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Chapter 3

Robust Optimization

The traditional view on optimization as presented in Chapter 2 does not account for uncer-
tainties and noise. However, this is not realistic for many real-world optimization problems.
Consider, for instance, industrial engineering applications. A common optimization scenario
is that a non-deterministic simulator replaces the real-world system and the aim is to find
solutions such that the real-world realizations of these solutions are of a good quality, also
when these are slightly perturbed due to manufacturing errors. In this scenario, uncertainties
and noise arise in various ways, e.g., in the form of uncertainty because an approximate model
is used instead of the real-world system, in the form of noise because the simulator is non-
deterministic, and in the form of uncertainty introduced by the inability to generate exact
realizations of the solutions. These observations give rise to two new questions: In what way
can uncertainties and noise arise in the general model of an optimization problem as presented
in Section 2.1? How do we account for this when optimizing on such systems?

The structure of this chapter is as follows: Section 3.1 starts with an overview/taxonomy
of the various ways in which uncertainties and noise can emerge in optimization problems.
In Section 3.2, the scope and goals of robust optimization are derived from this taxonomy.
Section 3.3 presents three real-world optimization scenarios and discusses them in the context
of robust optimization. Section 3.4 closes with a summary and discussion.

3.1 Uncertainties and Noise in Optimization Problems
Often, due to a variety of reasons, the theoretical model used for optimization differs from the
real-world system for which optimal solutions are desired. Examples are:

1. The design variables cannot be controlled with unlimited precision. (input)

2. The operational (or environmental) conditions fluctuate or are known only to a certain
extent. (model)

3. The output of the real-world system or of the (simulation) model is noisy. (output)
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4. Approximation models replace the real-world system within the optimization loop.
(model/output)

5. There is a degree of vagueness in the objectives and/or the constraint boundaries.
(objectives/constraints)

These uncertainties can have a negative impact on the practical applicability of using idealized
models or assumptions for solving real-world optimization problems. Not accounting for
uncertainty and noise might lead to solutions that are found to be optimal with respect to
the idealized model, but which are not useful or performing optimally in practice.

For optimization problems, the terms uncertainty and noise refer to behavior in any part of
the optimization model that can not (fully) be predicted or controlled, or that is subject to
vagueness. As illustrated, the causes of uncertainties and noise in real-world optimization
problems can be manifold. In order to find good methods to deal with uncertainties and noise,
a first step is to distinguish the different classes of uncertainty and noise that can arise in
optimization problems. Among the different ways in which such a classification can be made
(see, e.g., [BS07, JB05, ONL06]), the classification provided in this section will, to a great
extent, follow the categorization of Beyer and Sendhoff [BS07].

3.1.1 Sources of Uncertainty and Noise

One way to distinguish different types of uncertainty and noise within optimization problems
is to categorize them by looking at the parts of the optimization model in which they arise.
When considering the model illustrated in Figure 2.2, one can identify five different locations
where uncertainty and/or noise can enter the optimization model (see Figure 3.1):

A) Uncertainties and/or noise in the design variables

B) Uncertainties and/or noise in the environmental parameters

C) Uncertainties and/or noise in the output

D) Vagueness in the constraints

E) Preference uncertainty in the objectives

These sources of uncertainty/noise are integrated in different ways in the mathematical formu-
lations of an optimization problem.

A) Uncertainties and/or noise in the design variables
With this, deficiencies or fluctuations in the real-world realizations of candidate solutions
are addressed. These deficiencies/fluctuations can arise when in the real-world system,
the design variables can only be realized or controlled with a limited precision. Manu-
facturing imprecisions in product engineering are exemplary for this type of uncertainty,
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Figure 3.1: The general optimization model showing the different parts of the systems in which
uncertainties can arise.

which is the main type of uncertainty considered by the robust design concept. This type
of noise gives rise to two different scenarios:

Scenario 1: A simulation model replaces the real-world system within the optimization
model. In this case the simulator accepts inputs as non-disturbed inputs, though in
practice, solutions cannot be realized with unlimited precision. This can be compensated
for by focusing the optimization on finding solutions that are also of high quality when
slightly perturbed (i.e., finding robust optima).

Scenario 2: The real-world system is enclosed in the optimization loop (experimental
optimization). In this case the disturbances in the input propagate through the output,
hence to the objective and constraint functions. When the disturbances in the design
variables can be measured a posteriori, the optimizer will receive deterministic meas-
urements, but the sampling process cannot be controlled. In case that the disturbances
cannot be measured a posteriori, these disturbances simply yield noise in the objective
and constraint functions. The noise distributions can be of any kind depending on the
distribution of the noise in the design variables, transformed through the output and the
objective and constraint functions.

The effect of variations caused by uncertainties or noise in the design variables can be
modeled within the formulation of an objective functions as:

f̃i(x) = fi(x+ δx), i = 1, . . . , k. (3.1)

And similarly for the constraint functions:

g̃j(x) = gj(x+ δx), j = 1, . . . , p. (3.2)

Here, δx ∈ X is an uncontrollable random or uncertain variable representing the
deviations/fluctuations in the input that are due to uncertainty and/or noise. An important
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observation is that this noise or uncertainty can depend on the values of the design
variables themselves, i.e., it can vary for different x. Furthermore, due to this remodeling,
the outputs of the objective and constraint functions become random variables (in case
the uncertainty δx can be modeled as a random variable) or sets of possible outputs.

B) Uncertainties and/or noise in the environmental parameters
Uncontrollable (environmental) parameters of a system are not considered in the clas-
sical optimization model as presented in Section 2.1 (see Figure 2.2). These parameters
are in the classical view considered to be constants of the system. However, in practice
many of such constants are noisy or uncertain. Fluctuating or unknown operating condi-
tions and deficiencies of internal parameters are possible ways in which uncertainties can
manifest themselves within this part of the optimization model. Similar to uncertainties
in the design variables, the setting in which this type of uncertainty can be actively
compensated for is when a simulation model replaces the real-world system within
the optimization model. Otherwise, the uncertainty propagates to the objective and
constraint functions.

To incorporate such scenarios into the model presented in Section 2.1, we extend it as
follows: Let the set C denote the (possible) settings of uncontrollable environmental
parameters of the system. The models of the objective and constraint functions are
extended by also being a function of the environmental parameters, i.e., f : X ×C → R
for all f ∈ F and g : X × C → R for all g ∈ G.

The effect of variations caused by uncertainties or noise in the environmental parameters
can be modeled in the objective functions as:

f̃i(x, a) = fi(x, α), i = 1, . . . , k. (3.3)

And similarly for the constraint functions:

g̃j(x, a) = gj(x, α), j = 1, . . . , p. (3.4)

Here α ∈ C is a noisy or uncertain counterpart of the constant a ∈ C. As can be seen, by
modeling the uncertainty/noise in this way, the constant environmental parameters a are
replaced by random or uncertain variables α.

C) Uncertainties and/or noise in the output
The third class is formed by output uncertainties or noise. Here we can distinguish two
different types: 1) The system is non-deterministic and produces noisy outputs (e.g.,
the measurements have a stochastic nature and precise evaluation is impossible). 2)
The system produces uncertain output (e.g., models where the quality of the output
of the model cannot be guaranteed to be conform the actual output of the system).
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Note that both types could be present simultaneously, e.g., when using non-deterministic
simulation models.

Noise or uncertainty in the output can be modeled within formulations of the objective
functions as:

f̃i(x) = fi(x) + zfi(x), i = 1, . . . , k, (3.5)

and in the constraint function definitions as:

g̃j(x) = gj(x) + zgj (x), j = 1, . . . , p, (3.6)

with zfi(x) and zgj (x) being random/uncertain variables (possibly indexed by space),
denoting the propagation of the output uncertainty/noise to the objective and constraint
functions.

Note that, strictly seen, the noise in the objective and constraint functions is a product of
the noise in the output. Internally, zfi(x) is a (possibly non-linear) function of the noise
in the output, i.e., y(x) + zy(x). However, as we have chosen to model the objective
functions and constraint functions in terms of x, this cannot be modeled explicitly.

Furthermore, note that uncertainties in the design variables and environmental paramet-
ers in principle propagate as a noisy or uncertain output, i.e., fluctuating/uncertain design
variables and environmental parameters yield fluctuating/uncertain system output.

D) Vagueness in the constraints
Often it is hard to obtain strict and bounded definitions of constraints. When dealing
with constraints like “the temperature should not be too high” or “the risk should not be
too high”, it is not possible (or desirable) to draw a straight line between satisfied and
not-satisfied. Such vagueness calls for methods that can account for this (e.g., by using
fuzzy logic techniques [Zad65, BZ70]).

Fuzzy constraints can be described using the following notation:

gj(x) & 0. (3.7)

Here, & is the fuzzified version of ≥ having the linguistic interpretation “gj(x) is
essentially greater than 0”. However, this notation does not take into account the degree
to which the constraint is fuzzy. For example, considering the “temperature should not
be too high” example, the notation of Eq. 3.7 does not specify the margins for which the
temperature could still be acceptable.

A typical way of modeling uncertainties of this kind is to transform the constraints
by means of membership functions. A membership function is a monotonous (but not
necessarily linear) function Vg which maps a constraint function g(x) to an area bounded
by 0 (strictly violated) and 1 (completely satisfied). Everything between 0 and 1 is in the
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Figure 3.2: A simple linear membership function.

grey area (or transition area), and the higher the value of the membership function, the
higher the degree of satisfaction. Figure 3.2 illustrates the basic idea of a membership
function. Mathematically, this transformation has the following form:

g(x) ≥ 0 becomes Vg(g(x))→ max . (3.8)

A design issue that is introduced is that appropriate membership functions have to be
constructed.

E) Preference uncertainty in the objectives
Preference uncertainty emerges when having multiple conflicting objectives, hence,
when highly subjective trade-off choices have to be made regarding the importance of
objectives. Preference might only be known afterwards, depending on the quality level
that can be achieved for the objectives and the particularities of the trade-offs that exist.
Approaches that use aggregate objective functions which combine multiple objectives
functions into one objective function are prone to such uncertainties. Approaches that
aim to approximate the complete Pareto frontier postpone such preference decisions.

Of these five sources of uncertainty, a distinction can be made between the first three (A, B,
and C) and the last two (D and E). The former involve uncertainty and/or noise in the system
or (simulation) model, whereas the latter involve uncertainty in the optimization model (i.e.,
the way in which a given problem is translated to an optimization problem).

3.1.2 Modeling Uncertainty and Noise

Besides the fact that uncertainties can arise in different parts of the optimization model, another
way to distinguish different kinds of uncertainty and noise is to consider their nature. Up to
now, a distinction has been made between uncertainty and noise, as being two distinct matters.
The question is, however, whether these are indeed separate issues.

The distinction between uncertainty and noise is the same as the distinction between aleatory
uncertainty and epistemic uncertainty which is a particularly popular view in the engineering
field (e.g., [PC96, KD09]). Also, it can be related to the distinction between the two schools
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of statistical theory: frequentist and Bayesian statistics [O’H04, Cox05]. The term aleatory
uncertainty is used to describe uncertainties within a system or model that have an intrinsic
stochastic nature. These are the uncertainties associated with the pure (often said to be irredu-
cible) randomness within a system. Epistemic uncertainty, on the other hand, is the uncertainty
that is due to incomplete or inadequate information (i.e., due to a lack of knowledge). Epistemic
uncertainty should be reducible when more knowledge becomes available. Regarding the two
schools of statistics, the frequentists can be said to accept uncertainty as aleatory, whereas in
the Bayesian statistics the focus is on the degree of belief, which can be related to epistemic
uncertainty [O’H04].

Although the distinction between aleatory and epistemic uncertainty intuitively makes sense,
it is often a source of confusion (see, e.g., [KD09] for a discussion). It is often hard to specify
whether a specific uncertainty is purely due to inherent randomness or due to limited know-
ledge or modeling capabilities. A purely deterministic mind would attribute every uncertainty
to limited knowledge, and indeed in practice many cases of uncertainty are due to abstractions
of details of the system. Similarly, the distinction between frequentist and Bayesian statistics
seems to touch upon the same subject. Here, the debate evolves around the difference between
uncertainty of knowledge versus variability in outcome [Cox05].

To avoid resorting to a lengthy philosophical discussion on this topic, we will make a
distinction based on the difference in the mathematical modeling of the uncertainties. This
is in line with the view presented by Beyer and Sendhoff [BS07]. In fact, one could say that
the decision on the type of uncertainty is left to the person providing the optimization model.
Hence, from the perspective of optimization, we are not so much interested in the actual type
of uncertainty, but rather in the way in which it is modeled within the optimization problem
formulation. Looking at the different ways in which uncertainties and noise can mathematically
be modeled within an optimization model, one can distinguish three classes:

1) Fuzzy
The uncertainty is formulated by fuzzy statements about the possibility or degree of
membership by which a state of an uncertain variable is believed to be plausible (or
desirable). Uncertainties of this type can be modeled with fuzzy sets [Zad65, BZ70].
Using fuzzy sets for this type of uncertainty requires modeling a particular uncertain
variable from a given space of points A as a pair (A,mA). Here, mA : A → [0, 1] is
a membership function that maps each x ∈ A to a “grade of membership” in (A,mA).
The grade of membership is a value between 0 and 1. For a particular x ∈ A, the closer
mA(x) will be to one, the higher its degree of membership ofA or degree of plausibility.

2) Deterministic
The uncertainty is formulated by statements about the crisp possibility of whether a
state of an uncertain variable is possible or not. Uncertainties of this type can be modeled
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using crisp sets. A particular uncertain variable of this type is modeled as a pair (A,mA),
with A being the crisp set and mA denoting the membership function. The membership
function is of the form mA : A → {0, 1}. Hence, a particular x ∈ A can be noted to
be either a member of the set A, when mA(x) = 1, or not to be a member of A, when
mA(x) = 0.

3) Probabilistic
The uncertain variable is believed to be a stochastic random variable. A probability
measure can be established measuring the probabilistic frequency of events that may
occur. Uncertainties of the probabilistic type can be modeled using probability functions
(or probability density functions in case of continuous domains). In this case, a function
p : A → R≥0 maps every event x in the space of all possible events A to a probability
(density) value denoting the probability of that particular event. Note that the function p
should conform to the classical Kolmogorov axiom system [Kol33].

From the perspective of mathematical modeling, this division can also be seen as a hierarchical
structure of increased knowledge of the uncertainty. In the first type, there is uncertainty about
the domain of the variation and the probabilities of the uncertainty events. In the deterministic
type of uncertainty, the domain of the variation is known, but there is no knowledge about the
probabilities of the events. In the probabilistic type of uncertainty, both the domain and the
probabilities of the individual variation events are known. Although this distinction might be
subtle (and the mathematical formulations might seem very similar), this difference is of great
importance, as it requires different methods for treating these types of uncertainty.

Returning to the distinction between aleatory and epistemic uncertainty (and also the distinc-
tion between uncertainty and noise), we can see that aleatory uncertainty is the uncertainty
of the probabilistic type and epistemic uncertainty is the uncertainty that is either of the
deterministic or possibilistic type. A schematic view is given in Table 3.1. Moreover, when
adopting this view, we can say that (agreeing with [KD09]) the aleatory/epistemic distinction
is made by the person modeling the optimization problem and it is fair to make a distinction
between these two types of uncertainty within the scope of the optimization model.

3.1.3 Stationary versus Non-Stationary Noise

One issue that has not yet been covered in the discussion about the modeling of noise is the
distinction between stationary noise and non-stationary noise. Traditionally, these terms are
used within the context of time-based systems in which the output is noisy. The term non-
stationary noise indicates that the noise distribution changes over the course of time, whereas
the term stationary noise indicates that the noise distribution is independent of time.

For optimization problems, this notion does not restrict to time, but can also be used in the
context of space, i.e., non-stationary uncertainty/noise differs among the candidate solutions.
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Conceptual classification Mathematical modeling Mathematical properties

Epistemic (uncertainty)
Possibilistic

Uncertainty domain unknown
Probabilities unknown

Deterministic
Uncertainty domain known
Probabilities unknown

Aleatory (noise) Probabilistic
Uncertainty domain known
Probabilities known

Table 3.1: A classification of the types of uncertainty in terms of their mathematical properties based
on the conceptual distinction between epistemic and aleatory uncertainty.

Looking back at the descriptions of the sources of uncertainty one notes that for uncertainties
of type A and C, the noise/uncertainty might vary for different values of x ∈ X . If the
noise/uncertainty varies for different values of x, we call the noise/uncertainty non-stationary,
if the noise/uncertainty is the same for all x ∈ X it is called stationary.

3.1.4 Cases of Uncertainty and Noise

Five sources combined with three types of uncertainties/noise yields theoretically 15 different
concepts of uncertainty/noise that can be encountered within optimization problems. When
including the distinction between stationary and non-stationary uncertainty/noise and the
consideration that multiple types of uncertainties/noise can be present simultaneously within a
real-world optimization problem, this picture becomes even more discouraging. Indeed, the
variety of cases of uncertainty/noise that can arise from the combinations of the different
cases complies with the complexity of real-world scenarios. In practice, however, some
scenarios occur more often than others, and those are worthwhile studying in relative isolation
(i.e., one type of noise within one part of the optimization model). Table 3.2 summarizes
the combinations of class/type of uncertainty/noise as they can occur within optimization
problems.

Uncertainty in the design variables (class A) is often uncertainty of type 3, i.e., probabilistic
uncertainty. As this source of uncertainty is based on scenarios in which in the real-world
the design variables cannot be set infinitely accurate, its relation to aleatory uncertainty with
respect to the optimization model is undeniable. Hence, these are cases in which it is well
doable and reasonable to describe the uncertainty using probability distributions. In cases
where the uncertainty in the design variables is modeled as type 1 or type 2 uncertainty, these
descriptions should be strict in order for optimization to make sense at all (i.e., having a broad
uncertainty range for each candidate solution basically makes the solutions incomparable,
hence not worth optimizing). Both stationary and non-stationary noise are possible for this
uncertainty class. Hence, there are scenarios in which the fluctuations of the design variables
depend on the settings themselves, but it may also be that the fluctuations have the same
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Class Type Stationarity / non-stationary

A) Uncertainties and/or noise in
the design variables

1) Possibilistic
Stationary or non-stationary2) Deterministic

3) Probabilistic

B) Uncertainties and/or noise in
the environmental parameters

1) Possibilistic
Stationary2) Deterministic

3) Probabilistic

C) Uncertainties and/or noise in
the output

1) Possibilistic
Stationary or non-stationary2) Deterministic

3) Probabilistic

D) Vagueness in the constraints
1) Possibilistic

Stationary2) Deterministic
3) Probabilistic

E) Preference uncertainty in the
objectives

1) Possibilistic
Stationary2) Deterministic

3) Probabilistic

Table 3.2: Classification and categorization of different manifestations of uncertainty/noise as they can
occur within optimization problems. Note that the bold types of uncertainty are considered to be “more
common” and the crossed-out types are consdered to be nonexistent.

characteristics for all candidate solutions.

In class B, all three types can be encountered. Uncertainties of probabilistic nature occur
when system parameters are due to fluctuations. Possibilistic and deterministic uncertainty
occur when model parameters that represent real-world parameters are unknown. Class B
uncertainties are always stationary with respect to the given design variables. That is, being
fluctuations in the operation conditions of the system, they cannot depend on the particular
settings of the design variables.

In class C, also all types of nature of uncertainty can be encountered. When dealing with noisy
output, this uncertainty is of type 3. When the uncertainty arises due to the use of uncertain
prediction models, the uncertainty is of type 1 or type 2. Moreover, when using stochastic
simulation models, the uncertainty can be a composite of type 3 and type 1/2. Also this type of
uncertainty can be both stationary and non-stationary with respect to the design variables.

In class D and class E, the nature of the uncertainties is always described as type 1 or
2 uncertainty. These are classes of uncertainty that are somewhat different than the other
classes. These classes do not regard uncertainty within the model or the system, but rather
the uncertainty of specifying what is desirable or acceptable. These types of uncertainty are
only stationary with respect to the design variables.
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3.2 Robust Optimization
Up to now, we have discussed the various ways in which uncertainty and noise can present
themselves within optimization problems. Given this taxonomy, the next question is: what
is robust optimization? In Section 1.1 it is noted that there exist different views on this
matter. Some consider robust optimization to involve input uncertainties and/or noise in the
design variables (e.g., [BBC11, BNT10]), whereas others consider a broader view, considering
robustness with respect to uncertainties within the system or (simulation) model (e.g., [BS07]).

In this work, we consider robust optimization to be the practice of optimization given un-
certainties and/or noise in the system or (simulation) model. Note that we exclude modeling
uncertainty. For any kind of uncertainty and/or noise of class A, B, or C, robust optimization
deals with the questions:

• In what way do uncertainties and/or noise within the system or (simulation) model
affect optimization algorithms and the practical applicability of solutions found by
optimization algorithms?

• How should optimization algorithms be adapted in order to account for uncertainties
and/or noise within the system or (simulation) model?

With this we can extend the practical goal of optimization of Definition 2.2.1 and formulate
the general goal of robust optimization as:

Definition 3.2.1 (Practical Goal of Robust Optimization): Given an optimization problem with
uncertainty and/or noise within the system or (simulation) model, and given an optimization
goal and a limited number of resources. The practical goal of robust optimization is to use
these resources to find (an) as good as possible solution(s) despite uncertainty and/or noise,
that are also optimal and useful in the face of the uncertainties/noise.

Note here that optimality with respect to the uncertainties and/or noise should be defined within
the scope of the uncertainty and/or noise at hand. Besides that, from this formal definition two
intrinsically different targets of robust optimization can be distinguished, related to uncertainty
and noise within optimization problems:

1. Target to find optimal solutions in noisy/uncertain environments.

2. Target to find robust solutions.

The first aim is to deal with the fact that the system on which the optimization is performed
is not guaranteed to be noise/uncertainty-free and the problem is to design an optimization
method that is able to deal with this in order to find solutions which are of good quality
(also in practice). The other aim represents the desire to find solutions that are also of good
quality when variations in the design variables or environmental parameters occur. This aim
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Robust Optimization Target Uncertainty class

Finding robust solutions
A) Uncertainties and/or noise in the design variables
B) Uncertainties and/or noise in the environmental
parameters

Optimization in noisy and uncer-
tain environments

C) Uncertainties and/or noise in the output

Table 3.3: The two targets of optimization can roughly be related to the place in which the
uncertainty/noise emerges.

emerges when instead of the real-world system, models are used for optimization and candidate
solutions or internal model parameters cannot be guaranteed to be set infinitely precise in the
real-world system. Hence, it focuses on the robustness of the solutions themselves. Table 3.3
summarizes this global categorization of robust optimization problems.

In literature often isolated scenarios for robust optimization are considered. That is, isolated in
the sense that only one particular type of noise/uncertainty, present in one particular part of the
system or (simulation) model is considered. The most prominent scenarios are:

• Optimization of noisy objective functions (e.g., [FG88, Bey00])

• Optimization of uncertain objective functions (e.g., [KAE+09])

• Optimization on systems in which the design variables are affected by uncontrollable
and unmeasurable perturbations (e.g., [BOS03])

• Finding robust optima in anticipation of perturbations of the design variables (e.g.,
[TG97, GA05, ONL06, PBJ06])

• Finding robust optima in anticipation of fluctuations of the environmental parameters
(e.g., [Hop09])

• Finding robust optima in anticipation of different operation conditions of the environ-
mental parameters (e.g., [RKD+11])

In the remainder of this work, we will also consider such isolated scenarios. In particular, we
consider two scenarios as exemplary for robust optimization, optimization of noisy objective
functions and finding robust optima in anticipation of perturbations of the design variables,
and study the way in which to solve such robust optimization problems. However, the reader
should be aware of the fact that the practice of robust optimization comprises a broad variety
of scenarios of uncertainties and/or noise.
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3.3 Real-World Robust Optimization Scenarios
This section is devoted to present three real-world optimization scenarios in which uncertainty
and noise are inherent parts of the system of interest. These scenarios are related to the view
on robust optimization as presented in this chapter.

3.3.1 Deep Drawing Optimization

The optimization of the design of a deep drawing process for sheet metal forming in engin-
eering is a typical example of a robust optimization problem (see, e.g., [SH04, PLBG07]).
The design of a deep drawing process involves finding proper settings for the process (e.g.,
drawing forces), such that the end product of the deep drawing process is of the desired
geometrical shape that complies to, or is as good as possible with respect to properties relating
to plasticity, thickness, and probability of forming failure. In practice, finite element software is
often used for virtual testing of candidate designs. Hence, the design of a deep drawing process
is an optimization problem for which automated optimization techniques are in principle well-
suited. Uncertainty and noise arise in several ways in such optimization problems:

A) Uncertainties and/or noise in the design variables:
In the real-world manufacturing process, the drawing forces, such as the drawbead
forces, the binder force, and the punch force cannot be set infinitely accurately (type
3). Designs should be robust against fluctuations in these variables.

B) Uncertainties and/or noise in the environmental parameters:
Parameters within the simulation model are uncertain and/or noisy, e.g., the friction
coefficient (type 1/2) or the blank thickness (type 3). Designs should be robust against
these uncertainties and fluctuations.

C) Uncertainties and/or noise in the output:
Due to the limited accuracy of a (finite element) simulator, the simulation output is not
guaranteed to match real-world behavior exactly (type 1/2). The optimization algorithm
should be robust against this type of uncertainty and find good solutions despite the
difficulty in the quality assessment of candidate designs.

The robust optimization goals for such problems are to find optimal designs (or solutions) that
are robust against fluctuations and uncertain conditions in real-world practice, and furthermore
to assure robustness of the optimization process itself, that has to deal with the uncertainty in
the assessment of the quality of candidate solutions.

3.3.2 Building Performance Optimization

With increasing quality of Building Performance Simulation (BPS) tools, including optim-
ization approaches for finding optimal building designs becomes more and more viable



36 3. Robust Optimization

[HHPW07, EHM+08, Hop09, HTHB11]. Consider, for example, the problem of optimizing
building designs for thermal comfort (maximization) and energy consumption (minimization)
with respect to the following design variables: infiltration rate (air exchange rate per hour in
the building), window fraction (the amount of glass percentage on one wall of the building),
load equipment (power equipment per net floor surface), and load lighting (power lighting per
net floor surface). By using BSP tools for the evaluation of candidate solutions (i.e., alternative
designs), automated optimization can be used to optimize building designs. The ways in which
uncertainty and noise arise in such optimization problems are:

B) Uncertainties and/or noise in the environmental parameters:
The operation conditions of a building in the real-world are uncertain and fluctuating.
An obvious example is the outside temperature that changes from hour to hour and from
day to day. For successful integration of optimization in this context, candidate designs
should be evaluated with respect to these fluctuating environmental operating conditions.

C) Uncertainties and/or noise in the output:
BPS tools are not guaranteed to match the real-world behavior exactly (type 1/2). The
optimization algorithm should be able to find high quality designs despite the difficulty
in the quality assessment.

Moreover, although we do not consider them in the scope of robust optimization, also uncer-
tainties of class E emerge in such problems. That is, thermal comfort is a typical objective in
which preference uncertainty arises as this is an inherently subjective objective, these indicators
are fuzzy measures.

3.3.3 Molecular Design Optimization

In de novo design of molecular structures, the challenge is to find molecular structures that
could be active components of drugs. In order for a molecular structure (or ligand) to be
suitable as a drug component, a number of criteria should be met. First, it should be active
on the targeted receptor. Second, it should fulfill a number of criteria such that it is actually
taken in by the body, it is not toxic or harmful in other ways, and it should be possible to
actually create (synthesize) the structure (preferably as easily as possible).

In practice, automated methods can be used for in silico design of candidate molecular
structures (see, e.g., [NAP09, KBIvdH08, KAE+09]). A simple setup, for instance, is to use
docking simulations to predict the binding affinity of a candidate ligand to a receptor, and
simple descriptors (such as Lipinski’s rule of five [LLDF01]) to determine the likelihood of a
candidate ligand to be generally suitable as a drug. Given this, the design task (or optimization
task) is to find molecular structures that have a high docking score, and also score well on the
simple descriptors (hence, it is a multi-objective optimization problem). The ways in which
uncertainty and noise arise in such optimization problems are:
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C) Uncertainties and/or noise in the output:
The simulation output of the docking simulator is an approximation of the real-world
behavior (type 1/2). Due to the use of a stochastic simulator, the outputs of the simulator
are noisy (type 3). The optimization algorithm should be robust against these types
of uncertainties and noise and find good solutions despite the difficulty in the quality
assessment of candidate molecular structures.

Moreover, although we do not note them as being in the scope of robust optimization, also
uncertainties of class D and class E emerge in such problems. Vagueness in the constraints
can emerge when constraint bounds are used for the simple descriptors that determine the
likelihood of a candidate ligand to be generally suitable as a drug (see, e.g., [KEB+09b]).
Preference uncertainty can emerge when the objectives are combined into one aggregate
scoring function.

3.4 Summary and Discussion
In this chapter we have extended the model of optimization problems as presented in Chapter 2
to a model that includes uncertainties and noise as they can arise in real-world optimization
problems. It has been shown that the various sources and types of uncertainty and noise yield
a combinatorial explosion of different scenarios. Yet, a few isolated scenarios can be identified
that emerge frequently, hence, are worthwhile subjects of study.

In this work, we consider robust optimization as the practice of optimization given un-
certainties and/or noise in the system or (simulation) model. Hence, we exclude uncertainties
that arise from the modeling of an optimization problem. Robust optimization deals with two
goals: 1) the aim to find optimal solutions in noisy/uncertain environments, and 2) the aim to
find robust solutions.

The concepts introduced in this chapter were exemplified by means of three real-world
optimization scenarios; deep drawing optimization, building performance optimization, and
molecular design optimization. For these three scenarios it was illustrated how the various
forms of uncertainties/noise enter the optimization model, therewith stressing the importance
of robust optimization.

In the second part of this work we will focus on two scenarios of robust optimization for real-
parameter optimization problems: optimization of noisy objective functions and the problem of
finding robust optima. For these two scenarios we will study how Evolutionary Algorithms, and
in particular Evolution Strategies, should be adapted in order to deal with robust optimization
problems.




