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Chapter 5

Optimization of Noisy Objective

Functions

Optimizing systems or models of systems that exhibit noisy output is a common scenario for
real-world optimization problems. Figure 5.1 illustrates such a scenario schematically, in which
the system or (simulation) model produces an output that is noisy and where this noise in the
output propagates to the objective and constraint functions. This chapter focuses on a restricted
subclass of such problems, being unconstrained single objective real-parameter optimization
problems in which the noise in the output propagates as additive noise in the objective function.

The intent of this chapter is to answer the following questions: 1) What is the goal of
optimization when having noisy objective functions? 2) What is the effect of noise in the
objective functions on Evolution Strategies? 3) How should Evolution Strategies, and in
particular the (5/2DI , 35)-σSA-ES and the CMA-ES, be adapted in order to deal with noisy
objective functions?

Figure 5.1: A typical robust optimization scenario: the system or model of the system for which an
optimization problem needs to be solved produces a noisy output.
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This chapter consists of two parts. In the first part (Section 5.1 and Section 5.2), the problem
of noisy optimization and the effects of noise on Evolution Strategies are studied. Section 5.1
starts by providing a description of noisy objective functions and the goals of optimization
in case of noisy objective functions. Section 5.2 studies the effects of noise in the objective
functions on Evolution Strategies. In the second part of this chapter (Section 5.3 to 5.6), a
number of noise handling techniques usable for Evolution Strategies are described and evalu-
ated. Section 5.3 reviews some basic noise handling techniques, Section 5.4 reviews techniques
known as adaptive averaging techniques, Section 5.5 briefly summarizes metamodel based
noise handling techniques, and Section 5.6 provides a general discussion on noise handling
techniques. Section 5.7 closes with a summary and discussion.

5.1 Noisy Objective Functions
The optimization problems considered in this chapter are unconstrained single-objective real-
parameter optimization problems, with objective functions of the form

f̃(x) = f(x) + z(x). (5.1)

That is, the objective function f̃(x) consists of a deterministic, noise-free part f(x) and an
additive stochastic part z(x), which is a random variable indexed by space (i.e., it can be seen
as a random field or noise landscape). In case of a stationary distribution, z(x) are identically
distributed for all x ∈ Rn, otherwise the noise is said to be non-stationary. Furthermore, the
noise is unbiased if E[z(x)] = 0 for all x ∈ Rn.

A common goal of optimization of noisy objective functions is to find optimal solutions for the
deterministic part of the function f̃(x). Hence, the underlying deterministic function f(x) is
considered to be the “true” objective function and the aim is to find optimal solutions for that
underlying function despite the noisy evaluations. This view is considered explicitly in, e.g.,
[HB94, HNGK09], and is appropriate when the noise is due to measurement errors instead of
being intrinsic to the system. This goal of optimization can be stated explicitly by denoting
the objective function that is effectively seen as the objective function for optimization. This is
called the effective objective function (denoted feff ) which in this case is simply stated as

feff(x) = f(x). (5.2)

An alternative goal, stated for example by Jin and Branke [JB05], is to find optimizers for the
expected objective function (denoted fexp), i.e.,

feff(x) = fexp(x) = E[f̃(x)]. (5.3)

This aim is appropriate for systems with intrinsic noise. Although these two effective objective
functions look very similar, it should be noted that these are only equivalent when the noise is
unbiased.
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Other goals for optimization of noisy objective functions are:

1. To optimize based on percentiles or the median.

2. To optimize based on a lower confidence bound, e.g.,

feff(x) = inf
{
a ∈ R |P

(
f̃(x) < a)

)
> pα

}
→ min, (5.4)

using an appropriate setting for the conflict level pα, or

feff(x) = E[f̃(x)]− ω
√

Var[f̃(x)], (5.5)

using an appropriate weight ω.

3. To restate the optimization problem as a multi-objective problem, requiring optimization
of the mean and minimization of the variance, i.e.,

feff
(1)(x) = E[f̃(x)], (5.6)

feff
(2)(x) = Var[f̃(x)]→ min . (5.7)

4. To restate the optimization problem as a multi-objective problem, requiring optimization
of the mean and optimization of the lower confidence bound, e.g.,

feff
(1)(x) = E[f̃(x)], (5.8)

feff
(2)(x) = P

(
f̃(x) < Tcrit

)
→ min, (5.9)

with Tcrit being some critical level.

As pointed out by Sano and Kita [SK00], the latter two goals could be appropriate for
optimization of investment, aiming to achieve high return and low risk solutions. However,
note that for stationary noise, these alternatives do not effectively change the optimization
goal as compared to the expected objective function. That is, in terms of optimization, these
measures yield rankings amongst all solutions in the search space that are equivalent to the
ranking based on the expected objective function.

The effective objective function states the optimization goal. However, it is obvious that it is
impossible to precisely evaluate the effective objective functions stated above. Hence, for the
evaluation of candidate solutions an alternative evaluation function f̂eff(x) should be used that
yields unbiased approximations of the effective objective functions. For instance, when using
just one noisy evaluation for each candidate solution, one effectively uses f̂eff(x) = f̃(x),
which yields unbiased approximations of the expected objective function. In literature, the
step of explicitly stating an effective objective function is often omitted.
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5.2 The Effects of Noise on Evolutionary Algorithms
The effects of noise on Evolution Strategies (and Evolutionary Algorithms in general) have
been extensively researched over the past two decades. As noted by Beyer [Bey00], the
commonly accepted viewpoint is that Evolutionary Algorithms are fairly robust against noise
in the objective function based on the two empirical arguments that 1) evolution in nature
is also highly influenced by noise, yet seems to work fine, and 2) in practice, Evolutionary
Algorithms have shown to yield usable results for practical noisy optimization problems (that
is, in the sense of melioration). Here it is considered that the fitness of each individual is
determined by using one noisy evaluation (i.e., f̂eff(x) = f̃(x)) that effectively approximates
the expected objective function (i.e., feff(x) = fexp(x)).

In Evolutionary Algorithms, essentially only the selection operation is directly influenced by
noise. Moreover, as noted by Heidrich-Meisner [HM11], for rank based selection, noise only
affects selection when it changes the ranking among the individuals of the population.

The presence of noise does not necessarily have a negative impact on the performance
of Evolutionary Algorithms. Noise has similar effects as the randomness that is intentionally
included in commonly used selection methods, like the randomness in proportional selection
and tournament selection in Genetic Algorithms [Bäc96], and this randomness can help to
escape local optima. These alleged benefits of randomness induced by noise are supported
by studies on theoretical cases in which adding a small noise signal to the original objective
function yielded better convergence reliability [BH94] or even a higher convergence velocity
[MNB08].

On the other hand, noise can also have harmful effects. The study of Beyer [Bey00] showed
that for a simple quadratic function with stationary Gaussian noise, Evolutionary Algorithms
fail to get infinitely close to the optimum. Instead, the population stagnates at a certain residual
distance from the optimum. Given the general insight that the regions around the local optima
of many continuous functions can be approximated by a quadratic model, similar effects can
be expected for a wide range of noisy optimization problems.

An intuitive explanation of the reason why Evolutionary Algorithms are relatively good in
dealing with noisy objective functions is that in the early stages of the evolution process
the differences in fitness between all pairs of individuals are generally much bigger than the
variations due to noise. Because of this, the selection mechanisms will keep a strong bias
toward selecting the better solutions for reproduction, which is sufficient for Evolutionary
Algorithms to progress. However, as the evolution proceeds and the population zooms in on an
optimum, the differences in both the search space as well as the objective space will decrease,
whereas the variance of the noise factor generally stays at the same order of magnitude. Hence,
the signal to noise ratio decreases and in effect the bias toward selecting better solutions will
decrease. Eventually, the selection process will degrade to uniform random selection.
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Figure 5.2: The convergence dynamics in terms of distance to the optimizer versus number of
evaluations (median over 100 runs) of the (5/2DI , 35)-σSA-ES (left) and the CMA-ES (right) on the
noisy sphere problem for different noise levels (σε = 0, σε = 0.0001, σε = 0.001, σε = 0.01, σε = 0.1,
and σε = 1).

Hence, although noise may be advantageous in some cases or at some stages of the
optimization process, it can deteriorate the accurate localization of an optimum, and canonical
Evolutionary Algorithms need to be equipped with noise handling mechanisms in order to
enable them to locate optima of the expected objective function more precisely.

To illustrate the effect of noise on Evolution Strategies, and in particular on the variants that
are the focus of this work, we set up the following experiment:

Experiment 5.2.1 (Performance of Evolution Strategies on the noisy sphere problem): We per-
form 100 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3)
on the 10-dimensional noisy sphere problem (see Appendix A.1) with varying noise levels
(σε = 0, σε = 0.0001, σε = 0.001, σε = 0.01, σε = 0.1, and σε = 1). Each run has a budget
of 10, 000 function evaluations.

Figure 5.2 shows the results of Experiment 5.2.1 by means of the performance, measured in
terms of the median distance to the optimizer, versus evaluations. The plots show that for both
algorithms the performance in the early stages of the evolution is not affected by noise, yielding
the same progress rate (that is, the improvement in the direction of the optimum) for each noise
level. However, for each noise level, there is a specific point when the progress rate deteriorates
and finally reaches zero. That is, the optimization process stagnates at a certain distance to the
optimizer. The higher the noise level, the earlier the stagnation and the higher the distance to
the optimizer at which the stagnation occurs.

For the (1, λ)-σSA-ES, the (µ, λ)-σSA-ES (without recombination) and the (µ/µ, λ)-σSA-
ES, Beyer [Bey00] derived lower bounds for the residual distance R∞ for the noisy sphere
problem. For the (µ, λ)-σSA-ES (without recombination) on the noisy sphere problem it is
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derived as

R∞ ≥
1

2

√
σεN

4
√
µcµ,λ

, cµ,λ ∼
√

2 ln(λ/µ), (5.10)

with cµ,λ being the so-called progress coefficient (see [Bey94] for the derivation of the progress
coefficient). An approximation for the (µ/µ, λ)-σSA-ES, which most closely resembles the
weighted recombination used in the CMA-ES, was obtained by Arnold and Beyer [AB02] as

R∞ '
1

2

√
σεN

4µcµ/µ,λ
, cµ/µ,λ = O(

√
ln(λ/µ)), (5.11)

with cµ/µ,λ being derived in [Bey95, Bey96]. From this, it can be concluded that, in order to
increase the convergence accuracy of Evolution Strategies, either the population size should be
increased (that is, either µ, λ, or both) or the noise factor σε should be decreased. Moreover,
comparing Eq. 5.10 with Eq. 5.11, it can be concluded that for the noisy sphere problem,
using (multi-) recombination improves convergence accuracy. Regarding the latter, Hammel
and Bäck [HB94] reported that also two-parent recombination improves the performance of
Evolution Strategies on noisy functions. Section 5.3 will discuss the technique of increasing
the population size or decreasing the evaluation error as an active way of noise handling in
more detail.

Finally, an issue specific for Evolution Strategies is the effect of noise on the adaptation
of the strategy parameters (i.e., the stepsize, and for the CMA-ES also the update of the
covariance matrix). Obviously, when the signal-to-noise ratio within a population becomes
too small, the failures in selecting the fitter individuals will also affect the adaptation of
the strategy parameters. However, especially when considering noise handling schemes it is
important to know how the adaptation mechanisms of the strategy parameters are affected
by noise, and, following that, at which noise ratio these adaptation mechanisms will yield
inappropriate/counterproductive parameter settings.

Using the results of Experiment 5.2.1, Figure 5.3 shows the development of the stepsize
for the noise level σε = 1.0 (both the mean performance and the development of a single run)
compared to the stepsize development for the noise-free case. For the (5/2DI , 35)-σSA-ES,
the stepsize in each generation is the average stepsize of all selected parents, and for the CMA-
ES, the plotted stepsize is the scaling factor of the mutations, σ (i.e., not accounting for the
covariance matrix factor). It can be seen that also the stepsize stagnates at some level. Hence,
the mutations remain fairly high although effectively the population does not get closer to
the optimum. This behavior is comparable for both algorithmic schemes (although they use
different stepsize adaptation mechanisms). Moreover, the single run dynamics show that the
stepsize develops like a bounded random walk.

Not many studies exist on the adaptation of the stepsize in noisy scenarios. Two studies
by Arnold and Beyer [AB04, AB08] consider the behavior of cumulative stepsize adaptation.
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Figure 5.3: The stepsize development (both of a single run and the median over 100 runs) of the
(5/2DI , 35)-σSA-ES (left) and the CMA-ES (right) on the noisy sphere problem with noise level
σε = 0.1 compared to the stepsize development on the noise-free sphere problem (median over 100
runs).

They conclude that noise affects the proper adaptation of the mutation strength as compared
to the theoretical optimal mutation strength, and that this effect can be counteracted (again)
by increasing the population size. Another interesting result is presented in [Bey00], showing
an example where the failure of a proposed noise handling scheme is attributed primarily to a
wrong adaptation of the stepsize.

In conclusion, we can summarize the findings from literature that are most interesting for
practical application of Evolution Strategies on noisy objective functions:

• The robustness with respect to noisy objective functions is implicitly defined as the
ability of Evolutionary Algorithms of finding high quality solutions with respect to the
expected objective function value (i.e., feff = fexp).

• As long as the noise level is small compared to the difference in objective function values
of the individuals, noise does not affect the performance of Evolutionary Algorithms.

• Increasing the population size (µ, λ, or both) increases the convergence accuracy,
meaning that the population will be able to converge closer to a local optimizer.

• Using any common type of recombination increases the ability to closer approximate the
optimum on the noisy sphere problem.

• For adaptation of the strategy parameters, increasing the population size increases the
reliability of the adaptation of the stepsize for cumulative stepsize adaptation.

5.3 Basic Noise Handling
As mentioned, Evolutionary Algorithms and Evolution Strategies are fairly robust against
noise. However, at a certain point during the optimization when the signal-to-noise ratio
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becomes too low, they will stagnate and not converge any closer to the optimum. When
more accurate localization of an optimizer is required, additional measures are needed. This
section will provide an overview of some basic techniques that can be used in the context of
optimization of the expected objective function.

5.3.1 Resampling

Resampling or explicit averaging is a straightforward approach to obtain better convergence
accuracy by approximating fexp as the sample mean over m samples

f̂exp(x) =
1

m

m∑
i=1

f̃(x). (5.12)

For Gaussian noise z(x) ∼ N (0, σ2
ε ), this yields an approximation error of

σ̄ε =

√
Var[f̂exp(x)] = σε/

√
m. (5.13)

Because the sample mean is an unbiased estimator of fexp, this approach effectively reduces
the noise level of objective function f̃ by a factor of

√
m, allowing for a closer convergence to

the optimum. An obvious downside of this approach is that using multiple samples per fitness
evaluation increases the computational effort by a factor m. Especially for limited evaluation
budgets, determining an appropriate setting for m can be a tedious task.

5.3.2 Increasing the Population Size

As discussed in the previous section, for Evolution Strategies it has been observed that increas-
ing the population size is also a way of improving the convergence accuracy. Interestingly,
also in the context of Genetic Algorithms, this observation was made by Fitzpatrick and
Grefenstette [FG88], and Miller and Goldberg [MG96] showed that for infinite population
sizes, proportional selection is not affected by noise. Increasing the population size as an active
way of noise handling is also referred to as implicit averaging, as opposed to the alternative of
explicit averaging by means of resampling.

For Evolution Strategies, increasing both µ and λ can reduce the effects of noise. Considering
that increasing µ does not increase the number of evaluations per generation, this may suggest
that we have a free way of increasing the convergence accuracy. However, as noted in [HB94],
the price of increasing µ is a lower selection pressure, which yields a lower convergence speed.
Hence, increasing µ has an indirect effect on the convergence speed. Alternatively, one could
increase both µ and λ. Although this does have a direct effect on the number of evaluations per
generation, and yields a slower convergence speed, it leads to a higher convergence accuracy.

In order to obtain a clearer view on the effects of noise and different population sizes for the
two particular schemes considered in this work, consider the following small experiment:



5.3. Basic Noise Handling 63

(µ/2DI , λ)-σSA-ES CMA-ES
λ = 35, µ = 5, 10, 15, 20, 25, 30 λ = 10, µ = 3, 5, 7, 9

λ = 100, µ = 15, 25, 35, 45, 55, 65 λ = 30, µ = 10, 15, 20, 25, 30

Table 5.1: The population size settings considered in Experiment 5.3.1.
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Figure 5.4: The performance of the (µ/2DI , λ)-σSA-ES (left) and the CMA-ES (right) on the noisy
sphere problem for varying population sizes. The top row shows the default value for λ, varying µ, the
bottom row shows a value of λ that is approximately three times the default value, again varying µ. The
performance is measured in terms of distance to the optimizer versus evaluations (median over 100 runs).

Experiment 5.3.1 (Effect of higher population sizes on the noisy sphere problem): We perform
100 runs of a (µ/2DI , λ)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) on
the 10-dimensional noisy sphere problem (see Appendix A.1). For each scheme, two settings
of λ are considered, each with varying settings of µ (see Table 5.1). For each run, an evaluation
budget of 10, 000 function evaluations is used.

Figure 5.4 shows the results of Experiment 5.3.1 by means of plots of the performance, meas-
ured in terms of the median distance to the optimizer, versus the number of evaluations. From
these results, two conclusions can be drawn: First, increasing λ yields a higher convergence
accuracy, but a lower convergence speed. This is indeed in line with what was expected.
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Second, increasing µ can improve convergence quality, but for the (µ/2DI , λ)-σSA-ES, the
convergence speed drastically decreases with increasing values for µ, whereas for the CMA-
ES, µ ≈ λ still seems to work and actually yields a good trade-off between convergence speed
and convergence accuracy. The latter is a remarkable result, as setting µ = λ seemingly implies
that there is no selection pressure. A simple explanation for why this works for the CMA-ES
is that it uses weighted recombination, assigning a higher weight to the fitter individuals in the
logarithmically weighted average (which can be seen as an implicit selection mechanism).

In [Bey00], it is recommended that for the (µ/µI , λ)-ES, given a fixed offspring number λ,
the value of µ should be chosen such that µ = λ/2. For the (µ, λ)-σSA-ES, in [HB94] it is
recommended to set µ ≈ 1/7, whereas in [Bey00], a derivation based on Eq. 5.10 showed
that it should be set to µ = λ/e. Based on this, and on the results shown in Figure 5.4, we
postulate that good alternative settings in case of 10-dimensional noisy objective functions
with stationary noise, are: µ ≈ λ/e for the (µ, λ)-σSA-ES and µ ≈ λ for the CMA-ES
(this should be investigated in more depth). For the setting of λ, there is an inherent trade-
off between convergence speed and convergence accuracy, making it purely dependent on the
available budget of function evaluations.

5.3.3 Implicit Averaging versus Explicit Averaging

Given the two techniques to increase convergence accuracy, implicit and explicit averaging,
the question arises which one is better. In [BOS03], it is stressed that for the (µ/µI , λ)-ES,
given a fixed noise strength, it is more efficient to increase the offspring number by a factor m
instead of resampling the objective function m times. On the other hand, Hammel and Bäck
[HB94] conclude exactly the opposite based on an experimental study on the (µ, λ)-ES (i.e.,
resampling is better than increasing the population size). In order to form a picture, we perform
the following experiment:

Experiment 5.3.2 (Implicit versus explicit averaging): For comparing implicit versus explicit
averaging, we perform 100 runs of a (µ/2DI , λ)-σSA-ES (see Section 4.2.2) and a CMA-
ES (see Section 4.2.3) on the 10-dimensional noisy sphere problem (see Appendix A.1) and
on a multimodal problem; the 10-dimensional noisy Griewank problem (see Appendix A.6).
We take for implicit averaging for the (µ/2DI , λ)-σSA-ES: a (5, 35)-, a (25, 175)-, and a
(50, 350)-strategy, and for the CMA-ES: a (5, 10)-, a (25, 50)-, and a (50, 100)-strategy. For
the resampling schemes we consider:m = 1 (i.e., no resampling),m = 5,m = 10. Evaluation
budget for each run: 10, 000.

Figure 5.5 shows for Experiment 5.3.2 the convergence plots in terms of distance to the
optimizer versus evaluations. Interestingly, we can observe a remarkable difference between
the (µ/2DI , λ)-σSA-ES and the CMA-ES. For the (µ/2DI , λ)-σSA-ES, explicit resampling
seems to yield better results than implicit averaging. That is, using larger population sizes
seems to slow down the convergence. However, for the CMA-ES, increasing the population
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Figure 5.5: The performance of the (µ/2DI , λ)-σSA-ES (left) and the CMA-ES (right) on the noisy
sphere problem (top row) and the noisy Griewank problem (bottom row). Comparing implicit versus
explicit resampling. The performance is measured in terms of distance to the optimizer versus evaluations
(median over 100 runs).

size seems to be most beneficial. Moreover, for both implicit averaging and explicit averaging,
the CMA-ES obtains much better results than the (µ/2DI , λ)-σSA-ES. The results shown
in Figure 5.5 can well explain the difference between the conclusions of Hammel and Bäck
[HB94], and those of Beyer [BOS03].

5.3.4 Rescaled Mutations

An alternative approach of noise handling that does not require additional evaluations per
generation is to use rescaled mutations. This technique was proposed originally by Rechenberg
[Rec94] and further investigated by Beyer [Bey98, Bey00]. Using rescaled mutations is based
on the slogan “mutate large, but inherit small” and it basically does just that. Instead of
performing mutation in the normal way, a large mutation is applied to each individual (that
is, large compared to the current stepsize) and selection is based on the fitness values of the
offspring generated by these large mutations. However, after selection, instead of using the
large mutation for the selected offspring, the mutation is rescaled to a small mutation. Hence,
selection is based on large mutations, while small mutations in the same directions as the



66 5. Optimization of Noisy Objective Functions

successful large mutations are eventually used after selection.

As an example, consider the (1, λ)-strategy and let offspring i be obtained by xi = xp +zi,
zi ∼ N (0,C). Now, let x1:λ denote the best offspring, which was generated by mutation z1:λ.
Instead of using x1:λ as parent for the next generation, the mutation is rescaled by a factor of
1/κ, κ ≥ 1. Hence, the parent for the next generation is computed as

xp = xp +
1

κ
z1:λ. (5.14)

When assuming local or quasi linearity of the search space, the direction of the best large
step should also be the best direction of improvement for a small step. Hence, by using large
mutations for evaluations, differences between individuals become more apparent.

Although the idea behind using rescaled mutations is appealing and provides theoretically
promising results for the noisy sphere problem, in practice, it does not yield convincing results,
not even for the noisy sphere problem (see, e.g., [Bey00]). For the noisy sphere problem, this
is attributed to a wrong adaptation of the stepsize (even after inclusion of fixes for the stepsize
adaptation). For other problem types, one could argue that the assumed quasi linearity of the
search space only holds very locally, i.e., only works for κ ≈ 1. Based on these considerations,
we can conclude that this noise handling technique is not off-the-shelf usable in practical
scenarios.

5.3.5 Thresholding

Thresholding is a noise handling technique proposed by Markon et al. [MMA+01]. Threshold-
ing is a simple technique, however, usable only for plus-selection strategies. The idea behind
thresholding is that an offspring is only accepted to replace a parent if it is at least a constant
τ > 0 better. That is, in order to prevent the selection of outliers, offspring are required to be
considerably fitter than their parents in order to be selected.

The study by Markon et al. [MMA+01] uses the (1+1)-ES as algorithmic basis and
includes theoretical analysis of thresholding on the noisy sphere problem with Gaussian noise.
For this setting, they provide a derivation on how to set τ when having an estimate of the noise
strength and an estimate of the fitness difference with respect to the optimum. For this setting
of τ , the (1+1)-ES with thresholding can converge arbitrarily close to the optimum.

Although the theory behind the study of Markon et al. [MMA+01] is sound and the results
look promising, the gap with practical applicability is still considerable. Obtaining accurate
estimates of the noise strength and the fitness difference with respect to the optimum is a
tedious task in itself. Furthermore, the extension to multi-membered comma-strategies requires
a number of adaptations. An approach that can be considered as a multi-membered extension
of this approach will be described in Section 5.4.3.
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5.4 Adaptive Averaging
Among the basic noise handling approaches discussed up to now, the two straightforward
approaches of implicit and explicit averaging seem the most effective. However, both suf-
fer from the problem that they only decrease the effect of noise, but do not eliminate it.
Moreover, these techniques introduce a trade-off between using a small population/sample
size that yields a high convergence speed, but a low convergence accuracy versus using a large
population/sample size that yields a low convergence speed, but high convergence accuracy.

From this perspective it is desirable to have a method that adapts the intensity of the
noise handling scheme such that convergence is maintained, but evaluations are not wasted.
For implicit averaging, this means to start out with a small population size, and increase
the population size when the population converges. For explicit averaging, this could be
done in a similar way, and in addition one could distribute the sampling budget over the
individuals in an efficient way. Methods that control the evaluation intensity are referred to
as adaptive averaging methods. Several of such techniques have been proposed in the context
of Evolutionary Algorithms. This section summarizes the most prominent ideas.

5.4.1 Duration Scheduling and Sample Allocation

Aizawa and Wah [AW93, AW94] proposed two adaptive resampling schemes for noisy
objective functions in the context of Genetic Algorithms, based on two underlying scheduling
problems that emerge when dealing with noisy objective functions:

• Duration scheduling problem: the problem of determining whether the quality of the
objective function approximations of the individuals in the population is sufficient to end
the current generation and use the current approximations for selection.

• Sample allocation problem: the problem of allocating evaluations (samples) to each
individual in the population given a budget of evaluations such that it is most beneficial
for the current generation.

The former emerges when premature convergence needs to be prevented while having no
practical limitations on the evaluation budget. The latter emerges when evaluation is costly
and it is important to spend the evaluations as effectively as possible within each generation.
They proposed two separate approaches for these two scheduling problems.

Both the duration scheduling approach and the sample allocation approach are based on
two assumptions: 1) the noise is stationary and has a Gaussian distribution, and 2) the “real”
underlying objective function values of the individuals in a population are normally distributed.
Based on these assumptions and on approximations of the parameters of both distributions (see
Technical Note 5.1), a Bayesian approach is used to approximate the fitness of each individual
(see Technical Note 5.2).
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Technical Note 5.1: Estimating the Population and Noise Variance

When assuming that the noise in the objective functions is stationary and has a Gaussian
distribution,N (0, σ2

ε ), and the “real” underlying objective function values of the individuals
in a population are also normally distributed, N (f0, σ

2
0), then σ2

0 , f0, and σ2
ε can be

approximated as

σ̂2
ε =

∑λ
i=1((mi − 1) · s2

i )

(
∑λ
i=1mi)− λ

, s2
i =

mi∑
j=1

(f̃i,j − f̄i)2, (5.15)

f̂0 =
1

λ
·
λ∑
i=1

f̄i, (5.16)

σ̂2
0 =

1

λ · (λ− 1)

λ · λ∑
i=1

(f̄i)
2 −

(
λ∑
i=1

f̄i

)2
− σ̂2

ε

m
, (5.17)

where m1 = . . . = mλ = m is assumed.

Remark: An issue not mentioned in [AW94], but very relevant in practice, is that the estimate
from Eq. 5.17 becomes unusable when the ratio σ2

0/(σ
2
ε /m) becomes too small. That is, if the

ratio between the population variance and the variance of the sample mean (σ2
ε /m) becomes

smaller, the estimate σ̂2
0 becomes less accurate and might even become negative (which,

being a variance, is an unreasonable estimate). This should be accounted for in practical
situations, because it harms the fitness estimates. Furthermore, it should be noted that this
approach requires at least two samples for each individual in the population.

The duration scheduling approach aims to automatically adapt the number of samples used
for resampling such that the Evolutionary Algorithm maintains progress. Primarily it uses a
static incremental scheme, determining a budget tk of samples available for generation k as

tk = λ ·

(
m0 +

⌈
γ

k−1∑
i=1

ti

⌉)
, (5.22)

where λ is the population size, m0 is the initial number of samples used for each individual,
and γ is a heuristic parameter. Secondly, it uses the following bounds for the ratio between
the effective variance of the noise (see Eq. 5.13) and the population variance as an indicator of
whether the current generation can be terminated:

δl ≤
σε/
√
m

σ0
≤ δu. (5.23)

If this ratio is small enough (i.e., < δl), no resampling is necessary and the resampling loop
is terminated even if the current evaluation budget tk is not spend entirely. When it is greater
than δu, resampling is necessary and resampling is continued even if the evaluation budget tk
is exceeded. Here, σε and σ0 are estimated as described in Technical Note 5.1.



5.4. Adaptive Averaging 69

Technical Note 5.2: Bayesian Fitness Approximation

Assume that the objective function value of candidate solution xi is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε ). (5.18)

Furthermore, assume that the “real” objective function values f1, . . . , fλ of the λ individuals
within the population are normally distributed, N (f0, σ

2
0), yielding for each individual i, a

prior distribution h(fi) ∼ N (f0, σ
2
0).

Let f̄i be the mean of mi fitness evaluations (f̃i,1, . . . , f̃i,mi) for candidate solution xi. By
definition, we know:

p(f̄i | fi) ∼ N (fi, σ
2
ε /mi). (5.19)

Using Bayes formula, we obtain a posterior distribution for individual i

h∗(fi | f̄i) =
p(f̄i | fi) · h(fi)∫∞

−∞ p(f̄j | fj) · h(fj) · dfj
. (5.20)

From this, the best estimator f̂i for fi with estimation error σ̂i is given by

f̂i =
mi · f̄i + α · f0

mi + α
, σ̂i =

σ2
ε

mi + α
, α =

σ2
ε

σ2
0

. (5.21)

The values of σ2
0 , f0, and σ2

ε can be estimated as described in Technical Note 5.1.

Regarding the implementation details of the duration scheduling approach, γ = 5× 10−3,
δl = 1.0, δu = 4.0 are used in [AW94]. The setting of m0 is noted to be based on Eq. 5.23,
however, the exact procedure is not described in [AW94]. Besides that, a pre-sampling step
should be used to estimate σε and σ0, which are required within Eq. 5.23, but this pre-sampling
step is not described explicitly. Also, no note is made of how often the estimates of σε and σ0

are updated. For the implementation of this scheme, these issues should be accounted for.

The sample allocation approach uses a fixed budget of objective function evaluations T every
generation and aims to divide the evaluations such that it is most beneficial for selection.
Technical Note 5.3 summarizes this sample allocation procedure1. The idea is to distribute
the evaluation budget T = (m1 + . . . + mλ) in an optimal way among the individuals of the
current generation. This can be accomplished by selecting the individual for resampling for
which resampling will lead to the highest reduction of the following expected risk function:

R̄ =

λ∑
i=1

Piσ̂
2
i . (5.24)

1The description in Technical Note 5.3 differs slightly from the description presented in [AW94], which is done
for the sake of clarity.
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Technical Note 5.3: Sample Allocation Procedure

1. Take a fixed number of samples (at least twoa) for each individual in the population
and set the evaluation counter t = m0 · λ.

2. For each individual i = 1, . . . , λ compute σ̂i and Pi (or wi as an approximation).

3. Take one additional sample for the individual that has the largest feedback value
according to Eq. 5.28 and increase the evaluation counter t = t+ 1.

4. Repeat step 2 to 4 until t = T .

aIn [AW94] it is said to take one sample for each individual. However, at least two samples for each individual
are needed to obtain estimates for σε and σ0.

Here, Pi is the probability that individual i is the best individual and σ̂2
i is the estimated

prediction error of individual i (see Eq. 5.21). Technical Note 5.4 describes the procedure
to find the individual that contributes most to the risk function Eq. 5.24.

To summarize, Aizawa and Wah [AW94] proposed two adaptive resampling methods that are
both based on a Bayesian approach for estimating the fitness that differs from the common way
of doing explicit averaging. Furthermore, they introduced a way of measuring the selection
uncertainty based on the ratio between the population variance and the approximation error
Eq. 5.23, which is used in a duration scheduling approach. For in-generation allocation of
additional fitness evaluations, a sample allocation scheme based on an expected risk function
is proposed.

For applying the proposed techniques in practice, a few remarks are in place. First, it should
be noted that for Evolution Strategies, using solely the Bayesian fitness approximation is not
sensible, because it does not change the ranking amongst the individuals in the population as
compared to explicit averaging. Furthermore, in [AW94] it is noted that the duration scheduling
problem and sample allocation problem do not occur concurrently. However, this is debatable,
because even if a sufficiently large evaluation budget is available for duration scheduling, it can
still be desirable to spend the evaluations within a generation as effectively as possible. Lastly,
no note is made of the possibility that the estimate σ̂2

0 (see Technical Note 5.1) can become too
crude to be practical, or even negative (making it unusable).

5.4.2 Adaptive Resampling Based on the t-Test

Another class of adaptive averaging schemes is formed by approaches that apply reevaluation
based on statistical testing of the ranking of the individuals. An obvious first choice is the
t-test, which can be used for pairwise comparison of solutions. This approach is suitable
when optimizing on the expected objective function, assuming that the noise on the objective
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Technical Note 5.4: Minimization of the Expected Risk

Given Bayesian objective function approximations as described by Technical Note 5.2, then
the probability Pi that individual i is the best individual is given by

Pi =

∫ ∞
−∞

∏
j 6=i

H∗(fj | f̄j)

h∗(fi | f̄i)dfi, (5.25)

where, H∗(fj | f̄j) is the cumulative distribution function of h∗(fi | f̄i). Given that φ(.) and
Φ(.) are the probability density function and the cumulative distribution function of the
Gaussian distribution, respectively, and using the approximations of f̂i and σ̂i, this becomes:

Pi =

∫ ∞
−∞

∏
j 6=i

Φ

(
fi − f̂j
σ̂j

)φ(fi − f̂j
σ̂j

)
dfi. (5.26)

Alternatively, given that the computation of Pi requires numerical integration, a weight wi
can be used instead of Pi, in which each individual is only compared to the best (or second
best if it is the best itself):

wi = Φ

 f̂i − f̂j√
σ̂2
i + σ̂2

j

 , j =

{
k , i 6= k

l , i = k
, (5.27)

where k is the index of the best individual, and l is the index of the second best individual,
based on the fitness approximations f̂1, . . . , f̂λ.

Based on either Pi or wi, the individual that should be selected for reevaluation in order to
minimize the risk function of Eq. 5.24 is the individual i, computed as

argmax
i∈{1,...,λ}

[
Pi

σ̂2
ε

(mi + α)2

]
. (5.28)
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Technical Note 5.5: Fitness Comparison Using the t-Test

Assume that the fitness of individual i is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε ). (5.29)

Given two individuals xi and xj , with mean fitness values f̄i and f̄j obtained through
resampling using mi and mj samples respectively, sample variances s2

i and s2
j , and suppose

f̄i ≤ f̄j . We can test the hypothesis

H0 : f̄i ≤ f̄j (5.30)

against the hypothesis
H1 : f̄i > f̄j (5.31)

using a one-sided t-test to a significance α. Given the t-statistic

tij =
f̄i − f̄j√
s2i
mi

+
s2j
mj

, (5.32)

we can rejectH0 if tij > t(α,2m−2). Here, t(α,2m−2) is the t-distribution with 2m−2 degrees
of freedom, computed for α.

function is Gaussian. Approaches based on this statistical testing have been proposed in
different studies in different settings [Sta98, CP04, KEB09a].

The t-test can be used to test whether or not the differences of the mean objective function
values of two individuals is significant with a certain significance level. The approach to do so
is briefly summarized in Technical Note 5.5. During the evaluation phase of the optimization,
one can require for a one-sided t-test with a significance α between (certain/all) pairs of
individuals, and continue resampling until this is achieved.

A first consideration that is relevant when following such an approach is whether or not
a Bonferroni correction should be applied for multiple comparisons [Dun61]. The choice of
applying a Bonferroni correction determines whether the statistics are based on comparison
of separate pairs or on comparison of the full population. In [Sta98, CP04, KEB09a], the
Bonferroni correction is not used. Secondly, note that instead of using a one-sided t-test
as described in Technical Note 5.5, also a two-sided t-test could be used (see [KEB09a]).
However, effectively this will not make much difference. That is, for both the one-sided
as the two-sided t-test the t-statistic is the same, only the threshold value for a certain
significance level α changes, yet this does not yield an essentially different indicator measure
for resampling. Lastly, one has to decide which pairs of individuals are compared against each
other. The approaches proposed in literature are:

• Subsequent pair testing: Based on a population sorted by fitness approximation
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f̄1:λ, . . . , f̄λ:λ, test for every subsequent pair of individuals {xi:λ,xi+1:λ}, i =

1, . . . , λ − 1 whether the fittest is fitter with a significance α. For each individual
belonging to a pair for which the significance is too low, take one additional sample.
Repeat this loop until no more individuals need resampling. This method was studied in
[KEB09a].

• Test against best: Sort the population by fitness approximation f̄1:λ, . . . , f̄λ:λ, test every
individual xi:λ, i = 2, . . . , λ against the best individual x1:λ for a significance α. For
each individual belonging to a pair for which the significance is too low, take one
additional sample. Repeat this loop until no more individuals need resampling. This
method was also studied in [KEB09a].

• Pairwise tournaments: In [CP04], pairwise comparison was used within tournament se-
lection with tournament sizes of two. Within every tournament, resampling is continued
until the fittest individual is better with a significance α.

For Evolution Strategies, using (µ+, λ)-selection, only the first two approaches are applicable.

Although the idea of using the t-test for adaptive resampling seems promising at first sight,
empirical results in [CP04] and [KEB09a] show that these approaches come with serious
problems. In the experiments of [KEB09a], different t-test based evaluation schemes are
compared for a (1, 10)-σSA-ES on a 10-dimensional noisy sphere problem (with σε = 0.1)
and an evaluation budget of 20, 000 function evaluations. These schemes are: subsequent pair
adaptive resampling instances, test against best adaptive resampling instances, and a fixed
sample size resampling method with a sample size tuned for this problem instance (which
is m = 50). From the results, shown in Figure 5.6, it can be seen that tuning the parameter
α is quite a tedious task. It should be strict enough in order to determine a correct ranking
with sufficient confidence, but on the other hand, if it is too strict, samples might be wasted in
assuring that pairs of individuals are actually different. The former leads to early convergence
and the latter leads to slow convergence, as can be observed in the plots.

Moreover, a performance loss can even be observed when comparing the best adaptive
resampling methods against the best fixed sample size resampling method. The latter can be
attributed to an explosion of the number of samples required to achieve a certain significance
level for pairs of individuals that happen to have objective function values that lie very
close to each other (in the perspective of the overall differences between all λ offspring).
These pairs require (unnecessarily) long resampling loops. An even more extreme scenario
emerges when two individuals have exactly the same mean objective function value, which
can cause (obviously undesirable) infinite evaluation loops. On objective function landscapes
that contain many or large plateaus, this method is therefore likely to fail when this scenario is
not accounted for.



74 5. Optimization of Noisy Objective Functions

Figure 5.6: Results from [KEB09a]. Different instances of a (1, 10)-σSA-ES on a 10-dimensional noisy
sphere problem, with σε = 0.1. Top row: the performance and required evaluations per generation of a
(1, 10)-σSA-ES implementing the subsequent pair test adaptive sampling approach. Middle row: the
performance and required evaluations per generation of a (1, 10)-σSA-ES implementing the test against
best adaptive sampling approach. Bottom row: the performance of the best adaptive sampling instances
compared to the performance when using a good fixed sample size approach. The results were obtained
using 10 runs per algorithmic scheme, using an evaluation budget of 20, 000.
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Figure 5.7: The dominance relationship for interval orders visualized geometrically. In this figure,
the space of intervals is presented on a two-dimensional plane, divided into the regions of dominating
intervals, dominated intervals, and incomparable intervals of the interval [x1, y1]. The line x = y
represents the intervals that are reduced to single points. From this figure, we see that decreasing the
interval length decreases the distance to the line x = y, which increases the comparability.

5.4.3 Partial Order Based Adaptive Averaging

Rudolph [Rud01] proposed to actively consider the partial order that emerges when considering
the noisy fitness of each candidate solution as an uncertainty interval, see Technical Note
5.6. For this, it should be assumed that the noise in the objective function is bounded within
known intervals. Given this viewpoint, one could apply an Evolutionary Algorithm that selects
based on the dominance relation that emerges from this partial order. Figure 5.7 visualizes the
dominance relationship for interval orders. In this figure, the space of intervals is presented on a
two-dimensional plane, divided into the regions of dominating intervals, dominated intervals,
and incomparable intervals of the interval [x1, y1]. The line x = y represents the intervals
that are reduced to single points. From this figure, we see that decreasing the interval length
decreases the distance to the line x = y, which increases the comparability.

Rudolph considered an Evolutionary Algorithm using an elitist selection strategy and for
which it is guaranteed that every collection of offspring can be generated from any collection
of parents. For such algorithms, it holds that for any finite search space with any noisy
objective function with the noise bounded within the interval [−a, a], the population will, with
a probability 1, after a finite number of generations, enter a state in which all solutions have an
objective function value that lies at most 3a away from the optimum (see [Rud01] for details).

This scheme can be extended as an adaptive averaging scheme by using the sample mean
of m evaluations. For this, confidence intervals can be generated that are stricter than the
original bounds, which will lead to more accurate convergence precision. For this, an adaptive
resampling technique can be devised as follows: run the Evolutionary Algorithm described
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Technical Note 5.6: Partial Orders Induced by Noise

For the set of intervals F = {[x1, x2] ⊂ R : x1 ≤ x2}, one can introduce a strict partial
order ≺

[x1, x2] ≺ [y1, y2] iff x2 < y1, (5.33)

which can be extended to a partial order by adding the relations

[x1, x2] = [y1, y2] iff x1 = y1 or x2 = y2, (5.34)
[x1, x2] � [y1, y2] iff [x1, x2] ≺ [y1, y2] ∨ [x1, x2] = [y1, y2], (5.35)

Although strictly speaking it is sufficient to consider only a strict partial order, for compliance
with literature, we discuss the method in the context of partial orders. The pair (F ,�) is
called a partially ordered set (poset). Furthermore, given two elements x, y ∈ F , x is said to
dominate y iff x ≺ y and both elements are said to be incomparable (denoted x||y) iff x ⊀ y
and y ⊀ x a.

In the context of noisy objective functions, one can view the noisy fitness value f̃(x) of
an individual x ∈ X as an element of the interval [f(x) − a, f(x) + a]. Hence, given a
noisy evaluation f̃(x), then the true fitness f(x) of x should lie within the random interval
[f̃(x)− a, f̃(x) + a].

When assuming that all feasible solutions x ∈ A have been evaluated once, one can define
the set of minimal elements in the set of evaluated objective function values as

F̃∗ = {f̃(x∗) |x∗ ∈ A and@x ∈ A : [f̃(x)−a, f̃(x)+a] ≺ [f̃(x∗)−a, f̃(x∗)+a]}. (5.36)

For this, Rudolph [Rud01] showed that

max{F̃∗} ≤ f∗ + 3a, (5.37)

where f∗ denotes the optimum of the “true” objective function. That is, all solutions in F̃∗
lie at most 3a from the optimum.

aBy abuse of notation, the notion of incomparability also includes equality.
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above until the population consists of all non-dominated solutions and no improvements have
been found for a number of generations. At that point, increase the sample size to tighten the
confidence intervals and increase convergence accuracy.

This approach is different from other noise handling approaches in that it is the only
approach that actively considers the noisy objective function values in the context of a partial
order based on confidence intervals. However, comparing it to the thresholding approach (see
Section 5.3.5), there is some overlap. The elitist thresholding scheme maintains non-dominated
solutions in a similar way, by only accepting solutions that are a factor of τ better. In a similar
fashion one could construct confidence bounds that have a similar effect as using this threshold.

The algorithm proposed in [Rud01] is not straightforwardly incorporable in the algorithmic
schemes considered in this work. This is because it considers an elitist evolution loop that
differs from the general evolution loop of the (5/2DI , 35)-σSA-ES and the CMA-ES, and
because it is based on the assumption that the noise is strictly bounded within known intervals
[−a, a]. In order to test the idea of using the non-dominance relation amongst intervals, we
consider the adaptive averaging procedure of Algorithm 5.1. This procedure, which replaces
the evaluation procedure of the canonical (5/2DI , 35)-σSA-ES and CMA-ES, counts the
number of non-dominated solutions based on Gaussian confidence intervals (using confidence
level δ) that are constructed from a number of samples bmeval + 1c. If this number reaches
the parental population size µ (corresponding to a parental population that contains only non-
dominated solutions), then the number of samples used for the next generation is increased
with a factor αm. The ranking amongst the individuals is based on the mean objective function
values. When there are at most µ non-dominated solutions, then all of them will be selected
when selecting based on the mean objective function values.

To gain insight in the behavior of this evaluation scheme we perform the following experiment:

Experiment 5.4.1 (Performance of poset based adaptive averaging on the noisy sphere prob-
lem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating the eval-
uation procedure of Algorithm 5.1 (named PUH-(5/2DI , 35)-σSA-ES) on the 10-dimensional
noisy sphere problem (see Appendix A.1). We take parameter setting α = 1.5 and use varying
δ = 0.1, 0.3, 0.5. As benchmark, we include a (5/2DI , 35)-σSA-ES using a fixed sample
size resampling scheme with m = 50. Each run uses a budget of 100, 000 objective function
evaluations.

The results of Experiment 5.4.1 are presented in Figure 5.8 and Figure 5.9. Figure 5.8 shows
the convergence dynamics of the three instances of this adaptive averaging scheme and as
a benchmark the convergence dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.9 shows the single run and average dynamics of
the three instances of this adaptive averaging scheme. The left column shows the distance to
the optimizer versus the number of generations, the middle column the development of sample
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Algorithm 5.1: Poset Based Adaptive Averaging

Procedure parameters: confidence level δ, averaging increment factor α

Procedure variables: sample size indicator meval, initialized at meval = 2

1. For all candidate solutions x1, . . . ,xλ obtainm = bmeval+1c noisy objective function
evaluations

f̃i,j = f̃(xi) , i = 1, . . . , λ , j = 1, . . . ,m. (5.38)

2. For each individual xi, compute the mean objective function value f̄i, the sample
variance s2

i , and confidence bound [f̄i − ci, f̄i + ci], with:

ci = cGaussian
i =

si√
m

Φ−1

(
1 + δ

2

)
. (5.39)

3. Compute the number of non-dominated solutions as

#nds = |{i ∈ {1, . . . , λ}|@j ∈ {1, . . . , λ} : fj + cj < fi − ci}| . (5.40)

4. Update the sample size meval using the update rule

meval =

{
α ·meval , if #nds ≥ µ
meval , otherwise

. (5.41)

5. Generate a ranking x1:λ, . . . ,xλ:λ based on the sample means f̄1, . . . , f̄λ.
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Figure 5.8: Left: The convergence dynamics (median over 10 runs) of the PUH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying δ = 0.1, 0.3, 0.5, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.
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Figure 5.9: The dynamics (median over 10 runs) of the PUH-(5/2DI , 35)-σSA-ES on the noisy
sphere problem, using different confidence levels δ = 0.1 (top row), δ = 0.3 (middle row), δ = 0.5
(bottom row). Left: the distance to the optimizer versus number of generations. Center: the development
of meval. Right: the development of the uncertainty level (i.e., the number of non-dominated solutions in
the offspring population).
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size parameter meval, and the right column the development of the uncertainty indicator (i.e.,
the number of non-dominated solutions).

In Figure 5.8 we observe promising convergence behavior of this scheme for all considered
settings of δ when comparing it to the fixed sample size resampling scheme. Also the
convergence plots of Figure 5.9 show promising behavior, however, we observe a big difference
between the three PUH-(5/2DI , 35)-σSA-ES variants. When δ is small (e.g., δ = 0.1),
corresponding to having loose confidence bounds, the uncertainty level stays low for a large
number of generations. Yet, from the convergence plot of δ = 0.1, we also see that the hovering
behavior that is due to noise already occurs after approximately 20 generations. On the other
hand, the convergence plots for higher values of δ do not show this hovering behavior, but
also complete much less generations based on the same evaluation budget. The latter is due
to a much faster growing uncertainty level, yielding an exponentially growing sample size
meval. Here, we observe a typical dilemma of adaptive averaging techniques, which is to
find a good balance between requiring a high selection accuracy that yields a good progress
each generation and accepting inaccuracies in the selection that yields slower generation-wise
convergence, but which allows for completing much more generations with the same evaluation
budget. In this small experiment setup, δ = 0.3 seems to be the most promising choice.

From these results, we can conclude that using the concept of dominance based on partial
orders on uncertainty intervals seems indeed a viable way to do uncertainty handling. However,
the results do not show whether this approach can outperform a well chosen fixed sample
size resampling scheme on a fixed evaluation budget. Also a more fine-grained tuning of this
approach remains to be done.

5.4.4 Selection Through Racing

Heidrich-Meisner and Igel [HMI09a] suggest the use of so-called Hoeffding and Bernstein
Races [MM94, MM97] for handling noisy fitness evaluations. They proposed their approach
in the context of policy learning and incorporated it in the CMA-ES. In [HMI09a], it is stated
that the goal of the noise handling scheme is to ensure with a given confidence that the µ
selected individuals from the population are indeed the µ best. To achieve this, they 1) control
the overall number of evaluations, and 2) control the distribution of evaluations among the
individuals in the population. Note that this two-phase distinction is identical to the distinction
between duration scheduling and sample allocation made by Aizawa and Wah [AW94].

The evaluation/selection procedure as proposed in [HMI09a] uses confidence bounds based
on Hoeffding’s or Bernstein’s inequality as described in Technical Note 5.7. The underlying
assumption of this approach is that the measured objective function values f̃i,j of a candidate
solution xi are bounded within known bounds [a, b]. Given this assumption, Hoeffding’s or
Bernstein’s inequality can be used to construct confidence bounds for the estimate of the
sample mean of each individual in the population when having multiple objective function
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Technical Note 5.7: Hoeffding and Bernstein Bounds

Given m noisy evaluations of individual i, f̃i,1, . . . , f̃i,m and the sample mean f̄i of these
m samples. Furthermore, assume that the fitness value is almost surely bounded within the
interval [a, b], i.e., Pr(f̃i ∈ [a, b]) ≈ 1. Using Hoeffding’s inequality we can state that

Pr
(∣∣∣f̄i −E[f̃i]

∣∣∣ ≥ R) ≤ 2 exp

(
− 2R2m

(b− a)2

)
. (5.42)

Using this, we can state that with a probability of at least 1− δ it holds that

∣∣∣f̄i −E[f̃i]
∣∣∣ ≤ (b− a)

√
ln 2

δ

2m
. (5.43)

A more general bound can be obtained by using the empirical Bernstein bound, which uses

the empirical standard deviation, obtained through σ̂2
i = 1

m

∑m
j=1

(
f̃i,j − f̄i

)2

. For this, it
holds with a probability of 1− δ that

∣∣∣f̄i −E[f̃i]
∣∣∣ ≤ σ̂i

√
2 ln 3

δ

m
+

3(b− a) ln 3
δ

m
. (5.44)

Hence, using the Hoeffding or the Bernstein inequality, we can compute a confidence interval
[f̄i − ci, f̄i + ci], with

cHoeffding
i = (b− a)

√
ln 2

δ

2m
, (5.45)

cBernstein
i = σ̂i

√
2 ln 3

δ

m
+

3(b− a) ln 3
δ

m
. (5.46)
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Technical Note 5.8: Selection Through Races

Given for each individual i = 1, . . . , λ object variables xi, absolute lower and upper bound
a and b of the fitness values, a maximal evaluation budget per individual mlimit, the number
of to be selected individuals µ, and required confidence level δ.

1. Let S = ∅, D = ∅, and U = {1, . . . , λ} be respectively the set of selected,
discarded, and undecided individuals. Evaluate each individual once, f̃i,1 = f(xi)
for i = 1, . . . , λ, initialize the lower and upper bounds for each individual, LB i = a,
UB i = b for i = 1, . . . , λ, initialize the sample counter m = 1, and let um = |U |.

2. Set m = m+ 1, and let um = |U |. Then, for each of the undecided individuals i ∈ U ,
reevaluate once f̃i,m = f(xi) and recompute the sample mean f̄i = 1

m

∑m
j=1 f̃i,j .

3. For each undecided individual i ∈ U , compute a new confidence interval[
f̄i − ci, f̄i + ci,

]
using the Hoeffding or Bernstein bound requiring a confidence

of 1 − δ/nb, nb =
∑m−1
j=1 uj + (mlimit − m + 1)um

a. Update the lower and
upper bound based on the new confidence interval: LB i = max{LB i, f̄i − ci},
UB i = min{UB i, f̄i + ci}.

4. For each of the undecided individuals i ∈ U :

• If |{j ∈ U |LB i < UB j}| ≥ λ − µ − |D|, then individual i is probably among
the best µ, so add it to the set of selected individuals S = S ∪ {i} and remove it
from the set of undecided individuals U = U\{i}.

• If |{j ∈ U |UB i < LB j}| ≥ µ−|S|, then individual i is probably not among the
best µ, so add it to the set of discarded individuals D = D ∪ {i} and remove it
from the set of undecided individuals U = U\{i}.

5. Repeat step 3 to 5 until |S| = µ or m = mlimit.

6. Adapt mlimit, if |S| = µ then mlimit = max{3, (1/α) · mlimit}, else mlimit =
min{mmax, α ·mlimit}. Use {f̄1, . . . , f̄λ} as the fitness values for selection andmlimit

as the updated evaluation limit.

aIn order to assure for n estimated intervals a 1 − δ confidence, we require a confidence of 1 − δ/n for each
individual interval (Boole’s inequality). Given that nb,i denotes the total number of computed intervals for individual
i after the full evaluation loop, then there are n = nb,1 + . . . + nb,λ estimated bounds in total. As a (worst-case)
estimate for n, nb =

∑m−1
j=1 uj + (mlimit −m+ 1)um can be used.
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evaluations.
A procedure named race (see Technical Note 5.8) is proposed that incorporates an in-

generation resampling loop that uses these confidence bounds. At the start of the racing pro-
cedure, a confidence bound is computed for each individual. Thereafter, within the resampling
loop, the individuals that are marked undecided are reevaluated and their confidence bounds
are updated. An individual is qualified as undecided when it does not belong to the µ best
(selected) or the λ−µworst (discarded) individuals. By applying resampling on the undecided
individuals, the confidence bounds become tighter. The resampling loop is repeated until there
are µ individuals marked as selected, meaning that there is sufficient belief (i.e., a confidence
of 1−δ) that the µ best individuals are indeed the µ best. Or, in terms of the dominance relation
on intervals proposed by Rudolph [Rud01], resampling is done on the non-dominated solutions
until µ or less non-dominated solutions remain.

Within the race procedure, an upper evaluation limit mlimit for each individual is used,
which is required for obtaining a finite value for nb. If this limit is reached, the race is stopped
and the best µ individuals are selected based on the sample mean. The limit is updated (i.e.,
increased or decreased with a factor α) each generation of the evolution cycle, based on
whether the full budget mlimit is used. Besides that, an absolute evaluation limit mmax is
included to prevent the sample size from getting too large.

As alternative for the race procedure Heidrich-Meisner [HM11] proposed the so-called ε-
race procedure. In this adapted version, the limits mlimit and mmax are not required. Instead
of resampling each of the undecided individuals once each racing step, each individual is
reevaluated θ(t)−θ(t−1) times in the tth racing step, with θ(t) = t2. Besides that, the required
confidence for the nth computed bound is set to δn = cδ/n2, with c = 6/π2. Incorporating
these changes removes the need for a fixed maximum race length. Finally, the notion of ε-
similarity condition was introduced in order to avoid long races. That is, the racing-loop is
stopped when the difference between the highest upper bound and the lowest lower bound of
the individuals that are still undecided drops below a certain threshold ε.

A downside of using Bernstein and Hoeffding bounds is that these require known bounds for
the objective function values. This means that either the noise should be bounded within known
bounds or the bounds of the objective function should be known. If both are unknown, which
is the scenario that we consider in this work, then these bounds should be estimated or the
objective function should be transformed as described in [HM11, p. 112].

A more serious issue is that the Hoeffding and Bernstein bounds, as used in the racing
procedures, are based on assumed bounds on the objective function and not (or hardly) on the
measured noise. For instance, when using the Hoeffding bound in a racing procedure, it does
not matter whether the noise is very small or very high, the Hoeffding bound is only based on
the assumed bounds on the full domain of the objective function. The Bernstein bound does
consider the sample variance, but still contains a large factor (the rightmost term in Eq. 5.46)
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that is not based on it. This is conceptually very undesirable and in this work a reason not to
consider this noise handling technique as suitable option.

Although studying modifications of these techniques falls beyond the scope of this work,
two options could be tried to fix the aforementioned problems. First, the racing procedures
could be adapted when the noise is bounded within known bounds (i.e., z ∈ [a, b]). In that
case, the bounds for each individual i = 1, . . . , λ could be initialized separately, based on
one evaluation of the objective function, yielding possibly much tighter bounds. Second, for
Gaussian noise, an alternative to using Bernstein and Hoeffding bounds is to use the more
classical type of confidence bounds within the same selection procedure. Given the selection
procedure based on races (Technical Note 5.8), an alternative would therefore be to use
Gaussian confidence intervals, as considered by Rudolph [Rud01] (see Eq. 5.39).

5.4.5 Rank-Change Based Uncertainty Measures

Hansen et al. [HNGK09] propose a scheme for handling noisy objective functions implemented
within the CMA-ES; the Uncertainty Handling CMA-ES (UH-CMA-ES). Although originally
proposed in the context of an application to feedback control of combustion, the main concepts
can be applied in more general scenarios, as shown by Heidrich-Meisner and Igel [HMI09b].
Moreover, the uncertainty handling scheme can be applied within any rank-change based
optimization algorithm.

The uncertainty handling scheme separates two components: the quantification of the un-
certainty and the treatment of the uncertainty. That is, the evaluation intensity/accuracy is
increased or decreased based on measurements of the impact of the noise on the selection.

The uncertainty quantification is based on counting the number of rank-changes that
occur when reevaluating (a part of) the population. If the number of rank-changes after
reevaluation is high, then it can be assumed that the uncertainty is high and the noise should
be reduced. If there are only few rank-changes, then the uncertainty is low and a higher noise
level may be allowed. The procedure is described in detail in Technical Note 5.9.

The uncertainty treatment scheme used in [HNGK09] consists of two methods: 1)
increasing the evaluation time teval, and 2) increasing the population variance by increasing the
stepsize. The former is specifically suitable for the problem considered in [HNGK09], as it is
possible to increase the accuracy of the fitness function by increasing the measuring time. The
latter is a secondary treatment method, used when the evaluation time has reached its maximum
tmax. For the uncertainty treatment, as suggested in [HNGK09], a cumulated version s̄ of the
uncertainty measure s is introduced, updated every generation using s̄ = (1− cs)s̄+ css, cs ∈
[0, 1]. Whenever s̄ is greater than zero, the evaluation time is increased with a factor of αt.

For selection, the solutions are re-ranked according to their rank sum: rank (Lnew
i ) +

rank
(
Lold
i

)
. Ties are resolved firstly using the absolute rank change |∆i|, using for the not

reevaluated solutions: ∆i = (1/λreev)
∑λreev

j=1 |∆j |, secondly using the sample mean.
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Technical Note 5.9: Rank-Change Based Uncertainty Quantification

For each solution xi, i = 1, . . . , λ an approximation of its fitness is obtained, i.e.,

Lold
i = f(xi). (5.47)

Then, a parameter λreev is computed using the parameter rλ (recommended rλ = 0.3), with
λreev = fpr(rλ · λ), where the function fpr : R→ Z is defined as

fpr(x) =

{
bxc+ 1 with probability x− bxc
bxc otherwise

. (5.48)

Furthermore, λreev is set to 1 whenever it has been set to 0 for more than 2/(rλ·λ) consecutive
generations. The first λreev solutions are selected for reevaluation, i.e.,

Lnew
i =

{
f(xi) if i ≤ λreev

Lold
i otherwise

. (5.49)

For each solution xi, the rank change ∆i is computed as

∆i = rank(Lnew
i )− rank(Lold

i )− signum
(
rank(Lnew

i )− rank(Lold
i )
)
, (5.50)

where rank(Li) is the rank of function value Li in the set L = {Lold
k , Lnew

k |k = 1, . . . , λ}.
Hence, ∆i counts the number of values from the set L\{Lold

i , Lnew
i } that lie between Lold

i

and Lnew
i . Based on the individual rank-changes, the uncertainty level s is determined as

s =
1

λreev

λreev∑
i=1

(2|∆i|

−∆lim
θ

(
rank (Lnew

i )− I{Lnew
i > Lold

i }
)

(5.51)

− ∆lim
θ

(
rank

(
Lold
i

)
− I{Lold

i > Lnew
i }

))
,

where ∆lim
θ (R) is the θ × 50% percentile of the set {|1 − R|, |2 − R|, . . . , |2λ − 1 − R|}.

It represents the rank change for a given rank R that would occur when given a completely
random function and is a reference for ∆i. The indicator function I returns 1 if its argument
is true, otherwise 0.



86 5. Optimization of Noisy Objective Functions

Algorithm 5.2: Rank-Change Based Adaptive Averaging

Procedure parameters: confidence level θ, averaging increment factor α

Procedure variables: sample size indicator meval, initialized at meval = 2

1. For all candidate solutions x1, . . . ,xλ obtain m1 = dmeval/2e noisy objective
function evaluations

f̃i,j = f̃(xi) , i = 1, . . . , λ , j = 1, . . . ,m1, (5.52)

compute the mean objective function value f̄i,old for each individual i = 1, . . . , λ
based on this sample set, and store them in the set Lold = {f̄1,old, . . . , f̄λ,old}.

2. Repeat step 1 using m2 = bmeval/2c and store the mean objective function values in
the set Lnew = {f̄1,new, . . . , f̄λ,new}.

3. Compute the rank-changes ∆1, . . . ,∆λ using:

∆i = rank(Lnew
i )− rank(Lold

i )− signum
(
rank(Lnew

i )− rank(Lold
i )
)
. (5.53)

4. Compute the uncertainty level based on the rank-changes

s =
1

λreev

λreev∑
i=1

(2|∆i|

−∆lim
θ

(
rank (Lnew

i )− I{Lnew
i > Lold

i }
)

(5.54)

− ∆lim
θ

(
rank

(
Lold
i

)
− I{Lold

i > Lnew
i }

))
.

5. Update the sample size meval using the update rule

meval =

{
α ·meval , if s > 0

meval , otherwise
. (5.55)

6. Generate a ranking x1:λ, . . . ,xλ:λ based on the sample means (f̄1,old +
f̄1,new)/2, . . . , (f̄λ,old + f̄λ,new)/2.
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In this work we consider the algorithm as described in Algorithm 5.2 as an implementation of
the rank-change based uncertainty handling scheme. It is an adapted version of the approach
proposed in [HNGK09], which is done to allow for resampling, but also to make it such that
this scheme differs from Algorithm 5.1 only in the uncertainty indicator. The latter is done for
the sake of comparison of the two approaches.

Two issues that are deliberately left out are the decrement of meval when the uncertainty
level is small (i.e., s < 0), and the upper limit on the sample size. The former is done under
the assumption that the sample size should only increase during an optimization run. The latter
is done in order test the uncertainty handling mechanism itself, eliminating side-effects that
are due to sample size limits. To obtain an insight in the behavior of this rank-change based
uncertainty handling scheme we perform the following experiment:

Experiment 5.4.2 (Performance of rank based adaptive averaging on the noisy sphere prob-
lem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating the eval-
uation procedure of Algorithm 5.2 (named UH-(5/2DI , 35)-σSA-ES) on the 10-dimensional
noisy sphere problem (see Appendix A.1). We take parameter setting α = 1.5 and use varying
θ = 0.5, 0.7, 0.9. As benchmark, we include a (5/2DI , 35)-σSA-ES using a fixed sample
size resampling scheme with m = 50. Each run uses a budget of 100, 000 objective function
evaluations.

The results of Experiment 5.4.2 are presented in Figure 5.10 and Figure 5.11. Figure 5.10
shows the convergence dynamics of the three instances of this adaptive averaging approach,
and as a benchmark the dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.11 shows the single run and average dynamics
of the three instances of this adaptive averaging scheme. The left column shows the distance to
the optimizer versus the number of generations, the middle column the development of sample
size parameter meval, and the right column the development of the uncertainty indicator.

The results of Experiment 5.4.2 are similar to the results of Experiment 5.4.1. As can
be seen in Figure 5.11, increasing the strictness of the uncertainty indicator yields a quicker
growth of the uncertainty level and the sample size, allowing for fewer generations. Also in this
case there is a trade-off between allowing uncertainty and depending on the averaging effects
of multiple generations or requiring a strict confidence in order to obtain a high progress rate
per generation.

5.4.6 Rank-Inversions Based Adaptive Averaging

An alternative to the rank-change based uncertainty measure (see Eq. 5.51 in Technical Note
5.9) is to count rank inversions [Mar01, KEB09a]. For this measure, the distribution is known,
and normal for λ→∞. This allows for a better founded measure of uncertainty which could be
argued to be simpler to implement as compared to the rank-change based measure. Technical
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Figure 5.10: Left: The convergence dynamics (median over 10 runs) of the UH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying θ = 0.5, 0.7, 0.9, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.
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Figure 5.11: The dynamics (median over 10 runs) of the UH-(5/2DI , 35)-σSA-ES on the noisy sphere
problem, using different confidence levels θ = 0.5 (top row), θ = 0.7 (middle row), θ = 0.9 (bottom
row). Left: the distance to the optimizer versus number of generations. Center: the development ofmeval.
Right: the development of the uncertainty level (i.e., the rank-change based indicator).
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Technical Note 5.10: Rank-Inversion Based Uncertainty Measure

Given a population of λ candidate solutions, let rankold
i denote the rank of solution i based

on the fitness values of the first evaluation step and let ranknew
i denote the rank of solution i

based on the fitness values of the reevaluation step. The number of inversions is computed as

Invλ =
∑

(i,j)∈{1,...,λ}2
I(i, j), (5.56)

I(i, j) =

{
0 , if (rankold

i < rankold
i ) ∧ (ranknew

i > ranknew
i )

1 , otherwise
. (5.57)

Let ξλ denote a random variable measuring the number of inversions for a pure random
ordering. The number of inversions for randomly generated perturbations follows a normal
distribution for λ → ∞ with mean E[ξλ] = λ(λ − 1)/4 and its variance is Var[ξλ] =
(2λ3 + 3λ2 − 5λ)/72 (see, [Mar01]).

Using this, an uncertainty measure s can be constructed as

sInv = Invλ −
(
µInv + σInv · Φ−1(θ)

)
, (5.58)

with µInv = λ(λ − 1)/4, σInv =
√

(2λ3 + 3λ2 − 5λ)/72, and Φ−1(.) being the inverse
cumulative distribution function of the standard normal distribution.

Note 5.10 describes how this measure can be used to obtain a similar, but alternative uncertainty
measure for the rank-change based uncertainty handling method of Algorithm 5.2.

In order to test this alternative uncertainty measure, we consider it to be incorporated in the
procedure of Algorithm 5.2 and use it instead of the rank-change based uncertainty measure.
For this adapted scheme we run the following experiment:

Experiment 5.4.3 (Performance of inversions based adaptive averaging on the noisy sphere
problem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating
the evaluation procedure of Algorithm 5.2 that uses the alternative uncertainty measure of
Technical Note 5.10. This scheme is named IUH-(5/2DI , 35)-σSA-ES, and the experiments
are performed on the 10-dimensional noisy sphere problem (see Appendix A.1). We take
parameter setting α = 1.5 and use varying θ = 0.3, 0.5, 0.7. As benchmark, we include a
(5/2DI , 35)-σSA-ES using a fixed sample size resampling scheme with m = 50. Each run
uses a budget of 100, 000 objective function evaluations.

The results of Experiment 5.4.3 are presented in Figure 5.12 and Figure 5.13. Figure 5.12
shows the convergence dynamics of the three instances of this adaptive averaging scheme
compared to the convergence dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.13 shows the single run and average dynamics of
the three instances of this adaptive averaging scheme. The left column shows the distance to
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Figure 5.12: Left: The convergence dynamics (median over 10 runs) of the IUH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying θ = 0.3, 0.5, 0.7, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.
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Figure 5.13: The dynamics (median over 10 runs) of the IUH-(5/2DI , 35)-σSA-ES on the noisy sphere
problem, using different confidence levels θ = 0.3 (top row), θ = 0.5 (middle row), θ = 0.7 (bottom
row). Left: the distance to the optimizer versus number of generations. Center: the development ofmeval.
Right: the development of the uncertainty level (i.e., the inversions based indicator).
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the optimizer versus the number of generations, the middle column the development of sample
size parameter meval, and the right column the development of the uncertainty indicator.

The results of Experiment 5.4.3 are similar to the results of Experiment 5.4.2 of the rank-
change based uncertainty handling approach. As can be seen in Figure 5.13, increasing the
strictness of the uncertainty indicator yields a quicker growth of the uncertainty level and the
sample size, allowing for fewer generations. The uncertainty indicator is, however, not so strict
as the rank-change based uncertainty measure when using the same value for θ, though from
these results this seems to be the only difference.

5.4.7 A Discussion on Adaptive Noise Handling Techniques

Comparing the adaptive averaging techniques discussed in this chapter, we observe the follow-
ing:

Uncertainty quantification and uncertainty treatment: All schemes either implicitly or
explicitly distinguish between uncertainty quantification and uncertainty handling. The term
uncertainty quantification regards the decision mechanism that determines whether or not to
increase the evaluation accuracy of the underlying noise treatment mechanism. The term noise
treatment refers to the underlying noise handling mechanism. All except one of the adaptive
averaging techniques that have been discussed perform uncertainty treatment using resampling
(or explicit averaging). Interestingly, the alternative of increasing the population size is not
considered in any of the adaptive averaging techniques.

In-generation and inter-generation mechanisms: There are two different types adaptation
mechanisms; in-generation and inter-generation mechanisms. In-generation mechanisms are
used in, e.g., the sample allocation scheme, t-test based adaptive resampling, and the races
based approaches. Here, the uncertainty is targeted directly by continuing the resampling
procedure until the uncertainty level is sufficiently reduced. In inter-generation mechanisms,
present in, e.g., the duration scheduling and rank-change based uncertainty handling mech-
anism, the uncertainty treatment is adapted after each generation based on the previous
uncertainty quantification. Inter-generation methods are based on trusting the evolution process
to be partially robust against disturbances in the selection that are higher than the desired level
indicated by the uncertainty quantification as long as the evaluation intensity of the following
generations is increased. Although in-generation methods are more direct, an advantage of
using inter-generation methods is that these are less sensitive to scenarios as observed in the
t-test based approach where many samples are spend on trying to distinguish between two
solutions while their difference might be of no importance in the perspective of the current
stage of the optimization. Note that both mechanisms can be used within the same method. For
instance, the races based approach uses both mechanisms.

Evaluation intensity limitations: Most adaptive averaging methods incorporate an absolute
upper limit for the evaluation intensity. For instance, the races based approach, or the rank-
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change based adaptive averaging method use a maximum sampling limit and a maximum
evaluation time respectively. Moreover, a scheme in which the sample size is allowed to grow
without limit, being the scheme discussed with the t-test based approach, suffers from a rapid
sample size explosion. Apparently there are practical reasons for bounding the evaluation
intensity. However, using such bounds is undesirable from a theoretical perspective, because it
introduces limitations on the convergence accuracy.

Underlying assumptions: When looking at the assumptions on which the uncertainty handling
methods are based (e.g., the type of noise), we see that there are only two uncertainty indicators
that are not based on specific assumptions regarding the noise or the objective function; the
rank-change and rank-inversions based uncertainty measure. Besides that, the assumption that
the noise is Gaussian and the assumption of having the ability to establish confidence bounds
take in a prominent place.

Parameters: The in-generation adaptive averaging schemes that were discussed require at
least one parameter, namely an uncertainty quantification threshold (e.g., a confidence level).
Inter-generation adaptive averaging mechanisms require at least two parameters, namely an
uncertainty quantification threshold and a scaling factor for the evaluation intensity (e.g., a
growth factor for the sample size in explicit averaging). Moreover, when including upper
limits on the evaluation intensity or cumulation of the uncertainty quantification, this number
increases rapidly. In the methods summarized so far, the parameters were mostly set based on
empirical testing.

In conclusion, Table 5.2 shows the different adaptive averaging techniques, summarized with
respect to the assumptions on which they are based, the used uncertainty quantification
measure, and the used uncertainty handling method. Considering the (5/2DI , 35)-σSA-ES and
the CMA-ES, the partial order based adaptive averaging (PUH, Section 5.4.3), rank-change
based adaptive averaging (UH, Section 5.4.5), and rank-inversions based adaptive averaging or
(IUH, Section 5.4.6) provide the most promising alternatives to explicit and implicit averaging.
In the remainder of this work, these schemes will be studied in more depth for their practical
applicability. Two essential, but yet unanswered questions are:

• For each uncertainty quantification measure, at what uncertainty level do Evolution
Strategies still have a positive expected progress and which uncertainty level is optimal?

• For inter-generation adaptive averaging methods, at what rate should the evaluation
intensity increase in order to allow Evolution Strategies to progress?

5.5 Metamodel Assisted Noise Handling
Another class of techniques for dealing with noisy objective functions in the context of Evolu-
tionary Algorithms is formed by techniques that construct a surrogate model (or metamodel) of
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Noise handling scheme Assumptions Uncertainty
quantification

Uncertainty
treatment

Duration scheduling
[AW93, AW94]

The “real” underlying
fitness values of the
population are normally
distributed and the noise
is Gaussian

Ratio between
population variance and
approximation error

Resampling

Sample allocation
[AW93, AW94]

The “real” underlying
fitness values of the
population are normally
distributed and the noise
is Gaussian

The probability of each
individual to be the best

Resampling

t-Test based resampling
[Sta98, CP04, KEB09a]

Gaussian noise Ranking confidence
among all/some pairs of
individuals based on the
t-test

Resampling

Partial order based
selection [Rud01]

The noise is bounded or
Gaussian noise is
assumed, utilizing
confidence bounds

Non-dominance ranking
on interval orders /
acceptance threshold

Resampling

Races based uncertainty
handling [HMI09a]

The objective function
values are bounded
within known bounds

Ranking confidence
among all individuals
based on the Hoeffding
or Bernstein bound

Resampling

Rank-change based
uncertainty handling
[HNGK09]

No assumptions Rank changes after
reevaluation of (part of)
the individuals in the
population

Increasing
evaluation time

Rank-inversions based
uncertainty handling

No assumptions Rank inversions after
reevaluation of the
individuals in the
population

Resampling

Table 5.2: The different adaptive averaging techniques, summarized with respect to the assumptions
which they are based on, the uncertainty quantification measure that is used, and the uncertainty handling
method that is used.
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the underlying objective function based on the full history of noisy measurements, and perform
optimization on this model. Such approaches aim to use all information that is available about
the objective function. Methods that are based on this idea were proposed by Sano and Kita
[SK00, SK02], and Branke et al. [BSS01]. Though these schemes are not the main focus of
this work, this section will provide a brief technical summary.

5.5.1 Memory-Based Fitness Estimation

In [SK00, SK02], Sano and Kita propose an approach named Memory-Based Fitness Estim-
ation (MFE) (see Technical Note 5.11). The core idea of the approach is that the objective
function value of candidate solution x∗, given fitness observation f̃∗, can be estimated by
means of a maximum likelihood approach based on Gaussian model assumptions and the
assumption that there is a spatial relation between x∗ and an archive of previous objective
function measurements A = {(xi, f̃i) | i = 1, . . . , L}. In the approach, the fitness of every
individual in the population is computed following this method. The archive is in this approach
filled with objective function measurements of the previous populations.

In [SK02], an adaptation is proposed to account for situations where the objective function
estimate of a candidate solutions differed too much from the measured objective function value.
In order to prevent these cases, it is proposed to reject the candidate solutions in a population
of which the measured objective function values differed more than a threshold Z from the
best measured objective function value. In [SK02], the threshold Z is recommended to be set
such that the probability of such errors to occur is less than 0.3.

5.5.2 Local Regression Based Fitness Estimation

Branke et al. [BSS01] propose a similar approach, only they consider a model that is based
on different assumptions as compared to the approach of Sano and Kita [SK00, SK02]. In
their approach, they consider stationary Gaussian noise and optimization of the real underlying
objective function.

Technical Note 5.12 describes the general approach proposed in [BSS01]. The modeling
assumption is that the objective function can be locally approximated by a low order polyno-
mial function. They propose to estimate the objective function value of each candidate solution
by building a local model based on an archive of previously evaluated points, weighting each
archive solution based on the distance to the to-be-evaluated solution. The choices that remain
open are to determine the degree of the polynomial used for regression, the choice for the
neighborhood parameter h that assigns a weighting contribution for each archive solution based
on the distance to the to-be-evaluated solution, and the way in which the regression model is
fitted. In [BSS01], a quadratic model is used. As an extension, it is also suggested to use the
information of the local models more extensively by performing local hill-climbing on the
model to locally improve candidate solutions.



5.5. Metamodel Assisted Noise Handling 95

Technical Note 5.11: Memory-Based Fitness Estimation

Assume that the objective function value of each candidate solution is normally distributed
and consider the following modeling assumption:

fj ∼ N (fi, kdij), (5.59)

f̃j ∼ N (fi, kdij + σ2
ε ). (5.60)

Here, fi and fj denote the true objective function values of candidate solutions xi and xj , k
is some constant, and dij denotes the distance dij between xi and xj (i.e., dij = ||xi−xj ||).
Hence, the true objective function value at xj is assumed to be distributed normally random
around the true objective function value of xi, proportional to the distance between xi and
xj .

Given known values of k and σ2
ε , a maximum likelihood estimation approach can be used

to estimate the true objective function value f∗ of candidate solution x∗ based on its own
objective function measurement f̃∗ and an archive of previously observed measurements
A = {(xi, f̃i), i = 1, . . . , L}. When given f∗, the probability of obtaining f̃1, . . . , f̃L is
expressed by

L∏
i=1

p(f̃i, di), where p(f̃i, di) =
1√

2π(kdi + σ2
ε )

exp

−1

2

(
f̃i − f∗

)2

kdi + σ2
ε

 . (5.61)

Here, di denotes the distance between x∗ and xi. One can maximize this expression for f∗,
from which we obtain

f̂∗ =

f̃∗ +
L∑
i=1

σ2
ε

kdi+σ2
ε
f̃i

1 +
L∑
i=1

σ2
ε

kdi+σ2
ε

. (5.62)

The model parameters k and σ2
ε can be estimated using Eq. 5.61 by maximization of the

log-likelihood

argmax
k,σ2

ε

{
−1

2

(
L log 2π +

L∑
i=1

log(kdi + σ2
ε ) +

L∑
i=1

(f̃i − f∗)2

kdi + σ2
ε

)}
. (5.63)

That is, these estimates are taken from the perspective of one candidate solution x∗, with true
objective function value f∗. In [SK00, SK02], the best individual of the current population is
recommended to be used for this estimation procedure and its true fitness is recommended to
be estimated by averaging the objective function values of the five closest individuals. A hill-
climbing method acting on a logarithmic space of k and σ2

ε should be used for maximization
of the log-likelihooda.

aIn [SK02], an exact derivation for the maximum log-likelihood was suggested with respect to σ2
ε , but this

derivation is incorrect.
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Technical Note 5.12: Local Regression Based Fitness Estimation

Assume that the fitness of individual i is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε ). (5.64)

Furthermore, assume that the “real” underlying objective function f(x) can be locally
approaximated by means of a low order polynomial function.

For a candidate solution x∗, construct a locally weighted regression model gx∗,h(x) based
on an archive of previously observed measurements A = {(xi, f̃i), i = 1, . . . , L} and use as
objective function approximation:

f̂expi = gxi,h(x∗). (5.65)

The locally weighted regression model gxi,h(x) is based on a weight function wh(d),
assigning a weight to the contribution of each archive point based on the Euclidean distance d
between the archive point and x∗. The weight function considered in [BSS01] is the tri-cube
function

wh(d) =

{
(1− d3/h)3 , if d < h

0 , otherwise
. (5.66)

The parameter h is called the neighborhood parameter and reflects the size of the
neighborhood for which the assumptions can be considered to be valid.

For setting h, two methods are considered: 1) choosing it such that 5% of the archive
points are considered to be neighboring points, 2) choosing h such that the following cross-
validation criterion is minimized (computed using a numerical hill-climber):

CV (ĝx∗,h) =

∑L
i=1 wh(di)

(
f̃i − ĝ−ix∗,h

)2

∑L
i=1 wh(di)

. (5.67)

.
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5.5.3 A Discussion on Metamodeling Noise Handling Techniques

The validity of these metamodeling approaches depends on three key issues: 1) the extent
to which the modeling assumptions are valid, 2) the quality of the archive with respect
to the to-be-estimated objective function value, and 3) the accuracy of the tuning of the
model parameters. Moreover, it is well-known that for higher dimensional search spaces,
metamodeling becomes increasingly more difficult due to the curse of dimensionality (see,
e.g., [FSK08, p. xvii]).

Regarding the validity of the modeling assumptions, we note that this depends purely on the
optimization problem at hand. Assuming a Gaussian spatial correlation, as done by Sano
and Kita [SK00, SK02], is not uncommon and used, for instance, also in Kriging (see, e.g.,
[SWMW89, JSW98, FSK08]). The same holds for the assumption that the objective function
landscape can be locally approximated using a polynomial model, as done by Branke et al.
[BSS01].

The quality of the archive is in this context an issue of a different kind. For the estimation
of the objective function for a given candidate solution, ideally, the archive should contain data
points that lie well-spread around the given candidate solution. However, when the archive is
straightforwardly built up as the history of candidate solutions obtained by the evolutionary
process of an Evolutionary Algorithm itself, this is not necessarily achieved. See [KEB10] for
an example where straightforward utilization of an archive within an Evolutionary Algorithm
is outperformed by a more careful archive maintenance approach. The approaches discussed
here do not actively try to maintain a “proper” archive with respect to the to-be-estimated
solution qualities, yet the improvements proposed in [SK02] are based on negative effects that
can be related to a poor archive quality.

The accuracy of the tuning of the model parameters of the MFE approach of [SK00, SK02]
is questionable. That is, these parameters are estimated from the perspective of the observed
best candidate solution, using a crude estimate of its real objective function value. The
approach of Branke et al. [BSS01] has a more solid mathematical basis, yet also requires to
tune a correlation distance.

5.6 A General Discussion of Noise Handling Techniques
In the previous sections, the working mechanisms of a number of noise handling techniques
have been summarized. In this review we have made the categorization of basic noise handling
techniques, adaptive averaging techniques, and metamodel assisted noise handling techniques.
The basic noise handling techniques provide the basic techniques on how to reduce the
undesirable effects of noise. Adaptive averaging techniques aim to automatically adapt the
parameters of static noise handling techniques. Metamodeling techniques, on the other hand,
attempt to build a (local) surrogate model of the original objective function, therewith aiming
to generate a near noise-free surrogate objective function.
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Although implicit and explicit averaging are easier to implement than all other schemes
presented, different noise handling techniques seem to be preferable for three reasons:

1. Maintaining arbitrary convergence accuracy.

2. Costly evaluations require efficient usage of the evaluation budget.

3. Eliminating the need to specify sensitive noise-handling parameters.

The first reason regards the drawback of implicit and explicit averaging to target the optimum
with arbitrary precision. However, many adaptive averaging techniques have serious difficulties
with a seemingly exploding number of required evaluations. The races and rank-change based
uncertainty handling techniques therefore use upper bounds on the evaluation intensity, which
in turn bounds the convergence accuracy.

The second, aiming for saving costly function evaluations, has a more practical basis. This
can be seen as motivation for the races and rank-change based uncertainty handling techniques
that by using upper limits on the evaluation effort, therewith aiming to achieve a better
convergence accuracy within less time than a static noise handling technique. Metamodeling
techniques are constructed for this practical purpose too. The computational demands of
metamodeling techniques makes them suitable only in the cases where evaluations are costly,
but the alleged gain is that a reduced number of objective function evaluations are acquired.

The third regards the ideal not to have to set parameters like the sample size for explicit
resampling beforehand. When looking at the adaptive averaging and metamodeling techniques
that have been discussed in the previous section, none of them manages to accomplish this. Yet,
the parameters that are replaced, for instance, in the rank-change based uncertainty handling
technique could be less sensitive than using a fixed sample size.

Based on the former observations, we conclude that for an advanced noise handling technique
to be practically viable, it should be an improvement with respect to implicit or explicit
averaging in either of the following scenarios:

1. Arbitrary convergence accuracy: the advanced noise handling technique can be proven
to maintain the global convergence criterion.

2. Sampling efficiency: given an arbitrary, but fixed evaluation budget, the advanced noise
handling technique should ideally outperform any static averaging technique.

3. Parameter reduction: the advanced noise handling technique should either be com-
pletely parameter-less (strict parameter reduction), or given canonical settings, it should
outperform any fixed static averaging scheme on a majority of problems (weak para-
meter reduction).
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Of the approaches presented in literature, we can say that arbitrary convergence accuracy does
not hold for implicit and explicit averaging nor for adaptive averaging techniques that limit the
evaluation accuracy. For the adaptive averaging techniques that do not limit the evaluation
accuracy and for the metamodeling approaches, arbitrary convergence accuracy remains to be
proven. For all adaptive averaging techniques considered in this chapter, sampling efficiency
remains to be proven. For all adaptive averaging techniques and metamodeling noise handling
techniques, strict parameter reduction is not achieved and weak parameter reduction remains
to be proven.

5.7 Summary and Discussion
In this chapter we have reviewed the problem of optimization of noisy objective functions
using Evolution Strategies from the perspective of the (5/2DI , 35)-σSA-ES and the CMA-ES.

There are different goals for optimization of noisy objective functions, which are modeled
differently in an effective objective function formulation. Choosing an effective objective
function is a design issue that depends on the problem at hand. In systems with intrinsic
additive noise, optimization of the expected objective function is most customary. In systems in
which the noise is due to errors in measurement, optimization of the real underlying objective
function is more appropriate. When the noise is stationary, these two goals are equivalent.
When the noise is non-stationary, other options are also reasonable.

Evolution Strategies are fairly robust against noise when considering the expected objective
function as an optimization goal. However, noise limits the convergence accuracy of Evolution
Strategies and countermeasures are needed when higher accuracy is desired.

The way in which to adapt Evolution Strategies in order to deal with noisy objective
functions depends on what is aimed for. In the second part of this chapter, a number of
noise handling techniques have been described, categorized as: basic noise handling, adaptive
averaging, and metamodel assisted noise handling. Explicit and implicit averaging techniques
can be used to improve the convergence accuracy of Evolution Strategies, but they also suffer
from convergence accuracy limitations. When arbitrary convergence accuracy is aimed for,
adaptive averaging techniques or metamodeling techniques should be used.

The question which of the techniques considered in this chapter is most suitable depends on
the particular type of noise. Moreover, even when considering the specific case of stationary
Gaussian noise, the question remains open which of the advanced noise handling schemes is
the best. Suitable techniques for the (5/2DI , 35)-σSA-ES and the CMA-ES are the partial
order based adaptive averaging technique (PUH), the rank-change based adaptive averaging
technique (UH), and the inversion-based adaptive averaging technique (IUH). We will consider
these three adaptive averaging methods next to implicit and explicit averaging as the most
appropriate candidates for noise handling. For these techniques, the questions that remain are:
1) How should the algorithmic parameters of these adaptive averaging methods be set? 2) How
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do these techniques compare against each other and how do these techniques compare against
their static counterparts; implicit and explicit averaging? In the next chapter we will study these
issues in more detail.


