
Evolution strategies for robust optimization
Kruisselbrink, J.W.

Citation
Kruisselbrink, J. W. (2012, May 10). Evolution strategies for robust optimization. Retrieved
from https://hdl.handle.net/1887/18931

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18931

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18931

Cover Page

The handle http://hdl.handle.net/1887/18931 holds various files of this Leiden University
dissertation.

Author: Kruisselbrink, Johannes Willem
Title: Evolution strategies for robust optimization
Date: 2012-05-10

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/18931

Chapter 4

Evolutionary Algorithms and Evolution

Strategies
The paradigm of evolutionary computation is derived from the model of organic evolution
and refers to the application of the Darwinian principles of evolution for computational
purposes. The term Evolutionary Algorithm refers to an algorithmic method that adopts
the paradigm of evolutionary computation for solving optimization problems. Within these
methods, a population of candidate solutions (individuals) repeatedly undergoes the processes
of reproduction and selection, with the fitness of each candidate solution being expressed in
terms of its quality with respect to the given optimization problem. Hence, the basic elements
of natural evolution are used to breed populations of (near-)optimal solutions.

The main components of an Evolutionary Algorithm are summarized in Section 4.1. For a
thorough introduction to Evolutionary Algorithms, the reader is referred to, e.g., [Bäc96]
and [ES03]. Section 4.2 focuses on Evolution Strategies and introduces the two algorithmic
techniques that are the main focus of this work; the (5/2DI , 35)-σSA-ES and the CMA-ES.
Section 4.3 closes with a summary and discussion.

4.1 Evolutionary Algorithms
Figure 4.1 depicts the general evolution cycle of an Evolutionary Algorithm as a flowchart.
This flowchart is one of the possible variants. It considers a population of candidate solutions
or individuals that, after being initialized in some fashion, enters an evolution loop. A subset
of this population is selected (based on fitness) as parents for creating the offspring of the next
generation. The parents are then used for generating a set of offspring by recombination of two
or more of the parents and mutation of the recombined individual. Thereafter, the population
of the next generation is selected either from the offspring and the parents (elitism) or solely
from the offspring. This loop is repeated until a termination criterion is met.

Representation: Each individual represents a candidate solution for the optimization problem
at hand and should be modeled in some appropriate/convenient way in order to be used within

42 4. Evolutionary Algorithms and Evolution Strategies

Figure 4.1: The iteration cycle of an Evolutionary Algorithm.

the context of Evolutionary Algorithms. For some problems, the representation follows natur-
ally from the description of the search space. For other problems, an abstract representation has
to be designed, making a genotype/phenotype distinction. In the latter case, also a genotype to
phenotype decoding mechanism has to be designed. Two key points in choosing an appropriate
representation are: 1) It should be possible for each element of the search space to be modeled
(preferable uniquely) according to the chosen representation. 2) The representation should
allow for the implementation of genetic operators such as mutation and recombination.

Initialization: The initial population can be based on known good solutions that serve as
starting point for the evolutionary search, or can be generated randomly. When generating
the initial population randomly, it should be well-spread over the search space, which yields a
higher chance of identifying promising regions in the search space. For most representations,
the initialization procedure is fairly straightforward (e.g., using Latin Hypercube sampling in
real-parameter search spaces).

Evaluation: The evaluation component uses the objective and constraint functions of the
optimization problem to assign a quality score or fitness to each individual. Individuals with a
higher fitness will have a higher probability of surviving and passing on their genetic material
(i.e., the candidate solution that they represent) to future generations.

Selection: There are two types of selection: parental selection (or mating selection) and
survivor selection (or environmental selection). Parental selection is a stochastic selection
type that selects the parents that are used for the recombination of a new offspring (i.e., for
the generation of each offspring). In this selection type, the fitter individuals have a higher
probability to be selected as parent for recombination. The latter, survivor selection, is a
deterministic selection type that is applied at an earlier stage. It selects the µ fittest individuals
(the survivors) either out of the λ offspring, or, if elitism is used, out of the λ offspring and
the µ old parents. This selection type is commonly referred to as (µ+, λ)-selection, with (µ+λ)

denoting elitist selection, and (µ, λ) denoting non-elitist selection.

4.2. Evolution Strategies 43

Mutation and recombination: Mutation and recombination are the two types of genetic
operators or variation operators. Mutation operators add small perturbations to the (genotype
representations of the) individuals in the population. Recombination operators recombine two
or more individuals in the population into a new individual by means of crossover (of the
chromosomes). The choice of the genetic operators depends on the chosen representation of
individuals. An important criterion for the genetic operators is that it should be possible to get
from any solution in the search space to any other solution in the search space by applying
the genetic operators a finite number of times. Besides that, the genetic operators should be
well-defined, such that applying the operators to any solution (set of solutions) yields a valid
solution that is also in the search space. Lastly, the genetic operators should be unbiased.

Termination: The termination condition can depend on the available computation time, the
available number of evaluations/generations, or on convergence criteria such as a pre-defined
target fitness that is to be reached. After termination, the best solution(s) of the final population
or the best solution(s) found throughout the evolution loop can be considered as (a) good
solution(s) for the optimization problem. That is, provided the evolution process is granted
enough time.

4.2 Evolution Strategies

Evolution Strategies form a special branch of Evolutionary Algorithms, specifically designed
for real-parameter optimization problems as described by Definition 2.1.11 on page 16. They
have been proposed originally by Rechenberg [Rec73] and Schwefel [Sch77]. Over the years,
the class of Evolution Strategies has broadened into many algorithmic variants, making it
hard to pin down the canonical Evolution Strategy. In this section we will briefly summarize
the basic concepts and the most important Evolution Strategy variants with their respective
algorithmic descriptions.

4.2.1 The (1+1)-Evolution Strategy

The simplest Evolution Strategy is the (1+1)-Evolution Strategy (one parent, one offspring),
presented by Rechenberg [Rec73]. Algorithm 4.1 describes the working mechanism of this
simple Evolution Strategy.

The (1+1)-ES starts with a random solution xp drawn uniform randomly from the search
space [xl,xu] (denoted U(xl,xu)). This solution, the parent individual, is evaluated and the
algorithm enters the evolution cycle. In each generation, one offspring xo is created from the
parent by adding a small random vector to a copy of the parent. The perturbation, or mutation,
is drawn from an uncorrelated multivariate Gaussian distribution:

xo = xp + σz , z ∼ N (0, I). (4.1)

44 4. Evolutionary Algorithms and Evolution Strategies

Algorithm 4.1: The (1+1)-Evolution Strategy

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xp with objective function value fp

1: Set parameters: c← 0.85, G← max(5, n)

2: Initialize: g ← 0, Gs ← 0, σ ← ||xu−xl||
3
√
n

, xp ← U(xl,xu), fp ← f(xp)

3: while not terminate do

4: z ∼ N (0, I)

5: xo ← xp + σz

6: fo ← f(xo)

7: if fo ≤ fp then

8: xp ← xo

9: fp ← fo

10: Gs ← Gs + 1

11: end if

12: g ← g + 1

13: if gmodG = 0 then

14: ps ← Gs/G

15: σ ←

σ/c , if ps > 1/5

σ · c , if ps < 1/5

σ , otherwise

16: Gs ← 0

17: end if

18: end while

19: return (xp, fp)

4.2. Evolution Strategies 45

The newly generated offspring is evaluated and replaces the parent if it has a better fitness.
This loop is repeated until the termination criterion is met. After termination, the best solution
(i.e., the parent after the last iteration) is returned together with its fitness value.

The magnitude of the random perturbation added to the offspring is determined by σ, which
is the so-called stepsize parameter. It is updated everyG iterations based on the success rate ps,
which is the ratio of the mutations that generated an offspring fitter than the parent. The update
of σ follows the so-called 1/5th-success rule [Rec73]; if the success rate is higher than 1/5th,
the stepsize should be increased, if the success rate is lower than 1/5th, the stepsize should be
decreased, and if the success rate is equal to 1/5th, it remains unchanged. For increasing and
decreasing the stepsize, a constant multiplication factor 0.817 ≤ c < 1 is used.

For the parameter c, a reasonable setting is c = 0.85 (see [Bäc96]). For the parameter G, a
reasonable setting is G = n for n ≥ 5. The initial stepsize σ used here is proportional to the
expected distance to the optimum of the initial parent, which according to Schwefel [Sch77] is
a reasonable initial stepsize. In this work we adopt an initialization of σ = ||xu − xl||/(3

√
n).

This is based on the fact that the expected length of a mutation step is E[z] = σ
√
n and that the

average distance between two random points in an n-dimensional cube is proportional to
√
n

[BP09] (we take ||xu − xl||/3 as an approximation), hence, the initial mutation step is taken
to be proportional to the average distance of the initial solution to the optimum.

4.2.2 The (µ/ρ+, λ)-SA-Evolution Strategy

The (µ/ρ+, λ)-SA-ES, originally proposed by Schwefel [Sch77], is a population based exten-
sion of the (1+1)-ES. Instead of generating only one offspring from one parent, λ offspring are
generated from µ parents, based on both recombination and mutation. Another difference as
compared to the (1+1)-ES is the adaptation of the control parameters of the mutation operator.

Algorithm 4.2 shows the general outline of a (µ/ρ+, λ)-SA-ES. Individuals are of the form
a = (x, s, f), where x ∈ Rn is a vector of object variables (i.e., the candidate solution
represented by the individual), s is a set of endogenous strategy parameters (or just strategy
parameters), and f holds the fitness value. The strategy parameters are control parameters
for the mutation operator and are evolved together with the object variables. By including
the strategy parameters in the evolution process, these parameters do not have to be set
externally, but evolution itself adapts them to appropriate settings. Co-evolution of internal
strategy parameters is called self-adaptation (SA).

The algorithm starts with an initial parent population Pp consisting of µ parents, initialized
in some fashion. For each generation, λ offspring are generated from the parent population
Pp, evaluated, and added to the offspring population Po. After generating the offspring, µ
individuals are selected either solely from the offspring population (comma-selection) or from
the union of the parent population and the offspring population (plus-selection) to form the
parent population of the next generation. At the end of each generation the generation counter

46 4. Evolutionary Algorithms and Evolution Strategies

g is increased and the best solution of the new parent population is stored, to be returned after
termination. This procedure is repeated until the termination criterion is met.

For the generation of each offspring, a set R ⊆ Pp of ρ parents is selected randomly from
the parent population for generating the new offspring (marriage). The strategy parameters and
object variables of the selected parents are recombined (recombine s and recombine x) to form
recombinants s and x. These recombinants are thereafter mutated (mutate s and mutate x) and
evaluated to form the new offspring. Note that first the strategy parameters, then the object
variables should be mutated (according to the new strategy parameters) in order to achieve
co-evolution of the strategy parameters.

Marriage: The marriage operation selects a random subset of ρ parents for recombination.
The parameter ρ is called the mixing number. Within Evolution Strategies, recombination is
commonly done either with ρ = 2 parents or with ρ = µ parents (global recombination).

Recombination: There are two different types of recombination: discrete and intermediate.
Recombination is used for both the object variables and the strategy parameters. With discrete
recombination, for each element of the recombinant it is decided uniform randomly from which
of the parents the corresponding element should be copied. That is, given the ρ parental vectors
{rp

1 , . . . , r
p
ρ}, the ith of the new recombinant ro is constructed by

(ro)i =
(
rp
mi

)
i
, mi = rand{1, . . . , ρ}. (4.2)

Here, the recombinant ro can be either the recombinant of the object variables x or of the
strategy parameters s. With intermediate recombination, the value of each element of the
offspring’s object variables or strategy parameters is set to the average over all parents. That is,

(ro)i =
1

ρ

ρ∑
j=1

(
rp
j

)
i
. (4.3)

Figure 4.2 illustrates the working mechanism of the two different recombination schemes for
recombination of two parents.

Within Evolution Strategies, it is not uncommon that different recombination types are
used for the object variables and the strategy parameters. Standard practice is to use discrete
recombination for the object variables, and intermediate recombination for the strategy para-
meters. Regarding notation, the recombination type is sometimes included in the denotation
of particular Evolution Strategies by means of two subscripts on the mixing number ρ (D
for discrete and I for intermediate). The first subscript denotes the recombination type for the
object variables and the second denotes the recombination type for the strategy parameters. For
example, a (µ/ρDI+, λ)-ES denotes a (µ/ρ+, λ)-ES with discrete recombination of the object
variables and intermediate recombination of the strategy parameters.

Mutation: As with the (1+1)-ES, mutation works by adding a random vector generated from
a multivariate Gaussian distribution, which in the simplest case is uncorrelated and isotropic.

4.2. Evolution Strategies 47

Algorithm 4.2: General Outline of a (µ/ρ+, λ)-SA-ES

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xopt with objective function value fopt

1: Initialize: g ← 0, Pp ← initialize ({ak = (xk, sk, fk), k = 1, . . . , µ})

2: while not terminate do

3: Po ← ∅

4: for k = 1→ λ do

5: Rk ← marriage (Pp, ρ)

6: sk ← recombine s (Rk)

7: xk ← recombine x (Rk)

8: sk ← mutate s (sk)

9: xk ← mutate x (xk)

10: {Box-constraint handling}

11: fk ← f(xk)

12: Po ← Po ∪ {(xk, sk, fk)}

13: end for

14: if comma–selection then

15: Pp ← select (Po, µ)

16: else if plus–selection then

17: Pp ← select (Pp ∪ Po, µ)

18: end if

19: (xopt, fopt)← select best (Pp)

20: g ← g + 1

21: end while

22: return (xopt, fopt)

48 4. Evolutionary Algorithms and Evolution Strategies

Figure 4.2: Two recombination types, illustrated for the recombination of two parents. Left: discrete
recombination of two vectors where each element of the new vector is a copy of the corresponding
element of one of the two parents. Right: intermediate recombination of two vectors where each element
of the new vector is the average of the corresponding elements of the parents.

However, besides the object variables, also the strategy parameters are included in the mutation
scheme. Moreover, as these parameters are used to control the distribution from which the
perturbations are drawn, the strategy parameters are mutated before the object variables in
order to achieve co-evolution of the strategy parameters. For isotropic mutations, there is
only one strategy parameter, s = (σ). It scales the magnitude of the isotropic perturbations
(i.e., it controls the stepsize). The combined mutation operation for an offspring with strategy
parameter σ and object variables x is specified as:

σ = σ exp (τN (0, 1)) , (4.4)

x = x + σz , z ∼ N (0, I). (4.5)

Here, σ is mutated using the a log-normal distribution. The parameter τ is the so-called learning
parameter, which controls the magnitude of the changes of σ and is recommended to be chosen
as τ ∝ 1/

√
n. In this work, we adopt the setting τ = 1/

√
2n, which is recommended for

multimodal fitness landscapes (see [BS02]).
Besides the isotropic distribution, two other variants exist: a distribution with different scal-

ings along the main axes and a distribution with correlation of the variables. The philosophy
behind using more involved distributions is that these offer the possibility to align the mutation
distribution with the iso-lines of the fitness landscape, therewith speeding up the search. When
denoting the mutation of the object variables as the addition of a Gaussian random variable
sampled from σN (0,C), with C being the covariance matrix of the distribution, the three
mutation variants can be distinguished by the form of C. For isotropic mutations, C equals
the identity matrix. For scaled uncorrelated mutations, C is a diagonal matrix. For correlated
(scaled and rotated mutations), C is a semi-definite covariance matrix. Figure 4.3 exemplifies
the differences between these three types of mutations for the mutation of a two-dimensional
vector of object variables x. It shows the density map for the generated mutations, with height
lines for points of equal probability. The mutation mechanisms for the other two mutation types
are described in, e.g., [Bäc96, BS02, ES03].

Regarding notation, when using mutative self-adaptation as described above, this is some-
times incorporated into the notation as (µ/ρ+, λ)-SA-Evolution Strategy. In particular, when
using isotropic mutations with only one strategy parameter, σ, this is written as the (µ/ρ+, λ)-

4.2. Evolution Strategies 49

Figure 4.3: The effect of three mutation types, shown by means of iso-lines of the density map of
the mutation distribution for a two-dimensional vector of object variables x. Left: isotropic distribution.
Center: scaled uncorrelated mutations. Right: correlated mutations.

σSA-Evolution Strategy.

Population size: Traditionally, the population size of Evolution Strategies is set to µ = 15 and
λ = 100, adhering to the recommended ratio µ/λ ≈ 1/7 (see, e.g., [Bäc96]). When using only
a single stepsize parameter, smaller population sizes become also possible, such as (1 +, 10)-,
(4+, 28)-, and (5+, 35)-strategies.

Canonical settings: There are many different (µ/ρ+, λ)-SA-Evolution Strategy variants pos-
sible. In this work, we focus on one variant in particular, namely the (µ/ρDI , λ)-σSA-ES,
with ρ = 2, µ = 5, and λ = 35. It uses discrete recombination of the object variables
and intermediate recombination of the strategy parameters, mutation is based on an isotropic
multivariate Gaussian distribution, (which involves only one strategy parameter, σ), and the
selection type is comma-selection. The initialization of the population is done byxk ∼ U (xl,xu)

σk = ||xu−xl||
3
√
n

, k = 1, . . . , µ. (4.6)

4.2.3 The Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), proposed by Hansen and
Ostermeier [HO96, HO01], can be seen as a second generation Evolution Strategy. It is a
(µ/µW, λ) Evolution Strategy that uses comma-selection and global weighted intermediate
recombination (indicated by the subscript W) in which all offspring are generated from
the same recombinant 〈x〉W, computed as the weighted center of mass of the µ selected
individuals, i.e.,

〈x〉W =

µ∑
i=1

wixi:λ, (4.7)

50 4. Evolutionary Algorithms and Evolution Strategies

with
∑µ
i=1 wi = 1 and xi:λ denoting the object variables of the ith best individual. Within the

CMA-ES, the offspring are mutated copies of this recombinant, generated as

zk ∼ N (0, I), (4.8)

yk = C
1
2 z, (4.9)

xk = 〈x〉W + σyk, (4.10)

for k = 1, . . . , λ. Hence, the mutations are drawn from a multivariate Gaussian distribution
N (0, σ2C). The motivation for using such a mutation mechanism is to adapt the mutation
distribution to the local curvature of the fitness landscape. When this is achieved, this has as
effect that the mutations are taken along the gradient direction, which significantly increases
the convergence speed of the algorithm, especially for ill-conditioned problems. In order to
use such a mutation scheme, a proper adaptation scheme of the covariance matrix C and of the
stepsize σ is required. In the CMA-ES, these two issues are handled by two different control
mechanisms. For the former, a covariance matrix adaptation (CMA) scheme is used, for the
latter, a stepsize adaptation mechanism named cumulated stepsize adaptation (CSA) is used.

The covariance matrix determines the direction of the mutations. It is initialized with C = I

and updated each generation based on a weighted empirical covariance estimation of the µ best
individuals of the population (rank-µ-update) and on the direction of the so-called evolution
path pc (rank-one-update). The evolution path (initialized with pc = 0) is loosely defined as
the sequence of successive steps taken by the population over a number of generations. It is
a vector that tracks the direction followed by the population in the past few generations. The
update of the evolution path and the covariance matrix are done in a cumulative way, with

pc = (1− cc)pc +
√
cc(2− cc)µeff〈y〉W, (4.11)

C = (1− c1 − cµ)C + c1pcp
T
c + cµ

µ∑
i=1

wiyi:λy
T
i:λ. (4.12)

Here, 〈y〉W =
∑µ
i=1 wiyi:λ represents the direction of the step taken by the population’s

center of mass 〈x〉W. The parameter µeff is the so-called variance effective selection mass.
The parameters cc, c1, and cµ are the cumulation factors for the evolution path update, the
rank-one-update, and the rank-µ-update respectively.

The stepsize parameter σ scales the mutations. The cumulated stepsize adaptation mech-
anism also uses the so-called conjugate evolution path pσ (initialized with pσ = 0), which
registers both the length and direction of the evolution path. When the length of the evolution
path pσ is short, then steps are taken in opposite directions that cancel each other out, yielding
an ineffective circling behavior. In this case, the stepsize is decreased. When the evolution
path length is large, consecutive steps are taken in the same direction, from which it can be
concluded that the stepsize can be increased for faster convergence. As a reference for the
evolution path length, the CSA mechanism considers the path length that would occur under

4.2. Evolution Strategies 51

Technical Note 4.1: Parameter settings of the CMA-ES

Default population size:

λ = 4 + b3 lnnc, µ = bµ′c, µ′ =
λ

2
. (4.15)

Recombination weights:

wi =
wi∑µ
j=1 w

′
j

, w′j = ln(µ′ + 0.5)− ln j, for i = 1, . . . , µ. (4.16)

Variance effective selection mass:

µeff =

(
µ∑
i=1

w2
i

)−1

. (4.17)

Covariance matrix adaptation parameters:

cc =
4 + µeff/n

n+ 4 + 2µeff/n
, c1 =

2

(n+ 1.3)2 + µeff
, cµ = min

(
1− c1, 2

µeff − 2 + 1/µeff

(n+ 2)2 + µeff

)
.

(4.18)
Stepsize adaptation parameters:

cσ =
µeff + 2

n+ µeff + 5
, dσ = 1 + 2 ·max

(
0,

√
µeff − 1

n+ 1
− 1

)
+ cσ. (4.19)

random selection. The CSA update mechanism can be summarized as

pσ = (1− cσ)pσ +
√
cσ(2− cσ)µeffC

− 1
2 〈y〉W, (4.13)

σ = σ exp

(
cσ
dσ

(
||pσ||

E[||N (0, I)||]
− 1

))
. (4.14)

The update of the evolution path length pσ is similar to the update of pc. The stepsize update
uses an exponential update, with dσ being a damping factor, and E[||N (0, I)||] being the
expected length of a random vector drawn from N (0, I).

The setting of the parameters used within the CMA-ES are given in Technical Note 4.1.
For more details regarding these settings, the reader is referred to [HO96, HO01]. Finally, for
the sake of completeness, Algorithm 4.3 provides an algorithmic description of the CMA-ES.

4.2.4 Box-Constraint Handling

For real-parameter optimization problems, the search space is bounded by the hyperbox
[xl,xu] and in many scenarios it is desirable to only generate candidate solutions that lie
within this hyperbox. Since mutation can yield solutions that are not within this hyperbox,

52 4. Evolutionary Algorithms and Evolution Strategies

Algorithm 4.3: The CMA Evolution Strategy

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xopt with objective function value fopt

1: Set parameters: the parameters λ, µ, µ′, w1, . . . , wµ, µeff , cc, c1, cµ, cσ , dσ are set

according to Technical Note 4.1

2: Initialize: g ← 0, pc = 0, C = I, pσ = 0, σ = ||xu−xl||/(3
√
n), 〈x〉W ∼ U (xl,xu)

3: g ← 0

4: while not terminate do

5: for k = 1→ λ do

6: zk ∼ N (0, I)

7: yk ← C
1
2 zk

8: xk ← 〈x〉W + σyk

9: {Box-constraint handling}

10: fk ← f(xk)

11: end for

12: 〈y〉W ←
∑µ
i=1 wiyi:λ

13: 〈x〉W ← 〈x〉W + σ〈y〉W

14: {Box-constraint handling}

15: pc ← (1− cc)pc +
√
cc(2− cc)µeff〈y〉W

16: C← (1− c1 − cµ)C + c1pcp
T
c + cµ

∑µ
i=1 wiyi:λy

T
i:λ

17: pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffC

− 1
2 〈y〉W

18: σ ← σ exp
(
cσ
dσ

(
||pσ||

E[||N (0,I)||] − 1
))

19: g ← g + 1

20: (xopt, fopt)← (x1:λ, f1:λ)

21: end while

22: return (xopt, fopt)

4.3. Evolution Strategies 53

Figure 4.4: Left: visualization of reflection box-constraint handling in a two-dimensional search space.
Right: an illustration of the working mechanism of the transformation function T[a,b] with a = 4 and
b = 6 (right figure, courtesy of Li [Li09]).

an additional box-constraint handling mechanism is needed in order to accomplish this.

For box-constraint handling, two straightforward methods are to reject mutations that fall
outside the box or to apply a cutoff rule forcing mutated offspring back to the nearest point
on the constraint boundary. In this work we use a reflection mechanism (see [Li09]) in which
mutations are mirrored in the constraint boundaries. That is, the ith element of a candidate
solution x is transformed as:

(x)i = T[(xl)i,(xu)i] ((x)i) , (4.20)

with

T[a,b](x) = x+ y′ · (b− a), (4.21)

y′ =

|y − byc| if byc mod 2 = 0

1− |y − byc| otherwise
, y =

x− a
b− a

. (4.22)

Figure 4.4 visualizes the working mechanism of reflection.

The reason for choosing this mechanism is that it is relatively simple to implement and
it preserves much of the normal dynamics of Evolution Strategies, also near the constraint
boundaries. Moreover, also in practical scenarios where the optimizer might be located very
close to a box-constraint boundary, this method is well applicable.

When using this box-constraint handling mechanism within the CMA-ES, note that the
recombinant 〈x〉W should be computed by addition of σ〈y〉W, not as the weighted mean of
the selected offspring, and handled separately (also with reflection). For the (µ/ρ+, λ)-SA-
Evolution Strategy, reflection only needs to be applied to the offspring.

54 4. Evolutionary Algorithms and Evolution Strategies

4.3 Summary and Discussion
This chapter has provided a brief introduction to Evolutionary Algorithms and in particular
Evolution Strategies, which are designed to solve single-objective real-parameter optimiza-
tion problems. It has introduced the two main algorithmic schemes that will be considered
throughout this work in the context of robust optimization; the (5/2DI , 35)-σSA-ES and the
CMA-ES.

The (5/2DI , 35)-σSA-ES is an element of the class of classical Evolution Strategies as
proposed by Schwefel [Sch77]. It is a population based Evolution Strategy in which the
strategy parameters are included in the encoding of the individuals in order to co-evolve
them together with the object variables (self-adaptation). It uses two-parent recombination
with discrete recombination of the object variables and intermediate recombination of the
strategy parameters. For mutation it uses an isotropic multivariate Gaussian distribution scaled
according to the stepsize parameter.

The CMA-ES [HO96, HO01] can be seen as a derandomized version a classical Evolution
Strategy. The main difference is that it adopts a different way of controlling the strategy
parameters. For the mutation, it uses a multivariate Gaussian distribution based on a full
covariance matrix and scaled with a stepsize parameter. The covariance matrix is adapted
based on the direction of successful mutations (rank-one and rank-µ update) and the stepsize
parameter is adapted based on the length of the evolution path (cumulative stepsize adaptation).
Furthermore, it adopts global weighted intermediate recombination for the object variables and
uses a small population size as compared to the (5/2DI , 35)-σSA-ES.

The two algorithmic schemes are considered to be instantiated canonically as described
in Section 4.2.2 and Section 4.2.3, respectively, and are used in combination with reflection
box-constraint handling as discussed in Section 4.2.4.

In this work, we study to what extent the (5/2DI , 35)-σSA-ES and the CMA-ES are suitable in
robust optimization scenarios, or how they should be adapted in order to make them such. Two
scenarios are considered in particular: optimization of noisy objective functions and finding
robust optima.

