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Chapter 2

Optimization

This chapter lays out the background of this work by providing a summary of black-box
optimization. It introduces the “classical” view on optimization together with the concepts and
terminology that are commonly used within this context. This classical view on optimization
will be extended in Chapter 3 to form a definition of robust optimization.

Section 2.1 starts with providing a global description and a formal definition of a black-box
optimization problem as it will be used in this thesis. Section 2.2 discusses how the practice
of optimization is generally perceived in practical applications. Section 2.3 zooms in on the
concept of objective function landscape, which is a frequently used metaphor for perceiving
optimization problems. Section 2.4 focuses on real-parameter optimization problems, being the
main type of optimization problem discussed in this thesis. Section 2.5 provides an overview of
black-box optimization algorithms and the general goal of automated optimization. Section 2.6
closes with a summary and discussion.

2.1 Optimization Problems
The model of Figure 2.1 describes an optimization problem. It considers a system that produces
output y as a function of input x. Keeping it as general as possible, we note that x and y can
be of any form and assume that there is no knowledge about the internal mechanisms of the
system, i.e., it is considered to be a black-box. Given such a system and a large number of
possible input settings, the central problem of optimization can be loosely formulated as:

What setting(s) of the input x yield(s) the best possible (optimal) output y?

Figure 2.1: The general black-box model of a system.
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Figure 2.2: The general model of an optimization problem.

To deal with problems of this type, the model of Figure 2.1 is commonly transformed into a
form as depicted in Figure 2.2. In many cases the system that is considered is replaced by an
abstract model of the system (e.g., a mathematical model or a simulator). Furthermore, one
or more objective functions f1, . . . , fk and optionally also a number of constraint functions
g1, . . . , gp are introduced. The objective functions are of the form fi : X × Y → R and
assign score values to each input x ∈ X based on its respective output y ∈ Y . Note that
we could also neglect the intermediate mapping X → Y , which yields the more common
form fi : X → R. Without loss of generality, we assume that each score function is to be
minimized. The constraint functions are of the form gi : X ×Y → R and rate the feasibility of
each possible input x, again using y. Also here the intermediate mapping could be neglected
to obtain the more common form gi : X → R. For a possible input x, it should hold that
gi(x) ≥ 0 in order for x to be feasible1.

The model of an optimization problem of Figure 2.2 can also be described mathematically:

Definition 2.1.1 (Optimization Problem): An optimization problem is a triple (X ,F ,G),
where:

• X is the search space, which is the nonempty set of all possible solutions.

• F = {f1, . . . , fk}, k ∈ N1, is a set of one or more objective functions that are to be
minimized. Each objective function is a function of the form f : X → R that maps
elements of the search space to a score value.

• G = {g1, . . . , gp}, p ∈ N0, is a set of constraint functions that need to be satisfied. Each
constraint function is of the form g : X → R mapping elements of the search space to
a constraint value. For a certain input x ∈ X a constraint g is said to be satisfied if and
only if g(x) ≥ 0. Otherwise, if g(x) < 0, then solution x violates the constraint and is
therefore infeasible.

1Constraints of the form g(x) ≥ 0 are referred to as inequality constraints. In literature, also another type of
constraint is used, namely the equality constraint, which is of the form h(x) = 0. In the definition given here,
equality constraints are not included because they can easily be constructed using two inequality constraints (i.e.,
g(x) ≥ 0 ∧ −g(x) ≥ 0⇔ g(x) = 0).
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Furthermore, we use the following definition of feasibility:

Definition 2.1.2 (Feasible Solution and Set of Feasible Solutions): For an optimization prob-
lem (X ,F ,G), the set of feasible solutions A is the set

A = {x ∈ X | gi(x) ≥ 0, i = 1, . . . , p}, (2.1)

and each solution x ∈ A is called a feasible solution.

Given a problem that fits Definition 2.1.1, the goal of optimization can still vary and roughly
be of one of the following forms:

1. Find a feasible solution that is optimal with respect to the objective function(s).

2. Find all feasible solutions that are optimal with respect to the objective function(s).

3. Find a specific set of feasible solutions that are optimal with respect to the objective
function(s).

Here, “a specific set of solutions” loosely denotes the cases where, either implicitly or
explicitly, also a secondary set selection criterion encompasses the optimization problem (e.g.,
searching for a diverse set of solutions requires a diversity notion based on sets of solutions).
In addition to these three aims, a second class of optimization goals can also be identified in
which the aim is to find solutions of which the objective function value(s) satisfies/satisfy (a)
certain threshold value(s):

4. Find a feasible solution of which the objective function value(s) satisfies/satisfy (a)
certain threshold value(s).

5. Find all feasible solutions of which the objective function value(s) satisfy (a) certain
threshold value(s).

6. Find a specific set of feasible solutions of which the objective function value(s) satisfy
(a) certain threshold value(s).

Note that the latter three aims could also be seen as constraint satisfaction problems (i.e., an
objective function with a threshold is effectively a constraint function).

Given the definition of an optimization problem and the loosely defined possible goals of
optimization, next we will give more formal definitions of optimality. However, in order to
do this, we will make a distinction between single objective optimization problems and multi-
objective optimization problems and provide separate definitions for both classes.

2.1.1 Single Objective Optimization Problems

A single objective optimization problem is a special instance of an optimization problem,
defined as
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Definition 2.1.3 (Single Objective Optimization Problem): A single objective optimization
problem is an optimization problem with precisely one objective function. For the triple
(X ,F ,G), the set F consists of exactly one objective function (k = 1 in Definition 2.1.1).

Given a single objective optimization problem, based on the definition of Törn and Z̆ilinskas
[TZ89], Bäck [Bäc96] defines the global optimization problem as the problem of determining
a global minimizer:

Definition 2.1.4 (Global Minimum/Optimum and Global Minimizer/Optimizer): For a single
objective optimization problem (X ,F ,G) with F = {f} and a set of feasible solutions A, the
global minimum or global optimum f∗ is the value

f∗ = min{f(x) |x ∈ A}, (2.2)

and every solution x∗ ∈ A for which it holds that f(x∗) = f∗ is called a global minimizer or
global optimizer.

This definition falls into the first item of the enumeration on page 13. Moreover, there are
two other important remarks that have to be made. First, it is important to realize that there
exist objective functions for which no global minimum exists. This can happen for objective
functions of which the image f [A] of f : A → R is non-compact (e.g., the infimum of f [A] is
not included in f [A]). Secondly, one should note that when a global optimum does exist, there
is only one global optimum, but there might be multiple global optimizers.

As it might happen that there are multiple solutions x for which holds that f(x) = f∗, an
extended goal of global optimization is to find all global minimizers (see [TZ89]):

X∗ = {x ∈ A | f(x) = f∗}. (2.3)

This extended goal falls into the second item of the enumeration above.

The alternative goals of finding solutions with objective function values satisfying a certain
threshold value (items 4–6 in the enumeration on page 13) are for single objective optimization
problems known as super/sub level set optimization problems:

Definition 2.1.5 (Sublevel Set): For a single objective optimization problem (X ,F ,G) with
F = {f} and set of feasible solutions A, the sublevel set below level d is the set

Ld = {x ∈ A | f(x) ≤ d}. (2.4)

2.1.2 Multi-Objective Optimization Problems

A multi-objective optimization problem is a special instance of an optimization problem,
defined as

Definition 2.1.6 (Multi-Objective Optimization Problem): A multi-objective optimization
problem is an optimization problem with more than one objective function. I.e., for the triple
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(X ,F ,G), the set F consists of at least two objective functions.

For multi-objective optimization problems, the definition of optimality is often based on the
notion of Pareto dominance on the objective space. Pareto dominance introduces a partial order
on the space of objective function values, being Rk for a problem with k objectives. In the
context of minimization, this order is defined as:

Definition 2.1.7 (Pareto Dominance, Weak Pareto Dominance, Strict Pareto Dominance, and
Incomparability): For any two vectors u and v:
u dominates v (notation u ≺Pareto v or just u ≺ v) iff:

∀i ∈ {1, . . . , k} : ui ≤ vi (2.5)

and ∃j ∈ {1, . . . , k} : uj < vj , (2.6)

u weakly dominates v (notation u � v) iff:

u � v ∨ u = v, (2.7)

u strictly dominates v iff:

∀i ∈ {1, . . . , k} : ui < vi, (2.8)

u and v are incomparable (notation u ||v) iff:

u � v ∧ v � u. (2.9)

The partial order introduced by using the notion of Pareto dominance on the solution space can
be used to define the goal of multi-objective optimization as to find Pareto optimizers:

Definition 2.1.8 (Pareto Optimizer and Pareto Optimum): For a multi-objective optimization
problem (X ,F ,G) with a set of feasible solutions A, the set of Pareto optimal solutions X∗

is the set of all solutions x∗ ∈ A with function values f(x∗) = [f1(x∗), . . . , fk(x∗)] for
which it holds that there does not exist another solution x ∈ A with function values f(x) =

[f1(x), . . . , fk(x)] such that f(x) dominates f(x∗). I.e.,

X∗ = {x∗ ∈ A | @x ∈ A : f(x) ≺ f(x∗)}. (2.10)

An element of the set of Pareto optimal solutions x∗ ∈ X∗ is called a Pareto optimizer and its
objective function value vector is called a Pareto optimum.

Although for some multi-objective optimization problems it is sufficient to find a Pareto
optimal solution, in general, when a problem is defined as a multi-objective optimization
problem, it is intended also to get insight in the trade-offs between the various objectives.
Therefore the more usual (customary) aim for multi-objective optimization is to find the set of
all Pareto optimal solutions or at least a representative subset of it.

Definition 2.1.9 (Pareto Front and Efficient Set): For a multi-objective optimization problem
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(X ,F ,G), the set of all Pareto optima is called the Pareto Front and the set of all Pareto
optimizers is called the Efficient Set.

With the definitions for a single- and multi-objective optimization problem, and the goal to find
either one, multiple, or all optimizers, the basic problems of optimization have been introduced.
How to solve optimization problems is another matter.

2.1.3 Discrete versus Real-Parameter Optimization Problems

Definition 2.1.1 only generally specifies the search space X , the objective functions F , and
the constraint functions G. Besides the separation of single- and multi-objective optimization
problems, another distinction can be made by looking at the search space. Although it is not
a comprehensive categorization, we distinguish two major classes of optimization problems:
discrete optimization problems and real-parameter optimization problems.

Discrete optimization problems (which is a class that includes combinatorial optimization
problems) are optimization problems where the search space is a discrete set of candidate
solutions.

Definition 2.1.10 (Discrete Optimization Problem): Any optimization problem of which the
search space is a discrete set is called a discrete optimization problem.

This work focuses on the class of real-parameter optimization problems. Real-parameter
optimization problems are optimization problems where the search space is a real-valued
parameter space.

Definition 2.1.11 (Real-Parameter Optimization Problem): A real-parameter optimization
problem is an optimization problem (X ,F ,G), with X ⊆ Rn and X is of dimension n for
some fixed n ∈ N1.

More specifically, for real-parameter optimization problems commonly a stricter class defin-
ition is taken, requiring the search space to be bounded by a box. We identify such types of
problems as box-constrained real-parameter optimization problems.

Definition 2.1.12 (Box-Constrained Real-Parameter Optimization Problem): A box-
constrained real-parameter optimization problem is a real-parameter optimization problem
(X ,F ,G), with

X = {x ∈ Rn | (xl)i ≤ (x)i ≤ (xu)i, i = 1, . . . , n}, (2.11)

for some fixed n ∈ N1, and where xl ∈ Rn is a vector of lower bounds and xu ∈ Rn is a
vector of upper bounds.

An example of a class of search spaces that does not fall into the categorization of discrete
versus real-parameter is the class of mixed-integer optimization problems, consisting of a
combination of real-parameter and discrete (integer and/or categorical) parameters.
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2.2 The Practical Goal of Optimization
Given the definition of an optimization problem, the rough classification of optimization goals,
the distinction between single- and multi-objective optimization, and the rough classification
of discrete versus real-parameter optimization problems, the question is: How to solve such
problems? The solvability of optimization problems much depends on the structure of the
search space and the basic assumptions about the objective and constraint functions.

Discrete optimization problems with finite (enumerable) search spaces are solvable within a
finite number of steps by means of complete enumeration. That is, by evaluating every solution
in the search space it is possible to determine all optimizers. However, this has practical limits,
for example when the search space is sufficiently large and/or evaluations are very time/cost
expensive. Given that it is not possible to evaluate all candidate solutions we can follow the
reasoning of Bäck [Bäc96] that when a strict subset of the search space is evaluated it is
possible that the global optimum of a function f differs arbitrarily much from the optimum
found so far. Hence, if we cannot afford to evaluate every solution in the search space, an
optimization problem is generally unsolvable.

For real-parameter optimization problems an even more discouraging observation was made
by Törn and Z̆ilinskas [TZ89] who in the context of single objective optimization, according
to Bäck [Bäc96], proved that

“The problem of determining a member of the level set Lf∗+ε of an arbitrary
global optimization problem on a real-parameter objective function f on a com-
pact feasible region M within a finite number of steps is unsolvable.” [Bäc96,
p. 37]

Note that a similar message can be deduced for multi-objective optimization.

Given this observation, we can state that global optimization problems as generally formulated
by Definition 2.1.1 on page 12 are practically unsolvable unless we a) restrict ourselves to
a class of optimization problems for which the objective functions satisfy certain additional
conditions, or b) relax the solvability requirement [TZ89]. Both are done in practice. Regarding
the class of problems that is considered, it is commonly assumed that the optimization problem
exhibits some kind of underlying structure. An implicit assumption that is often made is that
similar solutions are believed to have similar performance. While agreeing that the notion of
similarity is not well-defined, neither its intuitiveness nor its validity can be denied. The goal of
optimization is relaxed by taking a more practical viewpoint. Based on the definition provided
by Törn and Z̆ilinskas [TZ89] we define the general goal of optimization as:

Definition 2.2.1 (Practical Goal of Optimization): Given an optimization problem with an
optimization goal and a limited number of resources (i.e., a number of trials or an evaluation
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budget), the practical goal of optimization is to use these resources in an optimal way to find
(an) as good as possible solution(s).

Or, from a slightly different perspective, one could aim for finding solutions that are an
improvement with respect to the currently best known solution (melioration).

In addition to the practical goal of optimization, it is generally noted that an optimization
algorithm is a global optimization algorithm if, given an infinite evaluation budget, it will get
arbitrarily close to the global optimum.

Definition 2.2.2 (Global Optimization Condition): Let xt denote the best solution found by the
optimization algorithm at time t with function value ft. We say that the optimization algorithm
satisfies the global optimization condition iff for t → ∞, ft − f∗ < ε, for arbitrarily small
positive values of ε.

Note that this goal is constructed in terms of finding one global optimizer (provided that it
exists) and it should be extended when the goal is to find all (or a particular set of) global
optimizers or level set solutions.

2.3 Objective Function Landscapes
A central dogma of geography formulated by Tobler is: “everything is related to everything
else, but near things are more related than distant things” [Tob70]. This dogma represents
an implicit assumption that is generally also used for optimization problems in practice,
namely that there is a correlation between the (dis)similarity of two candidate solutions and
the (dis)similarity of their objective function values. The conceptual step from a (dis)similarity
measure to a distance measure d : X × X → R is commonly a small one, leading to the
assumption of the search space being a metric space (X , d) (e.g., Euclidean distance for real-
parameter search spaces).

The assumption that the search space is a metric space introduces a view on objective
functions as landscapes. The search space is the location space of this landscape and the
objective function values denote the height or elevation at each location of the landscape. A
landscape, consisting of peaks, valleys, ridges, etc., provides a way of visualizing optimization
problems, but also allows us to talk about locality related properties of a given objective
function. Especially for real-parameter search spaces, this point of view is very intuitive and
often used implicitly, with Euclidean distance as distance measure. However, also in other
types of search spaces it is possible to view a problem as an objective function landscape.

The simplest class of algorithmic methods that actively exploits correlation between solution
similarity and objective function values is the class of the so-called hill-climbing algorithms.
A hill-climbing algorithm is an iterative algorithm that starts with an arbitrary point in the
search space and attempts to find a better solution by evaluating slight perturbations of that
solution. If a perturbation produces a better solution, the algorithm proceeds with that new
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solution, repeating until no further improvements can be found. Hence, when viewing it from
a maximization perspective, it takes steps uphill into the direction of the global optimum. A
well-known example of a hill-climbing algorithm (for minimization) is the Steepest Descent
algorithm (see, e.g., [NW06]) that follows the path of the gradient.

For optimization algorithms that use operators based on local perturbations (such as hill-
climbing algorithms, but also Evolutionary Algorithms), the objective function landscape
metaphor can be used to visualize different geographical scenarios that have a different impact
on the performance of these algorithms. For instance, when an objective function landscape
consists of multiple peaks of different heights, a hill-climber can get stuck in one of the lower
height peaks, i.e., a locally optimal solution. Interestingly, one can herewith observe that a hill-
climbing algorithm does not satisfy the global optimization condition of Definition 2.2.2 and is
therefore qualified as a local optimization algorithm. This supports the viewpoint of objective
function landscapes as a practical way to analyze optimization algorithms.

2.4 Single Objective Real-Parameter Landscapes
For single objective real-parameter optimization problems, the different geological concepts
that can influence the behavior of perturbation-based optimization algorithms can formally be
defined. Below, the most important concepts will be formalized exactly based on Euclidean
distance as dissimilarity measure:

Definition 2.4.1 (Weak Local Minimizer/Optimizer): For a single objective optimization prob-
lem (X ,F ,G) with F = {f} and the set of feasible solutions A, a weak local minimizer or
weak local optimizer is a solution x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ⇒ f(x∗) ≤ f(x))) . (2.12)

Definition 2.4.2 (Strict Local Minimizer/Optimizer): For a single objective optimization prob-
lem (X ,F ,G) with F = {f} and the set of feasible solutions A, a strict local minimizer or
strict local optimizer is a solution x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ∧ x 6= x∗ ⇒ f(x∗) < f(x))) . (2.13)

Definition 2.4.3 (Weak/Strict Local Minimum/Optimum): For a single objective optimization
problem (X ,F ,G) with F = {f} and the set of feasible solutions A, a (weak/strict) local
minimum or (weak/strict) local optimum f∗ is a value for which there exists a weak/strict local
minimizer/optimizer x∗ such that f∗ = f(x∗).

The distinction between weak and strict local minima/optima is subtle, but important. In this
work, we will consider a weak local minimum/optimum as the “default” type when referring
to a local minimum/optimum. The existence and quantity of local optima is an indicator for
the difficulty of a single objective optimization problem (or rather the likelihood of local hill-
climbing algorithms to get stuck at local optima). Following Schwefel [Sch77]:
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Definition 2.4.4 (Unimodal, Multimodal and Multiglobal): An objective function is said to be
unimodal if it has only one optimizer (i.e., only a global optimizer). Otherwise, it is said to be
multimodal. A landscape is called multiglobal if there are several global optimizers.

Besides the existence of local optima and global optima, another phenomenon in objective
function landscapes is the possible existence of plateaus. A plateau is defined as:

Definition 2.4.5 (Flat Region and Plateau): For a single objective, real-parameter optimization
problem (X ,F ,G) with F = {f} and the set of feasible solutions A, a flat region of f |A is a
connected set of points P ⊆ A such that

∀x ∈ P (f(x) = c) and ∀x ∈ P (∃εx > 0 (Bεx(x) ∩ A ⊆ P )) , (2.14)

for some c ∈ R, with Bε(x) = {x′ ∈ Rn | ||x − x′|| < ε}, and with εx defined separately for
each x ∈ P . A plateau P is a flat region with the additional property that there exists no flat
region P ′ ⊃ P .

Note that when considering the possible existence of plateaus, there are solutions within a
plateau that are both weak local minimizers and weak local maximizers, namely the solutions
x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ⇒ f(x∗) = f(x))) . (2.15)

This is a somewhat paradoxical property that emerges from using Definition 2.4.1. However,
the alternative of restricting to Definition 2.4.2 and changing the≤-sign by the <-sign leads to
the problem that in a similar case, the global optimum is not a local optimum.

2.5 Black-Box Optimization Algorithms

An optimization algorithm is an algorithmic method that can be applied to solve (a specific
class of) optimization problems. There is a wealth of optimization methods available and
choosing one for solving a given optimization problem depends much on the characteristics
of the optimization problem at hand. There are many aspects that vary from problem to
problem. Many optimization methods are especially designed for specific types of search
spaces, objective and constraint functions, or tailored for special objective function classes.

This work focuses on optimization methods that are not dependent on any knowledge about
the system or model of the optimization problem. That is, the model or system that lies at
the core of the optimization problem is considered to be a black-box. For such problems,
optimization algorithms are challenged to find good solutions by sequential trial-and-error
of candidate solutions. In the strictest sense, the term black-box optimization implies that
there is no knowledge about the model or system whatsoever, however, often basic implicit
assumptions or properties such as continuity, causality, or even the assumption that the problem
belongs to a certain class of problems are used.
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Figure 2.3: The general setup for black-box optimization.

Figure 2.3 visualizes the general black-box optimization loop. The principle is straight-
forward: An optimizer is coupled to the (model of the) system of interest (according to the
model of Section 2.1). The optimizer generates one or more candidate solutions, feeds it/them
to the system, and receives a quality score of these candidate solutions. Using this information,
the optimizer generates a new set of candidate solutions, and again feeds those to the system
to obtain their quality. This loop is repeated until either a satisfactory solution is found, a
predefined evaluation budget has been reached, or any other termination criterion has been
reached. Note that the term optimizer is used in two ways: for optimal solutions and for
optimization algorithms. Evolutionary Algorithms form a sub-class of black-box optimization
algorithms.

2.5.1 Quality Measures for Optimization Algorithms

A difficult issue in the field of black-box optimization is the assessment of the quality of
optimization algorithms. The quality of an optimization algorithm depends much on the
characteristics of the problem at hand and the class of optimization problems for which
the algorithm is designed. Benchmark sets of test problems are often used for empirical
comparison of multiple optimization algorithms, see, e.g., [SHL+05, HFRA09b, HFRA09a,
HFRA10]. For these benchmark sets, there are two types of indicators that can be used for
determine the quality of the optimization algorithm: The quality of the (set of) solution(s)

1. versus the number of objective function evaluations needed to obtain that quality, or

2. versus the total computation time needed to obtain that quality.

When assuming that the evaluation time of the candidate solutions exceeds the computational
overhead introduced by the operations of the optimization algorithm then the former is the most
appropriate measure. Moreover, when the optimization algorithms contain stochastic elements,
multiple runs should be used for obtaining averaged quality scores.
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2.6 Summary and Discussion
In this chapter the background of this work is summarized, being the traditional view on
black-box optimization. Given this view on optimization, the two main distinctions between
single- and multi-objective optimization problems and between discrete- and real-parameter
optimization problems are presented. For such problems, it is shown that there is a distinction
between the theoretical goal of optimization and how this goal is used in practice.

Furthermore, the concept of objective function landscapes is summarized, which is based
on the assumption that the search space is a metric space and that there is a correlation between
(dis)similarity of two solutions and their objective function values. In particular, definitions of
commonly used terms are given in the context of single objective real-parameter optimization
problems. These types of problems are the main focus of this work.

Black-box optimization algorithms are algorithmic methods that aim to solve optimization
problems. Such algorithms sequentially test candidate solutions in a trial-and-error fashion
in order to find optimal solutions. Spatial correlation is commonly exploited by optimization
algorithms, such as hill-climbing algorithms. Although the quality of an optimization algorithm
much depends on the problem at hand, benchmark sets of test problems can be used for
empirical comparison of optimization algorithms for certain problem classes.

An issue that is missing in the general model of an optimization problem as described in
Section 2.1 is the possible existence of uncertainty and noise. However, these are frequently
occurring phenomena when dealing with real-world optimization problems and they can have a
large influence on optimization in practice. In Chapter 3, the general model of an optimization
model as presented in this chapter will be extended to include uncertainties and/or noise in
order to form a definition of a black-box robust optimization problem.


