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Appendix A

Test Problems for Noisy Optimization



230 A. Test Problems for Noisy Optimization

A.1 Noisy Sphere Problem
The noisy sphere is a simple scalable test function for studying optimization of noisy real-
valued objective functions using Evolution Strategies. It reads

f(x) =

n∑
i=1

z2
i , (A.1)

z = x− x∗, (A.2)

with x∗ ∈ Rn being the location of the optimum. The noisy sphere function, reads:

f(x) =

n∑
i=1

z2
i +N (0, σ2

ε (x)), (A.3)

z = x− x∗. (A.4)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].
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Figure A.1: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.2 Noisy Ellipsoid Problem
The ellipsoid function is a transformed (stretched and rotated) version of the sphere function.

f(x) =

n∑
i=1

z2
i , (A.5)

z = RD (x− x∗) . (A.6)

with x∗ ∈ Rn being the location of the optimum, R being a rotation matrix, and D being a
diagonal (scaling) matrix. The noisy ellipsoid function reads:

f(x) =

n∑
i=1

z2
i +N (0, σ2

ε (x)), (A.7)

z = RD (x− x∗) . (A.8)

In this work, stationary noise is assumed with σ2
ε (x) = 2. The rotation matrix R is generated

from normally distributed entries and scaling matrix D has a condition number of 10 with
equally spaced eigenvalues. Furthermore, in experimental settings, the optimum location is set
to x∗ = [0, . . . , 0] and the search interval is set to xl = [−1, . . . ,−1] and xu = [1, . . . , 1].
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Figure A.2: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.3 Noisy Step Ellipsoid Problem
The step ellipsoid function is an ellipsoid function transformed such that it has a non-steady
surface consisting of plateaus. It reads

f(x) =

n∑
i=1

bzic2, (A.9)

z = RD (x− x∗) . (A.10)

Here x∗ ∈ Rn is the location of the optimum, R is a rotation matrix, and D is a diagonal
(scaling) matrix. The noisy step ellipsoid function reads

f(x) =

n∑
i=1

bzic2 +N (0, σ2
ε (x)), (A.11)

z = RD (x− x∗) . (A.12)

In this work, stationary noise is assumed with σ2
ε (x) = 2. The rotation matrix R is generated

from normally distributed entries and scaling matrix D has a condition number of 10 with
equally spaced eigenvalues (these matrices are the same as for the noisy ellipsoid function).
Furthermore, in experimental settings, the optimum location is set to x∗ = [0, . . . , 0] and the
search interval is set to xl = [−1, . . . ,−1] and xu = [1, . . . , 1].
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Figure A.3: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.4 Noisy Rosenbrock Problem
The Rosenbrock function is a unimodal test function for real-valued optimization. The partic-
ular characteristic of this function is that its fitness landscape shows a bent valley that leads
towards the optimum and the direction of the steepest descent changes continuously when
nearing the optimum. It is defined as

f(x) =

n−1∑
i=1

(
100

(
z2
i − zi+1

)2
+ (zi − 1)

2
)
, (A.13)

z = (x− x∗) + 1. (A.14)

Here x∗ ∈ Rn is the location of the optimum. The noisy Rosenbrock function reads

f(x) =

n−1∑
i=1

(
100

(
z2
i − zi+1

)2
+ (zi − 1)

2
)

+N (0, σ2
ε (x)), (A.15)

z = (x− x∗) + 1. (A.16)

In this work, stationary noise is assumed with σ2
ε (x) = 2. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−2, . . . ,−2] and xu = [2, . . . , 2].
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Figure A.4: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.5 Noisy Ackley Problem
The Ackley function is a multi-modal test function, defined as

f(x) = −c1 · exp

−c2
√√√√ 1

n

n∑
i=1

z2
i

− exp

(
1

n

n∑
i=1

cos(c3 · zi)

)
+c1 + exp(1), (A.17)

z = x− x∗. (A.18)

Here, c1 = 20, c2 = 0.2, c3 = 2π, and x∗ ∈ Rn is the location of the optimum. The noisy
Ackley function reads

f(x) = −c1 · exp

−c2
√√√√ 1

n

n∑
i=1

z2
i

− exp

(
1

n

n∑
i=1

cos(c3 · zi)

)
+c1 + exp(1) +N (0, σ2

ε (x)), (A.19)

z = x− x∗. (A.20)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].
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Figure A.5: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.6 Noisy Griewank Problem
The Griewank function is a multi-modal test function, defined as

f(x) = 1 +
1

4000

n∑
i=1

z2
i −

n∏
i=1

cos

(
zi√
i

)
, (A.21)

z = x− x∗. (A.22)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+N (0, σ2

ε (x)), (A.23)

z = x− x∗. (A.24)

In this work, stationary noise is assumed with σ2
ε (x) = 0.5. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−60, . . . ,−60] and xu = [60, . . . , 60].
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Figure A.6: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.7 Noisy Rastrigin Problem
The Rastrigin function is a multi-modal test function, defined as

f(x) = 10n+

n∑
i=1

(z2
i − 10 cos(2π · zi)), (A.25)

z = x− x∗. (A.26)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) = 10n+

n∑
i=1

(z2
i − 10 cos(2π · zi)) +N (0, σ2

ε (x)), (A.27)

z = x− x∗. (A.28)

In this work, stationary noise is assumed with σ2
ε (x) = 2. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−5, . . . ,−5] and xu = [5, . . . , 5].
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Figure A.7: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.8 Noisy Schaffer’s F7 Problem
Schaffer’s F7 function is a multi-modal test function, defined as

f(x) =

n−1∑
i=1

(z2
i + z2

i+1)0.25(sin2(50(z2
i + z2

i+1)0.1) + 1), (A.29)

z = x− x∗. (A.30)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) =

n−1∑
i=1

(z2
i + z2

i+1)0.25(sin2(50(z2
i + z2

i+1)0.1) + 1) +N (0, σ2
ε (x)), (A.31)

z = x− x∗. (A.32)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].
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Figure A.8: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.9 Noisy Branke’s Multipeak Problem
Branke’s Multipeak function is a multi-modal test function with 2n peaks, defined as

f(x) =
1

n

n∑
i−1

(c− g(xi)) , (A.33)

g(xi) =


− (xi + 1)

2
+ 1 if − 2 ≤ xi < 0

c · 2−8|xi−1| if 0 ≤ xi ≤ 2

0 otherwise

. (A.34)

Here c = 1.3 and the global optimum is located at x = [1, . . . , 1]. The noisy version of
Branke’s multipeak function reads

f(x) =
1

n

n∑
i−1

(c− g(xi)) +N (0, σ2
ε (x)), (A.35)

g(x) =


− (x+ 1)

2
+ 1 if − 2 ≤ x < 0

c · 2−8|x−1| if 0 ≤ x ≤ 2

0 otherwise

. (A.36)

In this work, stationary noise is assumed with σ2
ε (x) = 0.1. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the search interval is set to
xl = [−2, . . . ,−2] and xu = [2, . . . , 2].
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Figure A.9: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.
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A.10 Noisy Keane’s Bump Problem
Keane’s Bump function is a highly multi-modal test function, defined as

min f(x) = −
|
∑n
i=1 cos4(xi)− 2

∏n
i=1(cos2(xi))|√∑n

i=1 i · x2
i

, (A.37)

s.t.

n∏
i=1

xi > 0.75 ,

n∑
i=1

xi <
15n

2
, xi ∈]0, 10[. (A.38)

The global minimizer for this function is unknown. The noisy version adopted in this work
uses a penalty mechanism to aggregate the constraints in one objective function. It reads

f(x) = g(x) +N (0, σ2
ε (x)), (A.39)

g(x) =

−
|
∑n
i=1 cos4(xi)−2

∏n
i=1(cos2(xi))|√∑n

i=1 i·x2
i

if
∏n
i=1 xi > 0.75 and

∑n
i=1 xi <

15n
2

0 otherwise
.

(A.40)

In this work, stationary noise is assumed with σ2
ε (x) = 0.05. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [0, . . . , 0] and xu = [10, . . . , 10].
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Figure A.10: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization
of the noise-free underlying objective function landscape.
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242 B. Test Problems for Finding Robust Optima

B.1 RO Sphere Problem
A simple unimodal test function for finding robust optima that can be used to assess the
quality of a robust optimization algorithm w.r.t. zooming in on the robust optimum. For this
function the robust optimizer and the optimizer of the original function are the same. The
sphere function reads

f(x) =

n∑
i=1

z2
i , z = x− x∗, (B.1)

with x∗ ∈ Rn being the location of the optimum. In this work, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−5, . . . ,−5] and xu = [5, . . . , 5]. The
uncertainty in the design variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.2)

This function has as robust optimizer for the expected objective function

x∗exp = x∗. (B.3)

Figure B.1 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.1: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.2 RO Heaviside Sphere Problem
The Heaviside sphere function reads

f(x) =

(
1−

2∏
i=1

g(xi)

)
+

n∑
i=1

(xi
10

)2

, g(xi) =

0 if xi < 0

1 otherwise
, (B.4)

with search interval xl = [−10, . . . ,−10] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.5)

This function has as robust optimizer for the expected objective function

x∗exp = [1, . . . , 1]n. (B.6)

Figure B.2 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.2: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.3 RO Sawtooth Problem
The sawtooth function, originally proposed in [Bra01], reads

f(x) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

xi + 0.8 if − 0.8 ≤ xi < 0.2

0 otherwise
, (B.7)

(B.8)

with search interval xl = [−1, . . . ,−1] and xu = [1, . . . , 1]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.2,0.2). (B.9)

This function has as robust optimizer for the expected objective function

x∗exp = [0, . . . , 0]n. (B.10)

Figure B.3 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.3: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.4 RO Volcano Problem
The volcano function reads

f(x) =


√
||x|| − 1 if ||x|| > 1

0 otherwise
, (B.11)

with search interval xl = [−10, . . . ,−10] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−1.5,1.5). (B.12)

This function has as robust optimizer for the expected objective function

x∗exp = [0, . . . , 0]n. (B.13)

Figure B.4 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.4: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.5 RO Pickelhaube Problem
The objective function reads

f(x) =
5

5−
√

5
−max {g0(x), g1a(x), g1b(x), g2(x)} , (B.14)

g0(x) =
1

10
· e− 1

2 ·||x||, (B.15)

g1a(x) =
5

5−
√

5
·

(
1−

√
||x + 5||
5 ·
√
n

)
, (B.16)

g1b(x) = c1 ·

(
1−

(
||x + 5||
5 ·
√
n

)4
)
, (B.17)

g2(x) = c2 ·

(
1−

(
||x + 5||
5 ·
√
n

)d2)
, (B.18)

with c1 = 625/624, c2 = 1.5975, d2 = 1.1513, and search interval xl = [−10, . . . ,−10] and
xu = [10, . . . , 10]. The uncertainty in the design variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.19)

This function has as robust optimizer for the expected objective function

x∗exp = [5, . . . , 5]n. (B.20)

Figure B.5 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.5: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.6 RO Branke’s Multipeak Problem
Objective function from [Bra98]. Originally posed as a maximization problem, converted to a
minimization problem. The objective function reads

f(x) = max{c1, c2} −
1

n

n∑
i−1

g(xi), (B.21)

g(xi) =


c1 ·

(
1− 4(xi+ b1

2 )
2

(b1)2

)
if − b1 ≤ xi < 0

c2 · 16
−2|b2−2xi|

b2 if 0 ≤ xi ≤ b2
0 otherwise

, (B.22)

with b1 > 0, b2 > 0, c1 > 0, c2 > 0 and search interval xl = [−b1, . . . ,−b1] and xu =

[b2, . . . , b2]. In this work, we use the settings b1 = 2, b2 = 2, c1 = 1, c2 = 1.3. The uncertainty
in the design variables is of the form

x = x + δ , δ ∼ U(−0.5,0.5). (B.23)

This function has as robust optimizer for the expected objective function

x∗exp = [−b1/2, . . . ,−b1/2]n. (B.24)

Figure B.6 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.6: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.7 RO Multipeak F1 Problem
A multimodal test problem used in, e.g., [TGF96, TG97]. Originally posed as maximization
problem, converted to minimization. The objective function reads

f(x) =
1

n

n∑
i=1

g(x), (B.25)

g(xi) =

e−2 ln 2( x−0.1
0.8 )

2√
| sin(5πxi)|, if 0.4 < xi ≤ 0.6

e−2 ln 2( x−0.1
0.8 )

2

sin6(5πxi), otherwise
, (B.26)

with search interval xl = [0, . . . , 0] and xu = [1, . . . , 1]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.0625,0.0625). (B.27)

This function has as robust optimizer for the expected objective function

x∗exp ≈ [0.4911, . . . , 0.4911]n. (B.28)

Figure B.7 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.7: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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B.8 RO Multipeak F2 Problem
A multimodal test problem used in, e.g., [PBJ06]. Originally posed as maximization problem,
converted to minimization. The objective function reads

f(x) =
1

n

n∑
i=1

g(x), (B.29)

g(xi) = 2 sin (10 exp(−0.2xi)xi) exp (−0.25xi) , (B.30)

with search interval xl = [0, . . . , 0] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.5,0.5). (B.31)

This function has as robust optimizer for the expected objective function

x∗exp ≈ [3.5, . . . , 3.5]n. (B.32)

Figure B.8 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.
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Figure B.8: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.
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Kriging Metamodeling
A basic assumption of function modeling through Kriging is that the deviation of a function
from a general trend or mean value can be modeled as a realization of a Gaussian random field
Fx, x ∈ Rn, whereFx is a Gaussian random variable indexed by space. Two random variables
Fx and Fx′ are correlated via a spatial correlation function c(x,x′). Often c(x,x′) is based on
the difference x−x′ (stationary correlation) or on the distance d(x,x′) (isotropic correlation).
When c is fully specified, then it is possible to compute the conditional distribution of Fx

for a new point x given a number of measured realizations y1 = Fx1
, . . . , ym = Fxm . The

mean value of the conditional distribution can be interpreted as a predictor for the function
value f(x) and the standard deviation of Fx can be interpreted as a measure of prediction
uncertainty. Ordinary Kriging, used in this work, assumes a constant trend β. It thus estimates
f(x) as Fx = β +Rx, where Rx, x ∈ Rn is a Gaussian random field model with mean zero
and global variance s2. The Kriging predictor f̂(x) for an unknown point x is

f̂(x) = β + (y − 1 · β)T ·C−1 · c(x), (C.1)

with y = [y1, . . . , ym]T , C = [c(xi,xj)]i=1,...,m,j=1,...m, and c(x) = [c(x,x1), . . . , c(x,xn)]T .
Here, β and s2 are estimated using generalized least square estimates (see, [JSW98]),

β̂ =
1T ·C−1 · y
1T ·C−1 · 1

, (C.2)

ŝ =
(y − 1 · β̂)T ·C−1 · (y − 1 · β̂)

m
. (C.3)

The correlation function c(x,x′) can have different shapes. The choice of the correlation
function can be based on a-priori knowledge or on the correlation structure, e.g., maximum
likelihood estimation. Typically, isotropic kernel functions are of the form

cθ(x,x
′) = exp (−θ · |x− x′|q) , q > 0. (C.4)

Setting θ is done by maximizing the likelihood of Fx1
= y1∧ . . .∧Fxm = ym by minimizing

m log ŝ(θ) + log detC(θ). (C.5)

The same principle can be applied for multiparametric kernels, though this requires multi-
dimensional optimization demanding considerably more evaluations of the log-likelihood
expression.

The calibration procedure is algorithmically described in Algorithm C.1. In this description,
the minimization of θ is omitted. In this work, a grid search method is adopted using a
logarithmically scaled grid on the interval [10−50, 105].

Advantages of Kriging are that it is an exact interpolator (i.e., it returns the sample value as the
estimate at the sample points) and that the prediction confidence range can be locally assessed.
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Algorithm C.1: Ordinary Kriging Calibration

Input: Archive A = {(x1, f1), . . . , (xm, fm)}

Output: Kriging model fkrig(x)

1: Set parameters: q ← 2, minimization method for θ

2: θ ← minθ{m log ŝ(θ) + log detC(θ)} , with

C←


cθ(x1,x1) · · · cθ(x1,xm)

...
. . .

...

cθ(xm,x1) · · · cθ(xm,xm)

 , cθ(x,x′) = exp (−θ · |x− x′|q) ,

ŝ =
(y − 1 · β̂)T ·C−1 · (y − 1 · β̂)

m
.

3: fkrig(x)← β̂ + (y − 1 · β̂)T ·C−1 · c(x) , with

β̂ =
1T ·C−1 · y
1T ·C−1 · 1

, c(x) = [cθ(x,x1), . . . , cθ(x,xn)]T .

4: return fkrig(x)

A disadvantage is the computational effort (repeated inversion and determinant computation
for C(θ) within the likelihood minimization over θ). Besides, the points x1, . . . ,xm do not
only have to be unique so that the C is positive definite, but one should also ensure that these
points are well distributed to prevent that C gets ill-conditioned, which could cause failure due
to numerical errors.




