-DC staining (B, bottom).
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had a recurrence, and 2 died of causes unrelated to the primary
disease but showed no evidence of disease.
The expression of B7-H1 and B7-DC in the tumors of these

patients was determined by immunohistochemistry. Specific
examples of B7-H1 and B7-DC staining are shown in Fig. 1. Ex-
amination of the entire group of 115 patients revealed the ex-
pression of B7-H1 in 22 (19%) tumors, whereas B7-DC was
expressed in 34 (29%) cases. The expression of B7-H1 and
B7-DC did not correlate (P = 0.604). Notably, B7-DC expres-
sion was associated with cervical adenocarcinomas and a more
advanced stage of cervical cancer (Table 1).
B7-H1 and PD-1 expression in relation to the number and type

of TILs. The number and subtype of intraepithelial TIL per
square millimeter of tumor within this group of 115 patients
has already been quantified (8), and this enabled us to analyze
the impact of B7-H1 and B7-DC expression on the number and
type of intraepithelial TIL in these tumors. The expression of
B7-H1 was associated with higher intraepithelial infiltration by
Foxp3+ T cells (P = 0.022) but not with CD8+ T cells (Table 2).
In contrast, there was no significant association between TIL
and B7-DC expressed by tumor cells (Table 2).
Negative regulation of the tumor-specific T-cell response by

B7-H1 expressing tumor cells requires the intraepithelial infil-

trating T cells to express PD-1. Therefore, PD-1 expression by
intraepithelial TIL was tested in a group of patients with a B7-
H1–positive tumor, as well as in a group of patients with a B7-
H1–negative tumor, which were matched with respect to the
number of tumor-infiltrating CD8+ T cells, CD4+ T cells, and
regulatory T cells (Table 3). In addition, there was no difference
in the CD8/Foxp3 ratio (P = 0.959) between these two groups,
allowing their comparison with respect to PD-1 expression. The
number of single-, double- and triple-positive cells for CD8,
Foxp3, and PD-1 was analyzed by triple fluorescent immuno-
histochemistry. This revealed that, in both groups of patients,
more than half of the infiltrating CD8+ T cells and half of the
Foxp3+ T cells expressed PD-1 (Table 3). Although, on the
whole, the patient group with B7-H1–positive tumors dis-
played somewhat more intraepithelial PD-1+ T cells, this was
not significantly different.
B7-H1 expression confers survival benefit in a subgroup of pa-

tients with high numbers of intraepithelial infiltrating regulatory
T cells. Retrospective analyses of patients with different types
of malignancies showed a link between B7-H1 expression on
tumors and poor prognosis (13–17). A similar analysis of the
overall survival of patients with cervical cancer did not show
such a direct relationship (P = 0.690; Fig. 2A). Notably, we

Table 2. Correlations of B7-H1 and B7-DC with tumor-infiltrating epithelial T cells

Intraepithelial infiltration Category* n (%) B7-H1, n (%) B7-DC, n (%)

Negative Positive P Negative Positive P

CD8+ Low 34 (34) 31 (91) 3 (9) 0.162 23 (68) 11 (32) 0.824
High 66 (66) 52 (79) 14 (21) 46 (70) 20 (30)

CD4+ Low 46 (46) 42 (91) 4 (9) 0.060 31 (75) 15 (25) 0.829
High 54 (54) 41 (76) 13 (24) 38 (70) 16 (30)

Foxp3+ Low 38 (41) 36 (95) 2 (5) 0.022 27 (71) 11 (29) 1.000
High 55 (59) 42 (76) 13 (24) 38 (69) 17 (31)

CD8+/Treg ratio Low 49 (54) 40 (82) 9 (18) 0.778 33 (67) 16 (33) 0.820
High 42 (46) 36 (86) 6 (14) 30 (71) 12 (29)

CD4+/Foxp3 ratio Low 47 (52) 37 (79) 10 (21) 0.263 30 (64) 17 (36) 0.266
High 44 (48) 39 (89) 5 (11) 33 (75) 11 (25)

CD8+/CD4+ ratio Low 51 (51) 43 (70) 8 (30) 0.794 38 (75) 13 (25) 0.281
High 49 (49) 40 (82) 9 (18) 31 (63) 18 (37)

Abbreviation: Treg, regulatory T cell.
*The patients were divided in two categories with low or high numbers of infiltrating cells (or ratio between subtype of cells) based on the 50th
percentile.

Table 3. PD-1 expression on TILs

Cell type Median cell number per mm2 (min-max)

B7-H1–positive tumor B7-H1–negative tumor P

CD8+ T cells 198 (48-505) 160 (9.7-314) 0.337
CD4+ T cells 114 (4.8-317) 73 (15-190) 0.170
Foxp3+ T cells 81 (30-219) 53 (16-101) 0.138
CD8+PD-1- T cells 47.5 (7.5-439) 61 (6.1-101) 0.529
CD8+PD-1+ T cells 107.2 (14-252) 85 (1.2-208) 0.462
CD8+Foxp3+ T cells 3.7 (1.1-5.8) 2.3 (0.0-11) 0.713
CD8+PD-1+Foxp3+ T cells 2.2 (0.0-24) 2.4 (0.0-7.1) 0.815
CD4+PD-1+ T cells 56.1 (2.4-193) 16.2 (2.1-138) 0.248
CD4+Foxp3+ T cells 47.0 (0.0-169) 42.2 (5.8-78) 0.345
CD4+PD-1+Foxp3+ T cells 25.3 (2.4-47) 7.7 (3.7-20) 0.074
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recently reported that the ratio between intraepithelial CD8+
T cells and regulatory (Foxp3+) T cells is an independent prog-
nostic factor for survival in this group of patients with cervical
cancer, in which patients with a low CD8/regulatory T cell ra-

tio had the worst survival (ref. 8; Fig. 2B). As a consequence, a
potential detrimental effect of B7-H1 expression on survival is
more likely to be observed within patients with well-infiltrated
tumors. No effect of B7-H1 was seen in the subgroups divided
either on the basis of CD8+ T-cell infiltration (P = 0.584) or
on the number of regulatory T cells (P = 0.100; data not
shown). In contrast, subdivision based on the CD8+/regulato-
ry T-cell ratio revealed that the overall survival of patients with
a B7-H1–positive tumor and a low CD8+/regulatory T-cell
ratio was significantly better than in patients with a B7-H1–
negative tumor and a low CD8+/regulatory T-cell ratio (P =
0.033; Fig. 2C). These data indicate that B7-H1 expression
does not have a direct detrimental effect on the overall surviv-
al of patients with cervical cancer but on the contrary may im-
prove survival of a small subgroup of cervical cancer patients
with tumors relatively heavily infiltrated by regulatory T cells.
PD-1 expression in regulatory T cells and effect of B7-H1 liga-

tion on PD-1–positive regulatory T cells. The association of B7-
H1 expression by tumor cells and the enhanced survival of a
small subgroup of patients with a low CD8+/regulatory tu-
mor-infiltrating T-cell ratio (Fig. 2C) suggest that the function
of regulatory T cells is affected by B7-H1. To test this hypothe-
sis, we made use of a HPV16-specific CD4+Foxp3+ regulatory
T-cell clone, which we had isolated from a HPV16+ patient with
cervical cancer (7) and which expressed PD-1 at its surface
(Fig. 3A), similar to what we observed in situ in cervical cancer
(Fig. 3B). To determine if B7-H1 ligation has an effect on PD-1
expressing T cells, this CD4+Foxp3+PD-1+ regulatory T-cell
clone was stimulated with anti-CD3 in the presence or absence
of recombinant B7-H1 protein to test its proliferative capacity.
Whereas the proliferation of a PD-1–negative helper T-cell
clone was not affected, the PD-1–positive regulatory T-cell
clone proliferated less well when B7-H1 was present in the cul-
ture (Fig. 3C). To assess whether B7-H1 ligation also inhibited
the suppressive capacity of PD-1+ regulatory T cells, the HPV16-
specific CD4+Foxp3+PD-1–positive regulatory T cells were
stimulated with anti-CD3 in the presence or absence of recom-
binant B7-H1 protein and then cocultured with CD4+CD25-
responder cells (Fig. 3D). Responder cells alone produced high
amounts of IFN-γ, but this capacity was suppressed when acti-
vated regulatory T cells were added to the culture in a dose-
dependent fashion. The presence of recombinant B7-H1 during
the activation of the regulatory T cells had a clear negative im-
pact on their suppressive capacity because the IFN-γ production
by the responder cells was partly restored (Fig. 3D). These data
show that, in principle, PD-1+ regulatory T cells can be incapac-
itated with respect to their suppressive function when engaged
by B7-H1.

Discussion

Following the initial reports that tumor-associated B7-H1
could serve as an immune escape mechanism in a mouse tumor
model through downregulation of tumor-specific T-cell re-
sponses (19, 20), several retrospective studies in human cancer
cohorts showed that B7-H1 expression was associated with clin-
icopathologic markers for poor prognosis (13, 17) or with low-
er overall survival (14–16). Our study indicates that most
(80%) cervical cancers are B7-H1 negative and that the survival
of B7-H1–positive cases is not negatively affected (Figs. 1 and
2). This suggests that tumor-expressed B7-H1 does not play a

Fig. 2. Kaplan-Meier curves and log-rank test results of 5-y overall survival
analyses of patients with cervical cancer based on the expression of B7-H1
on the tumor cell (A). Log-rank test result: P = 0.690, the ratio between
CD8+ and regulatory T cells and the expression of tumor cell surface B7-H1
(PD-L1; B) and the ratio between CD8+ and regulatory T cells (C). Groups
are divided into low (lower 50th percentile) and high (top 50%).
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significant role in T-cell antitumor immune response in cervi-
cal cancer. Rather, our data show that more than half of the
tumor-infiltrating CD8+T cells are positive for PD-1, which
has previously been shown to be indicative for chronic antigen
stimulation and T-cell exhaustion (9).
Although studies reported a negative impact of B7-H1 on

the overall survival of patients with either renal or esophageal
cancer (15, 16), we did not observe such a direct link between
B7-H1 and survival in cervical cancer. A direct effect of B7-H1
on survival likely requires that this survival is associated with
CD8+ T-cell infiltration and that these CD8+ T cells express
PD-1. Indeed, in esophageal cancer, the infiltration with CD8+
T cells is an independent prognostic factor (21). It will be of
interest to determine the proportion of PD-1 expressing CD8+
T cells in renal and esophageal cancer for a better assessment
of their role in the observed negative association between B7-
H1 and survival in these cancers. The fact that, in cervical
cancer, the ratio between CD8+ T cells and coinfiltrating reg-
ulatory T cells functions as an independent prognostic factor
(8) suggests that the interplay between the two cell types and,
as such, the regulation of both cell types is important for sur-
vival in cervical cancer. In this view, we made an interesting
observation that, among cervical cancer patients whose tumors
were infiltrated with relatively higher number of regulatory
T cells (low CD8:Foxp3 ratio), tumor-expressed B7-H1 may
have conferred a survival benefit (Fig. 2C). Although the un-

derlying mechanism remains to be elucidated, our data pro-
vide evidence that it may involve the functional impairment
of regulatory T cells because a substantial portion of these cells
express the receptor PD-1 in situ (Table 3, Fig. 3) and engage-
ment of this receptor through B7-H1 decreases the capacity of
an HPV16-specific CD4+Foxp3+ regulatory T-cell clone to sup-
press the function of effector cells in vitro (Fig. 3D). The absence
or presence of B7-H1 in the group of patients with a high CD8+/
regulatory T-cell ratio did not affect the overall survival (Fig. 2B),
suggesting either that B7-H1 does not play a role in patients
with a high number of tumor-infiltrating CD8+ T cells and a
low number of regulatory T cells or that the stimulatory inter-
action between B7-H1 and B7.1 on CD8+PD-1- T cells (22)
balances the negative interaction between B7-H1 and PD-1+
CD8 T cells within the local tumor environment. It seems,
therefore, that B7-H1–mediated impairment of PD-1+ T cells
particularly affects the PD-1–expressing regulatory T cells, there-
by releasing the brake on the tumor-specific CD8+ T cells.
Future experiments using primary tumor-infiltrating T-cell
cultures may shed more light on this. Recent studies support
the notion that PD-1 expression on regulatory T cells is associ-
ated with improved survival (22) and B7-H1–mediated inhibi-
tion of proliferation and function of regulatory T cells (23).
From a clinical standpoint, this study represents an unselect-

ed series of patients. Given the interest to target PD-1 or B7-
H1 for the immunotherapy of cancer, our study suggests that

Fig. 3. HPV-specific FoxP3+ regulatory T-cell clone expresses PD-1 and is functionally impaired upon PD-1 ligation. A, PD-1 expression (black areas) and
isotype controls (gray lines) of HPV-specific FOXP3+ clone C148.31 and an influenza-specific helper T-cell control clone B1.50. B, PD-1 expression observed
in situ in intraepithelial Foxp3+ T cells in cervical cancer. The different intraepithelial T cells are depicted as CD8+ cells (red), PD-1+ cells (blue), and
Foxp3+ cells (green). C, proliferation of C148.31 and control clone upon stimulation with plate-bound anti-CD3 and anti-CD28 in the presence or absence
of plate-bound B7-H1. D, classic suppression assay in which the capacity of the C148.31 regulatory clone to suppress the IFN-γ production of
CD4+CD25- cells is tested. C148.31 was pretreated either with plate-bound anti-CD3 and B7-H1 or with plate-bound anti-CD3 only.
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treatment with PD-1– or B7-H1–blocking antibodies is a via-
ble option. Although we have studied PD-1 expression in pa-
tients with stage IB or stage II disease, PD-1– or B7-H1–
targeted immunotherapy is likely to be applied in a more ad-
vanced stage of cervical cancer. Although we speculate that
PD-1 expression will be even more pronounced in advanced
stage of cervical cancer, it will be of interest to determine PD-1
expression on T cells at this stage too. The PD-1–B7-H1 path-
way also plays an important role in dendritic cell–T-cell inter-

actions (9). One can easily envisage that B7-H1+ dendritic
cell, cross-presenting tumor antigen (e.g., E6 and E7 of HPV),
may impair the function of responding PD-1+ tumor–specific
T cells.
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CXCR7 expression is associated with disease-free and
disease-specific survival in cervical cancer patients

M Schrevel1, R Karim2,3, NT ter Haar1, SH van der Burg3, JBMZ Trimbos4, GJ Fleuren1, A Gorter*,1

and ES Jordanova1

1Department of Pathology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands; 2Department of
Immunohaematology and Blood Transfusion/Center for Human and Clinical Genetics, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC
Leiden, The Netherlands; 3Department of Clinical Oncology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands;
4Department of Gynaecology, Leiden University Medical Center (LUMC), PO Box 9600, 2300 RC Leiden, The Netherlands

BACKGROUND: The CXC chemokine receptor (CXCR)7 is involved in tumour development and metastases formation. The aim of the
present study was to determine protein expression of CXCR7, its putative co-receptors epidermal growth factor receptor (EGFR)
and CXCR4, its predominant ligand CXCL12, their co-dependency and their association with survival in cervical cancer patients.
METHODS: CXC chemokine receptor 7, EGFR, CXCR4 and CXCL12 expression were determined immunohistochemically in
103 paraffin-embedded, cervical cancers. Subsequently, associations with patient characteristics were assessed and survival analyses
were performed.
RESULTS: CXC chemokine receptor 7 was expressed by 43% of tumour specimens, in a large majority of cases together with either
EGFR or CXCR4 (double positive), or both (triple positive). The CXCR7 expression was associated with tumour size (P¼ 0.013),
lymph node metastasis (P¼ 0.001) and EGFR expression (P¼ 0.009). CXC chemokine receptor 7 was independently associated
with disease-free survival (hazard ratio (HR)¼ 4.3, 95% confidence intervals (CI) 1.7–11.0, P¼ 0.002), and strongly associated with
disease-specific survival (HR¼ 3.9, 95% CI 1.5–10.2, P¼ 0.005).
CONCLUSION: CXC chemokine receptor 7 expression predicts poor disease-free and disease-specific survival in cervical cancer
patients, and might be a promising new therapeutic marker. In a large majority of cases, CXCR7 is co-expressed with CXCR4 and/or
EGFR, supporting the hypothesis that these receptors assist in CXCR7 signal transduction.
British Journal of Cancer (2012) 106, 1520–1525. doi:10.1038/bjc.2012.110 www.bjcancer.com
& 2012 Cancer Research UK

Keywords: cervical cancer; CXCL12; CXCR4; CXCR7; EGFR; survival
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Cervical cancer is the third most common type of cancer among
women worldwide, accounting for 9% of all new cancer cases
among females in 2008 (Jemal et al, 2011). Although screening for
premalignant stages of cervical cancer and vaccination with the
available human papillomavirus (HPV)-vaccines are good options
to prevent cervical carcinogenesis, treatment options are limited
when women present with advanced cancer stages. Partly, this is
because the mechanisms involved in tumour cell invasion and
metastasis formation, which strongly predict mortality rates, are
not fully understood. Furthermore, markers that accurately predict
response to therapy are limited. Additional predictive molecular
markers for lymph node metastases and disease-free survival may
help to elucidate these mechanisms.
A promising new marker is the CXC chemokine receptor

(CXCR) 7. CXC chemokine receptor 7 is transcribed from the
RDC1-gene on chromosome 2, where the genes encoding CXCR1,
CXCR2 and CXCR4 are also localised (Balabanian et al, 2005). CXC
chemokine receptor 7 is strongly expressed in many different
tumour types and on tumour-associated vasculature, whereas
expression in most normal tissues is weak or absent. The CXCR7 is

involved in cell survival, cell adhesion, tumour development and
metastases formation (Burns et al, 2006; Miao et al, 2007).
Expression of CXCR7 has not been determined in cervical cancer,
but has been associated with a higher tumour grade and more
aggressive tumour growth in other cancer types, such as prostate
cancer, non-small cell lung cancer, breast cancer, glioma and
hepatocellular carcinoma (Miao et al, 2007; Wang et al, 2008;
Iwakiri et al, 2009; Hattermann et al, 2010; Zheng et al, 2010).
However, most studies have been performed on tumour cell lines
and mouse models, and studies addressing the association between
CXCR7 expression and prognosis in patient-derived tumour
material are limited.
Two ligands bind to CXCR7, namely CXCL11 (interferon-

inducible T-cell a chemoattractant) and CXCL12 (stromal cell-
derived factor-1). In cell lines, activation of CXCR7 by CXCL12
induced trans-endothelial migration, whereas CXCR7 antagonists
and CXCL11 both inhibited cellular migration (Zabel et al, 2011).
Furthermore, CXCL12 expression was associated with overall
and disease-free survival in pancreas carcinoma, suggesting
that CXCL12 is the predominant ligand associated with
CXCR7-mediated metastasis formation (Liang et al, 2010).
Conflicting results have been published on the intracellular

signalling pathways of CXCR7, as ligand binding does not result in
typical CXC receptor Gi-mediated signalling (Thelen and Thelen,
2008). It is still unclear whether the receptor is able to activate
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other signal transduction pathways. It has been proposed that
CXCR7 heterodimerisation with other signalling receptors such as
the epidermal growth factor receptor (EGFR) or CXCR4 is required
to induce intracellular signalling (Hartmann et al, 2008; Décaillot
et al, 2011; Singh and Lokeshwar, 2011). Both EGFR and CXCR4
expression have been shown to be associated with lymph node
metastases and disease-free survival in cervical cancer
(Kersemaekers et al, 1999; Kodama et al, 2007; Schrevel et al, 2011).
The aim of the present study was to determine protein

expression of CXCR7, its putative co-receptors EGFR and CXCR4,
its main ligand CXCL12, their co-dependency and their association
with survival in cervical cancer patients. Therefore, we immuno-
histochemically determined CXCR7, EGFR, CXCR4 and CXCL12
expression, and assessed the association between protein expres-
sion and patient characteristics. Furthermore, we analysed whether
(co-)expression of CXCR7, EGFR and CXCR4 was associated with
disease-specific and disease-free survival.

MATERIALS AND METHODS

Subjects

Formalin-fixed, paraffin-embedded primary tumour tissue sam-
ples from 103 cervical cancer patients who underwent radical
hysterectomy with lymphadenectomy between January 1985 and
December 1999 were collected from the archives of the Department
of Pathology, Leiden University Medical Center (Leiden,
the Netherlands). Patients had not received radiotherapy or
chemotherapy before surgery. Postoperative radiotherapy was
indicated in patients with lymph node metastasis, parametrial
involvement or positive resection margins. Clinical and follow-up
data were taken from patient medical records. Disease-specific
survival and disease-free survival were assessed to determine the
time to cancer-related death and disease recurrence, respectively.
Disease-specific survival time was assessed from the date of
surgery to the date of cancer-related death or the date of the last
follow-up visit for censored observations. For disease-specific
survival, patients who died of a cause unrelated to cervical cancer
were considered as censored observations at the date of death. The
end point for disease-free survival was the date of local or regional
recurrence or the date of distant metastasis.
Tumours were HPV-typed by general primer PCR and sequen-

cing, as described by Koopman et al (1999). In addition to the
tumour samples, two specimens of normal cervical epithelium
were obtained from two patients with no history of cervical cancer.
This number of healthy tissue samples was sufficient, as the
staining of CXCR4, CXCR7 and CXCL12 was expected to be similar
for all normal cervical epithelium specimens. Tissue samples were
used according to the guidelines of the Ethical Committee of the
Leiden University Medical Center.

Immunohistochemistry

For immunohistochemical analysis, 4 mm tissue microarray (TMA)
slides consisting of triplicate punches of 103 cervical cancer
patients were deparaffinised and rehydrated. Endogenous perox-
idase was blocked with 0.3% hydrogen peroxide (H2O2) for 20min.
Antigen retrieval was performed in 0.01 M citrate buffer (pH¼ 6.0,
12min, microwave oven). Subsequently, slides were incubated
overnight at room temperature with anti-CXCR4 (1 : 600, IgG2a,
clone 2F1, Abnova, Heidelberg, Germany), anti-CXCR7 (1 : 50,
IgG1, clone 11G8, R&D Systems, Abingdon, UK) or anti-CXCL12
(1 : 50, IgG1, clone 79018, R&D Systems), diluted in phosphate-
buffered saline (PBS) containing 1% bovine serum albumin.
After washing with PBS, the TMA slides were incubated
for 30min with BrightVision-Poly/HRP (Immunologic, Duiven,
the Netherlands). Immunoreactions were visualised using 0.5%

3,30-diamino-benzidine-tetra-hydrochloride and 0.002% H2O2 in
Tris-HCl, after which the slides were counterstained with
haematoxylin. Immunoreactivity was scored as negative, weak,
moderate or strong staining intensity. Immunohistochemistry for
EGFR was performed as previously described, and EGFR was
scored for membrane staining intensity (Schrevel et al, 2011).

Statistical analyses

Statistical analyses were performed using the SPSS program
(Version 17.0 for Windows; SPSS Inc., Chicago, IL, USA).
Significance tests were two-sided and statistical significance was
assumed when Po0.05, corresponding to 95% confidence intervals
(CI). To assess whether CXCR7 expression was associated with
expression of its ligand CXCL12 or its proposed co-receptors EGFR
and CXCR4, the Spearman’s rank correlation test was performed,
as the intensity scores for CXCR7, EGFR, CXCR4 and CXCL12 were
ordinal. The w2 test was used to determine whether CXCR7, EGFR,
CXCR4 and CXCL12 expression was associated with clinicopatho-
logical characteristics, with protein expression data recoded into
binary variables. Univariate Cox-regression analysis was per-
formed to assess the association between clinicopathological
parameters, CXCR7, EGFR, CXCR4 and CXCL12 expression,
and disease-free survival. All analyses were repeated for disease-
specific survival. Multivariate Cox-regression analysis was per-
formed to determine whether CXCR7 expression was indepen-
dently associated with disease-free survival, when correcting for
HPV-type, histopathological diagnosis, tumour size, infiltration
depth, parametrial invasion, vasoinvasion, lymph node metastasis,
resection margins and postoperative radiotherapy. Corresponding
survival curves were estimated by the Kaplan-Meier method.

RESULTS

Patient characteristics in relation to CXCR7, EGFR,
CXCR4 and CXCL12 expression in cervical cancer

Immunohistochemical staining of CXCR7, CXCR4 and CXCL12
was observed to be both cytoplasmic and membranous in cervical
cancer specimens. Normal cervical epithelium stained weakly for
CXCR7, CXCR4 and CXCL12, with strong CXCL12 expression in
cells of the basal layer. Representative examples of positive and
negative CXCR7, EGFR, CXCR4 and CXCL12 cervical cancer
specimens are shown in Figure 1. The distribution of staining
intensities is shown in Table 1. CXC chemokine receptor 7, EGFR
and CXCL12 had a wider range in staining intensity, when
compared with CXCR4, as no strong positives were observed for
CXCR4. To assess whether CXCR7 expression was associated with
expression of its ligand CXCL12 or its proposed co-receptors EGFR
and CXCR4, the Spearman’s rank correlation coefficient (r; rho)
was determined. CXC chemokine receptor 7 expression was
significantly correlated with EGFR expression (r¼ 0.272,
P¼ 0.009), but not with CXCR4 expression (r¼ 0.117, P¼ 0.259)
or CXCL12 expression (r¼ � 0.028, P¼ 0.790). Compared with an
ideal correlation of 1, the observed Spearman’s r of 0.272 indicates
a moderate correlation.
Clinicopathological characteristics of the 103 cervical cancer

patients are summarised in Table 2. The median age at the time of
diagnosis was 48 years (range, 24–87). Positive CXCR7 expression
was associated with tumour size X40mm (odds ratio (OR)¼ 2.9,
95% confidence interval (CI) 1.2–6.8, P¼ 0.013) and lymph node
positivity at the time of surgery (OR¼ 5.7, 95% CI 2.0–16.1,
P¼ 0.001). CXC chemokine receptor 7 expression was observed
more frequently in squamous carcinoma than in adeno-/adenos-
quamous carcinoma (OR¼ 2.6, 95% CI 1.1–6.0, P¼ 0.025). Both
EGFR and CXCR4 expression were observed more frequently in
squamous/adenosquamous carcinoma than in adenocarcinoma
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(OR 26.6, 95% CI 3.3–217.4, Po0.001 and OR¼ 6.4, 95% CI
1.6–25.7, P¼ 0.008, respectively). No other associations were
observed between CXCR7, CXCR4, CXCL12 and clinicopatho-
logical characteristics. As previously described, EGFR expression
was associated with tumour size, parametrial invasion, vasoinva-
sion and lymph node metastasis (Schrevel et al, 2011).

Disease-specific and disease-free survival for CXCR7,
EGFR, CXCR4 and CXCL12

Median follow-up time was 137 months (range 5–266) for all
patients and 156 months (range 8–266) for patients alive at

the time of data collection. Of the 24 patients with disease
recurrence, a combination of local recurrences (n¼ 4), regional
recurrences (n¼ 3) and distant metastases (n¼ 20) was observed.
Of the 34 patients who died during the follow-up period, 22 deaths
could be attributed to cervical cancer. Five-year disease-free
and disease-specific survival rates for the whole group were
77% (s.e.¼ 4) and 79% (s.e.¼ 4), respectively. Univariate
Cox-regression analysis for all clinicopathological characteristics
and disease-free survival is shown in Table 2. Multivariate
regression analysis for all clinicopathological characteristics
showed that only tumour size (hazard ratio (HR)¼ 4.8, 95%
CI 1.8–12.3, P¼ 0.001) and lymph node metastasis (HR¼ 5.4, 95%

100 �m 100 �m

100 �m 100 �m

100 �m 100 �m

100 �m 100 �m

A B

C D

E F

G H

Figure 1 Representative examples of positive (A) and negative (B) CXCR7 staining, positive (C) and negative (D) EGFR staining, positive (E) and
negative (F) CXCR4 staining, and positive (G) and negative (H) CXCL12 staining in the epithelial compartment of squamous cell carcinoma of the cervix.
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 5CI 2.3–12.7, Po0.001) were independently associated with
disease-free survival.
Univariate Cox-regression analysis for CXCR7 showed a strong

association between positive CXCR7 expression and disease
recurrence, with 63% vs 90% disease-free survival for CXCR7-
positive and CXCR7-negative cases, respectively, (HR¼ 4.3, 95%
CI 1.7–11.0, P¼ 0.002, Figure 2A, Table 3). CXC chemokine
receptor 7 expression was also associated with disease-specific
survival (HR¼ 3.9, 95% CI 1.5–10.2, P¼ 0.005). CXC chemo-
kine receptor 4 and CXCL12 expression were not associated with
disease-free (Table 3) nor disease-specific survival (data not
shown). There was a trend for a positive association between EGFR
expression and disease-free survival (HR¼ 2.3, 95% CI 0.9–6.4,
P¼ 0.095, Table 3).
Multivariate regression analysis showed that only CXCR7

expression (HR¼ 3.4, 95% CI 1.1–10.5, P¼ 0.030), tumour size
per mm increase in tumour size (HR¼ 1.1, 95% CI 1.0–1.1,
P¼ 0.001) and lymph node metastasis at the time of surgery
(HR¼ 4.5, 95% CI 1.2–16.8, P¼ 0.024) were independent pre-
dictors of disease-free survival, when correcting for HPV-type,
histopathological diagnosis, tumour size, infiltration depth, para-
metrial invasion, vasoinvasion, lymph node metastasis, resection
margins and postoperative radiotherapy. Multivariate regression
analysis for CXCR7, EGFR, CXCR4 and CXCL12 expression
showed that only CXCR7 was independently associated with
disease-recurrence (HR¼ 4.2, 95% CI 1.5–12.0, P¼ 0.007).

Disease-free survival for co-expression of CXCR7,
EGFR, CXCR4 and CXCL12

To assess whether co-expression of CXCR7 and its ligand CXCL12
was associated with disease-free or disease-specific survival,
groups were made for CXCR7-negative cases (n¼ 58) and
CXCR7-positive cases with (n¼ 33) or without CXCL12 expression

(n¼ 5). Survival analysis showed no difference between CXCR7-
positive/CXCL12-positive and CXCR7-positive/CXCL12-negative
cases (data not shown). To investigate whether co-expression of
CXCR7 and EGFR, CXCR4 or both was associated with disease-free
or disease-specific survival, groups were made for CXCR7-negative
cases (n¼ 58), CXCR7-positive cases with no EGFR or CXCR4
expression (single positive, n¼ 4), CXCR7-positive cases with
either EGFR or CXCR4 expression (double positive, n¼ 16) and
CXCR7-positive cases with both EGFR and CXCR4 expression
(triple positive, n¼ 21). As the survival curves for the 4 CXCR7
single-positive cases were comparable to the 58 CXCR7-negative
cases, these groups were combined for further analyses. Univariate
Cox-regression analysis showed equally increased risks of disease
recurrence for both double- and triple-positive cases when
compared with CXCR7-negative/single-positive cases (HR¼ 3.6,
95% CI 1.2–10.7, P¼ 0.022, and HR¼ 4.2, 95% CI 1.5–11.7,
P¼ 0.006, respectively, Figure 2B, Table 3). As expression of
CXCR7 was observed more frequently in squamous cell carcinoma
than in other histopathological types, regression analysis was also
performed for this subgroup. In squamous cell carcinomas, the
risk between disease-free survival and CXCR7-negative/single-
positive cases, double-positive cases and triple-positive cases
increased in an additive fashion (double: HR¼ 2.7, 95% CI
0.6–12.1, P¼ 0.193, triple: HR¼ 5.8, 95% CI 1.5–22.4, P¼ 0.011,
Figure 2C, Table 3). Survival analysis for disease-specific survival
showed similar results (data not shown).

Table 1 CXCR7, EGFR, CXCR4 and CXCL12 expression in cervical
cancer patients

Expression N (%)a

CXCR7
Negative 58 (57)
Weak 18 (18)
Moderate 20 (20)
Strong 5 (5)

EGFR
Negative 19 (20)
Weak 16 (17)
Moderate 31 (33)
Strong 28 (30)

CXCR4
Negative 36 (37)
Weak 51 (53)
Moderate 10 (10)
Strong 0 (0)

CXCL12
Negative 13 (14)
Weak 35 (38)
Moderate 28 (31)
Strong 16 (17)

Abbreviations: CXCR¼CXC chemokine receptor; EGFR¼ epidermal growth factor
receptor. aTotal number of assessed cases is 101 for CXCR7, 94 for EGFR, 97 for
CXCR4 and 92 for CXCL12. Protein expression was determined through analysis of
an immunohistochemically stained tissue array, as described in the Materials and
Methods section. Immunoreactivity was scored as negative, weak, moderate or
strong staining intensity.

Table 2 Disease-free survival for clinicopathological parameters

Variables Na DFS (%) HR 95% CI P-value

HPV-type
Negative 9 89 — — —
16 54 76 2.2 0.3–16.3 0.465
18 23 65 3.7 0.5–29.7 0.216
Other 17 88 1.1 0.1–12.0 0.944

Histopathology
SCC 62 74 0.7 0.3–1.7 0.447
A(S) 41 81

Tumour size
o40mm 59 90 6.1 2.4–15.6 o0.001
X40mm 38 55

Infiltration depth
o15mm 56 88 3.7 1.5–9.0 0.003
X15mm 46 63

Parametrial invasion
Negative 94 81 5.2 2.0–13.1 0.001
Positive 9 33

Vasoinvasion
Negative 48 83 2.1 0.9–4.9 0.086
Positive 52 69

Lymph node metastasis
Negative 79 87 7.2 3.2–16.3 o0.001
Positive 24 42

Resections margins
Negative 77 83 3.0 1.4–6.8 0.007
Positive 26 58

Postoperative radiotherapy
No 47 92 5.1 1.7–15.0 0.003
Yes 56 64

Abbreviations: A(S)¼ adeno(squamous) carcinoma; DFS¼ disease-free survival;
HR¼ hazard ratio; 95% CI¼ 95% confidence interval; HPV¼ human papillomavirus;
SCC¼ squamous cell carcinoma. Univariate Cox-regression analysis for disease-free
survival based on clinicopathological parameters. aTotal number of cases¼ 103; for
some variables, data were not available for all patients. The bold entries place
emphasis on statistically significant P-values.
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DISCUSSION

The present study showed for the first time that CXCR7 was
independently associated with disease recurrence in cervical
cancer. In addition, CXCR7 expression was associated with tumour

size and lymph node status at the time of surgery. These findings
suggest that CXCR7 expression leads to more aggressive tumour
growth and metastasis formation.
CXC chemokine receptor 7 is frequently expressed on embryo-

nic and neoplastic transformed cells, but undetectable or expressed
at very low levels in normal adult tissues (Burns et al, 2006; Miao
et al, 2007). Experiments using mouse models showed that
increased CXCR7 expression resulted in a larger tumour size and
an enhanced metastatic potential (Miao et al, 2007). Previously,
CXCR7 has been shown to be associated with disease-specific and
disease-free survival in non-small cell lung cancer (Iwakiri et al,
2009). In the present study, we showed that in cervical cancer as
well, disease-free survival was lower in CXCR7-positive cases
(63%) than in CXCR7-negative cases (90%, HR¼ 4.3, 95% CI
1.7–11.0, P¼ 0.002), even when adjusting for other prognostic
factors. Disease-specific survival was also strongly associated with
CXCR7 expression. Therefore, CXCR7 might be used as a
prognostic marker to predict disease recurrence, with additive
predictive value to lymph node status and tumour size.
The current data also showed that CXCR7 was often co-

expressed with EGFR or CXCR4 (double positive) or both (triple
positive), with only four single-positive cases, supporting the
hypothesis that CXCR7 requires other molecules for optimal
intracellular signalling. Sierro et al (2007) have shown that CXCR7
forms heterodimers with CXCR4 and Singh and Lokeshwar (2011)
have shown that CXCR7 is capable of forming heterodimers with
EGFR. Activation of HEK293 cells co-expressing CXCR7 and
CXCR4 results in a stronger calcium flux when compared with cells
expressing CXCR4 alone, whereas CXCR7 was unable to induce
calcium flux by itself (Burns et al, 2006; Sierro et al, 2007).
However, CXCR7 is capable of signalling through MAPK/AKT
pathways, indicating that EGFR, which also signals through
MAPK/AKT, might be an alternative co-receptor for CXCR7
(Grymula et al, 2010). Interestingly, in CXCR7- and CXCR4-
positive rhabdomyosarcoma cells, CXCL12-induced chemotaxis
could still be observed after blocking CXCR4, although strongly
reduced when compared with controls (Grymula et al, 2010).
Similarly, in CXCR7-positive, CXCR4-negative 4T1 breast cancer
cells, CXCR7 expression promoted tumour growth and progres-
sion of lung metastases in mice (Miao et al, 2007). As
rhabdomyosarcoma cells and 4T1 breast cancer cells are both
EGFR-positive, CXCR7 might signal through heterodimerisation
with EGFR in case CXCR4 is absent or blocked (Dykxhoorn et al,
2009; Herrmann et al, 2010). However, although our data support
this hypothesis, as a positive correlation was observed between
CXCR7 and EGFR expression, functional studies on cervical cancer

1.0
CXCR7– (n = 58) CXCR7– /single pos. (n = 62) CXCR7– /single pos. (n = 30)

* Double pos. (n = 14)

** Triple pos. (n = 16)

* Double pos. (n = 16)

** Triple pos. (n = 21)

*P = 0.022  **P = 0.006 *P = 0.193  **P = 0.011

CXCR7+ (n = 43)
0.6

0.8

D
is

ea
se

-f
re

e 
su

rv
iv

al

0.4

0.2

0.0

1.0

0.6

0.8

D
is

ea
se

-f
re

e 
su

rv
iv

al

0.4

0.2

0.0
0 50 100

Time (months)

P = 0.002

150 200 250 0 50 100
Time (months)

150 200 250

1.0

0.6

0.8

D
is

ea
se

-f
re

e 
su

rv
iv

al

0.4

0.2

0.0
0 50 100

Time (months)
150 200 250

A B C

Figure 2 Disease-free survival in cervical cancer patients with positive or negative CXCR7 expression (A), CXCR7-negative/CXCR7 single-positive cases,
CXCR7–positive, and either EGFR- or CXCR4-positive (double positive) cases and CXCR7-, EGFR- and CXCR4-positive (triple positive) cases in all
patients (B) and in patients with squamous cell carcinoma (C). P-values were obtained using Cox-regression analysis; see Table 3 for HRs and CIs.

Table 3 Disease-free survival for CXCR7, EGFR, CXCR4 and CXCL12
protein expression

Variables N a DFS (%) HR 95% CI P-value

CXCR7
Negative 58 90 4.3 1.7–11.0 0.002
Positive 43 63

EGFR
Low 35 86 2.3 0.9–6.4 0.095
High 59 71

CXCR4
Negative 36 78 1.2 0.5–2.9 0.625
Positive 61 74

CXCL12
Negative 13 69 0.8 0.3–2.3 0.653
Positive 79 75

CXCR7/EGFR/CXCR4
CXCR7 negative/single positive 62 89 — — —
Double positive 16 63 3.6 1.2–10.7 0.022
Triple positive 21 62 4.2 1.5–11.7 0.006

CXCR7/EGFR/CXCR4 in SCC
CXCR7 negative/single positive 30 90 — — —
Double positive 14 71 2.7 0.6–12.1 0.193
Triple positive 16 56 5.8 1.5–22.4 0.011

Abbreviations: CXCR¼CXC chemokine receptor; DFS¼ disease-free survival; EGFR¼
epidermal growth factor receptor; HR¼ hazard ratio; 95% CI¼ 95% confidence interval;
SCC¼ squamous cell carcinoma. aTotal number of cases¼ 103; for some variables, data
were not available for all patients. Univariate Cox-regression analysis for disease-free
survival based on the status of CXCR7, EGFR, CXCR4 and/or CXCL12 protein
expression. CXCR7, CXCR4 and CXCL12 expression are divided into negative (intensity
score of 0) and positive (intensity scores of 1, 2 and 3) groups. EGFR expression was
divided into low (intensity scores of 0 and 1) and high (intensity scores of 2 and 3)
expression groups. In addition, co-expression of CXCR7, EGFR and CXCR4 was analysed
as follows: CXCR7-negative cases (n¼ 58) and CXCR7 single-positive cases (n¼ 4) were
combined and compared with double-positive cases (i.e. CXCR7-positive cases with
either high EGFR expression or positive CXCR4 expression), and triple positive cases (i.e.
CXCR7-positive cases with both high EGFR expression and positive CXCR4 expression).
This analysis was also performed after selection of patients with SCC. The bold entries
place emphasis on statistically significant P-values.
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cell lines are required to determine whether CXCR7 and EGFR are
indeed co-dependent for signal transduction. Furthermore,
although HRs were similar for double- and triple-positive cases
in the whole study group, HRs increased in an additive fashion in
squamous cell carcinomas, which indicates that molecular
mechanisms regulating metastasis formation may differ between
histopathological subtypes.
In conclusion, CXCR7 expression was strongly associated with

tumour size, lymph node metastasis, disease recurrence and
poor disease-specific survival, suggesting that CXCR7 expression
leads to a biologically more aggressive tumour. CXC chemokine
receptor 7 might be a promising new prognostic marker in cervical

cancer and may serve as a potential therapeutic target. CXC
chemokine receptor 7 is often co-expressed with CXCR4 and/or
EGFR, which supports the hypothesis that these receptors assist in
CXCR7 signal transduction.
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The data presented in this thesis revolve around the deregulation of immunity by hrHPV 
in the early phase of the infection cycle and in HPV-induced cervical cancer.

At the early phase of the infection cycle, HPVs need to avoid immune responses of the 
host in order to establish persistent infection. Our data show that HPVs achieve this 
by dampening innate immunity of keratinocytes, the major cell type targeted by HPV. 
As there is reduced production of danger signals including antimicrobial molecules, 
proinflammatory cytokines and chemokines by keratinocytes, HPV infection may 
remain undetected by the immune system in line with the long time it takes to control 
HPV infection1. However, further data presented here show that PRR signaling is not 
completely blocked by hrHPV. Thus, the activation of innate and adaptive immunity at 
the site of HPV infection is slowed down but not prevented. This fits with the observation 
that HPV-infected subjects are capable of mounting an HPV-specific immune response 
at some point in time2. In order for cancers to grow out they need to suppress the local 
effector cells. Previously a role for local regulatory T cells was found 3-5. Furthermore, 
the tumor microenvironment was shown to contain many M2-macrophages, albeit that 
these did not seem to have any direct impact on disease progression6, 7. When we focused 
on the role of the PD-1 receptor and its ligands PD-L1 and PD-L2, our data showed that 
the majority (81%) of the tumors from cervical cancer patients do not express PD-
L1. Furthermore, PD-L1 expression was not associated with patient survival. About 
half of T cells infiltrated in the tumor of cervical cancer patients did not express PD1, 
suggesting that the PD-1/PD-L1 axis might not play a critical role in T cell dysfunction 
in cervical cancer patients. Finally, we also presented evidence that during early 
infection HPV sets the stage for increased proliferation and survival of HPV infected 
cells by expressing elements of the immune system’s chemokine signaling pathway. 
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1 Expression of PRRs in relation to KC differentiation

In view of the notion that stratified squamous epithelia consist of undifferentiated (basal 
layer) and increasingly differentiated (suprabasal and apical layers) KCs, we charted 
PRR expression in relation to KC differentiation. For 6 TLRs, similar expression levels 
were detected in KCs of all differentiation stages: TLR1, TLR2, TLR3, TLR5, TLR6 and 
TLR10. For 3 TLRs, no expression was detected in any of the differentiation stages: 
TLR4, TLR7 and TLR8. Our findings concerning expression of these TLRs in KCs are 
largely in line with previous reports by others. The absence of TLR4 expression in 
differentiated KCs, as opposed to the detection of TLR4 in differentiated HaCat cells8  
is consistent with work by others showing that TLR4 was only found in HaCat cells, but 
not in primary human KCs9. Interestingly, expression of TLR9 showed striking changes 
upon KC differentiation, in that it was undetectable in undifferentiated and partially 
differentiated KCs, while being readily detectable in fully differentiated KCs. Analysis 
of TLR9 protein expression by immunohistochemistry in sections of human foreskin 
and exocervical epithelium revealed that TLR9 was not detected in the basal layer of the 
epidermis but prominently expressed in the upper-spinous and granular layers. Staining 
intensity for TLR9 increased towards the most apical KC layers. Taken together, our 
data conclusively show that TLR9 is absent from undifferentiated KCs and that its 
expression is progressively induced by KC differentiation. These results suggest that 
the discrepancies in previous studies with respect to the expression of TLR9 in KCs10-16 
are related to differences in culture conditions, which are known to readily affect the 
differentiation stage of KCs. There is indeed inconsistency in TLR9 expression data as 
shown in Hasan et al.,12 because one of the normal KC lines (NHK1) is TLR9 positive, 
while the second line (NHK2) is TLR9 negative.

2 High risk HPVs do not directly impact on PRRs expression

In view of the notion that high risk HPVs are known to efficiently evade immune 
recognition17, 18 we tested whether these viruses might subvert PRRs expression and 
function. We made use of high risk HPV-positive primary human KCs containing full 
length hrHPV genomes. We chose to use these cells, rather than cells transfected with 
plasmids comprising selected HPV genes, because they maintain episomal copies of 
the HPV genome and, upon culturing in organotypic raft cultures, display the entire 
differentiation-dependent HPV life cycle19. Analysis of the TLR expression pattern 
of undifferentiated and differentiated monolayer cultures of HPV16-positive human 
foreskin KCs revealed essentially the same pattern as found for HPV-negative KCs, 
in that 6 TLRs are constitutively expressed (TLRs 1, 2, 3, 5, 6 and 10), 3 TLRs are 
not expressed in any differentiation stage (TLRs 4, 7 and 8), while TLR9 is induced 
upon KC differentiation. Thus, HPV16 does not directly affect TLR expression in KCs, 
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nor the differentiation-induced expression of TLR9. Similar results were obtained 
for monolayer cultures of HPV16-positive vaginal KCs and HPV18-positive cervical 
KCs, while immunohistochemical staining of raft cultures derived from these KCs 
revealed that TLR9 is expressed at the protein level (unpublished). This suggests that 
our findings generally apply to high risk HPV types in the context of different types of 
stratified epithelia.

In spite of the fact that high risk HPVs do not appear to directly suppress TLR9 
levels in KCs, HPV-associated defect in the TLR9 pathway was found through 
immunohistochemical analysis of normal and dysplastic genital epithelia for TLR9. 
In normal cervical epithelium, the staining intensity for TLR9 increased towards the 
most apical KC layers, in line with the notion that TLR9 expression is induced upon 
KC differentiation. However, TLR9 expression in the supra-basal and apical layers is 
gradually lost in dysplastic cervical lesions upon progression from stage CIN1 to stages 
CIN2 and CIN3. As is apparent from the immunohistochemical staining, the appearance 
of KCs with aberrant morphology in the supra-basal epithelial layers coincides with the 
loss of TLR9 expression. This result of HPV-induced dysplasia on TLR9 expression is 
vividly illustrated by the tissue section displayed in (Figure 1 in which a TLR9-positive 
normal region (left portion of section) and TLR9-negative CIN3 region (right portion of 
section) are shown side by side. Thus, HPVs do not directly block TLR9 expression in 
KCs, but rather prevent TLR9-expression in an indirect manner. Because chronic HPV 
infection interferes with KC differentiation, it also interferes with the differentiation-
dependent induction of TLR9 expression.

Recent studies by others concerning expression and function of TLR9 in HPV-positive 
KCs and epithelia have resulted in divergent conclusions10, 12, 13, 20. Discrepancies between 
these studies focus on two issues: the direct impact of HPV E6/E7 on TLR9 expression 
and function, and the expression of TLR9 in normal versus dysplastic cervical epithelia. 
With respect to TLR9 expression and function in KCs, Anderson et al. 10 showed that 
E6/E7 expression affected neither TLR9 expression and function, whereas Hasan et 
al. reported that E6/E7 expression in KCs resulted in loss of TLR9 expression and, 
therefore, function12. These studies differ essentially from ours, in that they made use 
of human KCs displaying forced expression of the HPV16 E6 and E7 oncogenes as a 
result of gene transduction with E6/E7-specific expression vectors that are driven by 
strong viral promoter sequences. In contrast, we made use of KCs harboring episomal 
copies of entire HPV genomes, in which E6 and E7 levels are expected to be lower 
and the other HPV proteins are still present.  Therefore, our results do not rule out that 
elevated E6/E7 levels, as expressed in the cell lines used by Hasan et al.12, 13 and as 



95

C
ha

pt
er

 6

could be found in HPV-positive cancers, may have a direct suppressive effect on TLR9 
expression. We cannot readily explain the complete absence of any impact of E6/E7 
on the TLR9 pathway as reported by Andersen et al.10. The second point of discussion 
concerns TLR9 expression in cervical epithelia in relation to KC differentiation and 
dysplasia. Whereas the study by Hasan and coworkers revealed the absence of TLR9 in 
immunohistochemical staining of HPV-positive cervical cancers12, Lee et al. reported 
that such samples show greatly increased TLR9 staining20.  A peculiar feature of the 
data by Hasan et al.12 is that TLR9 staining is found in the basal layers of the normal 
epithelium. This observation, as well as the expression of TLR9 in tumor samples20, 
would argue that TLR9 expression is inversely correlated with KC differentiation. 
Our data lead to the opposite conclusion. Importantly, our experiments concerning 
the relation between KC differentiation, TLR9 expression in KCs, and the presence of 

Figure 1 | TLR9 expression in cervical intraepithelial neoplasia 3 (CIN3)
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HPV are fully consistent, in that (i) KC-differentiation results in induction of TLR9 
expression in KC monolayer cultures, human epithelia and organotypic raft cultures, 
(ii) HPVs do not prevent the in vitro differentiation of KCs, nor the induction of TLR9 
expression in either monolayer or raft cultures, while (iii) HPVs do interfere with both 
KC differentiation and TLR9-induction in the context of chronically infected human 
epithelia. As such, our study constitutes the first report that is likely to provide the 
correct picture for TLR9 in HPV infections.

3 Our unique data on HPV’s ability to dampen immunity at early phase of 
infection cycle

Based on the expression of several different PRRs by KC, infections with HPV should 
lead to the production of type I interferon as well as proinflammatory cytokines and 
chemokines. In order to understand how HPV infection manages to escape from the 
immune system, the interaction of HPV proteins with proteins belonging to immune 
signaling pathways has been studied. Our genome-wide approaches have identified that 
HPV upregulates about half of the genes differentially expressed between primary KCs 
and HPV-infected KCs, and downregulates the remainder in unstimulated keratinocytes. 
Among the upregulated genes we could identify that even at such an early phase of 
infection cycle high risk HPV upregulates the expression of cell cycle regulators. In 
addition, our transcription factor enrichment analyses identify many transcription 
factor binding sites, including motifs binding the important oncogene MYC that plays 
a critical role in hrHPV-induced cervical cancer21. Our data thus suggest that high risk 
HPV even at the very early phase of the infection induces an oncogenic gene signature 
in infected keratinocytes and reprograms keratinocytes to cycle rapidly. The novelty of 
our data involves the genome-wide scale. 

Among the genes downregulated by HPV infection were mainly genes involved 
in innate and adaptive immune responses of the host. Those genes can be broadly 
categorized in antimicrobials, inflammasomes, proinflammatory cytokines and 
chemokines, and antigen-presenting molecules. Thus, by upregulating cell cycle genes 
and by downregulating immune response genes, HPV creates favorable niche needed 
to establish persistent infection beneficial for the virus. Our data show that hrHPVs 
downregulate BAMBI, a negative regulator of TGF-β. The well known immuosuppressive 
roles of TGF-β requires further studies in that hrHPVs may suppress immunity by 
downregulating BAMBI. Similarly, genome-wide data obtained from our study should 
provide entry points for further studies to pinpoint the molecular mechanisms utilized 
by hrHPVs to deregulate host immunity. 
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So far, HPV has been shown to downregulate certain cytokines including type I IFN22, 
MIP3A23 in candidate gene studies, but our unbiased genome-wide study has revealed 
downregulation of many pro-inflammatory cytokine and chemokines by HPV. Our 
gene network analyses revealed that IL1B and IL6 are the most interconnected hubs 
downregulated by HPV. IL1B not only mediates inflammation but also links innate 
and adaptive immune responses. IL1B activates the release of other proinflammatory 
cytokines such as TNF and IL-6, and induces a TH17 bias in the cellular adaptive 
responses critical for the clearance of mucosal infection 24.  As such, our data on 
the reduced production of IL1B in hrHPV-infected keratinocytes might be related to 
delayed induction of immune responses against HPV during the early phase of the 
infection cycle.   Moreover, a recent study using HPV16 E6 and/or E7-immortalized 
keratinocytes shows strong downregulation of IL1B but not NALP3 by HPV E6. The 
same study further shows that pro- IL1B, precursor for mature IL1B, is degraded in a 
proteasome-dependent manner which is mediated via ubiquitin-ligase E6-AP and p5325.  
Whether the reduced level of IL1B in HPV-transformed keratinocytes is also seen in 
cervical cancer patients needs to be further studied. IL1B is critical in linking innate 
and adaptive immunity and therefore reduced production of IL1B both at early HPV 
infection and in transformed cells might play important roles in deregulated innate and 
adaptive immunity in cervical cancer patients. 

Nees et al.26  published a microarray-based study using primary human keratinocytes 
retrovirally transduced with HPV16 E6 or E7. Their study is essentially different from 
ours in that their system mimics the situation in transformed cells but not an early 
hrHPV infection. One of the other most notable differences with our study is that we 
used systems biology approaches to decipher complex networks and pathways in an 
unbiased fashion to identify a comprehensive effect of hrHPV in keratinocytes. 

We27 analyzed our genome-wide data using approaches like KEGG database for 
pathway analyses, CORE_TF28 for over-represented transcription factor binding sites in 
promoters, Ingenuity Pathway Analyses (IPA) for gene network and pathway analyses 
which revealed many novel insights. As an example, HPV has been known to modulate 
ubiquitin-proteasome systems29 and we indeed observed significant enrichment of the 
protein ubiquitination pathway between HPV-infected and uninfected keratinocytes. 
Among the genes in the protein ubiquitination pathway, we identified UCHL1 as the 
most upregulated gene in HPV-infected keratinocytes with no known function in 
antiviral immunity. Our subsequent study has identified UCHL1 as a novel suppressor 
of innate immune signaling exploited by HPV to dampen innate immune responses of 
keratinocytes.  In contrast to the viruses that actively inhibit host immune responses 
by viral encoded proteins, the genome size of HPV is relatively small. Therefore, HPVs 
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exploit the cellular machinery to evade host immune responses.  Targeting of a cellular 
enzyme UCHL1 is a smart choice of the hrHPVs. By increasing the expression of 
UCHL1 that targets TRAF3, TRAF6, NEMO, and IκBα which are central to many PRR 
signaling pathways, hrHPVs simultaneously suppress many signaling routes leading to 
reduced activation of innate immunity of keratinocytes. However, our data show that 
UCHL1 downregulation alone is not sufficient to induce a strong, spontaneous innate 
immune response in hrHPV-infected keratinocytes. One reason for that is perhaps 
the inefficient knockdown of UCHL1 by RNAi (only about 20% reduction of UCHL1 
mRNA after RNAi as detected by qRT-PCR, unpublished), thus keeping UCHL1 
levels high enough to suppress immune responses of infected keratinocytes. Also, in 
addition to UCHL1, hrHPVs deregulate hundreds of other genes (see HPV signature 
genes) and it is possible that some of these genes play important roles in additional 
suppression of the immune responses of keratinocytes, signifying the need for further 
studies.  Moreover, our data show that hrHPVs downregulate even the baseline levels of 
pro-inflammatory cytokines, chemokines and other molecules such as inflammasome 
components necessary for an effective innate immune response of keratinocytes. Our 
data show that RNAi inhibition of UCHL1 alone increases the baseline expression of 
proinflammatory cytokines in hrHPV-infected keratinocytes but not to a level as high 
as in uninfected keratinocytes, explaining why UCHL1 inhibition alone may not result 
in the induction of a spontaneous immune response and why super-stimulation with 
other immune activating molecules such as polyI:C would be desirable.  

We found that high risk HPVs upregulate UCHL1 to dampen the immune responses 
of keratinocytes. Low risk HPVs (such as HPV6, and HPV11) are not associated with 
cancer but with genital warts. Given that it takes months to clear even low risk HPVs 
by host’s immunity, it would be exciting to examine if low risk HPVs also use UCHL1 
to dampen the innate immunity of keratinocytes.  Additionally, little is known about 
the normal physiological function of UCHL1. UCHL1 is highly expressed in neurons 
and UCHL1 polymorphisms have been associated with many neurodegerative diseases 
including Alzheimer’s disease and Parkinson’s disease. Chronic inflammation has 
been strongly linked to neurodegeneration30 and on the basis of our data of the novel 
function of UCHL1 in suppressing inflammation, it is tempting to speculate that chronic 
inflammation in the brain due to dysfunctional UCHL1 might lead to neuronal death 
and neurodegeneration. Further studies in this direction including the use of UCHL1 
knockout mice are expected to yield exciting findings. 

Our genome-wide study has revealed many other interesting downregulated genes, 
including the components of inflammasomes (NLRP2, PYCARD), while upregulation 
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was found of several antiviral response genes (TRIM5, IFIT2). This seemingly 
contradictory finding of upregulated antiviral genes and many downregulated 
proinflammatory genes needs to be studied in detail in order to understand how HPVs 
avoid immune response during early phase of infection cycle whilst most cases of HPV 
infection are cleared by the immune response at a later phase. Moreover, our data on the 
highly significant enrichment of genes belonging to the protein ubiquitination pathway 
between uninfected and hrHPV infected keratinocytes warrant further studies in order 
to understand how hrHPVs manipulate antigen presentation as ubiquitination controls 
antigen presentation at many stages31. Our gene lists in enriched protein ubiqutination 
pathways show that hrHPV infection strongly downregulates the expression of genes 
encoding for antigen presenting molecules such as HLA-A, -B, and –C which needs to 
be studied further because in addition to affecting these molecules at gene level, one 
may envisage that similar to proteasomal degradation of pro-IL-1β by HPV16 E6 via the 
ubiquitin ligase E6-AP and p5325, antigen-presenting molecules might also be targeted 
for degradation by hrHPV in a similar fashion. In support of this view, it is well known 
that other viruses prevent the presentation of viral peptides by selective degradation of 
MHC class I molecules32. For example, the mK3 protein of mouse herpesvirus 68 binds 
to its primary binding partner TAP1/2 (transporter associated with antigen processing) 
and induces K48-linked polyubiquitination of MHC class I molecules resulting in their 
degradation32. Moreover, the Kaposi’s sarcoma-associated virus (KSHV) proteins kK3 
and kK5 and HIV protein Nef induce endocytosis of MHC class I molecules, leading 
to lysosomal degradation32. It is known that hrHPVs inhibit antigen presentation to 
cytotoxic cells33, however, the molecular mechanisms behind this are not well studied. 
It would be necessary to understand which E2 and E3 ubiquitin ligases as well as DUBs 
are exploited by HPV to inhibit antigen presentation pathways in order to better treat 
hrHPV infection and associated diseases. 

4 Mimicking the in situ situation using keratinocyte differentiation-dependent 
HPV production, and interaction with immune cells

Our study is limited to the use of undifferentiated keratinocyes harboring episomal 
HPV DNA to mimic a genuine viral infection. It would be of great importance to 
closely mimic differentiation-dependent HPV production as well as the interaction 
of immune cells with cervical epithelium in situ by using organotypic epithelial raft 
culture comprising immune cells like Langerhans cells/dendritic cells (LCs/DCs), 
and use this material to perform a genome-wide study of HPV-positive keratinocytes 
during differentiation. Colonization of LCs/DCs into organotypic culture of HPV-
transformed keratinocytes has been described to be minimal under basal condition. 
However, the infiltration of LCs/DCs in the in vitro formed pre-neoplastic epithelium 
is dramatically increased after the addition of inflammatory mediators such as GM-
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CSF to the culture34-36 suggesting that such immune cell-epithelial interactions mimic 
in situ situations at least in part. Moreover, very recently a model has been described 
to study the interaction between keratinocytes and T cells in a three-dimensional (3D) 
microenvironment that can recapitulate skin pathology due to migration of activated T 
cells into the dermis37. Similar co-culture studies using the HPV-infected keratinocytes 
and various immune cells are needed in order to better understand how modulation of 
innate immune responses in KC affect their interaction with immune cells and vice 
versa. 

5 How would chronic HPV infection lead to dysfunctional adaptive immunity 
in patients with neoplasia and cervical cancer based on the data presented in 
this thesis? 

Our studies reveal that many of the molecules involved in innate immunity are 
downregulated by HPVs. For instance, HPV-infected keratinocyes strongly downregulate 
the secretion of proinflammatory cytokines and chemokines. As there are fewer 
proinflammatory signals, the other cells of the immune system including Langerhans 
cells, DCs, and NK cells will not be attracted to the site of HPV infection. Thus HPV 
infection remains undetected by the immune system. Although hrHPVs suppress the 
immune responses at the early phase of the infection cycle by employing UCHL1, 
activation of immune responses is observed in a later phase of cervical cancer (grade III 
and cancer)18  and loss of UCHL1 might play a crucial role in this later process. UCHL1 
has been shown to function as a tumor suppressor in several types of human cancers 
that is inactivated by promoter methylation or gene deletion38. The activity of UCHL1 
has been shown to be lower in a significant proportion of cervical cancers compared 
to the adjacent normal tissues and UCHL1 expression is undetectable in almost all 
cervical cancer cell lines39 suggesting that UCHL1 expression is lost during cervical 
tumorigenesis. Chronic inflammation has been linked to the development of cancer40 
and loss of UCHL1 expression might play roles in this process. At the early phase of the 
HPV infection cycle when viruses are produced, the viruses need to suppress immune 
responses in order to establish chronic infection. However, after chronic infection has 
been established and when the HPV oncogenes E6 and E7 integrate into the cellular 
genome, suppression of immune responses is no longer important as infectious viruses 
are not produced. Rather, the cells need to survive and proliferate which is mediated 
by the activation of NF-κβ and other pro-survival pathways26. UCHL1 being a strong 
suppressor of various PRR pathways that lead to reduced activation of NF-κβ, it is 
tempting to speculate that UCHL1 inactivation would lead to chronic activation of 
NF-κβ, ultimately leading to the development of cervical cancer. Similar to UCHL1, 
CYLD is a DUB that negatively regulates the activation of NF-κβ. A recent study 
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shows that HPV E6 mediates proteasomal degradation of CYLD in cervical cancer cell 
lines, thereby allowing hypoxia-induced NF-κβ activation and tumorigenesis41.  Since 
UCHL1 expression is undetectable in almost all cervical cancer cell lines39, further 
studies examining DUB expression in the context of NF-κβ activation in cervical 
cancer are necessary. 

6 What might be the reasons why HPV infection cannot be cleared by a minority 
of the subjects leading to the development of cervical cancer?

Although it is clear that the innate immune response to HPV is suppressed, thereby 
delaying the induction of protective immune responses, at the end of the day the 
majority of the HPV infections are controlled, associated with detectable HPV-specific 
T cell responses. So what might be the problem with the immune responses of the 
individuals who display progressive infections and finally develop cervical cancer? 
The subsequent establishment of persistent infection may have been influenced by a 
combination of genetic and environmental factors. In the case of genetic factors related 
to innate or adaptive immune system, the ‘defects’ are expected to be subtle, because 
subjects with HPV infections generally do not show increased susceptibility to other 
opportunist pathogens. The antigen presenting machinery (APM) plays a crucial role 
in immune recognition of virally infected cells and cancer cells and single nucleotide 
polymorphisms (SNPs) at several loci in the APM genes have identified the major 
alleles at the LMP7 and TAP2 loci and the minor allele at the ERAP1 locus to be 
significantly associated with increased risk of cervical carcinoma42. LMP7, TAP2 and 
ERAP1 are critical components in the HLA Class I (including HLA-A, -B, and -C) 
antigen presentation machinery. LMP7 processes intracellular proteins into peptides 
which are then transported from the cytoplasm to the endoplasmic reticulum by TAP2. 
Transported peptides undergo length-specific trimming by ERAP1 before being loaded 
onto HLA-A, -B, and -C. Our data that hrHPVs strongly downregulate HLA-A, -B, and 
-C at early infection cycle and the data of Metha et. al.,42  that certain polymorphisms 
in HLA-A, -B, and –C are associated with increased risk of cervical cancer indicate 
that these antigen presenting molecules play critical roles in immunity against hrHPV 
infection and in cervical cancer. Moreover, genome-wide association studies have 
recently identified SNPs within the MHC regions including various SNPs (i) At HLA-
DPA1 and HLA-DPB1/2, (ii) A gene (MICA), adjacent to the MHC class I polypeptide-
related sequence, and (iii) Gene(s) between HLA-DRB1 and HLA-DQA1 that affect 
susceptibility to cervical cancer in situ probably by causing impaired immune activation 
43, 44. Interestingly, hrHPV-specific T cells infiltrating cervical cancer and lymph nodes 
are predominantly restricted via HLA-DQ and –DP 45, sustaining the notion that 
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these genes/molecules play an important role in immunity to hrHPV positive tumors. 
Therefore, it would be interesting to study polymorphisms of the genes strongly affected 
by HPV infection identified by our genome-wide analysis including IFNα, IFNβ IL1B, 
IL1A, IL6, and CCL5. Moreover, the proteins in the PRR signaling pathways that are 
targeted by UCHL1 namely TRAF3, TRAF6 and NEMO as well as UCHL1 itself could 
be the prime molecules to study their polymorphisms. Additionally, polymorphisms 
of all the members of the PRR pathways including the receptors TLRs, NLRs, RLRs, 
as wells as the downstream molecules MYD88, IRAK1, IRAK4, TBK1, IKKα, IKKβ, 
IκB, p50, p65, IRF3, IRF7 might be important suspects. Certain polymorphisms of 
these crucial molecules may contribute to dysfunctional innate and adaptive immune 
responses and therefore HPV persistence and ultimately the development of cervical 
cancer. 

7 UCHL1 as a therapeutic target for chronic HPV infection

Imiquimod is an immune-system activator that induces local inflammation when 
topically applied. It is used in the clinic for the treatment of vulvar intraepithelial 
neoplasia (VIN)46. Similar approaches are also successfully tested to treat the 
HPV-infected region of cervix 47. These studies indicate that the induction of local 
inflammation is essential to control HPV infections, however, the response rate in these 
studies still requires improvement. Therefore, other approaches of immune-system 
activation to eradicate chronic hrHPV infection are warranted. Targeting the ubiquitin 
proteasome system (UPS) offers a potential solution as suggested by the treatment of 
multiple myeloma48. This identifies UCHL1 as a potential therapeutic target to treat 
chronic hrHPV infection.  UCHL1 is absent in normal keratinocytes, however, its 
expression is strongly induced upon hrHPV infection. Therefore, blocking of UCHL1 
function might not pose  a threat to the normal physiology of cervical epithelia. In 
combination with immunostimulatory agent(s), blocking of UCHL1 function by small 
molecules, anti-sense oligonucleotides or monoclonal anti-UCHL1 antibodies during 
the chronic phase of HPV infection would lead to the activation of innate immune 
responses of HPV-infected keratinocytes and subsequently the activation of adaptive 
immunity which would lead to the clearance of persistent HPV infection. Various small 
molecules including isatin O-acyl oxime 49 are currently known that interfere with the 
activity of UCHL1. Anti-sense oligonuleotides including RNAi, shRNA, miRNA are 
designed to base pair to specific nucleotide sequences, and thus, they potentially offer 
a lower risk for off-target effects than do small-molecule drugs. Recently, the FDA has 
approved Kynamro (mipomersen sodium), a novel antisense oligonucleotide inhibitor 
for the treatment of inherited cholesterol disorder50 underscoring the importance of anti-
sense UCHL1 therapy against chronic hrHPV infection. However, anti-sense therapy 
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has disadvantages of poor intracellular uptake, and high toxicity. Because of the various 
advantages of monoclonal antibody mediated therapy including target specificity and 
generally well tolerated with mild side effects 51, monoclonal-anti-UCHL1 antibodies 
would be desirable. Antibodies are viewed as too large to access intracellular locations. 
Therefore, antibody therapy has traditionally targeted extracellular or secreted proteins 
expressed by cells. However, recent study by Guo et al.,52 showed that exogenously 
provided antibodies or vaccine-induced antibodies against intracellular proteins (namely 
EGFP and PRL-3, or the polyoma middle T oncoprotein) delayed the growth of a variety 
of tumors that expressed these intracellular proteins suggesting that intracellular 
proteins can even be targeted by therapeutic antibodies. This study suggests the 
possibility that monoclonal anti-UCHL1 antibodies may constitute a viable option for 
the treatment of chronic hrHPV infection. However, blocking of UCHL1 function alone 
might not trigger a full-blown spontaneous immune response against hrHPV (our data 
as discussed above). Therefore, an additional trigger (like polyI:C as our data show) 
to stimulate the immune system might be desirable. Our data show that keratinocytes 
secrete inflammatory cytokines upon treatment of polyI:C or flagellin, in line with the 
PRR expression (TLR3/RIG-I and TLR5 respectively) of keratinocytes indicating that 
those TLR-agonist could potentially be used to further activate the immune system in 
addition to the UCHL1 blockade. In contrast, TLR7 and TLR8 are not expressed in 
keratinocytes. Therefore, the TLR7/8 agonist imiquimod will not directly activate the 
innate immunity of keratinocytes, however, imiquimod treatment may activate other 
epithelial resident immune cells including T cells, DCs, pDCs, Langerhan’s cells as 
suggested by Terlou et.al.,53. The proinflammatory milieu produced by resident DCs, 
pDCs, and Langerhan’s cell following imiquimod treatment may therefore indirectly 
activate the HPV-infected keratinocytes enabling the presentation of hrHPV antigen to 
T cells implying that imiquimod treatment on top of UCHL1 blockade may increase the 
effectiveness in clearing chronic HPV infection.

8 Cancer promoting inflammation through chemokine receptors

Chronic inflammation has been associated with cancer, and chemokines play a strong 
role in such inflammation. Our study has revealed that while HPV downregulates 
molecules involved in innate immunity of keratinocytes, surprisingly, upregulation 
occurs of genes involved in cancer promoting inflammation, even at the early phase 
of HPV infection cycle. Our microarray study using HPV-infected and uninfected 
keratinocytes revealed that chemokine receptor CXCR7 is highly upregulated in infected 
keratinocytes. The role of CXCR7 upregulation in hrHPV-infected keratinocytes needs 
to be studied further. However, based on the various signaling pathways activated upon 
ligand binding to CXCR7 i.e., PKC (Protein Kinase C), Akt,54, it maybe speculated that 
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CXCR7 upregulation in hrHPV-infected keratinocytes would lead to increased survival 
and proliferation of keratinocytes, fitting with the HPV infection cycle. CXCR7 
expression remains high in tumor cells of cervical cancer patients. Our further analyses 
show that CXCR7 expression in tumor cells is associated with tumor size, lymph node 
metastasis, and disease-free survival  in cervical cancer patients in agreement with 
the known function of CXCR7 in cell proliferation, and trans-endothelial migration/
metastasis54. Our patient-derived data suggesting the existence of the CXCR7-EGFR 
co-receptors are in line with the cancer cell derived cellular and biochemical data 
presented by Singh55. By coupling/colocalizing with EGFR, CXCR7 may be responsible 
for increased tumor growth and metastasis, but the various pathways downstream of 
EGFR (the RAS-BRAF pathways) and the cross-talk happening through dimerization 
with other receptors (HER-2, HER-3, and HER-4) need to be studied.

9 Regulation of T-cell mediated immunity in cervical cancer

PD1-PDL1 interaction has been linked to dysfunctional adaptive immunity due to T 
cell exhaustion. HPV-specific T cells are generally undetectable or impaired in patients 
with cervical neoplasia and cervical cancer 18, 56, 57. We were the first to study PD-L1 
expression and possible function in cervical cancer patients. Our data, in contrast to our 
expectations as published for many other cancers, show that the minority of cervical 
cancer cells express PD-L1. Very recently, it has been described that the prevalence 
of cell surface staining and staining intensity in the paraffin-embedded section is 
slightly less than in the frozen specimen58 using the PD-L1 antibody (5H1 clone) that 
we also used for the IHC of our paraffin-embedded cervical cancer patient specimens 
suggesting that there might be an underestimation of the true PD-L1 expression in our 
study due to technical problems.  Repetition of our study may, therefore, be needed to 
sustain or refute our notion that the PD-L1 expression by cancer cells does not play such 
a role in cervical carcinoma. Furthermore, we found that about 50% of the infiltrating 
T cells express PD1.  Recently, it has been shown that the levels of PD1-positive tumor-
infiltrating T cells are positively correlated with a favorable clinical outcome in HPV-
associated head and neck cancer59. Further studies on those PD-1-positive T cells show 
that they express T cell activation markers and about 50% of these cells do not express 
additional T cell inhibitory receptor TIM-3. Therefore, in order to conclusively show that 
the PD1 expressing T cells in cervical cancer are functionally impaired, the presence 
of additional T cell inhibitory receptors like TIM-3, LAG-3, CTLA-4 should also be 
studied60 61 to conclusively phenotype the nature of PD-1-postive tumor-infiltrating T 
cells we observed in cervical cancer patients. 
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Assuming that PD-L1 expression indeed is scarcely expressed by cervical cancer cells, 
then what are the other sources of PD-L1 in the cervical cancer microenvironment? In 
order for intratumoral PD1+ T cells to become functionally blocked, receptor-ligand 
interaction is needed, i.e., PD1+ T cells should bind PD-L1.  One source could be the co-
infiltrating immune cells. Similar to the situation in lung cancer, immature DC in tumor 
microenvironment could express high levels of PD-L1. DCs cross-presenting tumor 
antigen (e.g., E6 and E7 of HPV) in the tumor microenvironment may express PD-L1 
which may impair the function of responding PD1+tumor-specific T cells. Additionally, 
high levels of PD-L1 expression on monocytes and macrophages have been shown to 
effectively suppress tumor-specific T cell immunity and to contribute to the growth 
of human hepatocellular carcinoma cells in vivo 62. Notably, in a cell culture system, 
human cervical cancer cells either hampered monocyte to dendritic cell differentiation 
or skewed their differentiation toward  M2-like macrophages which express high 
levels of PD-L1 7. This is substantiated by HPV-associated head and neck squamous 
cell carcinomas (HPV-HNSCC) displaying  high infiltration with PD-L1 expressing 
tumor-associated macrophages  which were suggested to inhibit the function of PD1 
expressing tumor-infiltrating T cells 63. A recent study shows that M2 macrophages are 
often present in high numbers in patients with cervical cancer. The M2 macrophages 
were not directly associated with the clinical outcome of the patients6, suggesting 
that they would not play a role in cancer progression, however, their influence in the 
context of PD-1 expressing T cells has not been examined.  Furthermore, if such tumor-
infiltrating M2 macrophages expressing additional inhibitory co-receptors that could 
also terminate T-cell responses need to be studied. 

PD-1 and PD-L1 blockade with monoclonal antibodies has emerged as a very promising 
and successful treatment approach for patients with metastatic melanoma, non-small 
cell lung carcinoma, and metastatic colorectal cancer 61.  What about the therapeutic 
potentials of PD-1 and/or PD-L1 blockade in cervical cancer patients? As described 
above, a number of studies need to be performed to provide a more definitive answer to 
this question, including the use of the specialized immunohistochemistry procedures 
for the detection of PD-L1 suggested by the experts in this field58 and studies on the 
impact of PD-L1 expressing myeloid cells in the microenvironment. Furthermore, one 
could also think about other therapeutic antibody options but this requires studies on 
the co-expression of other inhibitory receptors such as TIM-3, LAG-3, and CTLA-4. 
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Figure S1 | Positive controls for keratinocyte differentiation and PRR expression. (A), Reverse 
transcription PCR detection of the small proline-rich protein 2A (SPRR2A), a molecular marker of 
KC differentiation after 20, 25 and 30 PCR cycles in undifferentiated (1), partially differentiated 
(2) and fully differentiated (3) normal foreskin keratinocytes. SPRR2A expression was absent 
from undifferentiated KCs, low in Ca2+-treated KCs and high in KCs cultured in suspension with 
Ca2+ and methylcellulose, confirming that the KCs consisted of undifferentiated (basal) cells and 
differentiated in vitro. (B), Reverse transcription PCR detection of TLRs 1-10 and GAPDH (“G”) 
in mRNA samples from Ramos B-cells and monocytes.
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Figure S2 | TLR9 expression in stratified squamous epithelia progressively increases with 
KC differentiation stage. (A), Total RNA of the indicated cells was subjected to RT-PCR (35 
cycles) with specific primers human TLR1-10 or GAPDH as indicated by a “G”. (B), TaqMan 
real-time PCR was performed for TLR9 on total RNA samples from indicated cell types. TLR9 
expression was normalized against GAPDH mRNA levels. Data represent an average of three 
independent experiments. (C), Immunohistochemical staining of paraffin-embedded healthy 
foreskin sections and (D) sections of healthy ectocervical epithelium with human TLR9-specific 
monoclonal antibody (left panels) or isotype control antibody (right panels) in combination with 
peroxidase-conjugated secondary antibody. Cell nuclei were counterstained with haematoxylin. 
Original magnification 125X. Stainings shown are representative of at least three samples of 
different origin.
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Figure S3 | TLR9 is expressed in differentiated cell layers of HPV-positive cervical epithelial 
neoplasia. Immunohistochemical staining with TLR9-specific or isotype control antibody of 
paraffin-embedded sections of normal and dysplastic genital epithelia. Staining was performed 
as described in the legend to Figure S2. Original magnification 125X. Sections of the following 
epithelial samples are shown: A) normal cervical epithelium, B) CIN1, C) CIN2.
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Figure S4 | TLR signalling in KCs. Toll-like receptor signalling pathway (KEGG hsa4620) 
overlaid with differentially expressed genes between 24 hrs poly(I:C) stimulated and unstimulated 
uninfected keratinocyte cultures. Differentially expressed genes (FDR ≤ 0.05) were colored bright 
red (log2 fold change ≥ 1) or dim red (log2 fold change between 0 and 1) for upregulation upon 
poly(I:C) stimulation, or bright green (log2 fold change ≤ -1) or dim green (log2 fold change 
between 0 and -1) for downregulation. Grey boxes represent genes not fulfilling the above criteria, 
while white boxes are genes not represented by probes on the array.
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Figure S5 | TLR signalling in HPV-KCs. Toll-like receptor signalling pathway (KEGG hsa4620) 
overlaid with differentially expressed genes between 24 hrs poly(I:C) stimulated and unstimulated 
HPV-infected keratinocyte cultures. For explanation of colors, see Figure S4.
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Figure S6 | Differential TLR signalling between HPV-KCs and KCs. Toll-like receptor 
signalling pathway (KEGG hsa4620) overlaid with differentially expressed genes between HPV-
infected and uninfected keratinocytes, both after 24 hrs poly(I:C) stimulation. Differentially 
expressed genes (FDR ≤ 0.05) were colored according to their log2 fold change (see legend Figure 
S4) for upregulation (red) or downregulation (green) in HPV-positive cells.
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Table S1 | Differential expression of pattern recognition receptors and signalling molecules 
in HPV-infected and uninfected keratinocytes.Supplementary Table S1. 
Differential expression of pattern recognition receptors and signalling molecules in HPV-infected and uninfected keratinocytes. 

Gene Symbol ProbeID Unstimulated 4 hrs PolyI:C 24 hrs PolyI:C Change*** Uninfected HPV-infected Change

TLR1 ILMN_1731048 0.5075 0.8101 0.1245 0.0639 0.9252
TLR2 ILMN_1772387 0.6670 0.7159 0.2514 0.0116 0.1590 up
TLR3 ILMN_1689578 0.8196 0.9781 0.2745 0.0179 0.0075 up
TLR4 ILMN_1706217 0.8120 0.8130 0.8617 0.4416 0.6560
TLR5 ILMN_1722981 0.9297 0.9036 0.7692 0.3101 0.5266
TLR6 ILMN_1749287 0.8026 0.9457 0.4102 0.2668 0.9707
TLR7 ILMN_1677827 0.7841 0.7538 0.6670 0.1113 0.8872
TLR8 ILMN_1682251 0.5907 0.6089 0.5755 0.4787 0.1055
TLR8 ILMN_1657892 0.9512 0.6378 0.6467 0.8404 0.4786
TLR8 ILMN_1705047 0.9912 0.9477 0.9704 0.8519 0.7386
TLR9 ILMN_1679798 0.9517 0.9791 0.9929 0.8768 0.7921
TLR10 ILMN_1719905 0.2354 0.7753 0.5113 0.6290 0.9121

DDX58/RIG-I ILMN_1797001 0.9137 0.8457 0.5615 0.0002 0.0004 up
IFIH1/MDA5 ILMN_1781373 0.8513 0.9743 0.9656 0.0001 0.0001 up
EIF2AK2/PKR ILMN_1706502 0.3856 0.4664 0.8941 0.0970 0.0128 up
NLRP3 ILMN_1712026 0.1002 0.0261 0.0199 down 0.0620 0.4713
NLRP3 ILMN_1713379 0.8305 0.1922 0.5545 0.5681 0.6947

MYD88 ILMN_1738523 0.4745 0.4618 0.6085 0.0061 0.0071 up
TICAM1/TRIF ILMN_1724863 0.0865 0.2568 0.0178 down 0.0001 0.0006 up
TICAM1/TRIF ILMN_1815079 0.8277 0.6189 0.4977 0.0595 0.2895
TICAM2/TRAM ILMN_1651346 0.3780 0.3253 0.0209 down 0.0007 0.0664 up

IRF1 ILMN_1708375 0.5398 0.7765 0.9370 0.0000 0.0002 up
IRF2 ILMN_1765547 0.9592 0.5474 0.8788 0.1001 0.8366
IRF3 ILMN_1765649 0.0521 0.3810 0.7662 0.8172 0.0332 up
IRF4 ILMN_1754507 0.5804 0.9340 0.9360 0.9231 0.6536
IRF5 ILMN_1670576 0.0358 0.0145 0.0179 up 0.7228 0.5558
IRF6 ILMN_1725946 0.0830 0.1206 0.0761 0.0023 0.0053 up
IRF7 ILMN_1674646 0.4028 0.2741 0.3775 0.0001 0.0001 up
IRF7 ILMN_1798181 0.9638 0.9692 0.7348 0.0140 0.0002 up
IRF8 ILMN_1666594 0.9293 0.9970 0.8020 0.8348 0.8932

* P-values were calculated using a linear model (Smyth, 2004) and adjusted for multiple testing according to Benjamini and Hochberg (1995). P-values below 0.05 are in bold.
** The 4 hrs versus unstimulated and 24 hrs versus unstimulated comparisons were combined into one F-test using limma.
*** Change indicates direction of expression change. Changes that exceed the arbitrary biological significance threshold of logFC 1are in bold.
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TLRs

HPV-infected  versus Uninfected* PolyI:C Stimulation**

Virus PRRs
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  Table	
  S2.	
  HPV	
  signature	
  genes	
  (	
  modified	
  table	
  to	
  obtain	
  25	
  most	
  downregulated	
  and	
  25	
  most	
  upregulated	
  genes	
  respec>vely)

Uninf unstim Uninf 4 hrs polyI:C Uninf 24 hrs polyI:C HPV-inf unstim
0 0,02 -0,91 -5,02
0 -0,07 -0,73 -3,44
0 -0,07 -0,35 -1,79
0 -0,13 -0,55 -2,16
0 -0,08 -1,16 -4,42
0 -0,08 -0,41 -1,45
0 -0,02 -0,33 -1,10
0 0,06 -0,28 -1,20
0 0,16 -0,17 -0,97
0 0,27 -0,20 -3,00
0 0,05 -0,39 -2,87
0 -0,02 -0,18 -1,91
0 -0,12 -0,29 -2,12
0 -0,15 -0,38 -2,55
0 0,00 -0,13 -1,43
0 -0,01 -0,09 -0,93
0 -0,31 -0,57 -1,95
0 -0,31 -0,84 -2,73
0 -0,20 -0,52 -1,49
0 -0,27 -0,57 -1,58
0 -0,20 -0,49 -1,17
0 -0,39 -0,36 -1,56
0 -0,08 -0,12 -1,10
0 -0,33 -0,34 -0,99
0 -0,20 -0,28 -0,81
0 -0,37 -0,13 -0,81
0 0,02 0,07 0,48
0 -0,37 0,79 1,34
0 -0,04 1,05 0,76
0 0,01 1,56 1,27
0 -0,19 2,50 2,19
0 0,08 2,17 1,38
0 0,24 2,37 1,81
0 -0,04 1,00 1,43
0 -0,01 1,50 1,71
0 -0,26 1,23 1,39
0 -0,23 0,90 1,60
0 0,03 0,92 1,65
0 -0,05 1,78 3,12
0 -0,26 1,96 3,28
0 0,96 1,36 0,54
0 0,74 2,24 0,99
0 0,54 1,29 1,23
0 0,37 1,48 1,52
0 1,48 2,27 2,20
0 1,46 2,54 2,31
0 2,11 0,85 0,97
0 2,35 0,92 1,04

Log2 fold changes from limma contrasts, all compared to Uninfected unstimulated

0 2,57 0,91 1,07
0 2,30 1,87 0,97
0 5,74 4,67 1,56

3,31 2,78 ZC3HAV1
4,16 2,91 TNFAIP2
6,00 5,51 IFIT2

Supplementary	
  Table	
  S2.	
  HPV	
  signature	
  genes	
  (	
  modified	
  table	
  to	
  obtain	
  25	
  most	
  downregulated	
  and	
  25	
  most	
  upregulated	
  genes	
  respec>vely)

Probe annotation
HPV-inf 4 hrs polyI:C HPV-inf 24 hrs polyI:C ILMN_GENE

-5,16 -5,30 VIM
-3,51 -3,57 C7ORF10
-1,81 -1,84 NDN
-2,17 -2,11 NDRG1
-4,38 -4,80 SERPINE2
-1,51 -1,54 HS3ST2
-1,20 -1,29 LOC387882
-1,13 -1,20 SEPP1
-0,93 -1,04 FEZ1
-2,89 -3,26 COL8A1
-2,96 -3,10 SRPX
-1,95 -1,95 NLRP2
-2,30 -2,73 FTL
-2,60 -2,96 GPNMB
-1,43 -1,62 COL5A1
-0,99 -1,09 KHDRBS3
-2,04 -2,56 PRAC
-2,98 -3,20 DPYSL2
-1,55 -1,64 ERCC1
-1,83 -1,91 DCBLD2
-1,23 -1,42 LEPREL2
-2,33 -2,12 NUAK1
-1,44 -1,10 LPIN1
-1,24 -1,50 TACC1
-0,95 -1,36 CALU
-1,08 -1,36 E2F7
0,56 1,55 DUOXA2
0,21 0,97 FOXQ1
0,56 2,07 FBXO32
1,41 1,91 ASS1
2,21 2,87 CLDN7
1,68 2,96 ELF3
1,90 3,00 RHCG
1,43 2,31 GPRC5A
1,82 2,99 S100A9
1,72 3,16 S100A8
1,53 2,84 DHRS9
1,74 2,73 MYEOV
3,02 4,39 MDK
3,31 4,96 LCN2
1,38 2,88 TRIM5
1,90 2,44 CXCL16
2,05 3,39 FLJ20035
2,20 3,70 SLC6A14
3,13 4,39 RARRES3
3,57 3,79 HES4
3,16 2,31 SDC4
3,10 2,70 ZC3HAV1

Log2 fold changes from limma contrasts, all compared to Uninfected unstimulated

Table S2 | HPV signature genes. (modified table to obtain 25 most downregulated and 25
most upregulated genes respectively)
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Table S3 | Enrichment of transcription factor binding sites in HPV signature gene promoters.
Enrichment of transcription factor binding sites in HPV signature gene promoters. 

matrix* # exp** freq exp freq ran*** matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran
AHR_Q5 6 0.0522 0.0182 AP1_Q2_01 22 0.1438 0.0819 AP2ALPHA_01 5 0.4167 0.1618 ARNT_02 46 0.3566 0.2498 AP1FJ_Q2 14 0.1647 0.0850 CHX10_01 1 0.125 0.0027
AP1_Q2_01 17 0.1478 0.0819 AP1_Q4_01 12 0.0784 0.0293 CEBP_Q2_01 7 0.5833 0.2357 CETS168_Q6 44 0.3411 0.2485 AP2_Q3 51 0.6000 0.4440 CP2_02 6 0.75 0.2620
AP1_Q6 21 0.1826 0.1062 AP1_Q6 26 0.1699 0.1062 CREL_01 3 0.2500 0.0738 CETS1P54_03 80 0.6202 0.4673 AP2_Q6 41 0.4824 0.3439 CREB_01 5 0.625 0.2424
AP2_Q3 74 0.6435 0.4440 AP1_Q6_01 20 0.1307 0.0681 DBP_Q6 5 0.4167 0.1581 E2F_Q3 18 0.1395 0.0708 AP2_Q6_01 44 0.5176 0.3560 CREB_Q2 5 0.625 0.2205
AP2_Q6 60 0.5217 0.3439 AP2_Q3 87 0.5686 0.4440 E2_Q6_01 1 0.0833 0.0051 E2F_Q3_01 14 0.1085 0.0465 AP2ALPHA_01 22 0.2588 0.1618 CREB_Q4 5 0.625 0.2495
AP2ALPHA_02 43 0.3739 0.2569 AP2_Q6_01 74 0.4837 0.3560 EGR3_01 7 0.5833 0.2610 E2F_Q4 37 0.2868 0.1628 AR_02 11 0.1294 0.0654 CREB_Q4_01 3 0.375 0.1150
AP2GAMMA_01 46 0.4000 0.3007 CACD_01 89 0.5817 0.4872 GFI1B_01 3 0.2500 0.0738 E2F1_Q3_01 20 0.1550 0.0877 AREB6_03 17 0.2000 0.1035 CREBP1_Q2 5 0.625 0.2441
BACH2_01 6 0.0522 0.0061 EGR_Q6 23 0.1503 0.0860 HP1SITEFACTOR_Q6 1 0.0833 0.0115 E2F1_Q6_01 9 0.0698 0.0293 ARNT_02 31 0.3647 0.2498 CREBP1CJUN_01 4 0.5 0.1625
CACD_01 71 0.6174 0.4872 GC_01 77 0.5033 0.3941 HSF2_01 2 0.1667 0.0260 ELK1_02 65 0.5039 0.3871 CP2_02 35 0.4118 0.2620 EVI1_06 1 0.125 0.0105
CBF_01 26 0.2261 0.1396 HIC1_03 33 0.2157 0.1463 IK1_01 5 0.4167 0.1642 ETF_Q6 67 0.5194 0.3982 ETF_Q6 46 0.5412 0.3982 ICSBP_Q6 2 0.25 0.0212
DEC_Q1 8 0.0696 0.0307 HSF1_Q6 1 0.0065 0.0003 NFKAPPAB65_01 2 0.1667 0.0266 GC_01 68 0.5271 0.3941 ETS_Q4 21 0.2471 0.1558 IRF_Q6 2 0.25 0.0169
EGR_Q6 18 0.1565 0.0860 KROX_Q6 41 0.2680 0.1800 PITX2_Q2 2 0.1667 0.0243 HSF2_01 10 0.0775 0.0260 GATA1_01 32 0.3765 0.2633 IRF2_01 2 0.25 0.0270
EGR1_01 31 0.2696 0.1790 NFY_01 16 0.1046 0.0583 RREB1_01 1 0.0833 0.0040 KROX_Q6 34 0.2636 0.1800 GC_01 52 0.6118 0.3941 IRF7_01 4 0.5 0.1015
ETF_Q6 61 0.5304 0.3982 NGFIC_01 46 0.3007 0.2023 SMAD_Q6 6 0.5000 0.2073 MEF2_02 10 0.0775 0.0371 GCM_Q2 7 0.0824 0.0320 ISRE_01 1 0.125 0.0078
ETS_Q6 28 0.2435 0.1571 SP1_Q2_01 55 0.3595 0.2687 SREBP1_02 8 0.6667 0.3645 MEF2_04 20 0.1550 0.0762 HSF1_Q6 1 0.0118 0.0003 KAISO_01 1 0.125 0.0172
ETS1_B 42 0.3652 0.2653 SP1_Q4_01 62 0.4052 0.3186 STAT5A_01 2 0.1667 0.0361 MUSCLE_INI_B 53 0.4109 0.2933 LRF_Q2 36 0.4235 0.2471 LRF_Q2 5 0.625 0.2471
EVI1_01 3 0.0261 0.0071 SP1_Q6 61 0.3987 0.3007 MYC_Q2 38 0.2946 0.1837 LUN1_01 3 0.0353 0.0098 MAF_Q6_01 4 0.5 0.1962
GC_01 75 0.6522 0.3941 SP1_Q6_01 68 0.4444 0.3109 SP1_Q2_01 47 0.3643 0.2687 MAZ_Q6 42 0.4941 0.2980 SRF_C 1 0.125 0.0047
HEN1_01 1 0.0087 0.0003 ZNF219_01 6 0.0392 0.0152 SP1_Q4_01 56 0.4341 0.3186 MEF3_B 1 0.0118 0.0017 SRF_Q5_01 1 0.125 0.0088
HIC1_02 24 0.2087 0.1335 SP1_Q6 51 0.3953 0.3007 MOVOB_01 43 0.5059 0.3530 SRF_Q6 1 0.125 0.0105
HMX1_01 2 0.0174 0.0013 USF_C 29 0.2248 0.1504 MYC_Q2 29 0.3412 0.1837
HNF4_01 9 0.0783 0.0354 USF2_Q6 45 0.3488 0.2229 MYCMAX_01 6 0.0706 0.0243
KROX_Q6 37 0.3217 0.1800 VMYB_02 79 0.6124 0.4720 MZF1_02 36 0.4235 0.2873
LRF_Q2 45 0.3913 0.2471 NERF_Q2 40 0.4706 0.3479
MAZ_Q6 49 0.4261 0.2980 PAX5_01 53 0.6235 0.4673
MUSCLE_INI_B 47 0.4087 0.2933 POLY_C 1 0.0118 0.0003
MZF1_02 45 0.3913 0.2873 PR_01 1 0.0118 0.0010
NRSF_01 8 0.0696 0.0310 SP1_Q2_01 33 0.3882 0.2687
PAX5_01 73 0.6348 0.4673 SP1_Q4_01 37 0.4353 0.3186
POLY_C 1 0.0087 0.0003 SP1_Q6 38 0.4471 0.3007
SP1_Q2_01 48 0.4174 0.2687 SP3_Q3 31 0.3647 0.2421
SP1_Q4_01 64 0.5565 0.3186 USF_C 25 0.2941 0.1504
SP1_Q6 61 0.5304 0.3007 USF_Q6_01 14 0.1647 0.0907
SP1_Q6_01 63 0.5478 0.3109 USF2_Q6 31 0.3647 0.2229
SP3_Q3 40 0.3478 0.2421
SREBP1_Q6 43 0.3739 0.2751
WT1_Q6 34 0.2957 0.1831

*TRANSFAC position weight matrices with a CORE_TF p-value for over-representation ≤ 0.01 and frequency in the random set < 50%. 
Matrices unique to one expression cluster are in bold. Matrices shared between two expression clusters (either belonging to 1-3 or 4-6) are in bold and italics. 
** Number of expression cluster promoters with a hit for the matrix.
*** Frequency of promoters with a hit for the matrix in 2966 random promoters

Supplementary Table S3. 

A. Expression Clusters 1-3, downregulated in HPV-positive keratinocytes B. Expression Clusters 4-6, upregulated in HPV-positive keratinocytes

Expression Cluster 4 (129 promoters) Expression Cluster 5 (85 promoters) Expression Cluster 6 (8 promoters)Expression Cluster 1 (115 promoters) Expression Cluster 2 (153 promoters) Expression Cluster 3 (12 promoters)

Enrichment of transcription factor binding sites in HPV signature gene promoters. 

matrix* # exp** freq exp freq ran*** matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran
AHR_Q5 6 0.0522 0.0182 AP1_Q2_01 22 0.1438 0.0819 AP2ALPHA_01 5 0.4167 0.1618 ARNT_02 46 0.3566 0.2498 AP1FJ_Q2 14 0.1647 0.0850 CHX10_01 1 0.125 0.0027
AP1_Q2_01 17 0.1478 0.0819 AP1_Q4_01 12 0.0784 0.0293 CEBP_Q2_01 7 0.5833 0.2357 CETS168_Q6 44 0.3411 0.2485 AP2_Q3 51 0.6000 0.4440 CP2_02 6 0.75 0.2620
AP1_Q6 21 0.1826 0.1062 AP1_Q6 26 0.1699 0.1062 CREL_01 3 0.2500 0.0738 CETS1P54_03 80 0.6202 0.4673 AP2_Q6 41 0.4824 0.3439 CREB_01 5 0.625 0.2424
AP2_Q3 74 0.6435 0.4440 AP1_Q6_01 20 0.1307 0.0681 DBP_Q6 5 0.4167 0.1581 E2F_Q3 18 0.1395 0.0708 AP2_Q6_01 44 0.5176 0.3560 CREB_Q2 5 0.625 0.2205
AP2_Q6 60 0.5217 0.3439 AP2_Q3 87 0.5686 0.4440 E2_Q6_01 1 0.0833 0.0051 E2F_Q3_01 14 0.1085 0.0465 AP2ALPHA_01 22 0.2588 0.1618 CREB_Q4 5 0.625 0.2495
AP2ALPHA_02 43 0.3739 0.2569 AP2_Q6_01 74 0.4837 0.3560 EGR3_01 7 0.5833 0.2610 E2F_Q4 37 0.2868 0.1628 AR_02 11 0.1294 0.0654 CREB_Q4_01 3 0.375 0.1150
AP2GAMMA_01 46 0.4000 0.3007 CACD_01 89 0.5817 0.4872 GFI1B_01 3 0.2500 0.0738 E2F1_Q3_01 20 0.1550 0.0877 AREB6_03 17 0.2000 0.1035 CREBP1_Q2 5 0.625 0.2441
BACH2_01 6 0.0522 0.0061 EGR_Q6 23 0.1503 0.0860 HP1SITEFACTOR_Q6 1 0.0833 0.0115 E2F1_Q6_01 9 0.0698 0.0293 ARNT_02 31 0.3647 0.2498 CREBP1CJUN_01 4 0.5 0.1625
CACD_01 71 0.6174 0.4872 GC_01 77 0.5033 0.3941 HSF2_01 2 0.1667 0.0260 ELK1_02 65 0.5039 0.3871 CP2_02 35 0.4118 0.2620 EVI1_06 1 0.125 0.0105
CBF_01 26 0.2261 0.1396 HIC1_03 33 0.2157 0.1463 IK1_01 5 0.4167 0.1642 ETF_Q6 67 0.5194 0.3982 ETF_Q6 46 0.5412 0.3982 ICSBP_Q6 2 0.25 0.0212
DEC_Q1 8 0.0696 0.0307 HSF1_Q6 1 0.0065 0.0003 NFKAPPAB65_01 2 0.1667 0.0266 GC_01 68 0.5271 0.3941 ETS_Q4 21 0.2471 0.1558 IRF_Q6 2 0.25 0.0169
EGR_Q6 18 0.1565 0.0860 KROX_Q6 41 0.2680 0.1800 PITX2_Q2 2 0.1667 0.0243 HSF2_01 10 0.0775 0.0260 GATA1_01 32 0.3765 0.2633 IRF2_01 2 0.25 0.0270
EGR1_01 31 0.2696 0.1790 NFY_01 16 0.1046 0.0583 RREB1_01 1 0.0833 0.0040 KROX_Q6 34 0.2636 0.1800 GC_01 52 0.6118 0.3941 IRF7_01 4 0.5 0.1015
ETF_Q6 61 0.5304 0.3982 NGFIC_01 46 0.3007 0.2023 SMAD_Q6 6 0.5000 0.2073 MEF2_02 10 0.0775 0.0371 GCM_Q2 7 0.0824 0.0320 ISRE_01 1 0.125 0.0078
ETS_Q6 28 0.2435 0.1571 SP1_Q2_01 55 0.3595 0.2687 SREBP1_02 8 0.6667 0.3645 MEF2_04 20 0.1550 0.0762 HSF1_Q6 1 0.0118 0.0003 KAISO_01 1 0.125 0.0172
ETS1_B 42 0.3652 0.2653 SP1_Q4_01 62 0.4052 0.3186 STAT5A_01 2 0.1667 0.0361 MUSCLE_INI_B 53 0.4109 0.2933 LRF_Q2 36 0.4235 0.2471 LRF_Q2 5 0.625 0.2471
EVI1_01 3 0.0261 0.0071 SP1_Q6 61 0.3987 0.3007 MYC_Q2 38 0.2946 0.1837 LUN1_01 3 0.0353 0.0098 MAF_Q6_01 4 0.5 0.1962
GC_01 75 0.6522 0.3941 SP1_Q6_01 68 0.4444 0.3109 SP1_Q2_01 47 0.3643 0.2687 MAZ_Q6 42 0.4941 0.2980 SRF_C 1 0.125 0.0047
HEN1_01 1 0.0087 0.0003 ZNF219_01 6 0.0392 0.0152 SP1_Q4_01 56 0.4341 0.3186 MEF3_B 1 0.0118 0.0017 SRF_Q5_01 1 0.125 0.0088
HIC1_02 24 0.2087 0.1335 SP1_Q6 51 0.3953 0.3007 MOVOB_01 43 0.5059 0.3530 SRF_Q6 1 0.125 0.0105
HMX1_01 2 0.0174 0.0013 USF_C 29 0.2248 0.1504 MYC_Q2 29 0.3412 0.1837
HNF4_01 9 0.0783 0.0354 USF2_Q6 45 0.3488 0.2229 MYCMAX_01 6 0.0706 0.0243
KROX_Q6 37 0.3217 0.1800 VMYB_02 79 0.6124 0.4720 MZF1_02 36 0.4235 0.2873
LRF_Q2 45 0.3913 0.2471 NERF_Q2 40 0.4706 0.3479
MAZ_Q6 49 0.4261 0.2980 PAX5_01 53 0.6235 0.4673
MUSCLE_INI_B 47 0.4087 0.2933 POLY_C 1 0.0118 0.0003
MZF1_02 45 0.3913 0.2873 PR_01 1 0.0118 0.0010
NRSF_01 8 0.0696 0.0310 SP1_Q2_01 33 0.3882 0.2687
PAX5_01 73 0.6348 0.4673 SP1_Q4_01 37 0.4353 0.3186
POLY_C 1 0.0087 0.0003 SP1_Q6 38 0.4471 0.3007
SP1_Q2_01 48 0.4174 0.2687 SP3_Q3 31 0.3647 0.2421
SP1_Q4_01 64 0.5565 0.3186 USF_C 25 0.2941 0.1504
SP1_Q6 61 0.5304 0.3007 USF_Q6_01 14 0.1647 0.0907
SP1_Q6_01 63 0.5478 0.3109 USF2_Q6 31 0.3647 0.2229
SP3_Q3 40 0.3478 0.2421
SREBP1_Q6 43 0.3739 0.2751
WT1_Q6 34 0.2957 0.1831

*TRANSFAC position weight matrices with a CORE_TF p-value for over-representation ≤ 0.01 and frequency in the random set < 50%. 
Matrices unique to one expression cluster are in bold. Matrices shared between two expression clusters (either belonging to 1-3 or 4-6) are in bold and italics. 
** Number of expression cluster promoters with a hit for the matrix.
*** Frequency of promoters with a hit for the matrix in 2966 random promoters

Supplementary Table S3. 

A. Expression Clusters 1-3, downregulated in HPV-positive keratinocytes B. Expression Clusters 4-6, upregulated in HPV-positive keratinocytes

Expression Cluster 4 (129 promoters) Expression Cluster 5 (85 promoters) Expression Cluster 6 (8 promoters)Expression Cluster 1 (115 promoters) Expression Cluster 2 (153 promoters) Expression Cluster 3 (12 promoters)
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Enrichment of transcription factor binding sites in HPV signature gene promoters. 

matrix* # exp** freq exp freq ran*** matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran matrix # exp freq exp freq ran
AHR_Q5 6 0.0522 0.0182 AP1_Q2_01 22 0.1438 0.0819 AP2ALPHA_01 5 0.4167 0.1618 ARNT_02 46 0.3566 0.2498 AP1FJ_Q2 14 0.1647 0.0850 CHX10_01 1 0.125 0.0027
AP1_Q2_01 17 0.1478 0.0819 AP1_Q4_01 12 0.0784 0.0293 CEBP_Q2_01 7 0.5833 0.2357 CETS168_Q6 44 0.3411 0.2485 AP2_Q3 51 0.6000 0.4440 CP2_02 6 0.75 0.2620
AP1_Q6 21 0.1826 0.1062 AP1_Q6 26 0.1699 0.1062 CREL_01 3 0.2500 0.0738 CETS1P54_03 80 0.6202 0.4673 AP2_Q6 41 0.4824 0.3439 CREB_01 5 0.625 0.2424
AP2_Q3 74 0.6435 0.4440 AP1_Q6_01 20 0.1307 0.0681 DBP_Q6 5 0.4167 0.1581 E2F_Q3 18 0.1395 0.0708 AP2_Q6_01 44 0.5176 0.3560 CREB_Q2 5 0.625 0.2205
AP2_Q6 60 0.5217 0.3439 AP2_Q3 87 0.5686 0.4440 E2_Q6_01 1 0.0833 0.0051 E2F_Q3_01 14 0.1085 0.0465 AP2ALPHA_01 22 0.2588 0.1618 CREB_Q4 5 0.625 0.2495
AP2ALPHA_02 43 0.3739 0.2569 AP2_Q6_01 74 0.4837 0.3560 EGR3_01 7 0.5833 0.2610 E2F_Q4 37 0.2868 0.1628 AR_02 11 0.1294 0.0654 CREB_Q4_01 3 0.375 0.1150
AP2GAMMA_01 46 0.4000 0.3007 CACD_01 89 0.5817 0.4872 GFI1B_01 3 0.2500 0.0738 E2F1_Q3_01 20 0.1550 0.0877 AREB6_03 17 0.2000 0.1035 CREBP1_Q2 5 0.625 0.2441
BACH2_01 6 0.0522 0.0061 EGR_Q6 23 0.1503 0.0860 HP1SITEFACTOR_Q6 1 0.0833 0.0115 E2F1_Q6_01 9 0.0698 0.0293 ARNT_02 31 0.3647 0.2498 CREBP1CJUN_01 4 0.5 0.1625
CACD_01 71 0.6174 0.4872 GC_01 77 0.5033 0.3941 HSF2_01 2 0.1667 0.0260 ELK1_02 65 0.5039 0.3871 CP2_02 35 0.4118 0.2620 EVI1_06 1 0.125 0.0105
CBF_01 26 0.2261 0.1396 HIC1_03 33 0.2157 0.1463 IK1_01 5 0.4167 0.1642 ETF_Q6 67 0.5194 0.3982 ETF_Q6 46 0.5412 0.3982 ICSBP_Q6 2 0.25 0.0212
DEC_Q1 8 0.0696 0.0307 HSF1_Q6 1 0.0065 0.0003 NFKAPPAB65_01 2 0.1667 0.0266 GC_01 68 0.5271 0.3941 ETS_Q4 21 0.2471 0.1558 IRF_Q6 2 0.25 0.0169
EGR_Q6 18 0.1565 0.0860 KROX_Q6 41 0.2680 0.1800 PITX2_Q2 2 0.1667 0.0243 HSF2_01 10 0.0775 0.0260 GATA1_01 32 0.3765 0.2633 IRF2_01 2 0.25 0.0270
EGR1_01 31 0.2696 0.1790 NFY_01 16 0.1046 0.0583 RREB1_01 1 0.0833 0.0040 KROX_Q6 34 0.2636 0.1800 GC_01 52 0.6118 0.3941 IRF7_01 4 0.5 0.1015
ETF_Q6 61 0.5304 0.3982 NGFIC_01 46 0.3007 0.2023 SMAD_Q6 6 0.5000 0.2073 MEF2_02 10 0.0775 0.0371 GCM_Q2 7 0.0824 0.0320 ISRE_01 1 0.125 0.0078
ETS_Q6 28 0.2435 0.1571 SP1_Q2_01 55 0.3595 0.2687 SREBP1_02 8 0.6667 0.3645 MEF2_04 20 0.1550 0.0762 HSF1_Q6 1 0.0118 0.0003 KAISO_01 1 0.125 0.0172
ETS1_B 42 0.3652 0.2653 SP1_Q4_01 62 0.4052 0.3186 STAT5A_01 2 0.1667 0.0361 MUSCLE_INI_B 53 0.4109 0.2933 LRF_Q2 36 0.4235 0.2471 LRF_Q2 5 0.625 0.2471
EVI1_01 3 0.0261 0.0071 SP1_Q6 61 0.3987 0.3007 MYC_Q2 38 0.2946 0.1837 LUN1_01 3 0.0353 0.0098 MAF_Q6_01 4 0.5 0.1962
GC_01 75 0.6522 0.3941 SP1_Q6_01 68 0.4444 0.3109 SP1_Q2_01 47 0.3643 0.2687 MAZ_Q6 42 0.4941 0.2980 SRF_C 1 0.125 0.0047
HEN1_01 1 0.0087 0.0003 ZNF219_01 6 0.0392 0.0152 SP1_Q4_01 56 0.4341 0.3186 MEF3_B 1 0.0118 0.0017 SRF_Q5_01 1 0.125 0.0088
HIC1_02 24 0.2087 0.1335 SP1_Q6 51 0.3953 0.3007 MOVOB_01 43 0.5059 0.3530 SRF_Q6 1 0.125 0.0105
HMX1_01 2 0.0174 0.0013 USF_C 29 0.2248 0.1504 MYC_Q2 29 0.3412 0.1837
HNF4_01 9 0.0783 0.0354 USF2_Q6 45 0.3488 0.2229 MYCMAX_01 6 0.0706 0.0243
KROX_Q6 37 0.3217 0.1800 VMYB_02 79 0.6124 0.4720 MZF1_02 36 0.4235 0.2873
LRF_Q2 45 0.3913 0.2471 NERF_Q2 40 0.4706 0.3479
MAZ_Q6 49 0.4261 0.2980 PAX5_01 53 0.6235 0.4673
MUSCLE_INI_B 47 0.4087 0.2933 POLY_C 1 0.0118 0.0003
MZF1_02 45 0.3913 0.2873 PR_01 1 0.0118 0.0010
NRSF_01 8 0.0696 0.0310 SP1_Q2_01 33 0.3882 0.2687
PAX5_01 73 0.6348 0.4673 SP1_Q4_01 37 0.4353 0.3186
POLY_C 1 0.0087 0.0003 SP1_Q6 38 0.4471 0.3007
SP1_Q2_01 48 0.4174 0.2687 SP3_Q3 31 0.3647 0.2421
SP1_Q4_01 64 0.5565 0.3186 USF_C 25 0.2941 0.1504
SP1_Q6 61 0.5304 0.3007 USF_Q6_01 14 0.1647 0.0907
SP1_Q6_01 63 0.5478 0.3109 USF2_Q6 31 0.3647 0.2229
SP3_Q3 40 0.3478 0.2421
SREBP1_Q6 43 0.3739 0.2751
WT1_Q6 34 0.2957 0.1831

*TRANSFAC position weight matrices with a CORE_TF p-value for over-representation ≤ 0.01 and frequency in the random set < 50%. 
Matrices unique to one expression cluster are in bold. Matrices shared between two expression clusters (either belonging to 1-3 or 4-6) are in bold and italics. 
** Number of expression cluster promoters with a hit for the matrix.
*** Frequency of promoters with a hit for the matrix in 2966 random promoters

Supplementary Table S3. 

A. Expression Clusters 1-3, downregulated in HPV-positive keratinocytes B. Expression Clusters 4-6, upregulated in HPV-positive keratinocytes

Expression Cluster 4 (129 promoters) Expression Cluster 5 (85 promoters) Expression Cluster 6 (8 promoters)Expression Cluster 1 (115 promoters) Expression Cluster 2 (153 promoters) Expression Cluster 3 (12 promoters)
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 3 Figure S1 | Cytokine production by poly(I:C)-stimulated terminally differentiated 

keratinocytes. IL-8 and MIP3α expression levels in unstimulated or  poly(I:C)-stimulated 
uninfected KCs as examined by real-time PCR. KC were either left undifferentiated (undif) or 
terminally differentiated (terminal dif) with methylcellulose containing Ca2+. Gene expression was 
normalized using GAPDH. 

Figure S2 | NEMO degradation depends on the expression of UCHL1. NEMO degradation 
is enhanced in HPV16+ KCs but not in non-infected KCs. Monolayer cultures were treated with 
different concentrations of cycloheximide (CHX) for 24 hours. Whole cell extracts were analyzed 
by WB using antibodies against NEMO and b-actin (control for protein content). 
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Supplementary Figure 1, Karim et al. 2012
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Supplementary Figure 2, Karim et al. 2012
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Figure S3 | Restored cytokine production after knock down of UCHL1 by RNAi oligos.  
HPV16+ keratinocytes were transfected with non-targeting RNAi oligos and oligos targeting 
UCHL1. Cells were either left unstimulated, or were stimulated with poly(I:C) for 24 hrs. IL-8,and 
MIP3α mRNA expression was analyzed by qRT-PCR. Gene expression was normalized against 
GAPDH mRNA levels.

Figure S4 | TRAF3 and NEMO are deubiquitinated by UCHL1. HEK293T cells were co-
transfected with HA-tagged wild-type ubiquitin (WT-Ub) only, with Flag-TRAF3 and HA-tagged 
wild-type ubiquitin (WT-Ub), and with Flag-TRAF3 and HA-tagged wild-type ubiquitin (WT-Ub) 
and UCHL1. A similar experiment was performed in which Flag-TRAF3 was replaced by Flag-
NEMO (top panels). The bottom four panels show a WB analysis of Flag,Wt-Ub, and UCHL1 of 
non- immunoprecipitated lysate and a Ponceau S stained loading control for WB.  

Supplementary Figure 3, Karim et al. 2012
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Table S1 | Enrichment of pathways between HPV-positive and uninfected keratinocytes as 
analyzed by Ingenuity Pathway Analysis (IPA).

Canonical pathway p-value

Purine Metabolism 1.15 x 10-5

Oxidative Phosphorylation 6.26 x 10-5

Protein Ubiquitination Pathway 6.69 x 10-5

Graft-versus-Host Disease Signaling 5.35 x 10-4

LXR/RXR Activation 7.55 x 10-4

Mitochondrial Dysfunction 8.22 x 10-4

Nucleotide Excision Repair Pathway 1.56 x 10-3

Pyrimidine Metabolism 1.15 x 10-3

NRF2-mediated Oxidative Stress Response 1.15 x 10-3

Urea Cycle and Metabolism of Amino Groups 1.15 x 10-3

Inositol Metabolism 1.15 x 10-3

Glucocortocoid Receptor Signaling 8.41 x 10-3

IL-10 Signaling 1.08 x 10-2

Pentose Phosphate Pathway 1.34 x 10-2

Glutathione Metabolism 1.43 x 10-2

D-glutamine and D-glutamate Metabolism 1.46 x 10-2

Hypoxia Signaling 1.88 x 10-2

PPAR Signaling 1.94 x 10-2

Arginine and Purine Metabolism 2.02 x 10-2

Glutamate Metabolism 2.04 x 10-2

Role of Cytokine in Mediating Communication between Immune Cells 2.2 x 10-2

Aldosterone Signaling in Epithelial Cells 2.26 x 10-2

Cardiac Hypertrophy Signaling 2.61 x 10-2

Glycosphingolipid Biosynthesis- Neolactoseries 3.07 x 10-2

Role of BRCA1 in DNA Damage Response 3.36 x 10-2

Role of CHK Proteins in Cell Cycle Checkpoint Control 3.89 x 10-2
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Samenvatting (voor de niet-ingewijde)
Het menselijk afweersysteem is een krachtig mechanisme om virusinfecties te bestrijden 
en te klaren. De groep van humane papillomavirussen (HPV) die geassocieerd zijn met 
het ontstaan van kanker, worden hoog-risico HPV (hrHPV) genoemd. In tegenstelling tot 
de meeste virussen waarmee we in contact komen, bijvoorbeeld verkoudheidsvirussen, 
die snel door het afweersysteem worden herkend en opgeruimd, kan een infectie met 
HPV ongemerkt maandenlang duren. 

Om het organisme te beschermen bevatten de cellen van ons lichaam sensoren die 
in staat zijn om verschillende delen van virussen te herkennen. Wanneer een virus 
gedetecteerd wordt gaat er een signaal van de sensor naar de kern van de geïnfecteerde 
cel waarna deze chemische stofjes zal produceren die een directe antivirale werking 
hebben en stofjes die er voor zorgen dat de cellen van het afweersysteem naar het 
geïnfecteerde gebied komen zodat het virus vernietigd kan worden. 

In hoofdstuk 2 lieten we zien dat hrHPV-geïnfecteerde cellen maar slecht in staat zijn om 
deze chemische stofjes te produceren. Verdere studies beschreven in hoofdstuk 3 toonden 
aan dat hrHPV op een slimme manier gebruikt maakt van een door de geïnfecteerde 
cel geproduceerd eiwit, genaamd UCHL1, om de door de virus-herkennende sensoren 
afgegeven signalen te onderdrukken zodat deze veel minder goed de kern van de cel 
bereiken waardoor de afweerreactie tegen het virus veel minder sterk is.  Medicijnen 
die de werking van UCHL1 onderdrukken kunnen mogelijk baat bieden wanneer dit er 
toe leidt dat de afweerreactie sneller en beter op gang komt. 

Tientallen jaren van onderzoek hebben aangetoond dat hrHPV verschillende typen 
kanker kan veroorzaken, waaronder baarmoederhalskanker. Tevens is in dezelfde 
periode aangetoond dat het afweersysteem het lichaam niet alleen goed kan beschermen 
tegen infecties met virussen maar ook tegen het ontstaan en de uitgroei van kanker 
cellen. De afweercellen die hier een belangrijke rol in spelen worden celdodende T 
lymfocyten (CTL) genoemd.   Deze CTL worden vaak in grote hoeveelheden in 
baarmoederhalskankers aangetroffen en aangezien het kankergezwel behandeld moet 
worden is de vraag: waarom doen zij hun werk niet of niet goed genoeg? In hoofdstuk 
5 van dit proefschrift hebben we één mogelijkheid bestudeerd. Het blijkt dat veel van 
de CTL die de tumor zijn binnengedrongen een eiwit tot expressie brengen dat PD-1 
genoemd wordt. Signalen via dit eiwit kunnen leiden tot het afschakelen van CTL 
waardoor zij hun werk niet meer kunnen uitoefenen. Op dit moment is er een medicijn 
gemaakt dat de signalen via PD-1 kan blokkeren. Nieuwe studies zullen moeten 
uitmaken of dit medicijn ook baat biedt bij baarmoederhalskanker.
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Tijdens de groei van een kankergezwel zullen regelmatig kankercellen zich verspreiden 
naar andere organen van het lichaam. Dit proces noemen we metastasering en de 
gezwellen die hieruit ontstaan worden metastasen genoemd.  Het is een feit dat de 
meeste mensen dood gaan aan metastases. In hoofdstuk 6  laten we zien dat als de 
kankercellen van een patiënt het eiwit CXCR7, dat normaal betrokken is bij de migratie 
van afweercellen,  tot expressie brengen zij veel vaker metastases ontwikkelen dan 
wanneer dit eiwit niet tot expressie komt. 

In het kort werd in dit proefschrift onderzocht hoe het afweersysteem ontregeld is bij 
hrHPV infecties, hrHPV-geinduceerde kankers en hun metastases. 
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Summary (in Plain English)
Human papillomaviruses (HPVs) that are associated with cancer are called high-risk 
HPVs (hrHPVs). The immune system is body’s one of the most powerful system involves 
in clearing infections. Fortunately, most of the infections, for instance the viruses that 
cause common cold, are easily detected by the immune system and cleared. In contrast, 
HPV infection may remain undetected by the immune system for months. In Chapter 2 
and Chapter 3 of this thesis, we examined how hrHPVs avoid host’s immunity. 

When cells are infected by the virus, the cells have sensors that detect various body 
parts of the virus. After detection of the virus, the cells produce certain chemicals that 
attracts the immune cells to help further so that the virus can be cleared. Our study 
in Chapter 2 showed that hrHPV infected cells minimally produce those chemicals, 
therefore, other immune cells are not attracted to come and to help clearing the 
infection. Our further work in the Chapter 3 identified that hrHPVs very smartly misuse 
infected cells own enzyme which is named as UCHL1 in order to suppress the immune 
responses of the cells. Drugs that may be able to inhibit the function of UCHL1 enzyme 
might be beneficial in clearing the hrHPV infection by host’s own immunity. 

Years of ongoing hrHPV infection is associated with various cancers including cervical 
cancer. Similar to infections, immune system is also very powerful in protecting tumor 
formation. The immune cells that are the main killers for tumors cells are named as 
cytotoxic T cells. However, in established cervical cancer tissue, these cytotoxic T 
cells cannot kill tumor cells. In Chapter 5 of this thesis, we examined the reasons why 
these tumoral cytotoxic T cells become dysfunctional. We observed that many of these 
cytotoxic T cells express a molecule named PD-1 which may render these cells to be 
malfunctioned against the killing of tumor cells. 

Unresolved cancer spread from one organ to another which is called metastasis which 
is the main cause of death of cancer patients.  Our studies in Chapter 6 where we used 
specimens from cervical cancer tissues identified that the patients whose cancer cells 
express an immune receptor called CXCR7 are more prone to have metastasis than 
those patients negative for CXCR7 expression. 

Thus, this thesis examined the deregulation of immunity in early phages of hrHPV 
infection, in cervical cancer as well as during metastasis. 
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