
Evolution strategies for robust optimization
Kruisselbrink, J.W.

Citation
Kruisselbrink, J. W. (2012, May 10). Evolution strategies for robust optimization. Retrieved
from https://hdl.handle.net/1887/18931

Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/18931

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/18931

Cover Page

The handle http://hdl.handle.net/1887/18931 holds various files of this Leiden University
dissertation.

Author: Kruisselbrink, Johannes Willem
Title: Evolution strategies for robust optimization
Date: 2012-05-10

https://openaccess.leidenuniv.nl/handle/1887/1�
http://hdl.handle.net/1887/18931

Evolution Strategies for Robust Optimization

Proefschrift

ter verkrijging van
de graad van Doctor aan de Universiteit Leiden,

op gezag van Rector Magnificus prof. mr. P.F. van der Heijden,
volgens besluit van het College voor Promoties

te verdedigen op donderdag 10 mei 2012
klokke 11:15 uur

door

Johannes Willem Kruisselbrink
geboren te Nijmegen

in 1983

Promotiecommissie

Promotor: Prof. Dr. T.H.W. Bäck
Copromotor: Dr. M.T.M. Emmerich
Overige leden: Prof. Dr. J. Branke (University of Warwick)

Prof. Dr. B. Sendhoff (University of Darmstadt)
Prof. Dr. J.N. Kok
Dr. W.A. Kosters

Het onderzoek beschreven in dit proefschrift is uitgevoerd aan het Leiden Institute of Advanced
Computer Science (LIACS), Universiteit Leiden. De totstandkoming van dit proefschrift is
financieel ondersteund door de Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO), project 612.066.618 “RoDeO”.

Ontwerp omslag: Gilian Algra

ISBN: 978-94-6191-250-3

Contents

1 Introduction 3
1.1 A Brief History . 4
1.2 Aim and Objectives . 6
1.3 Overview of this Thesis . 6

I From Optimization to Robust Optimization 9

2 Optimization 11
2.1 Optimization Problems . 11
2.2 The Practical Goal of Optimization . 17
2.3 Objective Function Landscapes . 18
2.4 Single Objective Real-Parameter Landscapes 19
2.5 Black-Box Optimization Algorithms . 20
2.6 Summary and Discussion . 22

3 Robust Optimization 23
3.1 Uncertainties and Noise in Optimization Problems 23
3.2 Robust Optimization . 33
3.3 Real-World Robust Optimization Scenarios 35
3.4 Summary and Discussion . 37

II Evolution Strategies for Robust Optimization 39

4 Evolutionary Algorithms and Evolution Strategies 41
4.1 Evolutionary Algorithms . 41
4.2 Evolution Strategies . 43
4.3 Summary and Discussion . 54

5 Optimization of Noisy Objective Functions 55
5.1 Noisy Objective Functions . 56
5.2 The Effects of Noise on Evolutionary Algorithms 58

5.3 Basic Noise Handling . 61
5.4 Adaptive Averaging . 67
5.5 Metamodel Assisted Noise Handling . 92
5.6 A General Discussion of Noise Handling Techniques 97
5.7 Summary and Discussion . 99

6 A Study on Noise Handling Schemes 101
6.1 The Growth Rate of the Sample Size . 101
6.2 Tuning the Adaptive Averaging Methods . 107
6.3 Adaptive Versus Non-Adaptive Averaging . 115
6.4 Summary and Discussion . 132

7 Finding Robust Optima 133
7.1 Problem Definitions for Finding Robust Optima 134
7.2 Strategies for Finding Robust Optima . 145
7.3 Summary and Discussion . 190

8 Empirical Study on Finding Robust Optima 193
8.1 Experimental Setup . 193
8.2 Tuning the Static Resampling Schemes . 195
8.3 Full Comparison of Schemes Finding Robust Optima 206
8.4 Summary and Discussion . 212

9 Conclusion 213
9.1 Summary . 213
9.2 Outlook . 216

Bibliography 219

A Test Problems for Noisy Optimization 229

B Test Problems for Finding Robust Optima 241

C Kriging Metamodeling 251

Samenvatting (Dutch) 255

Curriculum Vitae 259

Chapter 1

Introduction

When solving real-world optimization problems a frequently encountered difficulty is the
presence of uncertainties and noise within the system for which optima are sought. Due to
various reasons, various types of uncertainties and noise can arise in optimization problems.
Hence, for real-world scenarios, optimization methods are needed that can deal with these
uncertainties and solutions ought to be found that are not only optimal in the theoretical
sense, but that are also practical in real life. The practice of optimization that accounts for
uncertainties and noise is often referred to as robust optimization.

Evolutionary Algorithms (EAs) form a class of optimization algorithms that use the
principle of evolution to find good solutions to optimization problems. The paradigm of
evolutionary computation is simple and effective; take a population of candidate solutions for
the optimization problem and simulate the process of evolution to evolve the population toward
better solutions. With applications in various real-world settings, Evolutionary Algorithms
are well-established and have proven to be powerful for optimization, especially for complex
problems that are difficult or impossible to solve analytically.

Evolutionary Algorithms are originally proposed for solving optimization problems that
are not affected by uncertainties and noise. However, natural evolution seems to be inherently
robust when viewing it as an optimization process, because uncertainty and noise are indis-
pensable parts of nature. Being inspired by evolution in nature, one question is therefore to
what extent the natural mechanisms adopted by Evolutionary Algorithms make them robust
against uncertainties and noise. Additionally, when acknowledging the limited precision of
natural evolution, the challenge is to make Evolutionary Algorithms even more effective in the
scope of robust optimization.

In this work we will study the application of Evolutionary Algorithms, and in particular
Evolution Strategies, in the context of robust optimization. The main questions that we will
try to answer are: What is robust optimization and how does it relate to the traditional view on
optimization? In what ways can noise and uncertainties emerge within an optimization model?
To what extent are Evolutionary Algorithms indeed robust against uncertainties and noise in

4 1. Introduction

the optimization model? What can be done to fix or improve the behavior of Evolutionary
Algorithms when dealing with uncertainties and noise?

1.1 A Brief History
The concept of robust (design) optimization originated from the concept of robust design in
industrial engineering. The introduction, or better, popularization of this concept is generally
attributed to Taguchi [Tag78, Tag86, Tag89]. Taguchi stated that for product design engineer-
ing, a product should be designed not only for optimal performance, but also as to make the
performance as insensitive as possible to variations that are beyond the designer’s control. He
proposed a method based on simple experimental designs and loss functions to incorporate the
notion of quality or performance robustness into the process of design engineering. Taguchi
bundled his ideas in a design method called the Taguchi method (see e.g., [Pha89]). Although
the methodologies proposed by Taguchi have received much criticism [BST+88, AMB+92]
and are considered to be outdated [CWZ99], the impact of the robust design philosophy cannot
be neglected. The general aim of trying to take uncertainty and noise into account within the
scope of product development has become a standard part of modern engineering [Par07].

In modern engineering, the increasing use of computer models to virtually test (parts of)
designs has also led to increased interest in computational optimization techniques to aid the
design process [EH02]. However, classical optimization methods focus mainly on finding op-
timal solutions for exact, noise-free systems. Due to the frequently noisy and uncertain nature
of real life, the increased application of optimization techniques for real-world applications
led to the awareness that there are a number of problems that require ways of incorporating
the notion of robustness in the measures of solution quality (which is the leading principle of
robust design) in optimization techniques [Tro97, TAW03].

As noted by Trosset [Tro97], robust optimization is only a part of the broader concept of
robust design. The general aim of obtaining high quality products often involves design of
experiments methods and sensitivity analysis where the optimization is performed manually
by means of statistical analysis. Only in some cases automated optimization is used to aid the
design process, and robust optimization methods can be applied to find robust solutions.

However, the inverse can also be said to be true; although the concept of robust optimization
seems to borrow its right of existence directly from the concept of robust design, its context
is much broader than only finding solutions which are stable under varying conditions. Beyer
and Sendhoff [BS07] consider in their overview paper not only the robustness of the designs
(or, in the scope of optimization, the robustness of optimal solutions), but also the robustness
of the optimization process itself. Hence, robust optimization also deals with uncertainties of
the optimization model, such as noisy output, and uncertainty within the optimization model,
such as aiming to find robust optima. Also other studies, such as [SJ08] and [JB05], consider
a broader view of uncertainties and noise in the complete optimization model. The work of

1.2. A Brief History 5

[SJ08] is particularly worthwhile mentioning as it presents a large number of applications of
robust optimization techniques within the field of mechanical engineering.

In Operations Research, the problem of dealing with uncertainties and noise comprises a
number of variants. Studies that consider uncertainty in the optimization model date back to
the work of Dantzig [Dan55] in 1955 and Wets [Wet66] in 1966. Today, approaches dealing
with uncertainties can be found in various settings in the scope of mathematical programming;
in the form of stochastic programming (e.g., [KW94]), under the term robust optimization
[MVZ95, BTGGN04, BBC11], and in the scope of fuzzy programming [BZ70, IR00] which
knows the two types of flexible programming [TOA74, Zim76] and possibilistic programming
[TA84]. In [Sah04], an overview can be found of the different mathematical programming
classes that deal with uncertainty and noise, and the way in which these are modeled into
optimization problems.

Also in the scope of black-box optimization, and particularly in the field of evolutionary
computation, there is an increasing interest for methods that deal with uncertainty and noise.
A summary of the way in which such optimization problems are approached within this field,
and references to approaches proposed in literature can be found in [JB05].

Finally, some of the challenges and opportunities stated by Sahinidis [Sah04] in an overview
of robust optimization using mathematical programming techniques also hold for the broader
scope of optimization under uncertainty and noise. The following list of challenges, based on
those stated by Sahinidis, forms the starting point of this thesis:

• An effort should be made to construct a unified framework which combines the different
philosophies of modeling uncertainty and noise within optimization problems.

• Many approaches focus solely on one particular type of uncertainty and noise, whereas
real-world optimization problems can exhibit multiple types. Hybrid approaches that can
deal with various types of uncertainties and noise simultaneously can be the next step of
robust optimization.

• Non-standard search spaces have received limited attention within the scope of optim-
ization under uncertainty and noise. Extending the modeling framework and also the
optimization approaches such that they also allow for optimization under uncertainty
and noise in other domains (e.g., graph-like spaces) is a challenging next step.

• Accounting for uncertainty and noise will lead to higher computational demands in order
to obtain solutions of reasonable quality. There is an ongoing need of smart sampling and
search methods that further limit the computational effort (e.g., the number of function
evaluations) for solving optimization problems that are subject to uncertainty and noise.

6 1. Introduction

1.2 Aim and Objectives
The first objective of the current work is to obtain a clear formulation of robust optimization.
The term robustness is in itself a very general term, obtaining a clear view on the scope
and goals of robust optimization is therefore essential. An objective emerging from this is
to provide guidelines for systematic classification of various types of robust optimization
problems.

The second objective is to bridge the gap from the formulation of robust optimization to the
practice of robust optimization. The aim is to exemplify how to approach robust optimization
problems. Moreover, we aim to study the behavior of Evolution Strategies on such problems
and find how they should be adapted in order to better deal with such problems. For this,
approaches from the literature and newly proposed ideas will be compared conceptually and
empirically using two Evolution Strategy variants as algorithmic cores.

The third objective is to provide a framework for empirical comparison for the two robust
optimization scenarios considered in this work. This is done by providing a small, focused set
of benchmark problems and empirical results that can, in term, be used as benchmarks.

1.3 Overview of this Thesis
This work consists of two parts. In the first part, the aim is to form an exact conceptual picture
of what robust optimization is, how it relates to traditional non-robust optimization, and what
the implications are for solving real-world optimization problems. The second part of this work
focuses on the application of Evolution Strategies (ES) targeted on solving real-parameter
robust optimization problems. In particular two main scenarios of robust optimization are
considered: optimization of noisy objective functions and finding robust optima. These are
considered as frequently occurring and representative scenarios of robust optimization. For
these two scenarios, the performance and possible ways of improvement of two particular
Evolution Strategy instances, namely the (5/2DI , 35)-σSA-ES and the CMA-ES, are studied.

Chapter 2 lays out the background by providing an overview on the classical view on
optimization, together with frequently used terms and concepts. This chapter forms the
backbone of this work.

Chapter 3 extends the classical view on optimization to a framework and definition of robust
optimization. It provides a taxonomy of the different ways in which uncertainties and noise can
arise within optimization problems and a unified and concise framework for their systematic
classification. This chapter is partially based on insights and results previously published in
[KBIvdH08, KAE+09, KEB+09b].

Chapter 4 introduces Evolutionary Algorithms and Evolution Strategies, therewith forming
the bridge between the (robust) optimization problem specification and the practice of solving
optimization problems.

1.3. Overview of this Thesis 7

Chapter 5 discusses the application of Evolution Strategies to noisy objective functions. In
this chapter, the negative effects of noise on Evolution Strategies are studied and techniques
to counter the effects of noise in the objective function are compared conceptually. In Sec-
tion 5.4.6 an alternative type of uncertainty quantification is proposed and discussed. This
chapter uses results and insights that have been published partly in [KEB09a, KRD+11].

Chapter 6 focuses on a particular class of noise handling techniques, namely adaptive
averaging techniques. For these techniques the main question is how these compare to straight-
forward ways of dealing with noisy objective functions. This chapter presents new results on
accuracy limits for adaptive noise handling in Evolution Strategies with the theoretical results
presented in Section 6.1 and the empirical comparisons of different noise handling schemes.

Chapter 7 focuses on the scenario of finding robust optima in anticipation of uncertain-
ties/noise in the design variables. The goal of finding robust optima is explicitly stated and
formulated in the light of the framework of robust optimization. Different techniques that are
proposed for finding robust optima are reviewed and compared conceptually. This chapter
merges the individual results on algorithmic schemes of [KEDB10a, KEB10, KEDB10b,
KRD+11] with each other and puts them into a global scope of existing studies.

Chapter 8 presents an empirical comparison of different strategies for finding robust optima.
This chapter presents new results with an empirical comparison of different techniques for
finding robust optima, amongst which are the algorithms presented in [KEDB10a, KEB10,
KEDB10b, KRD+11].

Chapter 9 closes with a summary and an outlook.

Last, but not least, Appendix A and Appendix B contain collections of benchmark problems
that can be used for empirical comparison of optimization algorithms for robust optimization
scenarios. Appendix A provides descriptions of benchmark problems for optimization of noisy
objective functions and Appendix B provides descriptions of benchmark problems for finding
robust optima. These benchmark sets are used in the empirical studies of Chapter 6 and
Chapter 8, respectively. Appendix C provides a brief description of Kriging, which is used
as metamodeling technique in algorithmic approaches considered in Chapter 7 and Chapter 8.

Part I

From Optimization to Robust

Optimization

Chapter 2

Optimization

This chapter lays out the background of this work by providing a summary of black-box
optimization. It introduces the “classical” view on optimization together with the concepts and
terminology that are commonly used within this context. This classical view on optimization
will be extended in Chapter 3 to form a definition of robust optimization.

Section 2.1 starts with providing a global description and a formal definition of a black-box
optimization problem as it will be used in this thesis. Section 2.2 discusses how the practice
of optimization is generally perceived in practical applications. Section 2.3 zooms in on the
concept of objective function landscape, which is a frequently used metaphor for perceiving
optimization problems. Section 2.4 focuses on real-parameter optimization problems, being the
main type of optimization problem discussed in this thesis. Section 2.5 provides an overview of
black-box optimization algorithms and the general goal of automated optimization. Section 2.6
closes with a summary and discussion.

2.1 Optimization Problems
The model of Figure 2.1 describes an optimization problem. It considers a system that produces
output y as a function of input x. Keeping it as general as possible, we note that x and y can
be of any form and assume that there is no knowledge about the internal mechanisms of the
system, i.e., it is considered to be a black-box. Given such a system and a large number of
possible input settings, the central problem of optimization can be loosely formulated as:

What setting(s) of the input x yield(s) the best possible (optimal) output y?

Figure 2.1: The general black-box model of a system.

12 2. Optimization

Figure 2.2: The general model of an optimization problem.

To deal with problems of this type, the model of Figure 2.1 is commonly transformed into a
form as depicted in Figure 2.2. In many cases the system that is considered is replaced by an
abstract model of the system (e.g., a mathematical model or a simulator). Furthermore, one
or more objective functions f1, . . . , fk and optionally also a number of constraint functions
g1, . . . , gp are introduced. The objective functions are of the form fi : X × Y → R and
assign score values to each input x ∈ X based on its respective output y ∈ Y . Note that
we could also neglect the intermediate mapping X → Y , which yields the more common
form fi : X → R. Without loss of generality, we assume that each score function is to be
minimized. The constraint functions are of the form gi : X ×Y → R and rate the feasibility of
each possible input x, again using y. Also here the intermediate mapping could be neglected
to obtain the more common form gi : X → R. For a possible input x, it should hold that
gi(x) ≥ 0 in order for x to be feasible1.

The model of an optimization problem of Figure 2.2 can also be described mathematically:

Definition 2.1.1 (Optimization Problem): An optimization problem is a triple (X ,F ,G),
where:

• X is the search space, which is the nonempty set of all possible solutions.

• F = {f1, . . . , fk}, k ∈ N1, is a set of one or more objective functions that are to be
minimized. Each objective function is a function of the form f : X → R that maps
elements of the search space to a score value.

• G = {g1, . . . , gp}, p ∈ N0, is a set of constraint functions that need to be satisfied. Each
constraint function is of the form g : X → R mapping elements of the search space to
a constraint value. For a certain input x ∈ X a constraint g is said to be satisfied if and
only if g(x) ≥ 0. Otherwise, if g(x) < 0, then solution x violates the constraint and is
therefore infeasible.

1Constraints of the form g(x) ≥ 0 are referred to as inequality constraints. In literature, also another type of
constraint is used, namely the equality constraint, which is of the form h(x) = 0. In the definition given here,
equality constraints are not included because they can easily be constructed using two inequality constraints (i.e.,
g(x) ≥ 0 ∧ −g(x) ≥ 0⇔ g(x) = 0).

2.1. Optimization Problems 13

Furthermore, we use the following definition of feasibility:

Definition 2.1.2 (Feasible Solution and Set of Feasible Solutions): For an optimization prob-
lem (X ,F ,G), the set of feasible solutions A is the set

A = {x ∈ X | gi(x) ≥ 0, i = 1, . . . , p}, (2.1)

and each solution x ∈ A is called a feasible solution.

Given a problem that fits Definition 2.1.1, the goal of optimization can still vary and roughly
be of one of the following forms:

1. Find a feasible solution that is optimal with respect to the objective function(s).

2. Find all feasible solutions that are optimal with respect to the objective function(s).

3. Find a specific set of feasible solutions that are optimal with respect to the objective
function(s).

Here, “a specific set of solutions” loosely denotes the cases where, either implicitly or
explicitly, also a secondary set selection criterion encompasses the optimization problem (e.g.,
searching for a diverse set of solutions requires a diversity notion based on sets of solutions).
In addition to these three aims, a second class of optimization goals can also be identified in
which the aim is to find solutions of which the objective function value(s) satisfies/satisfy (a)
certain threshold value(s):

4. Find a feasible solution of which the objective function value(s) satisfies/satisfy (a)
certain threshold value(s).

5. Find all feasible solutions of which the objective function value(s) satisfy (a) certain
threshold value(s).

6. Find a specific set of feasible solutions of which the objective function value(s) satisfy
(a) certain threshold value(s).

Note that the latter three aims could also be seen as constraint satisfaction problems (i.e., an
objective function with a threshold is effectively a constraint function).

Given the definition of an optimization problem and the loosely defined possible goals of
optimization, next we will give more formal definitions of optimality. However, in order to
do this, we will make a distinction between single objective optimization problems and multi-
objective optimization problems and provide separate definitions for both classes.

2.1.1 Single Objective Optimization Problems

A single objective optimization problem is a special instance of an optimization problem,
defined as

14 2. Optimization

Definition 2.1.3 (Single Objective Optimization Problem): A single objective optimization
problem is an optimization problem with precisely one objective function. For the triple
(X ,F ,G), the set F consists of exactly one objective function (k = 1 in Definition 2.1.1).

Given a single objective optimization problem, based on the definition of Törn and Z̆ilinskas
[TZ89], Bäck [Bäc96] defines the global optimization problem as the problem of determining
a global minimizer:

Definition 2.1.4 (Global Minimum/Optimum and Global Minimizer/Optimizer): For a single
objective optimization problem (X ,F ,G) with F = {f} and a set of feasible solutions A, the
global minimum or global optimum f∗ is the value

f∗ = min{f(x) |x ∈ A}, (2.2)

and every solution x∗ ∈ A for which it holds that f(x∗) = f∗ is called a global minimizer or
global optimizer.

This definition falls into the first item of the enumeration on page 13. Moreover, there are
two other important remarks that have to be made. First, it is important to realize that there
exist objective functions for which no global minimum exists. This can happen for objective
functions of which the image f [A] of f : A → R is non-compact (e.g., the infimum of f [A] is
not included in f [A]). Secondly, one should note that when a global optimum does exist, there
is only one global optimum, but there might be multiple global optimizers.

As it might happen that there are multiple solutions x for which holds that f(x) = f∗, an
extended goal of global optimization is to find all global minimizers (see [TZ89]):

X∗ = {x ∈ A | f(x) = f∗}. (2.3)

This extended goal falls into the second item of the enumeration above.

The alternative goals of finding solutions with objective function values satisfying a certain
threshold value (items 4–6 in the enumeration on page 13) are for single objective optimization
problems known as super/sub level set optimization problems:

Definition 2.1.5 (Sublevel Set): For a single objective optimization problem (X ,F ,G) with
F = {f} and set of feasible solutions A, the sublevel set below level d is the set

Ld = {x ∈ A | f(x) ≤ d}. (2.4)

2.1.2 Multi-Objective Optimization Problems

A multi-objective optimization problem is a special instance of an optimization problem,
defined as

Definition 2.1.6 (Multi-Objective Optimization Problem): A multi-objective optimization
problem is an optimization problem with more than one objective function. I.e., for the triple

2.1. Optimization Problems 15

(X ,F ,G), the set F consists of at least two objective functions.

For multi-objective optimization problems, the definition of optimality is often based on the
notion of Pareto dominance on the objective space. Pareto dominance introduces a partial order
on the space of objective function values, being Rk for a problem with k objectives. In the
context of minimization, this order is defined as:

Definition 2.1.7 (Pareto Dominance, Weak Pareto Dominance, Strict Pareto Dominance, and
Incomparability): For any two vectors u and v:
u dominates v (notation u ≺Pareto v or just u ≺ v) iff:

∀i ∈ {1, . . . , k} : ui ≤ vi (2.5)

and ∃j ∈ {1, . . . , k} : uj < vj , (2.6)

u weakly dominates v (notation u � v) iff:

u � v ∨ u = v, (2.7)

u strictly dominates v iff:

∀i ∈ {1, . . . , k} : ui < vi, (2.8)

u and v are incomparable (notation u ||v) iff:

u � v ∧ v � u. (2.9)

The partial order introduced by using the notion of Pareto dominance on the solution space can
be used to define the goal of multi-objective optimization as to find Pareto optimizers:

Definition 2.1.8 (Pareto Optimizer and Pareto Optimum): For a multi-objective optimization
problem (X ,F ,G) with a set of feasible solutions A, the set of Pareto optimal solutions X∗

is the set of all solutions x∗ ∈ A with function values f(x∗) = [f1(x∗), . . . , fk(x∗)] for
which it holds that there does not exist another solution x ∈ A with function values f(x) =

[f1(x), . . . , fk(x)] such that f(x) dominates f(x∗). I.e.,

X∗ = {x∗ ∈ A | @x ∈ A : f(x) ≺ f(x∗)}. (2.10)

An element of the set of Pareto optimal solutions x∗ ∈ X∗ is called a Pareto optimizer and its
objective function value vector is called a Pareto optimum.

Although for some multi-objective optimization problems it is sufficient to find a Pareto
optimal solution, in general, when a problem is defined as a multi-objective optimization
problem, it is intended also to get insight in the trade-offs between the various objectives.
Therefore the more usual (customary) aim for multi-objective optimization is to find the set of
all Pareto optimal solutions or at least a representative subset of it.

Definition 2.1.9 (Pareto Front and Efficient Set): For a multi-objective optimization problem

16 2. Optimization

(X ,F ,G), the set of all Pareto optima is called the Pareto Front and the set of all Pareto
optimizers is called the Efficient Set.

With the definitions for a single- and multi-objective optimization problem, and the goal to find
either one, multiple, or all optimizers, the basic problems of optimization have been introduced.
How to solve optimization problems is another matter.

2.1.3 Discrete versus Real-Parameter Optimization Problems

Definition 2.1.1 only generally specifies the search space X , the objective functions F , and
the constraint functions G. Besides the separation of single- and multi-objective optimization
problems, another distinction can be made by looking at the search space. Although it is not
a comprehensive categorization, we distinguish two major classes of optimization problems:
discrete optimization problems and real-parameter optimization problems.

Discrete optimization problems (which is a class that includes combinatorial optimization
problems) are optimization problems where the search space is a discrete set of candidate
solutions.

Definition 2.1.10 (Discrete Optimization Problem): Any optimization problem of which the
search space is a discrete set is called a discrete optimization problem.

This work focuses on the class of real-parameter optimization problems. Real-parameter
optimization problems are optimization problems where the search space is a real-valued
parameter space.

Definition 2.1.11 (Real-Parameter Optimization Problem): A real-parameter optimization
problem is an optimization problem (X ,F ,G), with X ⊆ Rn and X is of dimension n for
some fixed n ∈ N1.

More specifically, for real-parameter optimization problems commonly a stricter class defin-
ition is taken, requiring the search space to be bounded by a box. We identify such types of
problems as box-constrained real-parameter optimization problems.

Definition 2.1.12 (Box-Constrained Real-Parameter Optimization Problem): A box-
constrained real-parameter optimization problem is a real-parameter optimization problem
(X ,F ,G), with

X = {x ∈ Rn | (xl)i ≤ (x)i ≤ (xu)i, i = 1, . . . , n}, (2.11)

for some fixed n ∈ N1, and where xl ∈ Rn is a vector of lower bounds and xu ∈ Rn is a
vector of upper bounds.

An example of a class of search spaces that does not fall into the categorization of discrete
versus real-parameter is the class of mixed-integer optimization problems, consisting of a
combination of real-parameter and discrete (integer and/or categorical) parameters.

2.2. The Practical Goal of Optimization 17

2.2 The Practical Goal of Optimization
Given the definition of an optimization problem, the rough classification of optimization goals,
the distinction between single- and multi-objective optimization, and the rough classification
of discrete versus real-parameter optimization problems, the question is: How to solve such
problems? The solvability of optimization problems much depends on the structure of the
search space and the basic assumptions about the objective and constraint functions.

Discrete optimization problems with finite (enumerable) search spaces are solvable within a
finite number of steps by means of complete enumeration. That is, by evaluating every solution
in the search space it is possible to determine all optimizers. However, this has practical limits,
for example when the search space is sufficiently large and/or evaluations are very time/cost
expensive. Given that it is not possible to evaluate all candidate solutions we can follow the
reasoning of Bäck [Bäc96] that when a strict subset of the search space is evaluated it is
possible that the global optimum of a function f differs arbitrarily much from the optimum
found so far. Hence, if we cannot afford to evaluate every solution in the search space, an
optimization problem is generally unsolvable.

For real-parameter optimization problems an even more discouraging observation was made
by Törn and Z̆ilinskas [TZ89] who in the context of single objective optimization, according
to Bäck [Bäc96], proved that

“The problem of determining a member of the level set Lf∗+ε of an arbitrary
global optimization problem on a real-parameter objective function f on a com-
pact feasible region M within a finite number of steps is unsolvable.” [Bäc96,
p. 37]

Note that a similar message can be deduced for multi-objective optimization.

Given this observation, we can state that global optimization problems as generally formulated
by Definition 2.1.1 on page 12 are practically unsolvable unless we a) restrict ourselves to
a class of optimization problems for which the objective functions satisfy certain additional
conditions, or b) relax the solvability requirement [TZ89]. Both are done in practice. Regarding
the class of problems that is considered, it is commonly assumed that the optimization problem
exhibits some kind of underlying structure. An implicit assumption that is often made is that
similar solutions are believed to have similar performance. While agreeing that the notion of
similarity is not well-defined, neither its intuitiveness nor its validity can be denied. The goal of
optimization is relaxed by taking a more practical viewpoint. Based on the definition provided
by Törn and Z̆ilinskas [TZ89] we define the general goal of optimization as:

Definition 2.2.1 (Practical Goal of Optimization): Given an optimization problem with an
optimization goal and a limited number of resources (i.e., a number of trials or an evaluation

18 2. Optimization

budget), the practical goal of optimization is to use these resources in an optimal way to find
(an) as good as possible solution(s).

Or, from a slightly different perspective, one could aim for finding solutions that are an
improvement with respect to the currently best known solution (melioration).

In addition to the practical goal of optimization, it is generally noted that an optimization
algorithm is a global optimization algorithm if, given an infinite evaluation budget, it will get
arbitrarily close to the global optimum.

Definition 2.2.2 (Global Optimization Condition): Let xt denote the best solution found by the
optimization algorithm at time t with function value ft. We say that the optimization algorithm
satisfies the global optimization condition iff for t → ∞, ft − f∗ < ε, for arbitrarily small
positive values of ε.

Note that this goal is constructed in terms of finding one global optimizer (provided that it
exists) and it should be extended when the goal is to find all (or a particular set of) global
optimizers or level set solutions.

2.3 Objective Function Landscapes
A central dogma of geography formulated by Tobler is: “everything is related to everything
else, but near things are more related than distant things” [Tob70]. This dogma represents
an implicit assumption that is generally also used for optimization problems in practice,
namely that there is a correlation between the (dis)similarity of two candidate solutions and
the (dis)similarity of their objective function values. The conceptual step from a (dis)similarity
measure to a distance measure d : X × X → R is commonly a small one, leading to the
assumption of the search space being a metric space (X , d) (e.g., Euclidean distance for real-
parameter search spaces).

The assumption that the search space is a metric space introduces a view on objective
functions as landscapes. The search space is the location space of this landscape and the
objective function values denote the height or elevation at each location of the landscape. A
landscape, consisting of peaks, valleys, ridges, etc., provides a way of visualizing optimization
problems, but also allows us to talk about locality related properties of a given objective
function. Especially for real-parameter search spaces, this point of view is very intuitive and
often used implicitly, with Euclidean distance as distance measure. However, also in other
types of search spaces it is possible to view a problem as an objective function landscape.

The simplest class of algorithmic methods that actively exploits correlation between solution
similarity and objective function values is the class of the so-called hill-climbing algorithms.
A hill-climbing algorithm is an iterative algorithm that starts with an arbitrary point in the
search space and attempts to find a better solution by evaluating slight perturbations of that
solution. If a perturbation produces a better solution, the algorithm proceeds with that new

2.4. Single Objective Real-Parameter Landscapes 19

solution, repeating until no further improvements can be found. Hence, when viewing it from
a maximization perspective, it takes steps uphill into the direction of the global optimum. A
well-known example of a hill-climbing algorithm (for minimization) is the Steepest Descent
algorithm (see, e.g., [NW06]) that follows the path of the gradient.

For optimization algorithms that use operators based on local perturbations (such as hill-
climbing algorithms, but also Evolutionary Algorithms), the objective function landscape
metaphor can be used to visualize different geographical scenarios that have a different impact
on the performance of these algorithms. For instance, when an objective function landscape
consists of multiple peaks of different heights, a hill-climber can get stuck in one of the lower
height peaks, i.e., a locally optimal solution. Interestingly, one can herewith observe that a hill-
climbing algorithm does not satisfy the global optimization condition of Definition 2.2.2 and is
therefore qualified as a local optimization algorithm. This supports the viewpoint of objective
function landscapes as a practical way to analyze optimization algorithms.

2.4 Single Objective Real-Parameter Landscapes
For single objective real-parameter optimization problems, the different geological concepts
that can influence the behavior of perturbation-based optimization algorithms can formally be
defined. Below, the most important concepts will be formalized exactly based on Euclidean
distance as dissimilarity measure:

Definition 2.4.1 (Weak Local Minimizer/Optimizer): For a single objective optimization prob-
lem (X ,F ,G) with F = {f} and the set of feasible solutions A, a weak local minimizer or
weak local optimizer is a solution x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ⇒ f(x∗) ≤ f(x))) . (2.12)

Definition 2.4.2 (Strict Local Minimizer/Optimizer): For a single objective optimization prob-
lem (X ,F ,G) with F = {f} and the set of feasible solutions A, a strict local minimizer or
strict local optimizer is a solution x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ∧ x 6= x∗ ⇒ f(x∗) < f(x))) . (2.13)

Definition 2.4.3 (Weak/Strict Local Minimum/Optimum): For a single objective optimization
problem (X ,F ,G) with F = {f} and the set of feasible solutions A, a (weak/strict) local
minimum or (weak/strict) local optimum f∗ is a value for which there exists a weak/strict local
minimizer/optimizer x∗ such that f∗ = f(x∗).

The distinction between weak and strict local minima/optima is subtle, but important. In this
work, we will consider a weak local minimum/optimum as the “default” type when referring
to a local minimum/optimum. The existence and quantity of local optima is an indicator for
the difficulty of a single objective optimization problem (or rather the likelihood of local hill-
climbing algorithms to get stuck at local optima). Following Schwefel [Sch77]:

20 2. Optimization

Definition 2.4.4 (Unimodal, Multimodal and Multiglobal): An objective function is said to be
unimodal if it has only one optimizer (i.e., only a global optimizer). Otherwise, it is said to be
multimodal. A landscape is called multiglobal if there are several global optimizers.

Besides the existence of local optima and global optima, another phenomenon in objective
function landscapes is the possible existence of plateaus. A plateau is defined as:

Definition 2.4.5 (Flat Region and Plateau): For a single objective, real-parameter optimization
problem (X ,F ,G) with F = {f} and the set of feasible solutions A, a flat region of f |A is a
connected set of points P ⊆ A such that

∀x ∈ P (f(x) = c) and ∀x ∈ P (∃εx > 0 (Bεx(x) ∩ A ⊆ P)) , (2.14)

for some c ∈ R, with Bε(x) = {x′ ∈ Rn | ||x − x′|| < ε}, and with εx defined separately for
each x ∈ P . A plateau P is a flat region with the additional property that there exists no flat
region P ′ ⊃ P .

Note that when considering the possible existence of plateaus, there are solutions within a
plateau that are both weak local minimizers and weak local maximizers, namely the solutions
x∗ ∈ A for which it holds that

∃δ ∈ R>0 (∀x ∈ A (||x− x∗|| < δ ⇒ f(x∗) = f(x))) . (2.15)

This is a somewhat paradoxical property that emerges from using Definition 2.4.1. However,
the alternative of restricting to Definition 2.4.2 and changing the≤-sign by the <-sign leads to
the problem that in a similar case, the global optimum is not a local optimum.

2.5 Black-Box Optimization Algorithms

An optimization algorithm is an algorithmic method that can be applied to solve (a specific
class of) optimization problems. There is a wealth of optimization methods available and
choosing one for solving a given optimization problem depends much on the characteristics
of the optimization problem at hand. There are many aspects that vary from problem to
problem. Many optimization methods are especially designed for specific types of search
spaces, objective and constraint functions, or tailored for special objective function classes.

This work focuses on optimization methods that are not dependent on any knowledge about
the system or model of the optimization problem. That is, the model or system that lies at
the core of the optimization problem is considered to be a black-box. For such problems,
optimization algorithms are challenged to find good solutions by sequential trial-and-error
of candidate solutions. In the strictest sense, the term black-box optimization implies that
there is no knowledge about the model or system whatsoever, however, often basic implicit
assumptions or properties such as continuity, causality, or even the assumption that the problem
belongs to a certain class of problems are used.

2.6. Black-Box Optimization Algorithms 21

Figure 2.3: The general setup for black-box optimization.

Figure 2.3 visualizes the general black-box optimization loop. The principle is straight-
forward: An optimizer is coupled to the (model of the) system of interest (according to the
model of Section 2.1). The optimizer generates one or more candidate solutions, feeds it/them
to the system, and receives a quality score of these candidate solutions. Using this information,
the optimizer generates a new set of candidate solutions, and again feeds those to the system
to obtain their quality. This loop is repeated until either a satisfactory solution is found, a
predefined evaluation budget has been reached, or any other termination criterion has been
reached. Note that the term optimizer is used in two ways: for optimal solutions and for
optimization algorithms. Evolutionary Algorithms form a sub-class of black-box optimization
algorithms.

2.5.1 Quality Measures for Optimization Algorithms

A difficult issue in the field of black-box optimization is the assessment of the quality of
optimization algorithms. The quality of an optimization algorithm depends much on the
characteristics of the problem at hand and the class of optimization problems for which
the algorithm is designed. Benchmark sets of test problems are often used for empirical
comparison of multiple optimization algorithms, see, e.g., [SHL+05, HFRA09b, HFRA09a,
HFRA10]. For these benchmark sets, there are two types of indicators that can be used for
determine the quality of the optimization algorithm: The quality of the (set of) solution(s)

1. versus the number of objective function evaluations needed to obtain that quality, or

2. versus the total computation time needed to obtain that quality.

When assuming that the evaluation time of the candidate solutions exceeds the computational
overhead introduced by the operations of the optimization algorithm then the former is the most
appropriate measure. Moreover, when the optimization algorithms contain stochastic elements,
multiple runs should be used for obtaining averaged quality scores.

22 2. Optimization

2.6 Summary and Discussion
In this chapter the background of this work is summarized, being the traditional view on
black-box optimization. Given this view on optimization, the two main distinctions between
single- and multi-objective optimization problems and between discrete- and real-parameter
optimization problems are presented. For such problems, it is shown that there is a distinction
between the theoretical goal of optimization and how this goal is used in practice.

Furthermore, the concept of objective function landscapes is summarized, which is based
on the assumption that the search space is a metric space and that there is a correlation between
(dis)similarity of two solutions and their objective function values. In particular, definitions of
commonly used terms are given in the context of single objective real-parameter optimization
problems. These types of problems are the main focus of this work.

Black-box optimization algorithms are algorithmic methods that aim to solve optimization
problems. Such algorithms sequentially test candidate solutions in a trial-and-error fashion
in order to find optimal solutions. Spatial correlation is commonly exploited by optimization
algorithms, such as hill-climbing algorithms. Although the quality of an optimization algorithm
much depends on the problem at hand, benchmark sets of test problems can be used for
empirical comparison of optimization algorithms for certain problem classes.

An issue that is missing in the general model of an optimization problem as described in
Section 2.1 is the possible existence of uncertainty and noise. However, these are frequently
occurring phenomena when dealing with real-world optimization problems and they can have a
large influence on optimization in practice. In Chapter 3, the general model of an optimization
model as presented in this chapter will be extended to include uncertainties and/or noise in
order to form a definition of a black-box robust optimization problem.

Chapter 3

Robust Optimization

The traditional view on optimization as presented in Chapter 2 does not account for uncer-
tainties and noise. However, this is not realistic for many real-world optimization problems.
Consider, for instance, industrial engineering applications. A common optimization scenario
is that a non-deterministic simulator replaces the real-world system and the aim is to find
solutions such that the real-world realizations of these solutions are of a good quality, also
when these are slightly perturbed due to manufacturing errors. In this scenario, uncertainties
and noise arise in various ways, e.g., in the form of uncertainty because an approximate model
is used instead of the real-world system, in the form of noise because the simulator is non-
deterministic, and in the form of uncertainty introduced by the inability to generate exact
realizations of the solutions. These observations give rise to two new questions: In what way
can uncertainties and noise arise in the general model of an optimization problem as presented
in Section 2.1? How do we account for this when optimizing on such systems?

The structure of this chapter is as follows: Section 3.1 starts with an overview/taxonomy
of the various ways in which uncertainties and noise can emerge in optimization problems.
In Section 3.2, the scope and goals of robust optimization are derived from this taxonomy.
Section 3.3 presents three real-world optimization scenarios and discusses them in the context
of robust optimization. Section 3.4 closes with a summary and discussion.

3.1 Uncertainties and Noise in Optimization Problems
Often, due to a variety of reasons, the theoretical model used for optimization differs from the
real-world system for which optimal solutions are desired. Examples are:

1. The design variables cannot be controlled with unlimited precision. (input)

2. The operational (or environmental) conditions fluctuate or are known only to a certain
extent. (model)

3. The output of the real-world system or of the (simulation) model is noisy. (output)

24 3. Robust Optimization

4. Approximation models replace the real-world system within the optimization loop.
(model/output)

5. There is a degree of vagueness in the objectives and/or the constraint boundaries.
(objectives/constraints)

These uncertainties can have a negative impact on the practical applicability of using idealized
models or assumptions for solving real-world optimization problems. Not accounting for
uncertainty and noise might lead to solutions that are found to be optimal with respect to
the idealized model, but which are not useful or performing optimally in practice.

For optimization problems, the terms uncertainty and noise refer to behavior in any part of
the optimization model that can not (fully) be predicted or controlled, or that is subject to
vagueness. As illustrated, the causes of uncertainties and noise in real-world optimization
problems can be manifold. In order to find good methods to deal with uncertainties and noise,
a first step is to distinguish the different classes of uncertainty and noise that can arise in
optimization problems. Among the different ways in which such a classification can be made
(see, e.g., [BS07, JB05, ONL06]), the classification provided in this section will, to a great
extent, follow the categorization of Beyer and Sendhoff [BS07].

3.1.1 Sources of Uncertainty and Noise

One way to distinguish different types of uncertainty and noise within optimization problems
is to categorize them by looking at the parts of the optimization model in which they arise.
When considering the model illustrated in Figure 2.2, one can identify five different locations
where uncertainty and/or noise can enter the optimization model (see Figure 3.1):

A) Uncertainties and/or noise in the design variables

B) Uncertainties and/or noise in the environmental parameters

C) Uncertainties and/or noise in the output

D) Vagueness in the constraints

E) Preference uncertainty in the objectives

These sources of uncertainty/noise are integrated in different ways in the mathematical formu-
lations of an optimization problem.

A) Uncertainties and/or noise in the design variables
With this, deficiencies or fluctuations in the real-world realizations of candidate solutions
are addressed. These deficiencies/fluctuations can arise when in the real-world system,
the design variables can only be realized or controlled with a limited precision. Manu-
facturing imprecisions in product engineering are exemplary for this type of uncertainty,

3.1. Uncertainties and Noise in Optimization Problems 25

Figure 3.1: The general optimization model showing the different parts of the systems in which
uncertainties can arise.

which is the main type of uncertainty considered by the robust design concept. This type
of noise gives rise to two different scenarios:

Scenario 1: A simulation model replaces the real-world system within the optimization
model. In this case the simulator accepts inputs as non-disturbed inputs, though in
practice, solutions cannot be realized with unlimited precision. This can be compensated
for by focusing the optimization on finding solutions that are also of high quality when
slightly perturbed (i.e., finding robust optima).

Scenario 2: The real-world system is enclosed in the optimization loop (experimental
optimization). In this case the disturbances in the input propagate through the output,
hence to the objective and constraint functions. When the disturbances in the design
variables can be measured a posteriori, the optimizer will receive deterministic meas-
urements, but the sampling process cannot be controlled. In case that the disturbances
cannot be measured a posteriori, these disturbances simply yield noise in the objective
and constraint functions. The noise distributions can be of any kind depending on the
distribution of the noise in the design variables, transformed through the output and the
objective and constraint functions.

The effect of variations caused by uncertainties or noise in the design variables can be
modeled within the formulation of an objective functions as:

f̃i(x) = fi(x+ δx), i = 1, . . . , k. (3.1)

And similarly for the constraint functions:

g̃j(x) = gj(x+ δx), j = 1, . . . , p. (3.2)

Here, δx ∈ X is an uncontrollable random or uncertain variable representing the
deviations/fluctuations in the input that are due to uncertainty and/or noise. An important

26 3. Robust Optimization

observation is that this noise or uncertainty can depend on the values of the design
variables themselves, i.e., it can vary for different x. Furthermore, due to this remodeling,
the outputs of the objective and constraint functions become random variables (in case
the uncertainty δx can be modeled as a random variable) or sets of possible outputs.

B) Uncertainties and/or noise in the environmental parameters
Uncontrollable (environmental) parameters of a system are not considered in the clas-
sical optimization model as presented in Section 2.1 (see Figure 2.2). These parameters
are in the classical view considered to be constants of the system. However, in practice
many of such constants are noisy or uncertain. Fluctuating or unknown operating condi-
tions and deficiencies of internal parameters are possible ways in which uncertainties can
manifest themselves within this part of the optimization model. Similar to uncertainties
in the design variables, the setting in which this type of uncertainty can be actively
compensated for is when a simulation model replaces the real-world system within
the optimization model. Otherwise, the uncertainty propagates to the objective and
constraint functions.

To incorporate such scenarios into the model presented in Section 2.1, we extend it as
follows: Let the set C denote the (possible) settings of uncontrollable environmental
parameters of the system. The models of the objective and constraint functions are
extended by also being a function of the environmental parameters, i.e., f : X ×C → R
for all f ∈ F and g : X × C → R for all g ∈ G.

The effect of variations caused by uncertainties or noise in the environmental parameters
can be modeled in the objective functions as:

f̃i(x, a) = fi(x, α), i = 1, . . . , k. (3.3)

And similarly for the constraint functions:

g̃j(x, a) = gj(x, α), j = 1, . . . , p. (3.4)

Here α ∈ C is a noisy or uncertain counterpart of the constant a ∈ C. As can be seen, by
modeling the uncertainty/noise in this way, the constant environmental parameters a are
replaced by random or uncertain variables α.

C) Uncertainties and/or noise in the output
The third class is formed by output uncertainties or noise. Here we can distinguish two
different types: 1) The system is non-deterministic and produces noisy outputs (e.g.,
the measurements have a stochastic nature and precise evaluation is impossible). 2)
The system produces uncertain output (e.g., models where the quality of the output
of the model cannot be guaranteed to be conform the actual output of the system).

3.1. Uncertainties and Noise in Optimization Problems 27

Note that both types could be present simultaneously, e.g., when using non-deterministic
simulation models.

Noise or uncertainty in the output can be modeled within formulations of the objective
functions as:

f̃i(x) = fi(x) + zfi(x), i = 1, . . . , k, (3.5)

and in the constraint function definitions as:

g̃j(x) = gj(x) + zgj (x), j = 1, . . . , p, (3.6)

with zfi(x) and zgj (x) being random/uncertain variables (possibly indexed by space),
denoting the propagation of the output uncertainty/noise to the objective and constraint
functions.

Note that, strictly seen, the noise in the objective and constraint functions is a product of
the noise in the output. Internally, zfi(x) is a (possibly non-linear) function of the noise
in the output, i.e., y(x) + zy(x). However, as we have chosen to model the objective
functions and constraint functions in terms of x, this cannot be modeled explicitly.

Furthermore, note that uncertainties in the design variables and environmental paramet-
ers in principle propagate as a noisy or uncertain output, i.e., fluctuating/uncertain design
variables and environmental parameters yield fluctuating/uncertain system output.

D) Vagueness in the constraints
Often it is hard to obtain strict and bounded definitions of constraints. When dealing
with constraints like “the temperature should not be too high” or “the risk should not be
too high”, it is not possible (or desirable) to draw a straight line between satisfied and
not-satisfied. Such vagueness calls for methods that can account for this (e.g., by using
fuzzy logic techniques [Zad65, BZ70]).

Fuzzy constraints can be described using the following notation:

gj(x) & 0. (3.7)

Here, & is the fuzzified version of ≥ having the linguistic interpretation “gj(x) is
essentially greater than 0”. However, this notation does not take into account the degree
to which the constraint is fuzzy. For example, considering the “temperature should not
be too high” example, the notation of Eq. 3.7 does not specify the margins for which the
temperature could still be acceptable.

A typical way of modeling uncertainties of this kind is to transform the constraints
by means of membership functions. A membership function is a monotonous (but not
necessarily linear) function Vg which maps a constraint function g(x) to an area bounded
by 0 (strictly violated) and 1 (completely satisfied). Everything between 0 and 1 is in the

28 3. Robust Optimization

Figure 3.2: A simple linear membership function.

grey area (or transition area), and the higher the value of the membership function, the
higher the degree of satisfaction. Figure 3.2 illustrates the basic idea of a membership
function. Mathematically, this transformation has the following form:

g(x) ≥ 0 becomes Vg(g(x))→ max . (3.8)

A design issue that is introduced is that appropriate membership functions have to be
constructed.

E) Preference uncertainty in the objectives
Preference uncertainty emerges when having multiple conflicting objectives, hence,
when highly subjective trade-off choices have to be made regarding the importance of
objectives. Preference might only be known afterwards, depending on the quality level
that can be achieved for the objectives and the particularities of the trade-offs that exist.
Approaches that use aggregate objective functions which combine multiple objectives
functions into one objective function are prone to such uncertainties. Approaches that
aim to approximate the complete Pareto frontier postpone such preference decisions.

Of these five sources of uncertainty, a distinction can be made between the first three (A, B,
and C) and the last two (D and E). The former involve uncertainty and/or noise in the system
or (simulation) model, whereas the latter involve uncertainty in the optimization model (i.e.,
the way in which a given problem is translated to an optimization problem).

3.1.2 Modeling Uncertainty and Noise

Besides the fact that uncertainties can arise in different parts of the optimization model, another
way to distinguish different kinds of uncertainty and noise is to consider their nature. Up to
now, a distinction has been made between uncertainty and noise, as being two distinct matters.
The question is, however, whether these are indeed separate issues.

The distinction between uncertainty and noise is the same as the distinction between aleatory
uncertainty and epistemic uncertainty which is a particularly popular view in the engineering
field (e.g., [PC96, KD09]). Also, it can be related to the distinction between the two schools

3.1. Uncertainties and Noise in Optimization Problems 29

of statistical theory: frequentist and Bayesian statistics [O’H04, Cox05]. The term aleatory
uncertainty is used to describe uncertainties within a system or model that have an intrinsic
stochastic nature. These are the uncertainties associated with the pure (often said to be irredu-
cible) randomness within a system. Epistemic uncertainty, on the other hand, is the uncertainty
that is due to incomplete or inadequate information (i.e., due to a lack of knowledge). Epistemic
uncertainty should be reducible when more knowledge becomes available. Regarding the two
schools of statistics, the frequentists can be said to accept uncertainty as aleatory, whereas in
the Bayesian statistics the focus is on the degree of belief, which can be related to epistemic
uncertainty [O’H04].

Although the distinction between aleatory and epistemic uncertainty intuitively makes sense,
it is often a source of confusion (see, e.g., [KD09] for a discussion). It is often hard to specify
whether a specific uncertainty is purely due to inherent randomness or due to limited know-
ledge or modeling capabilities. A purely deterministic mind would attribute every uncertainty
to limited knowledge, and indeed in practice many cases of uncertainty are due to abstractions
of details of the system. Similarly, the distinction between frequentist and Bayesian statistics
seems to touch upon the same subject. Here, the debate evolves around the difference between
uncertainty of knowledge versus variability in outcome [Cox05].

To avoid resorting to a lengthy philosophical discussion on this topic, we will make a
distinction based on the difference in the mathematical modeling of the uncertainties. This
is in line with the view presented by Beyer and Sendhoff [BS07]. In fact, one could say that
the decision on the type of uncertainty is left to the person providing the optimization model.
Hence, from the perspective of optimization, we are not so much interested in the actual type
of uncertainty, but rather in the way in which it is modeled within the optimization problem
formulation. Looking at the different ways in which uncertainties and noise can mathematically
be modeled within an optimization model, one can distinguish three classes:

1) Fuzzy
The uncertainty is formulated by fuzzy statements about the possibility or degree of
membership by which a state of an uncertain variable is believed to be plausible (or
desirable). Uncertainties of this type can be modeled with fuzzy sets [Zad65, BZ70].
Using fuzzy sets for this type of uncertainty requires modeling a particular uncertain
variable from a given space of points A as a pair (A,mA). Here, mA : A → [0, 1] is
a membership function that maps each x ∈ A to a “grade of membership” in (A,mA).
The grade of membership is a value between 0 and 1. For a particular x ∈ A, the closer
mA(x) will be to one, the higher its degree of membership ofA or degree of plausibility.

2) Deterministic
The uncertainty is formulated by statements about the crisp possibility of whether a
state of an uncertain variable is possible or not. Uncertainties of this type can be modeled

30 3. Robust Optimization

using crisp sets. A particular uncertain variable of this type is modeled as a pair (A,mA),
with A being the crisp set and mA denoting the membership function. The membership
function is of the form mA : A → {0, 1}. Hence, a particular x ∈ A can be noted to
be either a member of the set A, when mA(x) = 1, or not to be a member of A, when
mA(x) = 0.

3) Probabilistic
The uncertain variable is believed to be a stochastic random variable. A probability
measure can be established measuring the probabilistic frequency of events that may
occur. Uncertainties of the probabilistic type can be modeled using probability functions
(or probability density functions in case of continuous domains). In this case, a function
p : A → R≥0 maps every event x in the space of all possible events A to a probability
(density) value denoting the probability of that particular event. Note that the function p
should conform to the classical Kolmogorov axiom system [Kol33].

From the perspective of mathematical modeling, this division can also be seen as a hierarchical
structure of increased knowledge of the uncertainty. In the first type, there is uncertainty about
the domain of the variation and the probabilities of the uncertainty events. In the deterministic
type of uncertainty, the domain of the variation is known, but there is no knowledge about the
probabilities of the events. In the probabilistic type of uncertainty, both the domain and the
probabilities of the individual variation events are known. Although this distinction might be
subtle (and the mathematical formulations might seem very similar), this difference is of great
importance, as it requires different methods for treating these types of uncertainty.

Returning to the distinction between aleatory and epistemic uncertainty (and also the distinc-
tion between uncertainty and noise), we can see that aleatory uncertainty is the uncertainty
of the probabilistic type and epistemic uncertainty is the uncertainty that is either of the
deterministic or possibilistic type. A schematic view is given in Table 3.1. Moreover, when
adopting this view, we can say that (agreeing with [KD09]) the aleatory/epistemic distinction
is made by the person modeling the optimization problem and it is fair to make a distinction
between these two types of uncertainty within the scope of the optimization model.

3.1.3 Stationary versus Non-Stationary Noise

One issue that has not yet been covered in the discussion about the modeling of noise is the
distinction between stationary noise and non-stationary noise. Traditionally, these terms are
used within the context of time-based systems in which the output is noisy. The term non-
stationary noise indicates that the noise distribution changes over the course of time, whereas
the term stationary noise indicates that the noise distribution is independent of time.

For optimization problems, this notion does not restrict to time, but can also be used in the
context of space, i.e., non-stationary uncertainty/noise differs among the candidate solutions.

3.1. Uncertainties and Noise in Optimization Problems 31

Conceptual classification Mathematical modeling Mathematical properties

Epistemic (uncertainty)
Possibilistic

Uncertainty domain unknown
Probabilities unknown

Deterministic
Uncertainty domain known
Probabilities unknown

Aleatory (noise) Probabilistic
Uncertainty domain known
Probabilities known

Table 3.1: A classification of the types of uncertainty in terms of their mathematical properties based
on the conceptual distinction between epistemic and aleatory uncertainty.

Looking back at the descriptions of the sources of uncertainty one notes that for uncertainties
of type A and C, the noise/uncertainty might vary for different values of x ∈ X . If the
noise/uncertainty varies for different values of x, we call the noise/uncertainty non-stationary,
if the noise/uncertainty is the same for all x ∈ X it is called stationary.

3.1.4 Cases of Uncertainty and Noise

Five sources combined with three types of uncertainties/noise yields theoretically 15 different
concepts of uncertainty/noise that can be encountered within optimization problems. When
including the distinction between stationary and non-stationary uncertainty/noise and the
consideration that multiple types of uncertainties/noise can be present simultaneously within a
real-world optimization problem, this picture becomes even more discouraging. Indeed, the
variety of cases of uncertainty/noise that can arise from the combinations of the different
cases complies with the complexity of real-world scenarios. In practice, however, some
scenarios occur more often than others, and those are worthwhile studying in relative isolation
(i.e., one type of noise within one part of the optimization model). Table 3.2 summarizes
the combinations of class/type of uncertainty/noise as they can occur within optimization
problems.

Uncertainty in the design variables (class A) is often uncertainty of type 3, i.e., probabilistic
uncertainty. As this source of uncertainty is based on scenarios in which in the real-world
the design variables cannot be set infinitely accurate, its relation to aleatory uncertainty with
respect to the optimization model is undeniable. Hence, these are cases in which it is well
doable and reasonable to describe the uncertainty using probability distributions. In cases
where the uncertainty in the design variables is modeled as type 1 or type 2 uncertainty, these
descriptions should be strict in order for optimization to make sense at all (i.e., having a broad
uncertainty range for each candidate solution basically makes the solutions incomparable,
hence not worth optimizing). Both stationary and non-stationary noise are possible for this
uncertainty class. Hence, there are scenarios in which the fluctuations of the design variables
depend on the settings themselves, but it may also be that the fluctuations have the same

32 3. Robust Optimization

Class Type Stationarity / non-stationary

A) Uncertainties and/or noise in
the design variables

1) Possibilistic
Stationary or non-stationary2) Deterministic

3) Probabilistic

B) Uncertainties and/or noise in
the environmental parameters

1) Possibilistic
Stationary2) Deterministic

3) Probabilistic

C) Uncertainties and/or noise in
the output

1) Possibilistic
Stationary or non-stationary2) Deterministic

3) Probabilistic

D) Vagueness in the constraints
1) Possibilistic

Stationary2) Deterministic
3) Probabilistic

E) Preference uncertainty in the
objectives

1) Possibilistic
Stationary2) Deterministic

3) Probabilistic

Table 3.2: Classification and categorization of different manifestations of uncertainty/noise as they can
occur within optimization problems. Note that the bold types of uncertainty are considered to be “more
common” and the crossed-out types are consdered to be nonexistent.

characteristics for all candidate solutions.

In class B, all three types can be encountered. Uncertainties of probabilistic nature occur
when system parameters are due to fluctuations. Possibilistic and deterministic uncertainty
occur when model parameters that represent real-world parameters are unknown. Class B
uncertainties are always stationary with respect to the given design variables. That is, being
fluctuations in the operation conditions of the system, they cannot depend on the particular
settings of the design variables.

In class C, also all types of nature of uncertainty can be encountered. When dealing with noisy
output, this uncertainty is of type 3. When the uncertainty arises due to the use of uncertain
prediction models, the uncertainty is of type 1 or type 2. Moreover, when using stochastic
simulation models, the uncertainty can be a composite of type 3 and type 1/2. Also this type of
uncertainty can be both stationary and non-stationary with respect to the design variables.

In class D and class E, the nature of the uncertainties is always described as type 1 or
2 uncertainty. These are classes of uncertainty that are somewhat different than the other
classes. These classes do not regard uncertainty within the model or the system, but rather
the uncertainty of specifying what is desirable or acceptable. These types of uncertainty are
only stationary with respect to the design variables.

3.2. Robust Optimization 33

3.2 Robust Optimization
Up to now, we have discussed the various ways in which uncertainty and noise can present
themselves within optimization problems. Given this taxonomy, the next question is: what
is robust optimization? In Section 1.1 it is noted that there exist different views on this
matter. Some consider robust optimization to involve input uncertainties and/or noise in the
design variables (e.g., [BBC11, BNT10]), whereas others consider a broader view, considering
robustness with respect to uncertainties within the system or (simulation) model (e.g., [BS07]).

In this work, we consider robust optimization to be the practice of optimization given un-
certainties and/or noise in the system or (simulation) model. Note that we exclude modeling
uncertainty. For any kind of uncertainty and/or noise of class A, B, or C, robust optimization
deals with the questions:

• In what way do uncertainties and/or noise within the system or (simulation) model
affect optimization algorithms and the practical applicability of solutions found by
optimization algorithms?

• How should optimization algorithms be adapted in order to account for uncertainties
and/or noise within the system or (simulation) model?

With this we can extend the practical goal of optimization of Definition 2.2.1 and formulate
the general goal of robust optimization as:

Definition 3.2.1 (Practical Goal of Robust Optimization): Given an optimization problem with
uncertainty and/or noise within the system or (simulation) model, and given an optimization
goal and a limited number of resources. The practical goal of robust optimization is to use
these resources to find (an) as good as possible solution(s) despite uncertainty and/or noise,
that are also optimal and useful in the face of the uncertainties/noise.

Note here that optimality with respect to the uncertainties and/or noise should be defined within
the scope of the uncertainty and/or noise at hand. Besides that, from this formal definition two
intrinsically different targets of robust optimization can be distinguished, related to uncertainty
and noise within optimization problems:

1. Target to find optimal solutions in noisy/uncertain environments.

2. Target to find robust solutions.

The first aim is to deal with the fact that the system on which the optimization is performed
is not guaranteed to be noise/uncertainty-free and the problem is to design an optimization
method that is able to deal with this in order to find solutions which are of good quality
(also in practice). The other aim represents the desire to find solutions that are also of good
quality when variations in the design variables or environmental parameters occur. This aim

34 3. Robust Optimization

Robust Optimization Target Uncertainty class

Finding robust solutions
A) Uncertainties and/or noise in the design variables
B) Uncertainties and/or noise in the environmental
parameters

Optimization in noisy and uncer-
tain environments

C) Uncertainties and/or noise in the output

Table 3.3: The two targets of optimization can roughly be related to the place in which the
uncertainty/noise emerges.

emerges when instead of the real-world system, models are used for optimization and candidate
solutions or internal model parameters cannot be guaranteed to be set infinitely precise in the
real-world system. Hence, it focuses on the robustness of the solutions themselves. Table 3.3
summarizes this global categorization of robust optimization problems.

In literature often isolated scenarios for robust optimization are considered. That is, isolated in
the sense that only one particular type of noise/uncertainty, present in one particular part of the
system or (simulation) model is considered. The most prominent scenarios are:

• Optimization of noisy objective functions (e.g., [FG88, Bey00])

• Optimization of uncertain objective functions (e.g., [KAE+09])

• Optimization on systems in which the design variables are affected by uncontrollable
and unmeasurable perturbations (e.g., [BOS03])

• Finding robust optima in anticipation of perturbations of the design variables (e.g.,
[TG97, GA05, ONL06, PBJ06])

• Finding robust optima in anticipation of fluctuations of the environmental parameters
(e.g., [Hop09])

• Finding robust optima in anticipation of different operation conditions of the environ-
mental parameters (e.g., [RKD+11])

In the remainder of this work, we will also consider such isolated scenarios. In particular, we
consider two scenarios as exemplary for robust optimization, optimization of noisy objective
functions and finding robust optima in anticipation of perturbations of the design variables,
and study the way in which to solve such robust optimization problems. However, the reader
should be aware of the fact that the practice of robust optimization comprises a broad variety
of scenarios of uncertainties and/or noise.

3.3. Real-World Robust Optimization Scenarios 35

3.3 Real-World Robust Optimization Scenarios
This section is devoted to present three real-world optimization scenarios in which uncertainty
and noise are inherent parts of the system of interest. These scenarios are related to the view
on robust optimization as presented in this chapter.

3.3.1 Deep Drawing Optimization

The optimization of the design of a deep drawing process for sheet metal forming in engin-
eering is a typical example of a robust optimization problem (see, e.g., [SH04, PLBG07]).
The design of a deep drawing process involves finding proper settings for the process (e.g.,
drawing forces), such that the end product of the deep drawing process is of the desired
geometrical shape that complies to, or is as good as possible with respect to properties relating
to plasticity, thickness, and probability of forming failure. In practice, finite element software is
often used for virtual testing of candidate designs. Hence, the design of a deep drawing process
is an optimization problem for which automated optimization techniques are in principle well-
suited. Uncertainty and noise arise in several ways in such optimization problems:

A) Uncertainties and/or noise in the design variables:
In the real-world manufacturing process, the drawing forces, such as the drawbead
forces, the binder force, and the punch force cannot be set infinitely accurately (type
3). Designs should be robust against fluctuations in these variables.

B) Uncertainties and/or noise in the environmental parameters:
Parameters within the simulation model are uncertain and/or noisy, e.g., the friction
coefficient (type 1/2) or the blank thickness (type 3). Designs should be robust against
these uncertainties and fluctuations.

C) Uncertainties and/or noise in the output:
Due to the limited accuracy of a (finite element) simulator, the simulation output is not
guaranteed to match real-world behavior exactly (type 1/2). The optimization algorithm
should be robust against this type of uncertainty and find good solutions despite the
difficulty in the quality assessment of candidate designs.

The robust optimization goals for such problems are to find optimal designs (or solutions) that
are robust against fluctuations and uncertain conditions in real-world practice, and furthermore
to assure robustness of the optimization process itself, that has to deal with the uncertainty in
the assessment of the quality of candidate solutions.

3.3.2 Building Performance Optimization

With increasing quality of Building Performance Simulation (BPS) tools, including optim-
ization approaches for finding optimal building designs becomes more and more viable

36 3. Robust Optimization

[HHPW07, EHM+08, Hop09, HTHB11]. Consider, for example, the problem of optimizing
building designs for thermal comfort (maximization) and energy consumption (minimization)
with respect to the following design variables: infiltration rate (air exchange rate per hour in
the building), window fraction (the amount of glass percentage on one wall of the building),
load equipment (power equipment per net floor surface), and load lighting (power lighting per
net floor surface). By using BSP tools for the evaluation of candidate solutions (i.e., alternative
designs), automated optimization can be used to optimize building designs. The ways in which
uncertainty and noise arise in such optimization problems are:

B) Uncertainties and/or noise in the environmental parameters:
The operation conditions of a building in the real-world are uncertain and fluctuating.
An obvious example is the outside temperature that changes from hour to hour and from
day to day. For successful integration of optimization in this context, candidate designs
should be evaluated with respect to these fluctuating environmental operating conditions.

C) Uncertainties and/or noise in the output:
BPS tools are not guaranteed to match the real-world behavior exactly (type 1/2). The
optimization algorithm should be able to find high quality designs despite the difficulty
in the quality assessment.

Moreover, although we do not consider them in the scope of robust optimization, also uncer-
tainties of class E emerge in such problems. That is, thermal comfort is a typical objective in
which preference uncertainty arises as this is an inherently subjective objective, these indicators
are fuzzy measures.

3.3.3 Molecular Design Optimization

In de novo design of molecular structures, the challenge is to find molecular structures that
could be active components of drugs. In order for a molecular structure (or ligand) to be
suitable as a drug component, a number of criteria should be met. First, it should be active
on the targeted receptor. Second, it should fulfill a number of criteria such that it is actually
taken in by the body, it is not toxic or harmful in other ways, and it should be possible to
actually create (synthesize) the structure (preferably as easily as possible).

In practice, automated methods can be used for in silico design of candidate molecular
structures (see, e.g., [NAP09, KBIvdH08, KAE+09]). A simple setup, for instance, is to use
docking simulations to predict the binding affinity of a candidate ligand to a receptor, and
simple descriptors (such as Lipinski’s rule of five [LLDF01]) to determine the likelihood of a
candidate ligand to be generally suitable as a drug. Given this, the design task (or optimization
task) is to find molecular structures that have a high docking score, and also score well on the
simple descriptors (hence, it is a multi-objective optimization problem). The ways in which
uncertainty and noise arise in such optimization problems are:

3.4. Summary and Discussion 37

C) Uncertainties and/or noise in the output:
The simulation output of the docking simulator is an approximation of the real-world
behavior (type 1/2). Due to the use of a stochastic simulator, the outputs of the simulator
are noisy (type 3). The optimization algorithm should be robust against these types
of uncertainties and noise and find good solutions despite the difficulty in the quality
assessment of candidate molecular structures.

Moreover, although we do not note them as being in the scope of robust optimization, also
uncertainties of class D and class E emerge in such problems. Vagueness in the constraints
can emerge when constraint bounds are used for the simple descriptors that determine the
likelihood of a candidate ligand to be generally suitable as a drug (see, e.g., [KEB+09b]).
Preference uncertainty can emerge when the objectives are combined into one aggregate
scoring function.

3.4 Summary and Discussion
In this chapter we have extended the model of optimization problems as presented in Chapter 2
to a model that includes uncertainties and noise as they can arise in real-world optimization
problems. It has been shown that the various sources and types of uncertainty and noise yield
a combinatorial explosion of different scenarios. Yet, a few isolated scenarios can be identified
that emerge frequently, hence, are worthwhile subjects of study.

In this work, we consider robust optimization as the practice of optimization given un-
certainties and/or noise in the system or (simulation) model. Hence, we exclude uncertainties
that arise from the modeling of an optimization problem. Robust optimization deals with two
goals: 1) the aim to find optimal solutions in noisy/uncertain environments, and 2) the aim to
find robust solutions.

The concepts introduced in this chapter were exemplified by means of three real-world
optimization scenarios; deep drawing optimization, building performance optimization, and
molecular design optimization. For these three scenarios it was illustrated how the various
forms of uncertainties/noise enter the optimization model, therewith stressing the importance
of robust optimization.

In the second part of this work we will focus on two scenarios of robust optimization for real-
parameter optimization problems: optimization of noisy objective functions and the problem of
finding robust optima. For these two scenarios we will study how Evolutionary Algorithms, and
in particular Evolution Strategies, should be adapted in order to deal with robust optimization
problems.

Part II

Evolution Strategies for Robust

Optimization

Chapter 4

Evolutionary Algorithms and Evolution

Strategies
The paradigm of evolutionary computation is derived from the model of organic evolution
and refers to the application of the Darwinian principles of evolution for computational
purposes. The term Evolutionary Algorithm refers to an algorithmic method that adopts
the paradigm of evolutionary computation for solving optimization problems. Within these
methods, a population of candidate solutions (individuals) repeatedly undergoes the processes
of reproduction and selection, with the fitness of each candidate solution being expressed in
terms of its quality with respect to the given optimization problem. Hence, the basic elements
of natural evolution are used to breed populations of (near-)optimal solutions.

The main components of an Evolutionary Algorithm are summarized in Section 4.1. For a
thorough introduction to Evolutionary Algorithms, the reader is referred to, e.g., [Bäc96]
and [ES03]. Section 4.2 focuses on Evolution Strategies and introduces the two algorithmic
techniques that are the main focus of this work; the (5/2DI , 35)-σSA-ES and the CMA-ES.
Section 4.3 closes with a summary and discussion.

4.1 Evolutionary Algorithms
Figure 4.1 depicts the general evolution cycle of an Evolutionary Algorithm as a flowchart.
This flowchart is one of the possible variants. It considers a population of candidate solutions
or individuals that, after being initialized in some fashion, enters an evolution loop. A subset
of this population is selected (based on fitness) as parents for creating the offspring of the next
generation. The parents are then used for generating a set of offspring by recombination of two
or more of the parents and mutation of the recombined individual. Thereafter, the population
of the next generation is selected either from the offspring and the parents (elitism) or solely
from the offspring. This loop is repeated until a termination criterion is met.

Representation: Each individual represents a candidate solution for the optimization problem
at hand and should be modeled in some appropriate/convenient way in order to be used within

42 4. Evolutionary Algorithms and Evolution Strategies

Figure 4.1: The iteration cycle of an Evolutionary Algorithm.

the context of Evolutionary Algorithms. For some problems, the representation follows natur-
ally from the description of the search space. For other problems, an abstract representation has
to be designed, making a genotype/phenotype distinction. In the latter case, also a genotype to
phenotype decoding mechanism has to be designed. Two key points in choosing an appropriate
representation are: 1) It should be possible for each element of the search space to be modeled
(preferable uniquely) according to the chosen representation. 2) The representation should
allow for the implementation of genetic operators such as mutation and recombination.

Initialization: The initial population can be based on known good solutions that serve as
starting point for the evolutionary search, or can be generated randomly. When generating
the initial population randomly, it should be well-spread over the search space, which yields a
higher chance of identifying promising regions in the search space. For most representations,
the initialization procedure is fairly straightforward (e.g., using Latin Hypercube sampling in
real-parameter search spaces).

Evaluation: The evaluation component uses the objective and constraint functions of the
optimization problem to assign a quality score or fitness to each individual. Individuals with a
higher fitness will have a higher probability of surviving and passing on their genetic material
(i.e., the candidate solution that they represent) to future generations.

Selection: There are two types of selection: parental selection (or mating selection) and
survivor selection (or environmental selection). Parental selection is a stochastic selection
type that selects the parents that are used for the recombination of a new offspring (i.e., for
the generation of each offspring). In this selection type, the fitter individuals have a higher
probability to be selected as parent for recombination. The latter, survivor selection, is a
deterministic selection type that is applied at an earlier stage. It selects the µ fittest individuals
(the survivors) either out of the λ offspring, or, if elitism is used, out of the λ offspring and
the µ old parents. This selection type is commonly referred to as (µ+, λ)-selection, with (µ+λ)

denoting elitist selection, and (µ, λ) denoting non-elitist selection.

4.2. Evolution Strategies 43

Mutation and recombination: Mutation and recombination are the two types of genetic
operators or variation operators. Mutation operators add small perturbations to the (genotype
representations of the) individuals in the population. Recombination operators recombine two
or more individuals in the population into a new individual by means of crossover (of the
chromosomes). The choice of the genetic operators depends on the chosen representation of
individuals. An important criterion for the genetic operators is that it should be possible to get
from any solution in the search space to any other solution in the search space by applying
the genetic operators a finite number of times. Besides that, the genetic operators should be
well-defined, such that applying the operators to any solution (set of solutions) yields a valid
solution that is also in the search space. Lastly, the genetic operators should be unbiased.

Termination: The termination condition can depend on the available computation time, the
available number of evaluations/generations, or on convergence criteria such as a pre-defined
target fitness that is to be reached. After termination, the best solution(s) of the final population
or the best solution(s) found throughout the evolution loop can be considered as (a) good
solution(s) for the optimization problem. That is, provided the evolution process is granted
enough time.

4.2 Evolution Strategies

Evolution Strategies form a special branch of Evolutionary Algorithms, specifically designed
for real-parameter optimization problems as described by Definition 2.1.11 on page 16. They
have been proposed originally by Rechenberg [Rec73] and Schwefel [Sch77]. Over the years,
the class of Evolution Strategies has broadened into many algorithmic variants, making it
hard to pin down the canonical Evolution Strategy. In this section we will briefly summarize
the basic concepts and the most important Evolution Strategy variants with their respective
algorithmic descriptions.

4.2.1 The (1+1)-Evolution Strategy

The simplest Evolution Strategy is the (1+1)-Evolution Strategy (one parent, one offspring),
presented by Rechenberg [Rec73]. Algorithm 4.1 describes the working mechanism of this
simple Evolution Strategy.

The (1+1)-ES starts with a random solution xp drawn uniform randomly from the search
space [xl,xu] (denoted U(xl,xu)). This solution, the parent individual, is evaluated and the
algorithm enters the evolution cycle. In each generation, one offspring xo is created from the
parent by adding a small random vector to a copy of the parent. The perturbation, or mutation,
is drawn from an uncorrelated multivariate Gaussian distribution:

xo = xp + σz , z ∼ N (0, I). (4.1)

44 4. Evolutionary Algorithms and Evolution Strategies

Algorithm 4.1: The (1+1)-Evolution Strategy

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xp with objective function value fp

1: Set parameters: c← 0.85, G← max(5, n)

2: Initialize: g ← 0, Gs ← 0, σ ← ||xu−xl||
3
√
n

, xp ← U(xl,xu), fp ← f(xp)

3: while not terminate do

4: z ∼ N (0, I)

5: xo ← xp + σz

6: fo ← f(xo)

7: if fo ≤ fp then

8: xp ← xo

9: fp ← fo

10: Gs ← Gs + 1

11: end if

12: g ← g + 1

13: if gmodG = 0 then

14: ps ← Gs/G

15: σ ←

σ/c , if ps > 1/5

σ · c , if ps < 1/5

σ , otherwise

16: Gs ← 0

17: end if

18: end while

19: return (xp, fp)

4.2. Evolution Strategies 45

The newly generated offspring is evaluated and replaces the parent if it has a better fitness.
This loop is repeated until the termination criterion is met. After termination, the best solution
(i.e., the parent after the last iteration) is returned together with its fitness value.

The magnitude of the random perturbation added to the offspring is determined by σ, which
is the so-called stepsize parameter. It is updated everyG iterations based on the success rate ps,
which is the ratio of the mutations that generated an offspring fitter than the parent. The update
of σ follows the so-called 1/5th-success rule [Rec73]; if the success rate is higher than 1/5th,
the stepsize should be increased, if the success rate is lower than 1/5th, the stepsize should be
decreased, and if the success rate is equal to 1/5th, it remains unchanged. For increasing and
decreasing the stepsize, a constant multiplication factor 0.817 ≤ c < 1 is used.

For the parameter c, a reasonable setting is c = 0.85 (see [Bäc96]). For the parameter G, a
reasonable setting is G = n for n ≥ 5. The initial stepsize σ used here is proportional to the
expected distance to the optimum of the initial parent, which according to Schwefel [Sch77] is
a reasonable initial stepsize. In this work we adopt an initialization of σ = ||xu − xl||/(3

√
n).

This is based on the fact that the expected length of a mutation step is E[z] = σ
√
n and that the

average distance between two random points in an n-dimensional cube is proportional to
√
n

[BP09] (we take ||xu − xl||/3 as an approximation), hence, the initial mutation step is taken
to be proportional to the average distance of the initial solution to the optimum.

4.2.2 The (µ/ρ+, λ)-SA-Evolution Strategy

The (µ/ρ+, λ)-SA-ES, originally proposed by Schwefel [Sch77], is a population based exten-
sion of the (1+1)-ES. Instead of generating only one offspring from one parent, λ offspring are
generated from µ parents, based on both recombination and mutation. Another difference as
compared to the (1+1)-ES is the adaptation of the control parameters of the mutation operator.

Algorithm 4.2 shows the general outline of a (µ/ρ+, λ)-SA-ES. Individuals are of the form
a = (x, s, f), where x ∈ Rn is a vector of object variables (i.e., the candidate solution
represented by the individual), s is a set of endogenous strategy parameters (or just strategy
parameters), and f holds the fitness value. The strategy parameters are control parameters
for the mutation operator and are evolved together with the object variables. By including
the strategy parameters in the evolution process, these parameters do not have to be set
externally, but evolution itself adapts them to appropriate settings. Co-evolution of internal
strategy parameters is called self-adaptation (SA).

The algorithm starts with an initial parent population Pp consisting of µ parents, initialized
in some fashion. For each generation, λ offspring are generated from the parent population
Pp, evaluated, and added to the offspring population Po. After generating the offspring, µ
individuals are selected either solely from the offspring population (comma-selection) or from
the union of the parent population and the offspring population (plus-selection) to form the
parent population of the next generation. At the end of each generation the generation counter

46 4. Evolutionary Algorithms and Evolution Strategies

g is increased and the best solution of the new parent population is stored, to be returned after
termination. This procedure is repeated until the termination criterion is met.

For the generation of each offspring, a set R ⊆ Pp of ρ parents is selected randomly from
the parent population for generating the new offspring (marriage). The strategy parameters and
object variables of the selected parents are recombined (recombine s and recombine x) to form
recombinants s and x. These recombinants are thereafter mutated (mutate s and mutate x) and
evaluated to form the new offspring. Note that first the strategy parameters, then the object
variables should be mutated (according to the new strategy parameters) in order to achieve
co-evolution of the strategy parameters.

Marriage: The marriage operation selects a random subset of ρ parents for recombination.
The parameter ρ is called the mixing number. Within Evolution Strategies, recombination is
commonly done either with ρ = 2 parents or with ρ = µ parents (global recombination).

Recombination: There are two different types of recombination: discrete and intermediate.
Recombination is used for both the object variables and the strategy parameters. With discrete
recombination, for each element of the recombinant it is decided uniform randomly from which
of the parents the corresponding element should be copied. That is, given the ρ parental vectors
{rp

1 , . . . , r
p
ρ}, the ith of the new recombinant ro is constructed by

(ro)i =
(
rp
mi

)
i
, mi = rand{1, . . . , ρ}. (4.2)

Here, the recombinant ro can be either the recombinant of the object variables x or of the
strategy parameters s. With intermediate recombination, the value of each element of the
offspring’s object variables or strategy parameters is set to the average over all parents. That is,

(ro)i =
1

ρ

ρ∑
j=1

(
rp
j

)
i
. (4.3)

Figure 4.2 illustrates the working mechanism of the two different recombination schemes for
recombination of two parents.

Within Evolution Strategies, it is not uncommon that different recombination types are
used for the object variables and the strategy parameters. Standard practice is to use discrete
recombination for the object variables, and intermediate recombination for the strategy para-
meters. Regarding notation, the recombination type is sometimes included in the denotation
of particular Evolution Strategies by means of two subscripts on the mixing number ρ (D
for discrete and I for intermediate). The first subscript denotes the recombination type for the
object variables and the second denotes the recombination type for the strategy parameters. For
example, a (µ/ρDI+, λ)-ES denotes a (µ/ρ+, λ)-ES with discrete recombination of the object
variables and intermediate recombination of the strategy parameters.

Mutation: As with the (1+1)-ES, mutation works by adding a random vector generated from
a multivariate Gaussian distribution, which in the simplest case is uncorrelated and isotropic.

4.2. Evolution Strategies 47

Algorithm 4.2: General Outline of a (µ/ρ+, λ)-SA-ES

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xopt with objective function value fopt

1: Initialize: g ← 0, Pp ← initialize ({ak = (xk, sk, fk), k = 1, . . . , µ})

2: while not terminate do

3: Po ← ∅

4: for k = 1→ λ do

5: Rk ← marriage (Pp, ρ)

6: sk ← recombine s (Rk)

7: xk ← recombine x (Rk)

8: sk ← mutate s (sk)

9: xk ← mutate x (xk)

10: {Box-constraint handling}

11: fk ← f(xk)

12: Po ← Po ∪ {(xk, sk, fk)}

13: end for

14: if comma–selection then

15: Pp ← select (Po, µ)

16: else if plus–selection then

17: Pp ← select (Pp ∪ Po, µ)

18: end if

19: (xopt, fopt)← select best (Pp)

20: g ← g + 1

21: end while

22: return (xopt, fopt)

48 4. Evolutionary Algorithms and Evolution Strategies

Figure 4.2: Two recombination types, illustrated for the recombination of two parents. Left: discrete
recombination of two vectors where each element of the new vector is a copy of the corresponding
element of one of the two parents. Right: intermediate recombination of two vectors where each element
of the new vector is the average of the corresponding elements of the parents.

However, besides the object variables, also the strategy parameters are included in the mutation
scheme. Moreover, as these parameters are used to control the distribution from which the
perturbations are drawn, the strategy parameters are mutated before the object variables in
order to achieve co-evolution of the strategy parameters. For isotropic mutations, there is
only one strategy parameter, s = (σ). It scales the magnitude of the isotropic perturbations
(i.e., it controls the stepsize). The combined mutation operation for an offspring with strategy
parameter σ and object variables x is specified as:

σ = σ exp (τN (0, 1)) , (4.4)

x = x + σz , z ∼ N (0, I). (4.5)

Here, σ is mutated using the a log-normal distribution. The parameter τ is the so-called learning
parameter, which controls the magnitude of the changes of σ and is recommended to be chosen
as τ ∝ 1/

√
n. In this work, we adopt the setting τ = 1/

√
2n, which is recommended for

multimodal fitness landscapes (see [BS02]).
Besides the isotropic distribution, two other variants exist: a distribution with different scal-

ings along the main axes and a distribution with correlation of the variables. The philosophy
behind using more involved distributions is that these offer the possibility to align the mutation
distribution with the iso-lines of the fitness landscape, therewith speeding up the search. When
denoting the mutation of the object variables as the addition of a Gaussian random variable
sampled from σN (0,C), with C being the covariance matrix of the distribution, the three
mutation variants can be distinguished by the form of C. For isotropic mutations, C equals
the identity matrix. For scaled uncorrelated mutations, C is a diagonal matrix. For correlated
(scaled and rotated mutations), C is a semi-definite covariance matrix. Figure 4.3 exemplifies
the differences between these three types of mutations for the mutation of a two-dimensional
vector of object variables x. It shows the density map for the generated mutations, with height
lines for points of equal probability. The mutation mechanisms for the other two mutation types
are described in, e.g., [Bäc96, BS02, ES03].

Regarding notation, when using mutative self-adaptation as described above, this is some-
times incorporated into the notation as (µ/ρ+, λ)-SA-Evolution Strategy. In particular, when
using isotropic mutations with only one strategy parameter, σ, this is written as the (µ/ρ+, λ)-

4.2. Evolution Strategies 49

Figure 4.3: The effect of three mutation types, shown by means of iso-lines of the density map of
the mutation distribution for a two-dimensional vector of object variables x. Left: isotropic distribution.
Center: scaled uncorrelated mutations. Right: correlated mutations.

σSA-Evolution Strategy.

Population size: Traditionally, the population size of Evolution Strategies is set to µ = 15 and
λ = 100, adhering to the recommended ratio µ/λ ≈ 1/7 (see, e.g., [Bäc96]). When using only
a single stepsize parameter, smaller population sizes become also possible, such as (1 +, 10)-,
(4+, 28)-, and (5+, 35)-strategies.

Canonical settings: There are many different (µ/ρ+, λ)-SA-Evolution Strategy variants pos-
sible. In this work, we focus on one variant in particular, namely the (µ/ρDI , λ)-σSA-ES,
with ρ = 2, µ = 5, and λ = 35. It uses discrete recombination of the object variables
and intermediate recombination of the strategy parameters, mutation is based on an isotropic
multivariate Gaussian distribution, (which involves only one strategy parameter, σ), and the
selection type is comma-selection. The initialization of the population is done byxk ∼ U (xl,xu)

σk = ||xu−xl||
3
√
n

, k = 1, . . . , µ. (4.6)

4.2.3 The Covariance Matrix Adaptation Evolution Strategy

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES), proposed by Hansen and
Ostermeier [HO96, HO01], can be seen as a second generation Evolution Strategy. It is a
(µ/µW, λ) Evolution Strategy that uses comma-selection and global weighted intermediate
recombination (indicated by the subscript W) in which all offspring are generated from
the same recombinant 〈x〉W, computed as the weighted center of mass of the µ selected
individuals, i.e.,

〈x〉W =

µ∑
i=1

wixi:λ, (4.7)

50 4. Evolutionary Algorithms and Evolution Strategies

with
∑µ
i=1 wi = 1 and xi:λ denoting the object variables of the ith best individual. Within the

CMA-ES, the offspring are mutated copies of this recombinant, generated as

zk ∼ N (0, I), (4.8)

yk = C
1
2 z, (4.9)

xk = 〈x〉W + σyk, (4.10)

for k = 1, . . . , λ. Hence, the mutations are drawn from a multivariate Gaussian distribution
N (0, σ2C). The motivation for using such a mutation mechanism is to adapt the mutation
distribution to the local curvature of the fitness landscape. When this is achieved, this has as
effect that the mutations are taken along the gradient direction, which significantly increases
the convergence speed of the algorithm, especially for ill-conditioned problems. In order to
use such a mutation scheme, a proper adaptation scheme of the covariance matrix C and of the
stepsize σ is required. In the CMA-ES, these two issues are handled by two different control
mechanisms. For the former, a covariance matrix adaptation (CMA) scheme is used, for the
latter, a stepsize adaptation mechanism named cumulated stepsize adaptation (CSA) is used.

The covariance matrix determines the direction of the mutations. It is initialized with C = I

and updated each generation based on a weighted empirical covariance estimation of the µ best
individuals of the population (rank-µ-update) and on the direction of the so-called evolution
path pc (rank-one-update). The evolution path (initialized with pc = 0) is loosely defined as
the sequence of successive steps taken by the population over a number of generations. It is
a vector that tracks the direction followed by the population in the past few generations. The
update of the evolution path and the covariance matrix are done in a cumulative way, with

pc = (1− cc)pc +
√
cc(2− cc)µeff〈y〉W, (4.11)

C = (1− c1 − cµ)C + c1pcp
T
c + cµ

µ∑
i=1

wiyi:λy
T
i:λ. (4.12)

Here, 〈y〉W =
∑µ
i=1 wiyi:λ represents the direction of the step taken by the population’s

center of mass 〈x〉W. The parameter µeff is the so-called variance effective selection mass.
The parameters cc, c1, and cµ are the cumulation factors for the evolution path update, the
rank-one-update, and the rank-µ-update respectively.

The stepsize parameter σ scales the mutations. The cumulated stepsize adaptation mech-
anism also uses the so-called conjugate evolution path pσ (initialized with pσ = 0), which
registers both the length and direction of the evolution path. When the length of the evolution
path pσ is short, then steps are taken in opposite directions that cancel each other out, yielding
an ineffective circling behavior. In this case, the stepsize is decreased. When the evolution
path length is large, consecutive steps are taken in the same direction, from which it can be
concluded that the stepsize can be increased for faster convergence. As a reference for the
evolution path length, the CSA mechanism considers the path length that would occur under

4.2. Evolution Strategies 51

Technical Note 4.1: Parameter settings of the CMA-ES

Default population size:

λ = 4 + b3 lnnc, µ = bµ′c, µ′ =
λ

2
. (4.15)

Recombination weights:

wi =
wi∑µ
j=1 w

′
j

, w′j = ln(µ′ + 0.5)− ln j, for i = 1, . . . , µ. (4.16)

Variance effective selection mass:

µeff =

(
µ∑
i=1

w2
i

)−1

. (4.17)

Covariance matrix adaptation parameters:

cc =
4 + µeff/n

n+ 4 + 2µeff/n
, c1 =

2

(n+ 1.3)2 + µeff
, cµ = min

(
1− c1, 2

µeff − 2 + 1/µeff

(n+ 2)2 + µeff

)
.

(4.18)
Stepsize adaptation parameters:

cσ =
µeff + 2

n+ µeff + 5
, dσ = 1 + 2 ·max

(
0,

√
µeff − 1

n+ 1
− 1

)
+ cσ. (4.19)

random selection. The CSA update mechanism can be summarized as

pσ = (1− cσ)pσ +
√
cσ(2− cσ)µeffC

− 1
2 〈y〉W, (4.13)

σ = σ exp

(
cσ
dσ

(
||pσ||

E[||N (0, I)||]
− 1

))
. (4.14)

The update of the evolution path length pσ is similar to the update of pc. The stepsize update
uses an exponential update, with dσ being a damping factor, and E[||N (0, I)||] being the
expected length of a random vector drawn from N (0, I).

The setting of the parameters used within the CMA-ES are given in Technical Note 4.1.
For more details regarding these settings, the reader is referred to [HO96, HO01]. Finally, for
the sake of completeness, Algorithm 4.3 provides an algorithmic description of the CMA-ES.

4.2.4 Box-Constraint Handling

For real-parameter optimization problems, the search space is bounded by the hyperbox
[xl,xu] and in many scenarios it is desirable to only generate candidate solutions that lie
within this hyperbox. Since mutation can yield solutions that are not within this hyperbox,

52 4. Evolutionary Algorithms and Evolution Strategies

Algorithm 4.3: The CMA Evolution Strategy

Input: objective function f : Rn → R, lower bounds xl ∈ Rn, upper bounds xu ∈ Rn

Output: best solution found xopt with objective function value fopt

1: Set parameters: the parameters λ, µ, µ′, w1, . . . , wµ, µeff , cc, c1, cµ, cσ , dσ are set

according to Technical Note 4.1

2: Initialize: g ← 0, pc = 0, C = I, pσ = 0, σ = ||xu−xl||/(3
√
n), 〈x〉W ∼ U (xl,xu)

3: g ← 0

4: while not terminate do

5: for k = 1→ λ do

6: zk ∼ N (0, I)

7: yk ← C
1
2 zk

8: xk ← 〈x〉W + σyk

9: {Box-constraint handling}

10: fk ← f(xk)

11: end for

12: 〈y〉W ←
∑µ
i=1 wiyi:λ

13: 〈x〉W ← 〈x〉W + σ〈y〉W

14: {Box-constraint handling}

15: pc ← (1− cc)pc +
√
cc(2− cc)µeff〈y〉W

16: C← (1− c1 − cµ)C + c1pcp
T
c + cµ

∑µ
i=1 wiyi:λy

T
i:λ

17: pσ ← (1− cσ)pσ +
√
cσ(2− cσ)µeffC

− 1
2 〈y〉W

18: σ ← σ exp
(
cσ
dσ

(
||pσ||

E[||N (0,I)||] − 1
))

19: g ← g + 1

20: (xopt, fopt)← (x1:λ, f1:λ)

21: end while

22: return (xopt, fopt)

4.3. Evolution Strategies 53

Figure 4.4: Left: visualization of reflection box-constraint handling in a two-dimensional search space.
Right: an illustration of the working mechanism of the transformation function T[a,b] with a = 4 and
b = 6 (right figure, courtesy of Li [Li09]).

an additional box-constraint handling mechanism is needed in order to accomplish this.

For box-constraint handling, two straightforward methods are to reject mutations that fall
outside the box or to apply a cutoff rule forcing mutated offspring back to the nearest point
on the constraint boundary. In this work we use a reflection mechanism (see [Li09]) in which
mutations are mirrored in the constraint boundaries. That is, the ith element of a candidate
solution x is transformed as:

(x)i = T[(xl)i,(xu)i] ((x)i) , (4.20)

with

T[a,b](x) = x+ y′ · (b− a), (4.21)

y′ =

|y − byc| if byc mod 2 = 0

1− |y − byc| otherwise
, y =

x− a
b− a

. (4.22)

Figure 4.4 visualizes the working mechanism of reflection.

The reason for choosing this mechanism is that it is relatively simple to implement and
it preserves much of the normal dynamics of Evolution Strategies, also near the constraint
boundaries. Moreover, also in practical scenarios where the optimizer might be located very
close to a box-constraint boundary, this method is well applicable.

When using this box-constraint handling mechanism within the CMA-ES, note that the
recombinant 〈x〉W should be computed by addition of σ〈y〉W, not as the weighted mean of
the selected offspring, and handled separately (also with reflection). For the (µ/ρ+, λ)-SA-
Evolution Strategy, reflection only needs to be applied to the offspring.

54 4. Evolutionary Algorithms and Evolution Strategies

4.3 Summary and Discussion
This chapter has provided a brief introduction to Evolutionary Algorithms and in particular
Evolution Strategies, which are designed to solve single-objective real-parameter optimiza-
tion problems. It has introduced the two main algorithmic schemes that will be considered
throughout this work in the context of robust optimization; the (5/2DI , 35)-σSA-ES and the
CMA-ES.

The (5/2DI , 35)-σSA-ES is an element of the class of classical Evolution Strategies as
proposed by Schwefel [Sch77]. It is a population based Evolution Strategy in which the
strategy parameters are included in the encoding of the individuals in order to co-evolve
them together with the object variables (self-adaptation). It uses two-parent recombination
with discrete recombination of the object variables and intermediate recombination of the
strategy parameters. For mutation it uses an isotropic multivariate Gaussian distribution scaled
according to the stepsize parameter.

The CMA-ES [HO96, HO01] can be seen as a derandomized version a classical Evolution
Strategy. The main difference is that it adopts a different way of controlling the strategy
parameters. For the mutation, it uses a multivariate Gaussian distribution based on a full
covariance matrix and scaled with a stepsize parameter. The covariance matrix is adapted
based on the direction of successful mutations (rank-one and rank-µ update) and the stepsize
parameter is adapted based on the length of the evolution path (cumulative stepsize adaptation).
Furthermore, it adopts global weighted intermediate recombination for the object variables and
uses a small population size as compared to the (5/2DI , 35)-σSA-ES.

The two algorithmic schemes are considered to be instantiated canonically as described
in Section 4.2.2 and Section 4.2.3, respectively, and are used in combination with reflection
box-constraint handling as discussed in Section 4.2.4.

In this work, we study to what extent the (5/2DI , 35)-σSA-ES and the CMA-ES are suitable in
robust optimization scenarios, or how they should be adapted in order to make them such. Two
scenarios are considered in particular: optimization of noisy objective functions and finding
robust optima.

Chapter 5

Optimization of Noisy Objective

Functions

Optimizing systems or models of systems that exhibit noisy output is a common scenario for
real-world optimization problems. Figure 5.1 illustrates such a scenario schematically, in which
the system or (simulation) model produces an output that is noisy and where this noise in the
output propagates to the objective and constraint functions. This chapter focuses on a restricted
subclass of such problems, being unconstrained single objective real-parameter optimization
problems in which the noise in the output propagates as additive noise in the objective function.

The intent of this chapter is to answer the following questions: 1) What is the goal of
optimization when having noisy objective functions? 2) What is the effect of noise in the
objective functions on Evolution Strategies? 3) How should Evolution Strategies, and in
particular the (5/2DI , 35)-σSA-ES and the CMA-ES, be adapted in order to deal with noisy
objective functions?

Figure 5.1: A typical robust optimization scenario: the system or model of the system for which an
optimization problem needs to be solved produces a noisy output.

56 5. Optimization of Noisy Objective Functions

This chapter consists of two parts. In the first part (Section 5.1 and Section 5.2), the problem
of noisy optimization and the effects of noise on Evolution Strategies are studied. Section 5.1
starts by providing a description of noisy objective functions and the goals of optimization
in case of noisy objective functions. Section 5.2 studies the effects of noise in the objective
functions on Evolution Strategies. In the second part of this chapter (Section 5.3 to 5.6), a
number of noise handling techniques usable for Evolution Strategies are described and evalu-
ated. Section 5.3 reviews some basic noise handling techniques, Section 5.4 reviews techniques
known as adaptive averaging techniques, Section 5.5 briefly summarizes metamodel based
noise handling techniques, and Section 5.6 provides a general discussion on noise handling
techniques. Section 5.7 closes with a summary and discussion.

5.1 Noisy Objective Functions
The optimization problems considered in this chapter are unconstrained single-objective real-
parameter optimization problems, with objective functions of the form

f̃(x) = f(x) + z(x). (5.1)

That is, the objective function f̃(x) consists of a deterministic, noise-free part f(x) and an
additive stochastic part z(x), which is a random variable indexed by space (i.e., it can be seen
as a random field or noise landscape). In case of a stationary distribution, z(x) are identically
distributed for all x ∈ Rn, otherwise the noise is said to be non-stationary. Furthermore, the
noise is unbiased if E[z(x)] = 0 for all x ∈ Rn.

A common goal of optimization of noisy objective functions is to find optimal solutions for the
deterministic part of the function f̃(x). Hence, the underlying deterministic function f(x) is
considered to be the “true” objective function and the aim is to find optimal solutions for that
underlying function despite the noisy evaluations. This view is considered explicitly in, e.g.,
[HB94, HNGK09], and is appropriate when the noise is due to measurement errors instead of
being intrinsic to the system. This goal of optimization can be stated explicitly by denoting
the objective function that is effectively seen as the objective function for optimization. This is
called the effective objective function (denoted feff) which in this case is simply stated as

feff(x) = f(x). (5.2)

An alternative goal, stated for example by Jin and Branke [JB05], is to find optimizers for the
expected objective function (denoted fexp), i.e.,

feff(x) = fexp(x) = E[f̃(x)]. (5.3)

This aim is appropriate for systems with intrinsic noise. Although these two effective objective
functions look very similar, it should be noted that these are only equivalent when the noise is
unbiased.

5.2. Noisy Objective Functions 57

Other goals for optimization of noisy objective functions are:

1. To optimize based on percentiles or the median.

2. To optimize based on a lower confidence bound, e.g.,

feff(x) = inf
{
a ∈ R |P

(
f̃(x) < a)

)
> pα

}
→ min, (5.4)

using an appropriate setting for the conflict level pα, or

feff(x) = E[f̃(x)]− ω
√

Var[f̃(x)], (5.5)

using an appropriate weight ω.

3. To restate the optimization problem as a multi-objective problem, requiring optimization
of the mean and minimization of the variance, i.e.,

feff
(1)(x) = E[f̃(x)], (5.6)

feff
(2)(x) = Var[f̃(x)]→ min . (5.7)

4. To restate the optimization problem as a multi-objective problem, requiring optimization
of the mean and optimization of the lower confidence bound, e.g.,

feff
(1)(x) = E[f̃(x)], (5.8)

feff
(2)(x) = P

(
f̃(x) < Tcrit

)
→ min, (5.9)

with Tcrit being some critical level.

As pointed out by Sano and Kita [SK00], the latter two goals could be appropriate for
optimization of investment, aiming to achieve high return and low risk solutions. However,
note that for stationary noise, these alternatives do not effectively change the optimization
goal as compared to the expected objective function. That is, in terms of optimization, these
measures yield rankings amongst all solutions in the search space that are equivalent to the
ranking based on the expected objective function.

The effective objective function states the optimization goal. However, it is obvious that it is
impossible to precisely evaluate the effective objective functions stated above. Hence, for the
evaluation of candidate solutions an alternative evaluation function f̂eff(x) should be used that
yields unbiased approximations of the effective objective functions. For instance, when using
just one noisy evaluation for each candidate solution, one effectively uses f̂eff(x) = f̃(x),
which yields unbiased approximations of the expected objective function. In literature, the
step of explicitly stating an effective objective function is often omitted.

58 5. Optimization of Noisy Objective Functions

5.2 The Effects of Noise on Evolutionary Algorithms
The effects of noise on Evolution Strategies (and Evolutionary Algorithms in general) have
been extensively researched over the past two decades. As noted by Beyer [Bey00], the
commonly accepted viewpoint is that Evolutionary Algorithms are fairly robust against noise
in the objective function based on the two empirical arguments that 1) evolution in nature
is also highly influenced by noise, yet seems to work fine, and 2) in practice, Evolutionary
Algorithms have shown to yield usable results for practical noisy optimization problems (that
is, in the sense of melioration). Here it is considered that the fitness of each individual is
determined by using one noisy evaluation (i.e., f̂eff(x) = f̃(x)) that effectively approximates
the expected objective function (i.e., feff(x) = fexp(x)).

In Evolutionary Algorithms, essentially only the selection operation is directly influenced by
noise. Moreover, as noted by Heidrich-Meisner [HM11], for rank based selection, noise only
affects selection when it changes the ranking among the individuals of the population.

The presence of noise does not necessarily have a negative impact on the performance
of Evolutionary Algorithms. Noise has similar effects as the randomness that is intentionally
included in commonly used selection methods, like the randomness in proportional selection
and tournament selection in Genetic Algorithms [Bäc96], and this randomness can help to
escape local optima. These alleged benefits of randomness induced by noise are supported
by studies on theoretical cases in which adding a small noise signal to the original objective
function yielded better convergence reliability [BH94] or even a higher convergence velocity
[MNB08].

On the other hand, noise can also have harmful effects. The study of Beyer [Bey00] showed
that for a simple quadratic function with stationary Gaussian noise, Evolutionary Algorithms
fail to get infinitely close to the optimum. Instead, the population stagnates at a certain residual
distance from the optimum. Given the general insight that the regions around the local optima
of many continuous functions can be approximated by a quadratic model, similar effects can
be expected for a wide range of noisy optimization problems.

An intuitive explanation of the reason why Evolutionary Algorithms are relatively good in
dealing with noisy objective functions is that in the early stages of the evolution process
the differences in fitness between all pairs of individuals are generally much bigger than the
variations due to noise. Because of this, the selection mechanisms will keep a strong bias
toward selecting the better solutions for reproduction, which is sufficient for Evolutionary
Algorithms to progress. However, as the evolution proceeds and the population zooms in on an
optimum, the differences in both the search space as well as the objective space will decrease,
whereas the variance of the noise factor generally stays at the same order of magnitude. Hence,
the signal to noise ratio decreases and in effect the bias toward selecting better solutions will
decrease. Eventually, the selection process will degrade to uniform random selection.

5.2. The Effects of Noise on Evolutionary Algorithms 59

0 2000 4000 6000 8000 10000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ
ε
 = 0.0001

σ
ε
 = 0.001

σ
ε
 = 0.01

σ
ε
 = 0.1

σ
ε
 = 1.0

m
ed

ia
n

di
st

an
ce

 to
 th

e
op

tim
um

evaluations
0 2000 4000 6000 8000 10000

10
−4

10
−3

10
−2

10
−1

10
0

10
1

σ
ε
 = 0.0001

σ
ε
 = 0.001

σ
ε
 = 0.01

σ
ε
 = 0.1

σ
ε
 = 1.0

m
ed

ia
n

di
st

an
ce

 to
 th

e
op

tim
um

evaluations

Figure 5.2: The convergence dynamics in terms of distance to the optimizer versus number of
evaluations (median over 100 runs) of the (5/2DI , 35)-σSA-ES (left) and the CMA-ES (right) on the
noisy sphere problem for different noise levels (σε = 0, σε = 0.0001, σε = 0.001, σε = 0.01, σε = 0.1,
and σε = 1).

Hence, although noise may be advantageous in some cases or at some stages of the
optimization process, it can deteriorate the accurate localization of an optimum, and canonical
Evolutionary Algorithms need to be equipped with noise handling mechanisms in order to
enable them to locate optima of the expected objective function more precisely.

To illustrate the effect of noise on Evolution Strategies, and in particular on the variants that
are the focus of this work, we set up the following experiment:

Experiment 5.2.1 (Performance of Evolution Strategies on the noisy sphere problem): We per-
form 100 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3)
on the 10-dimensional noisy sphere problem (see Appendix A.1) with varying noise levels
(σε = 0, σε = 0.0001, σε = 0.001, σε = 0.01, σε = 0.1, and σε = 1). Each run has a budget
of 10, 000 function evaluations.

Figure 5.2 shows the results of Experiment 5.2.1 by means of the performance, measured in
terms of the median distance to the optimizer, versus evaluations. The plots show that for both
algorithms the performance in the early stages of the evolution is not affected by noise, yielding
the same progress rate (that is, the improvement in the direction of the optimum) for each noise
level. However, for each noise level, there is a specific point when the progress rate deteriorates
and finally reaches zero. That is, the optimization process stagnates at a certain distance to the
optimizer. The higher the noise level, the earlier the stagnation and the higher the distance to
the optimizer at which the stagnation occurs.

For the (1, λ)-σSA-ES, the (µ, λ)-σSA-ES (without recombination) and the (µ/µ, λ)-σSA-
ES, Beyer [Bey00] derived lower bounds for the residual distance R∞ for the noisy sphere
problem. For the (µ, λ)-σSA-ES (without recombination) on the noisy sphere problem it is

60 5. Optimization of Noisy Objective Functions

derived as

R∞ ≥
1

2

√
σεN

4
√
µcµ,λ

, cµ,λ ∼
√

2 ln(λ/µ), (5.10)

with cµ,λ being the so-called progress coefficient (see [Bey94] for the derivation of the progress
coefficient). An approximation for the (µ/µ, λ)-σSA-ES, which most closely resembles the
weighted recombination used in the CMA-ES, was obtained by Arnold and Beyer [AB02] as

R∞ '
1

2

√
σεN

4µcµ/µ,λ
, cµ/µ,λ = O(

√
ln(λ/µ)), (5.11)

with cµ/µ,λ being derived in [Bey95, Bey96]. From this, it can be concluded that, in order to
increase the convergence accuracy of Evolution Strategies, either the population size should be
increased (that is, either µ, λ, or both) or the noise factor σε should be decreased. Moreover,
comparing Eq. 5.10 with Eq. 5.11, it can be concluded that for the noisy sphere problem,
using (multi-) recombination improves convergence accuracy. Regarding the latter, Hammel
and Bäck [HB94] reported that also two-parent recombination improves the performance of
Evolution Strategies on noisy functions. Section 5.3 will discuss the technique of increasing
the population size or decreasing the evaluation error as an active way of noise handling in
more detail.

Finally, an issue specific for Evolution Strategies is the effect of noise on the adaptation
of the strategy parameters (i.e., the stepsize, and for the CMA-ES also the update of the
covariance matrix). Obviously, when the signal-to-noise ratio within a population becomes
too small, the failures in selecting the fitter individuals will also affect the adaptation of
the strategy parameters. However, especially when considering noise handling schemes it is
important to know how the adaptation mechanisms of the strategy parameters are affected
by noise, and, following that, at which noise ratio these adaptation mechanisms will yield
inappropriate/counterproductive parameter settings.

Using the results of Experiment 5.2.1, Figure 5.3 shows the development of the stepsize
for the noise level σε = 1.0 (both the mean performance and the development of a single run)
compared to the stepsize development for the noise-free case. For the (5/2DI , 35)-σSA-ES,
the stepsize in each generation is the average stepsize of all selected parents, and for the CMA-
ES, the plotted stepsize is the scaling factor of the mutations, σ (i.e., not accounting for the
covariance matrix factor). It can be seen that also the stepsize stagnates at some level. Hence,
the mutations remain fairly high although effectively the population does not get closer to
the optimum. This behavior is comparable for both algorithmic schemes (although they use
different stepsize adaptation mechanisms). Moreover, the single run dynamics show that the
stepsize develops like a bounded random walk.

Not many studies exist on the adaptation of the stepsize in noisy scenarios. Two studies
by Arnold and Beyer [AB04, AB08] consider the behavior of cumulative stepsize adaptation.

5.3. Basic Noise Handling 61

0 50 100 150 200 250 300
10

−6

10
−4

10
−2

10
0

generations

m
ed

ia
n

st
ep

si
ze

Median for σ
ε
 = 0

Median for σ
ε
 = 1.0

Single run for σ
ε
 = 1.0

0 200 400 600 800 1000
10

−6

10
−4

10
−2

10
0

generations

m
ed

ia
n

st
ep

si
ze

Median for σ
ε
 = 0

Median for σ
ε
 = 1.0

Single run for σ
ε
 = 1.0

Figure 5.3: The stepsize development (both of a single run and the median over 100 runs) of the
(5/2DI , 35)-σSA-ES (left) and the CMA-ES (right) on the noisy sphere problem with noise level
σε = 0.1 compared to the stepsize development on the noise-free sphere problem (median over 100
runs).

They conclude that noise affects the proper adaptation of the mutation strength as compared
to the theoretical optimal mutation strength, and that this effect can be counteracted (again)
by increasing the population size. Another interesting result is presented in [Bey00], showing
an example where the failure of a proposed noise handling scheme is attributed primarily to a
wrong adaptation of the stepsize.

In conclusion, we can summarize the findings from literature that are most interesting for
practical application of Evolution Strategies on noisy objective functions:

• The robustness with respect to noisy objective functions is implicitly defined as the
ability of Evolutionary Algorithms of finding high quality solutions with respect to the
expected objective function value (i.e., feff = fexp).

• As long as the noise level is small compared to the difference in objective function values
of the individuals, noise does not affect the performance of Evolutionary Algorithms.

• Increasing the population size (µ, λ, or both) increases the convergence accuracy,
meaning that the population will be able to converge closer to a local optimizer.

• Using any common type of recombination increases the ability to closer approximate the
optimum on the noisy sphere problem.

• For adaptation of the strategy parameters, increasing the population size increases the
reliability of the adaptation of the stepsize for cumulative stepsize adaptation.

5.3 Basic Noise Handling
As mentioned, Evolutionary Algorithms and Evolution Strategies are fairly robust against
noise. However, at a certain point during the optimization when the signal-to-noise ratio

62 5. Optimization of Noisy Objective Functions

becomes too low, they will stagnate and not converge any closer to the optimum. When
more accurate localization of an optimizer is required, additional measures are needed. This
section will provide an overview of some basic techniques that can be used in the context of
optimization of the expected objective function.

5.3.1 Resampling

Resampling or explicit averaging is a straightforward approach to obtain better convergence
accuracy by approximating fexp as the sample mean over m samples

f̂exp(x) =
1

m

m∑
i=1

f̃(x). (5.12)

For Gaussian noise z(x) ∼ N (0, σ2
ε), this yields an approximation error of

σ̄ε =

√
Var[f̂exp(x)] = σε/

√
m. (5.13)

Because the sample mean is an unbiased estimator of fexp, this approach effectively reduces
the noise level of objective function f̃ by a factor of

√
m, allowing for a closer convergence to

the optimum. An obvious downside of this approach is that using multiple samples per fitness
evaluation increases the computational effort by a factor m. Especially for limited evaluation
budgets, determining an appropriate setting for m can be a tedious task.

5.3.2 Increasing the Population Size

As discussed in the previous section, for Evolution Strategies it has been observed that increas-
ing the population size is also a way of improving the convergence accuracy. Interestingly,
also in the context of Genetic Algorithms, this observation was made by Fitzpatrick and
Grefenstette [FG88], and Miller and Goldberg [MG96] showed that for infinite population
sizes, proportional selection is not affected by noise. Increasing the population size as an active
way of noise handling is also referred to as implicit averaging, as opposed to the alternative of
explicit averaging by means of resampling.

For Evolution Strategies, increasing both µ and λ can reduce the effects of noise. Considering
that increasing µ does not increase the number of evaluations per generation, this may suggest
that we have a free way of increasing the convergence accuracy. However, as noted in [HB94],
the price of increasing µ is a lower selection pressure, which yields a lower convergence speed.
Hence, increasing µ has an indirect effect on the convergence speed. Alternatively, one could
increase both µ and λ. Although this does have a direct effect on the number of evaluations per
generation, and yields a slower convergence speed, it leads to a higher convergence accuracy.

In order to obtain a clearer view on the effects of noise and different population sizes for the
two particular schemes considered in this work, consider the following small experiment:

5.3. Basic Noise Handling 63

(µ/2DI , λ)-σSA-ES CMA-ES
λ = 35, µ = 5, 10, 15, 20, 25, 30 λ = 10, µ = 3, 5, 7, 9

λ = 100, µ = 15, 25, 35, 45, 55, 65 λ = 30, µ = 10, 15, 20, 25, 30

Table 5.1: The population size settings considered in Experiment 5.3.1.

0 2000 4000 6000 8000 10000

10
0

(10,35)

(5,35)

(15,35)

(20,35)

(30,35)

(25,35)

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations
0 2000 4000 6000 8000 10000

10
0

(9,10)

(7,10)

(5,10)

(3,10)

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations

0 2000 4000 6000 8000 10000

10
0

(15,100)

(25,100)

(35,100)

(45,100)

(55,100)

(65,100)

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations
0 2000 4000 6000 8000 10000

10
0

(20,30)

(25,30)

(15,30)

(30,30)

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations

Figure 5.4: The performance of the (µ/2DI , λ)-σSA-ES (left) and the CMA-ES (right) on the noisy
sphere problem for varying population sizes. The top row shows the default value for λ, varying µ, the
bottom row shows a value of λ that is approximately three times the default value, again varying µ. The
performance is measured in terms of distance to the optimizer versus evaluations (median over 100 runs).

Experiment 5.3.1 (Effect of higher population sizes on the noisy sphere problem): We perform
100 runs of a (µ/2DI , λ)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) on
the 10-dimensional noisy sphere problem (see Appendix A.1). For each scheme, two settings
of λ are considered, each with varying settings of µ (see Table 5.1). For each run, an evaluation
budget of 10, 000 function evaluations is used.

Figure 5.4 shows the results of Experiment 5.3.1 by means of plots of the performance, meas-
ured in terms of the median distance to the optimizer, versus the number of evaluations. From
these results, two conclusions can be drawn: First, increasing λ yields a higher convergence
accuracy, but a lower convergence speed. This is indeed in line with what was expected.

64 5. Optimization of Noisy Objective Functions

Second, increasing µ can improve convergence quality, but for the (µ/2DI , λ)-σSA-ES, the
convergence speed drastically decreases with increasing values for µ, whereas for the CMA-
ES, µ ≈ λ still seems to work and actually yields a good trade-off between convergence speed
and convergence accuracy. The latter is a remarkable result, as setting µ = λ seemingly implies
that there is no selection pressure. A simple explanation for why this works for the CMA-ES
is that it uses weighted recombination, assigning a higher weight to the fitter individuals in the
logarithmically weighted average (which can be seen as an implicit selection mechanism).

In [Bey00], it is recommended that for the (µ/µI , λ)-ES, given a fixed offspring number λ,
the value of µ should be chosen such that µ = λ/2. For the (µ, λ)-σSA-ES, in [HB94] it is
recommended to set µ ≈ 1/7, whereas in [Bey00], a derivation based on Eq. 5.10 showed
that it should be set to µ = λ/e. Based on this, and on the results shown in Figure 5.4, we
postulate that good alternative settings in case of 10-dimensional noisy objective functions
with stationary noise, are: µ ≈ λ/e for the (µ, λ)-σSA-ES and µ ≈ λ for the CMA-ES
(this should be investigated in more depth). For the setting of λ, there is an inherent trade-
off between convergence speed and convergence accuracy, making it purely dependent on the
available budget of function evaluations.

5.3.3 Implicit Averaging versus Explicit Averaging

Given the two techniques to increase convergence accuracy, implicit and explicit averaging,
the question arises which one is better. In [BOS03], it is stressed that for the (µ/µI , λ)-ES,
given a fixed noise strength, it is more efficient to increase the offspring number by a factor m
instead of resampling the objective function m times. On the other hand, Hammel and Bäck
[HB94] conclude exactly the opposite based on an experimental study on the (µ, λ)-ES (i.e.,
resampling is better than increasing the population size). In order to form a picture, we perform
the following experiment:

Experiment 5.3.2 (Implicit versus explicit averaging): For comparing implicit versus explicit
averaging, we perform 100 runs of a (µ/2DI , λ)-σSA-ES (see Section 4.2.2) and a CMA-
ES (see Section 4.2.3) on the 10-dimensional noisy sphere problem (see Appendix A.1) and
on a multimodal problem; the 10-dimensional noisy Griewank problem (see Appendix A.6).
We take for implicit averaging for the (µ/2DI , λ)-σSA-ES: a (5, 35)-, a (25, 175)-, and a
(50, 350)-strategy, and for the CMA-ES: a (5, 10)-, a (25, 50)-, and a (50, 100)-strategy. For
the resampling schemes we consider:m = 1 (i.e., no resampling),m = 5,m = 10. Evaluation
budget for each run: 10, 000.

Figure 5.5 shows for Experiment 5.3.2 the convergence plots in terms of distance to the
optimizer versus evaluations. Interestingly, we can observe a remarkable difference between
the (µ/2DI , λ)-σSA-ES and the CMA-ES. For the (µ/2DI , λ)-σSA-ES, explicit resampling
seems to yield better results than implicit averaging. That is, using larger population sizes
seems to slow down the convergence. However, for the CMA-ES, increasing the population

5.3. Basic Noise Handling 65

0 2000 4000 6000 8000 10000

10
0

(5,35), m = 5

(25,175), m = 1

(5,35), m = 1

(5,35), m = 10

(50,350), m = 1

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations
0 2000 4000 6000 8000 10000

10
0

(50,100), m = 1

(25,50), m = 1

(5,10), m = 10

(5,10), m = 5

(5,10), m = 1

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations

0 2000 4000 6000 8000 10000

10
1.4

10
1.5

10
1.6

10
1.7

10
1.8

10
1.9

(5,35), m = 10

(5,35), m = 5

(25,175), m = 1

(50,350), m = 1

(5,35), m = 1

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations
0 2000 4000 6000 8000 10000

10
1.2

10
1.4

10
1.6

10
1.8

(50,100), m = 1

(25,50), m = 1

(5,10), m = 10

(5,10), m = 5

(5,10), m = 1

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations

Figure 5.5: The performance of the (µ/2DI , λ)-σSA-ES (left) and the CMA-ES (right) on the noisy
sphere problem (top row) and the noisy Griewank problem (bottom row). Comparing implicit versus
explicit resampling. The performance is measured in terms of distance to the optimizer versus evaluations
(median over 100 runs).

size seems to be most beneficial. Moreover, for both implicit averaging and explicit averaging,
the CMA-ES obtains much better results than the (µ/2DI , λ)-σSA-ES. The results shown
in Figure 5.5 can well explain the difference between the conclusions of Hammel and Bäck
[HB94], and those of Beyer [BOS03].

5.3.4 Rescaled Mutations

An alternative approach of noise handling that does not require additional evaluations per
generation is to use rescaled mutations. This technique was proposed originally by Rechenberg
[Rec94] and further investigated by Beyer [Bey98, Bey00]. Using rescaled mutations is based
on the slogan “mutate large, but inherit small” and it basically does just that. Instead of
performing mutation in the normal way, a large mutation is applied to each individual (that
is, large compared to the current stepsize) and selection is based on the fitness values of the
offspring generated by these large mutations. However, after selection, instead of using the
large mutation for the selected offspring, the mutation is rescaled to a small mutation. Hence,
selection is based on large mutations, while small mutations in the same directions as the

66 5. Optimization of Noisy Objective Functions

successful large mutations are eventually used after selection.

As an example, consider the (1, λ)-strategy and let offspring i be obtained by xi = xp +zi,
zi ∼ N (0,C). Now, let x1:λ denote the best offspring, which was generated by mutation z1:λ.
Instead of using x1:λ as parent for the next generation, the mutation is rescaled by a factor of
1/κ, κ ≥ 1. Hence, the parent for the next generation is computed as

xp = xp +
1

κ
z1:λ. (5.14)

When assuming local or quasi linearity of the search space, the direction of the best large
step should also be the best direction of improvement for a small step. Hence, by using large
mutations for evaluations, differences between individuals become more apparent.

Although the idea behind using rescaled mutations is appealing and provides theoretically
promising results for the noisy sphere problem, in practice, it does not yield convincing results,
not even for the noisy sphere problem (see, e.g., [Bey00]). For the noisy sphere problem, this
is attributed to a wrong adaptation of the stepsize (even after inclusion of fixes for the stepsize
adaptation). For other problem types, one could argue that the assumed quasi linearity of the
search space only holds very locally, i.e., only works for κ ≈ 1. Based on these considerations,
we can conclude that this noise handling technique is not off-the-shelf usable in practical
scenarios.

5.3.5 Thresholding

Thresholding is a noise handling technique proposed by Markon et al. [MMA+01]. Threshold-
ing is a simple technique, however, usable only for plus-selection strategies. The idea behind
thresholding is that an offspring is only accepted to replace a parent if it is at least a constant
τ > 0 better. That is, in order to prevent the selection of outliers, offspring are required to be
considerably fitter than their parents in order to be selected.

The study by Markon et al. [MMA+01] uses the (1+1)-ES as algorithmic basis and
includes theoretical analysis of thresholding on the noisy sphere problem with Gaussian noise.
For this setting, they provide a derivation on how to set τ when having an estimate of the noise
strength and an estimate of the fitness difference with respect to the optimum. For this setting
of τ , the (1+1)-ES with thresholding can converge arbitrarily close to the optimum.

Although the theory behind the study of Markon et al. [MMA+01] is sound and the results
look promising, the gap with practical applicability is still considerable. Obtaining accurate
estimates of the noise strength and the fitness difference with respect to the optimum is a
tedious task in itself. Furthermore, the extension to multi-membered comma-strategies requires
a number of adaptations. An approach that can be considered as a multi-membered extension
of this approach will be described in Section 5.4.3.

5.4. Adaptive Averaging 67

5.4 Adaptive Averaging
Among the basic noise handling approaches discussed up to now, the two straightforward
approaches of implicit and explicit averaging seem the most effective. However, both suf-
fer from the problem that they only decrease the effect of noise, but do not eliminate it.
Moreover, these techniques introduce a trade-off between using a small population/sample
size that yields a high convergence speed, but a low convergence accuracy versus using a large
population/sample size that yields a low convergence speed, but high convergence accuracy.

From this perspective it is desirable to have a method that adapts the intensity of the
noise handling scheme such that convergence is maintained, but evaluations are not wasted.
For implicit averaging, this means to start out with a small population size, and increase
the population size when the population converges. For explicit averaging, this could be
done in a similar way, and in addition one could distribute the sampling budget over the
individuals in an efficient way. Methods that control the evaluation intensity are referred to
as adaptive averaging methods. Several of such techniques have been proposed in the context
of Evolutionary Algorithms. This section summarizes the most prominent ideas.

5.4.1 Duration Scheduling and Sample Allocation

Aizawa and Wah [AW93, AW94] proposed two adaptive resampling schemes for noisy
objective functions in the context of Genetic Algorithms, based on two underlying scheduling
problems that emerge when dealing with noisy objective functions:

• Duration scheduling problem: the problem of determining whether the quality of the
objective function approximations of the individuals in the population is sufficient to end
the current generation and use the current approximations for selection.

• Sample allocation problem: the problem of allocating evaluations (samples) to each
individual in the population given a budget of evaluations such that it is most beneficial
for the current generation.

The former emerges when premature convergence needs to be prevented while having no
practical limitations on the evaluation budget. The latter emerges when evaluation is costly
and it is important to spend the evaluations as effectively as possible within each generation.
They proposed two separate approaches for these two scheduling problems.

Both the duration scheduling approach and the sample allocation approach are based on
two assumptions: 1) the noise is stationary and has a Gaussian distribution, and 2) the “real”
underlying objective function values of the individuals in a population are normally distributed.
Based on these assumptions and on approximations of the parameters of both distributions (see
Technical Note 5.1), a Bayesian approach is used to approximate the fitness of each individual
(see Technical Note 5.2).

68 5. Optimization of Noisy Objective Functions

Technical Note 5.1: Estimating the Population and Noise Variance

When assuming that the noise in the objective functions is stationary and has a Gaussian
distribution,N (0, σ2

ε), and the “real” underlying objective function values of the individuals
in a population are also normally distributed, N (f0, σ

2
0), then σ2

0 , f0, and σ2
ε can be

approximated as

σ̂2
ε =

∑λ
i=1((mi − 1) · s2

i)

(
∑λ
i=1mi)− λ

, s2
i =

mi∑
j=1

(f̃i,j − f̄i)2, (5.15)

f̂0 =
1

λ
·
λ∑
i=1

f̄i, (5.16)

σ̂2
0 =

1

λ · (λ− 1)

λ · λ∑
i=1

(f̄i)
2 −

(
λ∑
i=1

f̄i

)2
− σ̂2

ε

m
, (5.17)

where m1 = . . . = mλ = m is assumed.

Remark: An issue not mentioned in [AW94], but very relevant in practice, is that the estimate
from Eq. 5.17 becomes unusable when the ratio σ2

0/(σ
2
ε /m) becomes too small. That is, if the

ratio between the population variance and the variance of the sample mean (σ2
ε /m) becomes

smaller, the estimate σ̂2
0 becomes less accurate and might even become negative (which,

being a variance, is an unreasonable estimate). This should be accounted for in practical
situations, because it harms the fitness estimates. Furthermore, it should be noted that this
approach requires at least two samples for each individual in the population.

The duration scheduling approach aims to automatically adapt the number of samples used
for resampling such that the Evolutionary Algorithm maintains progress. Primarily it uses a
static incremental scheme, determining a budget tk of samples available for generation k as

tk = λ ·

(
m0 +

⌈
γ

k−1∑
i=1

ti

⌉)
, (5.22)

where λ is the population size, m0 is the initial number of samples used for each individual,
and γ is a heuristic parameter. Secondly, it uses the following bounds for the ratio between
the effective variance of the noise (see Eq. 5.13) and the population variance as an indicator of
whether the current generation can be terminated:

δl ≤
σε/
√
m

σ0
≤ δu. (5.23)

If this ratio is small enough (i.e., < δl), no resampling is necessary and the resampling loop
is terminated even if the current evaluation budget tk is not spend entirely. When it is greater
than δu, resampling is necessary and resampling is continued even if the evaluation budget tk
is exceeded. Here, σε and σ0 are estimated as described in Technical Note 5.1.

5.4. Adaptive Averaging 69

Technical Note 5.2: Bayesian Fitness Approximation

Assume that the objective function value of candidate solution xi is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε). (5.18)

Furthermore, assume that the “real” objective function values f1, . . . , fλ of the λ individuals
within the population are normally distributed, N (f0, σ

2
0), yielding for each individual i, a

prior distribution h(fi) ∼ N (f0, σ
2
0).

Let f̄i be the mean of mi fitness evaluations (f̃i,1, . . . , f̃i,mi) for candidate solution xi. By
definition, we know:

p(f̄i | fi) ∼ N (fi, σ
2
ε /mi). (5.19)

Using Bayes formula, we obtain a posterior distribution for individual i

h∗(fi | f̄i) =
p(f̄i | fi) · h(fi)∫∞

−∞ p(f̄j | fj) · h(fj) · dfj
. (5.20)

From this, the best estimator f̂i for fi with estimation error σ̂i is given by

f̂i =
mi · f̄i + α · f0

mi + α
, σ̂i =

σ2
ε

mi + α
, α =

σ2
ε

σ2
0

. (5.21)

The values of σ2
0 , f0, and σ2

ε can be estimated as described in Technical Note 5.1.

Regarding the implementation details of the duration scheduling approach, γ = 5× 10−3,
δl = 1.0, δu = 4.0 are used in [AW94]. The setting of m0 is noted to be based on Eq. 5.23,
however, the exact procedure is not described in [AW94]. Besides that, a pre-sampling step
should be used to estimate σε and σ0, which are required within Eq. 5.23, but this pre-sampling
step is not described explicitly. Also, no note is made of how often the estimates of σε and σ0

are updated. For the implementation of this scheme, these issues should be accounted for.

The sample allocation approach uses a fixed budget of objective function evaluations T every
generation and aims to divide the evaluations such that it is most beneficial for selection.
Technical Note 5.3 summarizes this sample allocation procedure1. The idea is to distribute
the evaluation budget T = (m1 + . . . + mλ) in an optimal way among the individuals of the
current generation. This can be accomplished by selecting the individual for resampling for
which resampling will lead to the highest reduction of the following expected risk function:

R̄ =

λ∑
i=1

Piσ̂
2
i . (5.24)

1The description in Technical Note 5.3 differs slightly from the description presented in [AW94], which is done
for the sake of clarity.

70 5. Optimization of Noisy Objective Functions

Technical Note 5.3: Sample Allocation Procedure

1. Take a fixed number of samples (at least twoa) for each individual in the population
and set the evaluation counter t = m0 · λ.

2. For each individual i = 1, . . . , λ compute σ̂i and Pi (or wi as an approximation).

3. Take one additional sample for the individual that has the largest feedback value
according to Eq. 5.28 and increase the evaluation counter t = t+ 1.

4. Repeat step 2 to 4 until t = T .

aIn [AW94] it is said to take one sample for each individual. However, at least two samples for each individual
are needed to obtain estimates for σε and σ0.

Here, Pi is the probability that individual i is the best individual and σ̂2
i is the estimated

prediction error of individual i (see Eq. 5.21). Technical Note 5.4 describes the procedure
to find the individual that contributes most to the risk function Eq. 5.24.

To summarize, Aizawa and Wah [AW94] proposed two adaptive resampling methods that are
both based on a Bayesian approach for estimating the fitness that differs from the common way
of doing explicit averaging. Furthermore, they introduced a way of measuring the selection
uncertainty based on the ratio between the population variance and the approximation error
Eq. 5.23, which is used in a duration scheduling approach. For in-generation allocation of
additional fitness evaluations, a sample allocation scheme based on an expected risk function
is proposed.

For applying the proposed techniques in practice, a few remarks are in place. First, it should
be noted that for Evolution Strategies, using solely the Bayesian fitness approximation is not
sensible, because it does not change the ranking amongst the individuals in the population as
compared to explicit averaging. Furthermore, in [AW94] it is noted that the duration scheduling
problem and sample allocation problem do not occur concurrently. However, this is debatable,
because even if a sufficiently large evaluation budget is available for duration scheduling, it can
still be desirable to spend the evaluations within a generation as effectively as possible. Lastly,
no note is made of the possibility that the estimate σ̂2

0 (see Technical Note 5.1) can become too
crude to be practical, or even negative (making it unusable).

5.4.2 Adaptive Resampling Based on the t-Test

Another class of adaptive averaging schemes is formed by approaches that apply reevaluation
based on statistical testing of the ranking of the individuals. An obvious first choice is the
t-test, which can be used for pairwise comparison of solutions. This approach is suitable
when optimizing on the expected objective function, assuming that the noise on the objective

5.4. Adaptive Averaging 71

Technical Note 5.4: Minimization of the Expected Risk

Given Bayesian objective function approximations as described by Technical Note 5.2, then
the probability Pi that individual i is the best individual is given by

Pi =

∫ ∞
−∞

∏
j 6=i

H∗(fj | f̄j)

h∗(fi | f̄i)dfi, (5.25)

where, H∗(fj | f̄j) is the cumulative distribution function of h∗(fi | f̄i). Given that φ(.) and
Φ(.) are the probability density function and the cumulative distribution function of the
Gaussian distribution, respectively, and using the approximations of f̂i and σ̂i, this becomes:

Pi =

∫ ∞
−∞

∏
j 6=i

Φ

(
fi − f̂j
σ̂j

)φ(fi − f̂j
σ̂j

)
dfi. (5.26)

Alternatively, given that the computation of Pi requires numerical integration, a weight wi
can be used instead of Pi, in which each individual is only compared to the best (or second
best if it is the best itself):

wi = Φ

 f̂i − f̂j√
σ̂2
i + σ̂2

j

 , j =

{
k , i 6= k

l , i = k
, (5.27)

where k is the index of the best individual, and l is the index of the second best individual,
based on the fitness approximations f̂1, . . . , f̂λ.

Based on either Pi or wi, the individual that should be selected for reevaluation in order to
minimize the risk function of Eq. 5.24 is the individual i, computed as

argmax
i∈{1,...,λ}

[
Pi

σ̂2
ε

(mi + α)2

]
. (5.28)

72 5. Optimization of Noisy Objective Functions

Technical Note 5.5: Fitness Comparison Using the t-Test

Assume that the fitness of individual i is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε). (5.29)

Given two individuals xi and xj , with mean fitness values f̄i and f̄j obtained through
resampling using mi and mj samples respectively, sample variances s2

i and s2
j , and suppose

f̄i ≤ f̄j . We can test the hypothesis

H0 : f̄i ≤ f̄j (5.30)

against the hypothesis
H1 : f̄i > f̄j (5.31)

using a one-sided t-test to a significance α. Given the t-statistic

tij =
f̄i − f̄j√
s2i
mi

+
s2j
mj

, (5.32)

we can rejectH0 if tij > t(α,2m−2). Here, t(α,2m−2) is the t-distribution with 2m−2 degrees
of freedom, computed for α.

function is Gaussian. Approaches based on this statistical testing have been proposed in
different studies in different settings [Sta98, CP04, KEB09a].

The t-test can be used to test whether or not the differences of the mean objective function
values of two individuals is significant with a certain significance level. The approach to do so
is briefly summarized in Technical Note 5.5. During the evaluation phase of the optimization,
one can require for a one-sided t-test with a significance α between (certain/all) pairs of
individuals, and continue resampling until this is achieved.

A first consideration that is relevant when following such an approach is whether or not
a Bonferroni correction should be applied for multiple comparisons [Dun61]. The choice of
applying a Bonferroni correction determines whether the statistics are based on comparison
of separate pairs or on comparison of the full population. In [Sta98, CP04, KEB09a], the
Bonferroni correction is not used. Secondly, note that instead of using a one-sided t-test
as described in Technical Note 5.5, also a two-sided t-test could be used (see [KEB09a]).
However, effectively this will not make much difference. That is, for both the one-sided
as the two-sided t-test the t-statistic is the same, only the threshold value for a certain
significance level α changes, yet this does not yield an essentially different indicator measure
for resampling. Lastly, one has to decide which pairs of individuals are compared against each
other. The approaches proposed in literature are:

• Subsequent pair testing: Based on a population sorted by fitness approximation

5.4. Adaptive Averaging 73

f̄1:λ, . . . , f̄λ:λ, test for every subsequent pair of individuals {xi:λ,xi+1:λ}, i =

1, . . . , λ − 1 whether the fittest is fitter with a significance α. For each individual
belonging to a pair for which the significance is too low, take one additional sample.
Repeat this loop until no more individuals need resampling. This method was studied in
[KEB09a].

• Test against best: Sort the population by fitness approximation f̄1:λ, . . . , f̄λ:λ, test every
individual xi:λ, i = 2, . . . , λ against the best individual x1:λ for a significance α. For
each individual belonging to a pair for which the significance is too low, take one
additional sample. Repeat this loop until no more individuals need resampling. This
method was also studied in [KEB09a].

• Pairwise tournaments: In [CP04], pairwise comparison was used within tournament se-
lection with tournament sizes of two. Within every tournament, resampling is continued
until the fittest individual is better with a significance α.

For Evolution Strategies, using (µ+, λ)-selection, only the first two approaches are applicable.

Although the idea of using the t-test for adaptive resampling seems promising at first sight,
empirical results in [CP04] and [KEB09a] show that these approaches come with serious
problems. In the experiments of [KEB09a], different t-test based evaluation schemes are
compared for a (1, 10)-σSA-ES on a 10-dimensional noisy sphere problem (with σε = 0.1)
and an evaluation budget of 20, 000 function evaluations. These schemes are: subsequent pair
adaptive resampling instances, test against best adaptive resampling instances, and a fixed
sample size resampling method with a sample size tuned for this problem instance (which
is m = 50). From the results, shown in Figure 5.6, it can be seen that tuning the parameter
α is quite a tedious task. It should be strict enough in order to determine a correct ranking
with sufficient confidence, but on the other hand, if it is too strict, samples might be wasted in
assuring that pairs of individuals are actually different. The former leads to early convergence
and the latter leads to slow convergence, as can be observed in the plots.

Moreover, a performance loss can even be observed when comparing the best adaptive
resampling methods against the best fixed sample size resampling method. The latter can be
attributed to an explosion of the number of samples required to achieve a certain significance
level for pairs of individuals that happen to have objective function values that lie very
close to each other (in the perspective of the overall differences between all λ offspring).
These pairs require (unnecessarily) long resampling loops. An even more extreme scenario
emerges when two individuals have exactly the same mean objective function value, which
can cause (obviously undesirable) infinite evaluation loops. On objective function landscapes
that contain many or large plateaus, this method is therefore likely to fail when this scenario is
not accounted for.

74 5. Optimization of Noisy Objective Functions

Figure 5.6: Results from [KEB09a]. Different instances of a (1, 10)-σSA-ES on a 10-dimensional noisy
sphere problem, with σε = 0.1. Top row: the performance and required evaluations per generation of a
(1, 10)-σSA-ES implementing the subsequent pair test adaptive sampling approach. Middle row: the
performance and required evaluations per generation of a (1, 10)-σSA-ES implementing the test against
best adaptive sampling approach. Bottom row: the performance of the best adaptive sampling instances
compared to the performance when using a good fixed sample size approach. The results were obtained
using 10 runs per algorithmic scheme, using an evaluation budget of 20, 000.

5.4. Adaptive Averaging 75

Figure 5.7: The dominance relationship for interval orders visualized geometrically. In this figure,
the space of intervals is presented on a two-dimensional plane, divided into the regions of dominating
intervals, dominated intervals, and incomparable intervals of the interval [x1, y1]. The line x = y
represents the intervals that are reduced to single points. From this figure, we see that decreasing the
interval length decreases the distance to the line x = y, which increases the comparability.

5.4.3 Partial Order Based Adaptive Averaging

Rudolph [Rud01] proposed to actively consider the partial order that emerges when considering
the noisy fitness of each candidate solution as an uncertainty interval, see Technical Note
5.6. For this, it should be assumed that the noise in the objective function is bounded within
known intervals. Given this viewpoint, one could apply an Evolutionary Algorithm that selects
based on the dominance relation that emerges from this partial order. Figure 5.7 visualizes the
dominance relationship for interval orders. In this figure, the space of intervals is presented on a
two-dimensional plane, divided into the regions of dominating intervals, dominated intervals,
and incomparable intervals of the interval [x1, y1]. The line x = y represents the intervals
that are reduced to single points. From this figure, we see that decreasing the interval length
decreases the distance to the line x = y, which increases the comparability.

Rudolph considered an Evolutionary Algorithm using an elitist selection strategy and for
which it is guaranteed that every collection of offspring can be generated from any collection
of parents. For such algorithms, it holds that for any finite search space with any noisy
objective function with the noise bounded within the interval [−a, a], the population will, with
a probability 1, after a finite number of generations, enter a state in which all solutions have an
objective function value that lies at most 3a away from the optimum (see [Rud01] for details).

This scheme can be extended as an adaptive averaging scheme by using the sample mean
of m evaluations. For this, confidence intervals can be generated that are stricter than the
original bounds, which will lead to more accurate convergence precision. For this, an adaptive
resampling technique can be devised as follows: run the Evolutionary Algorithm described

76 5. Optimization of Noisy Objective Functions

Technical Note 5.6: Partial Orders Induced by Noise

For the set of intervals F = {[x1, x2] ⊂ R : x1 ≤ x2}, one can introduce a strict partial
order ≺

[x1, x2] ≺ [y1, y2] iff x2 < y1, (5.33)

which can be extended to a partial order by adding the relations

[x1, x2] = [y1, y2] iff x1 = y1 or x2 = y2, (5.34)
[x1, x2] � [y1, y2] iff [x1, x2] ≺ [y1, y2] ∨ [x1, x2] = [y1, y2], (5.35)

Although strictly speaking it is sufficient to consider only a strict partial order, for compliance
with literature, we discuss the method in the context of partial orders. The pair (F ,�) is
called a partially ordered set (poset). Furthermore, given two elements x, y ∈ F , x is said to
dominate y iff x ≺ y and both elements are said to be incomparable (denoted x||y) iff x ⊀ y
and y ⊀ x a.

In the context of noisy objective functions, one can view the noisy fitness value f̃(x) of
an individual x ∈ X as an element of the interval [f(x) − a, f(x) + a]. Hence, given a
noisy evaluation f̃(x), then the true fitness f(x) of x should lie within the random interval
[f̃(x)− a, f̃(x) + a].

When assuming that all feasible solutions x ∈ A have been evaluated once, one can define
the set of minimal elements in the set of evaluated objective function values as

F̃∗ = {f̃(x∗) |x∗ ∈ A and@x ∈ A : [f̃(x)−a, f̃(x)+a] ≺ [f̃(x∗)−a, f̃(x∗)+a]}. (5.36)

For this, Rudolph [Rud01] showed that

max{F̃∗} ≤ f∗ + 3a, (5.37)

where f∗ denotes the optimum of the “true” objective function. That is, all solutions in F̃∗
lie at most 3a from the optimum.

aBy abuse of notation, the notion of incomparability also includes equality.

5.4. Adaptive Averaging 77

above until the population consists of all non-dominated solutions and no improvements have
been found for a number of generations. At that point, increase the sample size to tighten the
confidence intervals and increase convergence accuracy.

This approach is different from other noise handling approaches in that it is the only
approach that actively considers the noisy objective function values in the context of a partial
order based on confidence intervals. However, comparing it to the thresholding approach (see
Section 5.3.5), there is some overlap. The elitist thresholding scheme maintains non-dominated
solutions in a similar way, by only accepting solutions that are a factor of τ better. In a similar
fashion one could construct confidence bounds that have a similar effect as using this threshold.

The algorithm proposed in [Rud01] is not straightforwardly incorporable in the algorithmic
schemes considered in this work. This is because it considers an elitist evolution loop that
differs from the general evolution loop of the (5/2DI , 35)-σSA-ES and the CMA-ES, and
because it is based on the assumption that the noise is strictly bounded within known intervals
[−a, a]. In order to test the idea of using the non-dominance relation amongst intervals, we
consider the adaptive averaging procedure of Algorithm 5.1. This procedure, which replaces
the evaluation procedure of the canonical (5/2DI , 35)-σSA-ES and CMA-ES, counts the
number of non-dominated solutions based on Gaussian confidence intervals (using confidence
level δ) that are constructed from a number of samples bmeval + 1c. If this number reaches
the parental population size µ (corresponding to a parental population that contains only non-
dominated solutions), then the number of samples used for the next generation is increased
with a factor αm. The ranking amongst the individuals is based on the mean objective function
values. When there are at most µ non-dominated solutions, then all of them will be selected
when selecting based on the mean objective function values.

To gain insight in the behavior of this evaluation scheme we perform the following experiment:

Experiment 5.4.1 (Performance of poset based adaptive averaging on the noisy sphere prob-
lem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating the eval-
uation procedure of Algorithm 5.1 (named PUH-(5/2DI , 35)-σSA-ES) on the 10-dimensional
noisy sphere problem (see Appendix A.1). We take parameter setting α = 1.5 and use varying
δ = 0.1, 0.3, 0.5. As benchmark, we include a (5/2DI , 35)-σSA-ES using a fixed sample
size resampling scheme with m = 50. Each run uses a budget of 100, 000 objective function
evaluations.

The results of Experiment 5.4.1 are presented in Figure 5.8 and Figure 5.9. Figure 5.8 shows
the convergence dynamics of the three instances of this adaptive averaging scheme and as
a benchmark the convergence dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.9 shows the single run and average dynamics of
the three instances of this adaptive averaging scheme. The left column shows the distance to
the optimizer versus the number of generations, the middle column the development of sample

78 5. Optimization of Noisy Objective Functions

Algorithm 5.1: Poset Based Adaptive Averaging

Procedure parameters: confidence level δ, averaging increment factor α

Procedure variables: sample size indicator meval, initialized at meval = 2

1. For all candidate solutions x1, . . . ,xλ obtainm = bmeval+1c noisy objective function
evaluations

f̃i,j = f̃(xi) , i = 1, . . . , λ , j = 1, . . . ,m. (5.38)

2. For each individual xi, compute the mean objective function value f̄i, the sample
variance s2

i , and confidence bound [f̄i − ci, f̄i + ci], with:

ci = cGaussian
i =

si√
m

Φ−1

(
1 + δ

2

)
. (5.39)

3. Compute the number of non-dominated solutions as

#nds = |{i ∈ {1, . . . , λ}|@j ∈ {1, . . . , λ} : fj + cj < fi − ci}| . (5.40)

4. Update the sample size meval using the update rule

meval =

{
α ·meval , if #nds ≥ µ
meval , otherwise

. (5.41)

5. Generate a ranking x1:λ, . . . ,xλ:λ based on the sample means f̄1, . . . , f̄λ.

5.4. Adaptive Averaging 79

0 2 4 6 8 10

x 10
4

10
0

PUH ES (δ = 0.5)

PUH ES (δ = 0.3)

MEM 50

PUH ES (δ = 0.1)

m
e
d

ia
n

 d
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

evaluations
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

MEM 50

PUH ES (delta = 0.5)

PUH ES (delta = 0.3)

PUH ES (delta = 0.1)

Figure 5.8: Left: The convergence dynamics (median over 10 runs) of the PUH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying δ = 0.1, 0.3, 0.5, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.

0 50 100 150 200 250 300 350

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 50 100 150 200 250 300 350
2

2.5

3

3.5

4

4.5

5

5.5

6

m
_
e
v
a
l

Generations

single run

median of 10 runs

0 50 100 150 200 250 300 350
1

1.5

2

2.5

3

3.5

4

4.5

5

s

Generations

single run

median of 10 runs

0 10 20 30 40 50

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 10 20 30 40 50
0

20

40

60

80

100

120

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 10 20 30 40 50
0

2

4

6

8

10

12

14

s

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35
0

50

100

150

200

250

300

350

400

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

14

s

Generations

single run

median of 10 runs

Figure 5.9: The dynamics (median over 10 runs) of the PUH-(5/2DI , 35)-σSA-ES on the noisy
sphere problem, using different confidence levels δ = 0.1 (top row), δ = 0.3 (middle row), δ = 0.5
(bottom row). Left: the distance to the optimizer versus number of generations. Center: the development
of meval. Right: the development of the uncertainty level (i.e., the number of non-dominated solutions in
the offspring population).

80 5. Optimization of Noisy Objective Functions

size parameter meval, and the right column the development of the uncertainty indicator (i.e.,
the number of non-dominated solutions).

In Figure 5.8 we observe promising convergence behavior of this scheme for all considered
settings of δ when comparing it to the fixed sample size resampling scheme. Also the
convergence plots of Figure 5.9 show promising behavior, however, we observe a big difference
between the three PUH-(5/2DI , 35)-σSA-ES variants. When δ is small (e.g., δ = 0.1),
corresponding to having loose confidence bounds, the uncertainty level stays low for a large
number of generations. Yet, from the convergence plot of δ = 0.1, we also see that the hovering
behavior that is due to noise already occurs after approximately 20 generations. On the other
hand, the convergence plots for higher values of δ do not show this hovering behavior, but
also complete much less generations based on the same evaluation budget. The latter is due
to a much faster growing uncertainty level, yielding an exponentially growing sample size
meval. Here, we observe a typical dilemma of adaptive averaging techniques, which is to
find a good balance between requiring a high selection accuracy that yields a good progress
each generation and accepting inaccuracies in the selection that yields slower generation-wise
convergence, but which allows for completing much more generations with the same evaluation
budget. In this small experiment setup, δ = 0.3 seems to be the most promising choice.

From these results, we can conclude that using the concept of dominance based on partial
orders on uncertainty intervals seems indeed a viable way to do uncertainty handling. However,
the results do not show whether this approach can outperform a well chosen fixed sample
size resampling scheme on a fixed evaluation budget. Also a more fine-grained tuning of this
approach remains to be done.

5.4.4 Selection Through Racing

Heidrich-Meisner and Igel [HMI09a] suggest the use of so-called Hoeffding and Bernstein
Races [MM94, MM97] for handling noisy fitness evaluations. They proposed their approach
in the context of policy learning and incorporated it in the CMA-ES. In [HMI09a], it is stated
that the goal of the noise handling scheme is to ensure with a given confidence that the µ
selected individuals from the population are indeed the µ best. To achieve this, they 1) control
the overall number of evaluations, and 2) control the distribution of evaluations among the
individuals in the population. Note that this two-phase distinction is identical to the distinction
between duration scheduling and sample allocation made by Aizawa and Wah [AW94].

The evaluation/selection procedure as proposed in [HMI09a] uses confidence bounds based
on Hoeffding’s or Bernstein’s inequality as described in Technical Note 5.7. The underlying
assumption of this approach is that the measured objective function values f̃i,j of a candidate
solution xi are bounded within known bounds [a, b]. Given this assumption, Hoeffding’s or
Bernstein’s inequality can be used to construct confidence bounds for the estimate of the
sample mean of each individual in the population when having multiple objective function

5.4. Adaptive Averaging 81

Technical Note 5.7: Hoeffding and Bernstein Bounds

Given m noisy evaluations of individual i, f̃i,1, . . . , f̃i,m and the sample mean f̄i of these
m samples. Furthermore, assume that the fitness value is almost surely bounded within the
interval [a, b], i.e., Pr(f̃i ∈ [a, b]) ≈ 1. Using Hoeffding’s inequality we can state that

Pr
(∣∣∣f̄i −E[f̃i]

∣∣∣ ≥ R) ≤ 2 exp

(
− 2R2m

(b− a)2

)
. (5.42)

Using this, we can state that with a probability of at least 1− δ it holds that

∣∣∣f̄i −E[f̃i]
∣∣∣ ≤ (b− a)

√
ln 2

δ

2m
. (5.43)

A more general bound can be obtained by using the empirical Bernstein bound, which uses

the empirical standard deviation, obtained through σ̂2
i = 1

m

∑m
j=1

(
f̃i,j − f̄i

)2

. For this, it
holds with a probability of 1− δ that

∣∣∣f̄i −E[f̃i]
∣∣∣ ≤ σ̂i

√
2 ln 3

δ

m
+

3(b− a) ln 3
δ

m
. (5.44)

Hence, using the Hoeffding or the Bernstein inequality, we can compute a confidence interval
[f̄i − ci, f̄i + ci], with

cHoeffding
i = (b− a)

√
ln 2

δ

2m
, (5.45)

cBernstein
i = σ̂i

√
2 ln 3

δ

m
+

3(b− a) ln 3
δ

m
. (5.46)

82 5. Optimization of Noisy Objective Functions

Technical Note 5.8: Selection Through Races

Given for each individual i = 1, . . . , λ object variables xi, absolute lower and upper bound
a and b of the fitness values, a maximal evaluation budget per individual mlimit, the number
of to be selected individuals µ, and required confidence level δ.

1. Let S = ∅, D = ∅, and U = {1, . . . , λ} be respectively the set of selected,
discarded, and undecided individuals. Evaluate each individual once, f̃i,1 = f(xi)
for i = 1, . . . , λ, initialize the lower and upper bounds for each individual, LB i = a,
UB i = b for i = 1, . . . , λ, initialize the sample counter m = 1, and let um = |U |.

2. Set m = m+ 1, and let um = |U |. Then, for each of the undecided individuals i ∈ U ,
reevaluate once f̃i,m = f(xi) and recompute the sample mean f̄i = 1

m

∑m
j=1 f̃i,j .

3. For each undecided individual i ∈ U , compute a new confidence interval[
f̄i − ci, f̄i + ci,

]
using the Hoeffding or Bernstein bound requiring a confidence

of 1 − δ/nb, nb =
∑m−1
j=1 uj + (mlimit − m + 1)um

a. Update the lower and
upper bound based on the new confidence interval: LB i = max{LB i, f̄i − ci},
UB i = min{UB i, f̄i + ci}.

4. For each of the undecided individuals i ∈ U :

• If |{j ∈ U |LB i < UB j}| ≥ λ − µ − |D|, then individual i is probably among
the best µ, so add it to the set of selected individuals S = S ∪ {i} and remove it
from the set of undecided individuals U = U\{i}.

• If |{j ∈ U |UB i < LB j}| ≥ µ−|S|, then individual i is probably not among the
best µ, so add it to the set of discarded individuals D = D ∪ {i} and remove it
from the set of undecided individuals U = U\{i}.

5. Repeat step 3 to 5 until |S| = µ or m = mlimit.

6. Adapt mlimit, if |S| = µ then mlimit = max{3, (1/α) · mlimit}, else mlimit =
min{mmax, α ·mlimit}. Use {f̄1, . . . , f̄λ} as the fitness values for selection andmlimit

as the updated evaluation limit.

aIn order to assure for n estimated intervals a 1 − δ confidence, we require a confidence of 1 − δ/n for each
individual interval (Boole’s inequality). Given that nb,i denotes the total number of computed intervals for individual
i after the full evaluation loop, then there are n = nb,1 + . . . + nb,λ estimated bounds in total. As a (worst-case)
estimate for n, nb =

∑m−1
j=1 uj + (mlimit −m+ 1)um can be used.

5.4. Adaptive Averaging 83

evaluations.
A procedure named race (see Technical Note 5.8) is proposed that incorporates an in-

generation resampling loop that uses these confidence bounds. At the start of the racing pro-
cedure, a confidence bound is computed for each individual. Thereafter, within the resampling
loop, the individuals that are marked undecided are reevaluated and their confidence bounds
are updated. An individual is qualified as undecided when it does not belong to the µ best
(selected) or the λ−µworst (discarded) individuals. By applying resampling on the undecided
individuals, the confidence bounds become tighter. The resampling loop is repeated until there
are µ individuals marked as selected, meaning that there is sufficient belief (i.e., a confidence
of 1−δ) that the µ best individuals are indeed the µ best. Or, in terms of the dominance relation
on intervals proposed by Rudolph [Rud01], resampling is done on the non-dominated solutions
until µ or less non-dominated solutions remain.

Within the race procedure, an upper evaluation limit mlimit for each individual is used,
which is required for obtaining a finite value for nb. If this limit is reached, the race is stopped
and the best µ individuals are selected based on the sample mean. The limit is updated (i.e.,
increased or decreased with a factor α) each generation of the evolution cycle, based on
whether the full budget mlimit is used. Besides that, an absolute evaluation limit mmax is
included to prevent the sample size from getting too large.

As alternative for the race procedure Heidrich-Meisner [HM11] proposed the so-called ε-
race procedure. In this adapted version, the limits mlimit and mmax are not required. Instead
of resampling each of the undecided individuals once each racing step, each individual is
reevaluated θ(t)−θ(t−1) times in the tth racing step, with θ(t) = t2. Besides that, the required
confidence for the nth computed bound is set to δn = cδ/n2, with c = 6/π2. Incorporating
these changes removes the need for a fixed maximum race length. Finally, the notion of ε-
similarity condition was introduced in order to avoid long races. That is, the racing-loop is
stopped when the difference between the highest upper bound and the lowest lower bound of
the individuals that are still undecided drops below a certain threshold ε.

A downside of using Bernstein and Hoeffding bounds is that these require known bounds for
the objective function values. This means that either the noise should be bounded within known
bounds or the bounds of the objective function should be known. If both are unknown, which
is the scenario that we consider in this work, then these bounds should be estimated or the
objective function should be transformed as described in [HM11, p. 112].

A more serious issue is that the Hoeffding and Bernstein bounds, as used in the racing
procedures, are based on assumed bounds on the objective function and not (or hardly) on the
measured noise. For instance, when using the Hoeffding bound in a racing procedure, it does
not matter whether the noise is very small or very high, the Hoeffding bound is only based on
the assumed bounds on the full domain of the objective function. The Bernstein bound does
consider the sample variance, but still contains a large factor (the rightmost term in Eq. 5.46)

84 5. Optimization of Noisy Objective Functions

that is not based on it. This is conceptually very undesirable and in this work a reason not to
consider this noise handling technique as suitable option.

Although studying modifications of these techniques falls beyond the scope of this work,
two options could be tried to fix the aforementioned problems. First, the racing procedures
could be adapted when the noise is bounded within known bounds (i.e., z ∈ [a, b]). In that
case, the bounds for each individual i = 1, . . . , λ could be initialized separately, based on
one evaluation of the objective function, yielding possibly much tighter bounds. Second, for
Gaussian noise, an alternative to using Bernstein and Hoeffding bounds is to use the more
classical type of confidence bounds within the same selection procedure. Given the selection
procedure based on races (Technical Note 5.8), an alternative would therefore be to use
Gaussian confidence intervals, as considered by Rudolph [Rud01] (see Eq. 5.39).

5.4.5 Rank-Change Based Uncertainty Measures

Hansen et al. [HNGK09] propose a scheme for handling noisy objective functions implemented
within the CMA-ES; the Uncertainty Handling CMA-ES (UH-CMA-ES). Although originally
proposed in the context of an application to feedback control of combustion, the main concepts
can be applied in more general scenarios, as shown by Heidrich-Meisner and Igel [HMI09b].
Moreover, the uncertainty handling scheme can be applied within any rank-change based
optimization algorithm.

The uncertainty handling scheme separates two components: the quantification of the un-
certainty and the treatment of the uncertainty. That is, the evaluation intensity/accuracy is
increased or decreased based on measurements of the impact of the noise on the selection.

The uncertainty quantification is based on counting the number of rank-changes that
occur when reevaluating (a part of) the population. If the number of rank-changes after
reevaluation is high, then it can be assumed that the uncertainty is high and the noise should
be reduced. If there are only few rank-changes, then the uncertainty is low and a higher noise
level may be allowed. The procedure is described in detail in Technical Note 5.9.

The uncertainty treatment scheme used in [HNGK09] consists of two methods: 1)
increasing the evaluation time teval, and 2) increasing the population variance by increasing the
stepsize. The former is specifically suitable for the problem considered in [HNGK09], as it is
possible to increase the accuracy of the fitness function by increasing the measuring time. The
latter is a secondary treatment method, used when the evaluation time has reached its maximum
tmax. For the uncertainty treatment, as suggested in [HNGK09], a cumulated version s̄ of the
uncertainty measure s is introduced, updated every generation using s̄ = (1− cs)s̄+ css, cs ∈
[0, 1]. Whenever s̄ is greater than zero, the evaluation time is increased with a factor of αt.

For selection, the solutions are re-ranked according to their rank sum: rank (Lnew
i) +

rank
(
Lold
i

)
. Ties are resolved firstly using the absolute rank change |∆i|, using for the not

reevaluated solutions: ∆i = (1/λreev)
∑λreev

j=1 |∆j |, secondly using the sample mean.

5.4. Adaptive Averaging 85

Technical Note 5.9: Rank-Change Based Uncertainty Quantification

For each solution xi, i = 1, . . . , λ an approximation of its fitness is obtained, i.e.,

Lold
i = f(xi). (5.47)

Then, a parameter λreev is computed using the parameter rλ (recommended rλ = 0.3), with
λreev = fpr(rλ · λ), where the function fpr : R→ Z is defined as

fpr(x) =

{
bxc+ 1 with probability x− bxc
bxc otherwise

. (5.48)

Furthermore, λreev is set to 1 whenever it has been set to 0 for more than 2/(rλ·λ) consecutive
generations. The first λreev solutions are selected for reevaluation, i.e.,

Lnew
i =

{
f(xi) if i ≤ λreev

Lold
i otherwise

. (5.49)

For each solution xi, the rank change ∆i is computed as

∆i = rank(Lnew
i)− rank(Lold

i)− signum
(
rank(Lnew

i)− rank(Lold
i)
)
, (5.50)

where rank(Li) is the rank of function value Li in the set L = {Lold
k , Lnew

k |k = 1, . . . , λ}.
Hence, ∆i counts the number of values from the set L\{Lold

i , Lnew
i } that lie between Lold

i

and Lnew
i . Based on the individual rank-changes, the uncertainty level s is determined as

s =
1

λreev

λreev∑
i=1

(2|∆i|

−∆lim
θ

(
rank (Lnew

i)− I{Lnew
i > Lold

i }
)

(5.51)

− ∆lim
θ

(
rank

(
Lold
i

)
− I{Lold

i > Lnew
i }

))
,

where ∆lim
θ (R) is the θ × 50% percentile of the set {|1 − R|, |2 − R|, . . . , |2λ − 1 − R|}.

It represents the rank change for a given rank R that would occur when given a completely
random function and is a reference for ∆i. The indicator function I returns 1 if its argument
is true, otherwise 0.

86 5. Optimization of Noisy Objective Functions

Algorithm 5.2: Rank-Change Based Adaptive Averaging

Procedure parameters: confidence level θ, averaging increment factor α

Procedure variables: sample size indicator meval, initialized at meval = 2

1. For all candidate solutions x1, . . . ,xλ obtain m1 = dmeval/2e noisy objective
function evaluations

f̃i,j = f̃(xi) , i = 1, . . . , λ , j = 1, . . . ,m1, (5.52)

compute the mean objective function value f̄i,old for each individual i = 1, . . . , λ
based on this sample set, and store them in the set Lold = {f̄1,old, . . . , f̄λ,old}.

2. Repeat step 1 using m2 = bmeval/2c and store the mean objective function values in
the set Lnew = {f̄1,new, . . . , f̄λ,new}.

3. Compute the rank-changes ∆1, . . . ,∆λ using:

∆i = rank(Lnew
i)− rank(Lold

i)− signum
(
rank(Lnew

i)− rank(Lold
i)
)
. (5.53)

4. Compute the uncertainty level based on the rank-changes

s =
1

λreev

λreev∑
i=1

(2|∆i|

−∆lim
θ

(
rank (Lnew

i)− I{Lnew
i > Lold

i }
)

(5.54)

− ∆lim
θ

(
rank

(
Lold
i

)
− I{Lold

i > Lnew
i }

))
.

5. Update the sample size meval using the update rule

meval =

{
α ·meval , if s > 0

meval , otherwise
. (5.55)

6. Generate a ranking x1:λ, . . . ,xλ:λ based on the sample means (f̄1,old +
f̄1,new)/2, . . . , (f̄λ,old + f̄λ,new)/2.

5.4. Adaptive Averaging 87

In this work we consider the algorithm as described in Algorithm 5.2 as an implementation of
the rank-change based uncertainty handling scheme. It is an adapted version of the approach
proposed in [HNGK09], which is done to allow for resampling, but also to make it such that
this scheme differs from Algorithm 5.1 only in the uncertainty indicator. The latter is done for
the sake of comparison of the two approaches.

Two issues that are deliberately left out are the decrement of meval when the uncertainty
level is small (i.e., s < 0), and the upper limit on the sample size. The former is done under
the assumption that the sample size should only increase during an optimization run. The latter
is done in order test the uncertainty handling mechanism itself, eliminating side-effects that
are due to sample size limits. To obtain an insight in the behavior of this rank-change based
uncertainty handling scheme we perform the following experiment:

Experiment 5.4.2 (Performance of rank based adaptive averaging on the noisy sphere prob-
lem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating the eval-
uation procedure of Algorithm 5.2 (named UH-(5/2DI , 35)-σSA-ES) on the 10-dimensional
noisy sphere problem (see Appendix A.1). We take parameter setting α = 1.5 and use varying
θ = 0.5, 0.7, 0.9. As benchmark, we include a (5/2DI , 35)-σSA-ES using a fixed sample
size resampling scheme with m = 50. Each run uses a budget of 100, 000 objective function
evaluations.

The results of Experiment 5.4.2 are presented in Figure 5.10 and Figure 5.11. Figure 5.10
shows the convergence dynamics of the three instances of this adaptive averaging approach,
and as a benchmark the dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.11 shows the single run and average dynamics
of the three instances of this adaptive averaging scheme. The left column shows the distance to
the optimizer versus the number of generations, the middle column the development of sample
size parameter meval, and the right column the development of the uncertainty indicator.

The results of Experiment 5.4.2 are similar to the results of Experiment 5.4.1. As can
be seen in Figure 5.11, increasing the strictness of the uncertainty indicator yields a quicker
growth of the uncertainty level and the sample size, allowing for fewer generations. Also in this
case there is a trade-off between allowing uncertainty and depending on the averaging effects
of multiple generations or requiring a strict confidence in order to obtain a high progress rate
per generation.

5.4.6 Rank-Inversions Based Adaptive Averaging

An alternative to the rank-change based uncertainty measure (see Eq. 5.51 in Technical Note
5.9) is to count rank inversions [Mar01, KEB09a]. For this measure, the distribution is known,
and normal for λ→∞. This allows for a better founded measure of uncertainty which could be
argued to be simpler to implement as compared to the rank-change based measure. Technical

88 5. Optimization of Noisy Objective Functions

0 2 4 6 8 10

x 10
4

10
0

UH ES (θ = 0.9)

UH ES (θ = 0.7)

UH ES (θ = 0.5)

MEM 50

m
e

d
ia

n
 d

is
ta

n
c

e
 t

o
 t

h
e

 o
p

ti
m

u
m

evaluations
0.2 0.25 0.3 0.35 0.4

MEM 50

UH ES (theta = 0.9)

UH ES (theta = 0.7)

UH ES (theta = 0.5)

Figure 5.10: Left: The convergence dynamics (median over 10 runs) of the UH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying θ = 0.5, 0.7, 0.9, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.

0 5 10 15 20 25 30 35 40

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5

10

15

s

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35 40

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35 40
0

50

100

150

200

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 5 10 15 20 25 30 35 40
−30

−20

−10

0

10

20

s

Generations

single run

median of 10 runs

0 10 20 30 40 50 60

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 10 20 30 40 50 60
0

20

40

60

80

100

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 10 20 30 40 50 60
−40

−30

−20

−10

0

10

s

Generations

single run

median of 10 runs

Figure 5.11: The dynamics (median over 10 runs) of the UH-(5/2DI , 35)-σSA-ES on the noisy sphere
problem, using different confidence levels θ = 0.5 (top row), θ = 0.7 (middle row), θ = 0.9 (bottom
row). Left: the distance to the optimizer versus number of generations. Center: the development ofmeval.
Right: the development of the uncertainty level (i.e., the rank-change based indicator).

5.4. Adaptive Averaging 89

Technical Note 5.10: Rank-Inversion Based Uncertainty Measure

Given a population of λ candidate solutions, let rankold
i denote the rank of solution i based

on the fitness values of the first evaluation step and let ranknew
i denote the rank of solution i

based on the fitness values of the reevaluation step. The number of inversions is computed as

Invλ =
∑

(i,j)∈{1,...,λ}2
I(i, j), (5.56)

I(i, j) =

{
0 , if (rankold

i < rankold
i) ∧ (ranknew

i > ranknew
i)

1 , otherwise
. (5.57)

Let ξλ denote a random variable measuring the number of inversions for a pure random
ordering. The number of inversions for randomly generated perturbations follows a normal
distribution for λ → ∞ with mean E[ξλ] = λ(λ − 1)/4 and its variance is Var[ξλ] =
(2λ3 + 3λ2 − 5λ)/72 (see, [Mar01]).

Using this, an uncertainty measure s can be constructed as

sInv = Invλ −
(
µInv + σInv · Φ−1(θ)

)
, (5.58)

with µInv = λ(λ − 1)/4, σInv =
√

(2λ3 + 3λ2 − 5λ)/72, and Φ−1(.) being the inverse
cumulative distribution function of the standard normal distribution.

Note 5.10 describes how this measure can be used to obtain a similar, but alternative uncertainty
measure for the rank-change based uncertainty handling method of Algorithm 5.2.

In order to test this alternative uncertainty measure, we consider it to be incorporated in the
procedure of Algorithm 5.2 and use it instead of the rank-change based uncertainty measure.
For this adapted scheme we run the following experiment:

Experiment 5.4.3 (Performance of inversions based adaptive averaging on the noisy sphere
problem): We perform 10 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) incorporating
the evaluation procedure of Algorithm 5.2 that uses the alternative uncertainty measure of
Technical Note 5.10. This scheme is named IUH-(5/2DI , 35)-σSA-ES, and the experiments
are performed on the 10-dimensional noisy sphere problem (see Appendix A.1). We take
parameter setting α = 1.5 and use varying θ = 0.3, 0.5, 0.7. As benchmark, we include a
(5/2DI , 35)-σSA-ES using a fixed sample size resampling scheme with m = 50. Each run
uses a budget of 100, 000 objective function evaluations.

The results of Experiment 5.4.3 are presented in Figure 5.12 and Figure 5.13. Figure 5.12
shows the convergence dynamics of the three instances of this adaptive averaging scheme
compared to the convergence dynamics of a (5/2DI , 35)-σSA-ES using a fixed sample size
resampling scheme with m = 50. Figure 5.13 shows the single run and average dynamics of
the three instances of this adaptive averaging scheme. The left column shows the distance to

90 5. Optimization of Noisy Objective Functions

0 2 4 6 8 10

x 10
4

10
0

IUH ES (θ = 0.5)

IUH ES (θ = 0.7)

IUH ES (θ = 0.3)

MEM 50

m
e
d

ia
n

 d
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

evaluations
0.2 0.25 0.3 0.35

MEM 50

IUH ES (theta = 0.7)

IUH ES (theta = 0.5)

IUH ES (theta = 0.3)

Figure 5.12: Left: The convergence dynamics (median over 10 runs) of the IUH-(5/2DI , 35)-σSA-ES
on the noisy sphere problem using α = 1.5 and using varying θ = 0.3, 0.5, 0.7, compared against a fixed
sample size resampling scheme with m = 50. Right: boxplots of the final solution quality.

0 10 20 30 40 50 60 70

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 10 20 30 40 50 60 70
0

50

100

150

200

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 10 20 30 40 50 60 70
−300

−250

−200

−150

−100

−50

0

50

100

s

Generations

single run

median of 10 runs

0 10 20 30 40 50 60 70 80

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 10 20 30 40 50 60 70 80
−300

−200

−100

0

100

200

s

Generations

single run

median of 10 runs

0 20 40 60 80 100

10
0

D
is

ta
n

c
e
 t

o
 t

h
e
 o

p
ti

m
u

m

Generations

single run

median of 10 runs

0 20 40 60 80 100
0

50

100

150

200

250

300

m
_

e
v

a
l

Generations

single run

median of 10 runs

0 20 40 60 80 100
−350

−300

−250

−200

−150

−100

−50

0

50

s

Generations

single run

median of 10 runs

Figure 5.13: The dynamics (median over 10 runs) of the IUH-(5/2DI , 35)-σSA-ES on the noisy sphere
problem, using different confidence levels θ = 0.3 (top row), θ = 0.5 (middle row), θ = 0.7 (bottom
row). Left: the distance to the optimizer versus number of generations. Center: the development ofmeval.
Right: the development of the uncertainty level (i.e., the inversions based indicator).

5.4. Adaptive Averaging 91

the optimizer versus the number of generations, the middle column the development of sample
size parameter meval, and the right column the development of the uncertainty indicator.

The results of Experiment 5.4.3 are similar to the results of Experiment 5.4.2 of the rank-
change based uncertainty handling approach. As can be seen in Figure 5.13, increasing the
strictness of the uncertainty indicator yields a quicker growth of the uncertainty level and the
sample size, allowing for fewer generations. The uncertainty indicator is, however, not so strict
as the rank-change based uncertainty measure when using the same value for θ, though from
these results this seems to be the only difference.

5.4.7 A Discussion on Adaptive Noise Handling Techniques

Comparing the adaptive averaging techniques discussed in this chapter, we observe the follow-
ing:

Uncertainty quantification and uncertainty treatment: All schemes either implicitly or
explicitly distinguish between uncertainty quantification and uncertainty handling. The term
uncertainty quantification regards the decision mechanism that determines whether or not to
increase the evaluation accuracy of the underlying noise treatment mechanism. The term noise
treatment refers to the underlying noise handling mechanism. All except one of the adaptive
averaging techniques that have been discussed perform uncertainty treatment using resampling
(or explicit averaging). Interestingly, the alternative of increasing the population size is not
considered in any of the adaptive averaging techniques.

In-generation and inter-generation mechanisms: There are two different types adaptation
mechanisms; in-generation and inter-generation mechanisms. In-generation mechanisms are
used in, e.g., the sample allocation scheme, t-test based adaptive resampling, and the races
based approaches. Here, the uncertainty is targeted directly by continuing the resampling
procedure until the uncertainty level is sufficiently reduced. In inter-generation mechanisms,
present in, e.g., the duration scheduling and rank-change based uncertainty handling mech-
anism, the uncertainty treatment is adapted after each generation based on the previous
uncertainty quantification. Inter-generation methods are based on trusting the evolution process
to be partially robust against disturbances in the selection that are higher than the desired level
indicated by the uncertainty quantification as long as the evaluation intensity of the following
generations is increased. Although in-generation methods are more direct, an advantage of
using inter-generation methods is that these are less sensitive to scenarios as observed in the
t-test based approach where many samples are spend on trying to distinguish between two
solutions while their difference might be of no importance in the perspective of the current
stage of the optimization. Note that both mechanisms can be used within the same method. For
instance, the races based approach uses both mechanisms.

Evaluation intensity limitations: Most adaptive averaging methods incorporate an absolute
upper limit for the evaluation intensity. For instance, the races based approach, or the rank-

92 5. Optimization of Noisy Objective Functions

change based adaptive averaging method use a maximum sampling limit and a maximum
evaluation time respectively. Moreover, a scheme in which the sample size is allowed to grow
without limit, being the scheme discussed with the t-test based approach, suffers from a rapid
sample size explosion. Apparently there are practical reasons for bounding the evaluation
intensity. However, using such bounds is undesirable from a theoretical perspective, because it
introduces limitations on the convergence accuracy.

Underlying assumptions: When looking at the assumptions on which the uncertainty handling
methods are based (e.g., the type of noise), we see that there are only two uncertainty indicators
that are not based on specific assumptions regarding the noise or the objective function; the
rank-change and rank-inversions based uncertainty measure. Besides that, the assumption that
the noise is Gaussian and the assumption of having the ability to establish confidence bounds
take in a prominent place.

Parameters: The in-generation adaptive averaging schemes that were discussed require at
least one parameter, namely an uncertainty quantification threshold (e.g., a confidence level).
Inter-generation adaptive averaging mechanisms require at least two parameters, namely an
uncertainty quantification threshold and a scaling factor for the evaluation intensity (e.g., a
growth factor for the sample size in explicit averaging). Moreover, when including upper
limits on the evaluation intensity or cumulation of the uncertainty quantification, this number
increases rapidly. In the methods summarized so far, the parameters were mostly set based on
empirical testing.

In conclusion, Table 5.2 shows the different adaptive averaging techniques, summarized with
respect to the assumptions on which they are based, the used uncertainty quantification
measure, and the used uncertainty handling method. Considering the (5/2DI , 35)-σSA-ES and
the CMA-ES, the partial order based adaptive averaging (PUH, Section 5.4.3), rank-change
based adaptive averaging (UH, Section 5.4.5), and rank-inversions based adaptive averaging or
(IUH, Section 5.4.6) provide the most promising alternatives to explicit and implicit averaging.
In the remainder of this work, these schemes will be studied in more depth for their practical
applicability. Two essential, but yet unanswered questions are:

• For each uncertainty quantification measure, at what uncertainty level do Evolution
Strategies still have a positive expected progress and which uncertainty level is optimal?

• For inter-generation adaptive averaging methods, at what rate should the evaluation
intensity increase in order to allow Evolution Strategies to progress?

5.5 Metamodel Assisted Noise Handling
Another class of techniques for dealing with noisy objective functions in the context of Evolu-
tionary Algorithms is formed by techniques that construct a surrogate model (or metamodel) of

5.5. Metamodel Assisted Noise Handling 93

Noise handling scheme Assumptions Uncertainty
quantification

Uncertainty
treatment

Duration scheduling
[AW93, AW94]

The “real” underlying
fitness values of the
population are normally
distributed and the noise
is Gaussian

Ratio between
population variance and
approximation error

Resampling

Sample allocation
[AW93, AW94]

The “real” underlying
fitness values of the
population are normally
distributed and the noise
is Gaussian

The probability of each
individual to be the best

Resampling

t-Test based resampling
[Sta98, CP04, KEB09a]

Gaussian noise Ranking confidence
among all/some pairs of
individuals based on the
t-test

Resampling

Partial order based
selection [Rud01]

The noise is bounded or
Gaussian noise is
assumed, utilizing
confidence bounds

Non-dominance ranking
on interval orders /
acceptance threshold

Resampling

Races based uncertainty
handling [HMI09a]

The objective function
values are bounded
within known bounds

Ranking confidence
among all individuals
based on the Hoeffding
or Bernstein bound

Resampling

Rank-change based
uncertainty handling
[HNGK09]

No assumptions Rank changes after
reevaluation of (part of)
the individuals in the
population

Increasing
evaluation time

Rank-inversions based
uncertainty handling

No assumptions Rank inversions after
reevaluation of the
individuals in the
population

Resampling

Table 5.2: The different adaptive averaging techniques, summarized with respect to the assumptions
which they are based on, the uncertainty quantification measure that is used, and the uncertainty handling
method that is used.

94 5. Optimization of Noisy Objective Functions

the underlying objective function based on the full history of noisy measurements, and perform
optimization on this model. Such approaches aim to use all information that is available about
the objective function. Methods that are based on this idea were proposed by Sano and Kita
[SK00, SK02], and Branke et al. [BSS01]. Though these schemes are not the main focus of
this work, this section will provide a brief technical summary.

5.5.1 Memory-Based Fitness Estimation

In [SK00, SK02], Sano and Kita propose an approach named Memory-Based Fitness Estim-
ation (MFE) (see Technical Note 5.11). The core idea of the approach is that the objective
function value of candidate solution x∗, given fitness observation f̃∗, can be estimated by
means of a maximum likelihood approach based on Gaussian model assumptions and the
assumption that there is a spatial relation between x∗ and an archive of previous objective
function measurements A = {(xi, f̃i) | i = 1, . . . , L}. In the approach, the fitness of every
individual in the population is computed following this method. The archive is in this approach
filled with objective function measurements of the previous populations.

In [SK02], an adaptation is proposed to account for situations where the objective function
estimate of a candidate solutions differed too much from the measured objective function value.
In order to prevent these cases, it is proposed to reject the candidate solutions in a population
of which the measured objective function values differed more than a threshold Z from the
best measured objective function value. In [SK02], the threshold Z is recommended to be set
such that the probability of such errors to occur is less than 0.3.

5.5.2 Local Regression Based Fitness Estimation

Branke et al. [BSS01] propose a similar approach, only they consider a model that is based
on different assumptions as compared to the approach of Sano and Kita [SK00, SK02]. In
their approach, they consider stationary Gaussian noise and optimization of the real underlying
objective function.

Technical Note 5.12 describes the general approach proposed in [BSS01]. The modeling
assumption is that the objective function can be locally approximated by a low order polyno-
mial function. They propose to estimate the objective function value of each candidate solution
by building a local model based on an archive of previously evaluated points, weighting each
archive solution based on the distance to the to-be-evaluated solution. The choices that remain
open are to determine the degree of the polynomial used for regression, the choice for the
neighborhood parameter h that assigns a weighting contribution for each archive solution based
on the distance to the to-be-evaluated solution, and the way in which the regression model is
fitted. In [BSS01], a quadratic model is used. As an extension, it is also suggested to use the
information of the local models more extensively by performing local hill-climbing on the
model to locally improve candidate solutions.

5.5. Metamodel Assisted Noise Handling 95

Technical Note 5.11: Memory-Based Fitness Estimation

Assume that the objective function value of each candidate solution is normally distributed
and consider the following modeling assumption:

fj ∼ N (fi, kdij), (5.59)

f̃j ∼ N (fi, kdij + σ2
ε). (5.60)

Here, fi and fj denote the true objective function values of candidate solutions xi and xj , k
is some constant, and dij denotes the distance dij between xi and xj (i.e., dij = ||xi−xj ||).
Hence, the true objective function value at xj is assumed to be distributed normally random
around the true objective function value of xi, proportional to the distance between xi and
xj .

Given known values of k and σ2
ε , a maximum likelihood estimation approach can be used

to estimate the true objective function value f∗ of candidate solution x∗ based on its own
objective function measurement f̃∗ and an archive of previously observed measurements
A = {(xi, f̃i), i = 1, . . . , L}. When given f∗, the probability of obtaining f̃1, . . . , f̃L is
expressed by

L∏
i=1

p(f̃i, di), where p(f̃i, di) =
1√

2π(kdi + σ2
ε)

exp

−1

2

(
f̃i − f∗

)2

kdi + σ2
ε

 . (5.61)

Here, di denotes the distance between x∗ and xi. One can maximize this expression for f∗,
from which we obtain

f̂∗ =

f̃∗ +
L∑
i=1

σ2
ε

kdi+σ2
ε
f̃i

1 +
L∑
i=1

σ2
ε

kdi+σ2
ε

. (5.62)

The model parameters k and σ2
ε can be estimated using Eq. 5.61 by maximization of the

log-likelihood

argmax
k,σ2

ε

{
−1

2

(
L log 2π +

L∑
i=1

log(kdi + σ2
ε) +

L∑
i=1

(f̃i − f∗)2

kdi + σ2
ε

)}
. (5.63)

That is, these estimates are taken from the perspective of one candidate solution x∗, with true
objective function value f∗. In [SK00, SK02], the best individual of the current population is
recommended to be used for this estimation procedure and its true fitness is recommended to
be estimated by averaging the objective function values of the five closest individuals. A hill-
climbing method acting on a logarithmic space of k and σ2

ε should be used for maximization
of the log-likelihooda.

aIn [SK02], an exact derivation for the maximum log-likelihood was suggested with respect to σ2
ε , but this

derivation is incorrect.

96 5. Optimization of Noisy Objective Functions

Technical Note 5.12: Local Regression Based Fitness Estimation

Assume that the fitness of individual i is normally distributed, i.e.,

f̃i ∼ N (fi, σ
2
ε). (5.64)

Furthermore, assume that the “real” underlying objective function f(x) can be locally
approaximated by means of a low order polynomial function.

For a candidate solution x∗, construct a locally weighted regression model gx∗,h(x) based
on an archive of previously observed measurements A = {(xi, f̃i), i = 1, . . . , L} and use as
objective function approximation:

f̂expi = gxi,h(x∗). (5.65)

The locally weighted regression model gxi,h(x) is based on a weight function wh(d),
assigning a weight to the contribution of each archive point based on the Euclidean distance d
between the archive point and x∗. The weight function considered in [BSS01] is the tri-cube
function

wh(d) =

{
(1− d3/h)3 , if d < h

0 , otherwise
. (5.66)

The parameter h is called the neighborhood parameter and reflects the size of the
neighborhood for which the assumptions can be considered to be valid.

For setting h, two methods are considered: 1) choosing it such that 5% of the archive
points are considered to be neighboring points, 2) choosing h such that the following cross-
validation criterion is minimized (computed using a numerical hill-climber):

CV (ĝx∗,h) =

∑L
i=1 wh(di)

(
f̃i − ĝ−ix∗,h

)2

∑L
i=1 wh(di)

. (5.67)

.

5.6. A General Discussion of Noise Handling Techniques 97

5.5.3 A Discussion on Metamodeling Noise Handling Techniques

The validity of these metamodeling approaches depends on three key issues: 1) the extent
to which the modeling assumptions are valid, 2) the quality of the archive with respect
to the to-be-estimated objective function value, and 3) the accuracy of the tuning of the
model parameters. Moreover, it is well-known that for higher dimensional search spaces,
metamodeling becomes increasingly more difficult due to the curse of dimensionality (see,
e.g., [FSK08, p. xvii]).

Regarding the validity of the modeling assumptions, we note that this depends purely on the
optimization problem at hand. Assuming a Gaussian spatial correlation, as done by Sano
and Kita [SK00, SK02], is not uncommon and used, for instance, also in Kriging (see, e.g.,
[SWMW89, JSW98, FSK08]). The same holds for the assumption that the objective function
landscape can be locally approximated using a polynomial model, as done by Branke et al.
[BSS01].

The quality of the archive is in this context an issue of a different kind. For the estimation
of the objective function for a given candidate solution, ideally, the archive should contain data
points that lie well-spread around the given candidate solution. However, when the archive is
straightforwardly built up as the history of candidate solutions obtained by the evolutionary
process of an Evolutionary Algorithm itself, this is not necessarily achieved. See [KEB10] for
an example where straightforward utilization of an archive within an Evolutionary Algorithm
is outperformed by a more careful archive maintenance approach. The approaches discussed
here do not actively try to maintain a “proper” archive with respect to the to-be-estimated
solution qualities, yet the improvements proposed in [SK02] are based on negative effects that
can be related to a poor archive quality.

The accuracy of the tuning of the model parameters of the MFE approach of [SK00, SK02]
is questionable. That is, these parameters are estimated from the perspective of the observed
best candidate solution, using a crude estimate of its real objective function value. The
approach of Branke et al. [BSS01] has a more solid mathematical basis, yet also requires to
tune a correlation distance.

5.6 A General Discussion of Noise Handling Techniques
In the previous sections, the working mechanisms of a number of noise handling techniques
have been summarized. In this review we have made the categorization of basic noise handling
techniques, adaptive averaging techniques, and metamodel assisted noise handling techniques.
The basic noise handling techniques provide the basic techniques on how to reduce the
undesirable effects of noise. Adaptive averaging techniques aim to automatically adapt the
parameters of static noise handling techniques. Metamodeling techniques, on the other hand,
attempt to build a (local) surrogate model of the original objective function, therewith aiming
to generate a near noise-free surrogate objective function.

98 5. Optimization of Noisy Objective Functions

Although implicit and explicit averaging are easier to implement than all other schemes
presented, different noise handling techniques seem to be preferable for three reasons:

1. Maintaining arbitrary convergence accuracy.

2. Costly evaluations require efficient usage of the evaluation budget.

3. Eliminating the need to specify sensitive noise-handling parameters.

The first reason regards the drawback of implicit and explicit averaging to target the optimum
with arbitrary precision. However, many adaptive averaging techniques have serious difficulties
with a seemingly exploding number of required evaluations. The races and rank-change based
uncertainty handling techniques therefore use upper bounds on the evaluation intensity, which
in turn bounds the convergence accuracy.

The second, aiming for saving costly function evaluations, has a more practical basis. This
can be seen as motivation for the races and rank-change based uncertainty handling techniques
that by using upper limits on the evaluation effort, therewith aiming to achieve a better
convergence accuracy within less time than a static noise handling technique. Metamodeling
techniques are constructed for this practical purpose too. The computational demands of
metamodeling techniques makes them suitable only in the cases where evaluations are costly,
but the alleged gain is that a reduced number of objective function evaluations are acquired.

The third regards the ideal not to have to set parameters like the sample size for explicit
resampling beforehand. When looking at the adaptive averaging and metamodeling techniques
that have been discussed in the previous section, none of them manages to accomplish this. Yet,
the parameters that are replaced, for instance, in the rank-change based uncertainty handling
technique could be less sensitive than using a fixed sample size.

Based on the former observations, we conclude that for an advanced noise handling technique
to be practically viable, it should be an improvement with respect to implicit or explicit
averaging in either of the following scenarios:

1. Arbitrary convergence accuracy: the advanced noise handling technique can be proven
to maintain the global convergence criterion.

2. Sampling efficiency: given an arbitrary, but fixed evaluation budget, the advanced noise
handling technique should ideally outperform any static averaging technique.

3. Parameter reduction: the advanced noise handling technique should either be com-
pletely parameter-less (strict parameter reduction), or given canonical settings, it should
outperform any fixed static averaging scheme on a majority of problems (weak para-
meter reduction).

5.7. Summary and Discussion 99

Of the approaches presented in literature, we can say that arbitrary convergence accuracy does
not hold for implicit and explicit averaging nor for adaptive averaging techniques that limit the
evaluation accuracy. For the adaptive averaging techniques that do not limit the evaluation
accuracy and for the metamodeling approaches, arbitrary convergence accuracy remains to be
proven. For all adaptive averaging techniques considered in this chapter, sampling efficiency
remains to be proven. For all adaptive averaging techniques and metamodeling noise handling
techniques, strict parameter reduction is not achieved and weak parameter reduction remains
to be proven.

5.7 Summary and Discussion
In this chapter we have reviewed the problem of optimization of noisy objective functions
using Evolution Strategies from the perspective of the (5/2DI , 35)-σSA-ES and the CMA-ES.

There are different goals for optimization of noisy objective functions, which are modeled
differently in an effective objective function formulation. Choosing an effective objective
function is a design issue that depends on the problem at hand. In systems with intrinsic
additive noise, optimization of the expected objective function is most customary. In systems in
which the noise is due to errors in measurement, optimization of the real underlying objective
function is more appropriate. When the noise is stationary, these two goals are equivalent.
When the noise is non-stationary, other options are also reasonable.

Evolution Strategies are fairly robust against noise when considering the expected objective
function as an optimization goal. However, noise limits the convergence accuracy of Evolution
Strategies and countermeasures are needed when higher accuracy is desired.

The way in which to adapt Evolution Strategies in order to deal with noisy objective
functions depends on what is aimed for. In the second part of this chapter, a number of
noise handling techniques have been described, categorized as: basic noise handling, adaptive
averaging, and metamodel assisted noise handling. Explicit and implicit averaging techniques
can be used to improve the convergence accuracy of Evolution Strategies, but they also suffer
from convergence accuracy limitations. When arbitrary convergence accuracy is aimed for,
adaptive averaging techniques or metamodeling techniques should be used.

The question which of the techniques considered in this chapter is most suitable depends on
the particular type of noise. Moreover, even when considering the specific case of stationary
Gaussian noise, the question remains open which of the advanced noise handling schemes is
the best. Suitable techniques for the (5/2DI , 35)-σSA-ES and the CMA-ES are the partial
order based adaptive averaging technique (PUH), the rank-change based adaptive averaging
technique (UH), and the inversion-based adaptive averaging technique (IUH). We will consider
these three adaptive averaging methods next to implicit and explicit averaging as the most
appropriate candidates for noise handling. For these techniques, the questions that remain are:
1) How should the algorithmic parameters of these adaptive averaging methods be set? 2) How

100 5. Optimization of Noisy Objective Functions

do these techniques compare against each other and how do these techniques compare against
their static counterparts; implicit and explicit averaging? In the next chapter we will study these
issues in more detail.

Chapter 6

A Study on Noise Handling Schemes

In Chapter 5, three adaptive averaging techniques are identified as suitable and promising
techniques for noise handling in the context of the (5/2DI , 35)-σSA-ES and the CMA-ES.
These techniques are: poset based adaptive averaging (PUH, Section 5.4.3), rank-change
based adaptive averaging (UH, Section 5.4.5), and rank-inversions based adaptive averaging
(IUH, Section 5.4.6). All three are based on the same inter-generation adaptive averaging
framework and use the same noise treatment approach of explicit averaging (or resampling).
The difference between them is that they are based on different uncertainty quantification
methods.

In this chapter, we aim to study these approaches in more depth. In particular, we will aim
to answer the following questions: 1) At what rate should the sample size grow when using
adaptive resampling for optimization of noisy objective functions? 2) What parameter settings
are appropriate for the adaptive averaging techniques considered in this work? 3) Does using
the adaptive averaging techniques considered in this chapter yield better results than using
explicit or implicit averaging?

This chapter is structured as follows: Section 6.1 presents a theoretical study on the ideal
growth of the sample size on a simple test problem to gain insight in the dynamics of
an optimally functioning adaptive averaging scheme. Section 6.2 presents the results of an
empirical study that aims to gain insight into the algorithmic parameters of the adaptive
averaging techniques. Section 6.3 presents the results of an empirical study in which the
adaptive averaging techniques are compared to the standard techniques of explicit and implicit
averaging. Section 6.4 closes with a summary and discussion.

6.1 The Growth Rate of the Sample Size
The inter-generation adaptive averaging techniques considered in this chapter all use a mul-
tiplicative update rule for adapting the number of samples when the uncertainty level is
too high. In literature, the increment factor for updating the sample size is regarded as an
algorithmic parameter that is to be tuned manually. However, two questions that remain are:

102 6. A Study on Noise Handling Schemes

should the update rule indeed be exponential and, if so, at what rate should it ideally grow? This
section studies how the sample size should optimally develop within an Evolution Strategy, the
(µ/µI , λ)-ES, on a simple artificial test problem, the noisy sphere problem. This section builds
forth on the results obtained by Arnold and Beyer [AB02].

The motivation behind using an adaptive sample size for resampling strategies is to adapt
the number of samples used for evaluating each individual such that it is sufficient for the
Evolutionary Algorithm to progress. On the other hand, it should not be too high, because then
samples will be wasted. This way of formulating the problem of adaptive averaging suggests
that, when an Evolution Strategy is in a certain state of the evolution process, there is an optimal
sample size. Ideally, an adaptive averaging scheme is able to follow this optimal sample size
over the course of evolution.

6.1.1 The Progress Rate of the (µ/µI , λ)-ES on the Noisy Sphere

In the analysis of Evolution Strategies, the progress rate is an often used performance measure.
The progress rate, denoted ϕ, is defined as the expected distance covered by the centroid of the
population towards the location of the optimum within one generation. That is, whenR denotes
the distance to the optimum location of the centroid of the parents, and when r denotes the
distance to the optimum location of the centroid of the selected offspring, then the progress rate
reads ϕ = E[R − r]. The progress rate can be used to determine the efficiency per evaluation
when dividing it by the number of evaluations used for the current generation. By optimizing
the efficiency per evaluation with respect to the sample size, we can derive the optimal sample
size for an Evolution Strategy at a given stage in the optimization.

The noisy sphere problem is given by the function

f̃(x) =

n∑
i=1

x2
i + σεzε → min , zε ∼ N (0, 1), (6.1)

mapping n-dimensional vectors x = (x1, . . . , xn)T ∈ Rn to a noisy objective function value
with Gaussian noise with standard deviation σε. For this model, Arnold and Beyer [AB02]
derived for the (µ/µI , λ)-ES the normalized progress rate

ϕ∗µ/µ,λ '
cµ/µ,λσ

∗ (1 + σ∗2/(2µn)
)√

1 + σ∗2/(µn)
√

1 + υ2 + σ∗2/(2n)
− n

√1 +
σ∗2

µn
− 1

 , (6.2)

where cµ/µ,λ is the (µ/µI , λ)-progress coefficient and ϕ∗ is the normalized progress rate

ϕ∗ = ϕ
n

R
. (6.3)

Furthermore, σ∗ε is a normalized version of σε, according to normalization

σ∗ε = σε
n

2R2
, (6.4)

6.1. The Growth Rate of the Sample Size 103

σ∗ is a normalized version of the stepsize parameter σ, reading

σ∗ = σ
n

R
, (6.5)

and υ is the noise-to-signal ratio, defined as

υ =
σ∗ε
σ∗
. (6.6)

6.1.2 The Efficiency of Resampling

Resampling with m samples reduces the error of the objective function approximations by a
factor of

√
m, that is, when using m samples, we have an effective approximation error of

σ̂ε = σε/
√
m. (6.7)

Hence, resampling increases the progress rate ϕ∗ (see Eq. 6.2), however, at the cost of requiring
more evaluations. In order to determine the efficiency, the progress rate should be divided by
the number of evaluations used for the current generation, i.e., by λm.

When letting ϕσ̂ε denote the progress rate for noise factor σ̂ε, we can state the efficiency ηm
of a certain sample size m as

ηm =
ϕσ̂ε
λm

. (6.8)

For the (µ/µI , λ)-ES on the noisy sphere problem, when substituting Eq. 6.2 into this equation
and using υ = σ∗ε /(

√
mσ∗) (i.e., using the effective approximation error due to resampling),

this yields a normalized efficiency

η∗m =

cµ/µ,λσ
∗(1+σ∗2/(2µn))√

1+σ∗2/(µn)
√

1+σ∗ε
2/(mσ∗2)+σ∗2/(2n)

− n
[√

1 + σ∗2

µn − 1
]

λm
(6.9)

=
cµ/µ,λσ

∗ (1 + σ∗2/(2µn)
)

λm
√

1 + σ∗2/(µn)
√

1 + σ∗ε
2/(mσ∗2) + σ∗2/(2n)

−
n
[√

1 + σ∗2

µn − 1
]

λm
. (6.10)

6.1.3 The Optimal Sample Size

The optimal sample size for Evolution Strategies at a given stage of the optimization can be
determined by maximizing the efficiency with respect to m. That is,

mopt = argmaxmη
∗
m. (6.11)

When omitting the fact that in practice m can only assume positive integer values, this can be
done by solving

∂η∗m
∂m

= 0. (6.12)

104 6. A Study on Noise Handling Schemes

In order to do so, we apply the substitutions

c1 = cµ/µ,λ σ
∗
(
σ∗2

2µn
+ 1

)
, (6.13)

c2 = λ

√
σ∗2

µn
+ 1, (6.14)

c3 = 1 +
σ∗2

2n
, (6.15)

c4 = σ∗ε
2/σ∗2, (6.16)

c5 =
n
[√

1 + σ∗2

µn − 1
]

λ
. (6.17)

This yields

η∗m =
c1

mc2
√
c3 + c4/m

− c5
m
, (6.18)

and

∂η∗m
∂m

=
2 c2 c5m

(
c3m+c4

m

)3/2 − 2 c1 c3m− c1 c4
2 c2m3

(
c3m+c4

m

)3/2 . (6.19)

Hence, to solve ∂η∗m
∂m = 0 for m ≥ 1, we need to solve

2 c2 c5m

(
c3m+ c4

m

) 3
2

− 2 c1 c3m− c1 c4 = 0. (6.20)

This equation has only one real solution, namely

mopt = −c4(3c
2
2c3c

2
5 − c21)

3c3(c22c3c
2
5 − c21)

− (c61c
3
3c

3
4 + 36c41c

2
2c

4
3c

3
4c

2
5 + 27c21c

4
2c

5
3c

3
4c

4
5 + c6)

1/3

6c23(c
2
2c3c

2
5 − c21)

(6.21)

+
(−4c41c23c24 − 60c21c

2
2c

3
3c

2
4c

2
5)

24c23(c
2
2c3c

2
5 − c21)(c61c33c34 + 36c41c

2
2c

4
3c

3
4c

2
5 + 27c21c

4
2c

5
3c

3
4c

4
5 + c6)1/3

, (6.22)

with

c6 = 3
√

3
√
c10
1 c

2
2c

7
3c

6
4c

2
5 + 25c81c

4
2c

8
3c

6
4c

4
5 − 53c61c

6
2c

9
3c

6
4c

6
5 + 27c41c

8
2c

10
3 c

6
4c

8
5. (6.23)

As can be seen, this expression is quite involved and hard to simplify any further. Yet, it is an
exact derivation with respect to Eq. 6.20. Moreover, when assuming that σ∗ is constant (which
is realistic when assuming a properly functioning adaptation mechanism of the stepsize) and
using the substitutions Eq. 6.17 and Eq. 6.4, it can be shown that

mopt ∝ Θ

(
1

R4

)
. (6.24)

6.1. The Growth Rate of the Sample Size 105

0
5

10
15

20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−10

10
0

10
10

10
20

10
30

R
σ*

m

0
5

10
15

20
0

0.5

1

0

0.05

0.1

0.15

0.2

R
σ*

φ* /
(λ

 ⋅
m

)

Figure 6.1: The derived optimal sample size (left) and the efficiency η∗ = ϕ∗/(λm) obtained for
the optimal sample size (right) for the (µ/µI , λ)-ES for different values of R and σ∗. These results are
obtained with µ = 8, λ = 32, σε = 1, n = 10.

That is, the sample size should grow quartically with the inverse distance to the optimum.
Intuitively, this result is plausible, because the resampling reduces the noise with a factor of
√
m and for the sphere problem the local fitness differences decrease quadratically with R.

In order to get a picture of the development ofmopt for different values ofR and σ∗, Figure 6.1
shows the derived optimal sample size and the efficiency η∗ = ϕ∗/(λm) obtained for the
optimal sample size for the (µ/µI , λ)-ES for different values of R and σ∗. These results are
obtained with µ = 8, λ = 32, σε = 1, n = 10. The slope of the log-log plot of mopt in
the direction of R is approximately 4, which is an empirical indicator to support the result of
Eq. 6.24. Furthermore, we see that even with an optimally adapted sample size, the efficiency
drops quickly for decreasing R (which can largely be attributed to the fast growth of mopt),
and seems optimal for σ∗ ≈ 5.

6.1.4 The Minimally Required Sample Size

Similarly, a lower bound for m can be derived. That is, the minimally required number of
samples to maintain positive progress. This requires solving η∗m = 0 for m. For this we obtain

mleast = − c22c4c
2
5

c22c3c
2
5 − c21

(6.25)

=
−σε2n2

(√
σn2

µR
+ 1− 1

)2 (
σ2n
µR2 + 1

)
4σ2

n2
(√

σn2

µR
+ 1− 1

)2 (
σ2n
2R2 + 1

)(
σ2n
µR2 + 1

)
−

log
(
λ
µ

)
σ2n2

(
σ2n
2µR2 +1

)2

R2

R2

.

(6.26)

106 6. A Study on Noise Handling Schemes

0
5

10
15

20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−10

10
0

10
10

10
20

10
30

R
σ*

m

Figure 6.2: The derived minimally required number of samples for the (µ/µI , λ)-ES for different
values of R and σ∗. These results are obtained with µ = 8, λ = 32, σε = 1, n = 10.

When assuming that σ∗ is constant then we obtain

mleast = −
σε

2
(
σ∗2

µn
+ 1
)
n4
(√

σ∗n
µ

+ 1− 1
)2

4σ∗2
((

σ∗2
2n

+ 1
)(

σ∗2
µn

+ 1
)
n2
(√

σ∗n
µ

+ 1− 1
)2
− cµ/µ,λ2σ∗2

(
σ∗2
2µn

+ 1
)2)

R4

.

(6.27)

Hence, also for mleast we can conclude that, when σ∗ is constant,

mleast ∝ Θ

(
1

R4

)
. (6.28)

Hence, the sample size should grow at least quartically with the inverse distance to the
optimum to maintain positive progress. In order to get an impression of the development for
different R and σ∗, Figure 6.2 shows the derived minimal required number of samples for the
(µ/µI , λ)-ES (see, Eq. 6.26) for different values of R and σ∗. These results are obtained with
µ = 8, λ = 32, σε = 1, n = 10. Comparing Figure 6.2 to Figure 6.1, we observe practically
the same results. This is not surprising, given that 1

R4 is the dominating term of both mopt and
mleast when n, µ, λ, and σ∗ are relatively small.

6.1.5 The Growth Rate of the Sample Size

We consider ϕ∗ = (nϕ)/R and take the optimistic assumption that ϕ∗ is constant (obtained
when the stepsize adaptation mechanism functions optimally). Let Rt denote the distance to
the optimum of the centroid of the population at time t. We can express the expected distance
to the optimum E[Rt+1] of the centroid of the next generation, at time t+ 1 in terms of ϕ. I.e.,

E[Rt+1] = Rt − ϕ = Rt −
Rtϕ

∗

n
= Rt − kRt, (6.29)

6.2. Tuning the Adaptive Averaging Methods 107

where 0 < k < 1 is some constant. We can derive the generation-wise limit behavior as

lim
Rt→0

E[Rt+1]

Rt
= lim
Rt→0

Rt − kRt
Rt

= 1− k < 1. (6.30)

Hence, the convergence behavior is linear with respect to the number of generations.

When considering the progress per evaluation using adaptive resampling, we use the efficiency,
defined as ηm = ϕ/(λm). Considering an optimally tuned adaptive resampling mechanism
with m = km/R

4, km being some constant. Still assuming that ϕ∗ is constant, we can use
m = km/R

4 and obtain

ηm =
ϕ

λ(km/R4)
=
R5ϕ∗

nλkm
= kR5. (6.31)

where 0 < k < 1 is some constant. We can express the expected distance to the optimum
E[Rt+1] of the centroid of the next evaluation, at time t+ 1, in terms of η as

E[Rt+1] = Rt − ηm = Rt − kR5
t . (6.32)

For this, we can derive the evaluation-wise limit behavior as

lim
Rt→0

E[Rt+1]

Rt
= lim
Rt→0

Rt − kR5
t

Rt
= 1. (6.33)

Hence, for an optimally adapted sample size, the convergence rate of a (µ/µI , λ)-ES on the
noisy sphere is sublinear with respect to the number of objective function evaluations.

Finally, using E[Rt+1] = (1 − k)Rt, mt = c/Rt, and mt+1 = k/E[Rt+1]4, we obtain the
following growth of the sample size when assuming linear convergence of R with respect to
the number of generations:

lim
Rt→0

mt+1

mt
= lim
Rt→0

R4
t

E[Rt+1]4
= lim
Rt→0

R4
t

((1− k)Rt)4
=

1

(1− k)4
> 1. (6.34)

In conclusion, the sample size should indeed grow exponentially with respect to the number of
generations to achieve a generation-wise linear convergence rate.

6.2 Tuning the Adaptive Averaging Methods
The previous analysis confirmed that the sample size within an adaptive resampling scheme
should grow exponentially when generation-wise linear convergence is desired. However, the
rate at which it should grow is not yet determined and also the uncertainty threshold for the
adaptive averaging techniques remains to be set. To gain insight into how these parameters
should be set, we perform an empirical study on each of the adaptive averaging techniques (the
PUH, the UH, and the IUH scheme) incorporated in the (5/2DI , 35)-σSA-ES and the CMA-
ES. We consider different instances of these schemes, varying the uncertainty thresholds δ or
θ and the resampling factor α.

108 6. A Study on Noise Handling Schemes

The experiments are performed on the 10-dimensional noisy sphere problem and
a large evaluation budget of 100, 000 function evaluations is considered. For the
uncertainty handling schemes, we consider for the uncertainty thresholds δ or θ the
values {0.1, 0.3, 0.5, 0.7, 0.9} and for the uncertainty treatment parameter we consider the
values α ∈ {1.1, 1.3, 1.5, 1.7, 1.9}. This yields 25 combinations of settings for each scheme
for both the (5/2DI , 35)-σSA-ES and the CMA-ES. Each run for each instance is repeated 10

times.
The results of the experiments are shown in Section 6.2.1 and Section 6.2.2 for the PUH-

scheme, Section 6.2.3 and Section 6.2.4 show the results of the UH-scheme, and Section 6.2.5
and Section 6.2.6 show the results of the IUH-scheme. For each scheme, the boxplot shows
the final solution quality after 100, 000 objective function evaluations, which is computed a
posteriori using the noise-free signal function as measure of the expected objective function.
The line in the boxplot indicates the objective function value of the optimal solution. The other
plot shows the convergence dynamics in terms of the median of the real (noise-free) objective
function value of the best individual of the current population versus the number of evaluations.
The table summarizes the statistics of the final solution quality. The best instance is determined
based on the rank sum.

The results show that all adaptive resampling schemes are fairly robust with respect to different
settings of δ/θ and α. Except for a few outlier-settings, such as δ = 0.1 for the PUH approach or
θ = 0.1 for the UH approach, most of the tested settings yield comparable results. The optimal
settings that can be derived from these results differ for each uncertainty quantification scheme
and also for the (5/2DI , 35)-σSA-ES and the CMA-ES. The results of these experiments are
summarized in Table 6.1.

(5/2DI , 35)-σSA-ES CMA-ES

PUH δ = 0.7, α = 1.5 δ = 0.9, α = 1.3

UH θ = 0.9, α = 1.1 θ = 0.9, α = 1.9

IUH θ = 0.3, α = 1.9 θ = 0.1, α = 1.3

Table 6.1: The optimal settings (with an approximate error of ±0.1) of the uncertainty threshold δ/θ
and the resampling rate α to achieve the best convergence accuracy on a budget of 100, 000 function
evaluations.

6.2. Tuning the Adaptive Averaging Methods 109

6.2.1 Results Tuning PUH-(5/2DI , 35)-σSA-ES on the Noisy Sphere

0 0.05 0.1 0.15 0.2 0.25

delta = 0.9, alpha = 1.9
delta = 0.7, alpha = 1.9
delta = 0.5, alpha = 1.9
delta = 0.3, alpha = 1.9
delta = 0.1, alpha = 1.9
delta = 0.9, alpha = 1.7
delta = 0.7, alpha = 1.7
delta = 0.5, alpha = 1.7
delta = 0.3, alpha = 1.7
delta = 0.1, alpha = 1.7
delta = 0.9, alpha = 1.5
delta = 0.7, alpha = 1.5
delta = 0.5, alpha = 1.5
delta = 0.3, alpha = 1.5
delta = 0.1, alpha = 1.5
delta = 0.9, alpha = 1.3
delta = 0.7, alpha = 1.3
delta = 0.5, alpha = 1.3
delta = 0.3, alpha = 1.3
delta = 0.1, alpha = 1.3
delta = 0.9, alpha = 1.1
delta = 0.7, alpha = 1.1
delta = 0.5, alpha = 1.1
delta = 0.3, alpha = 1.1
delta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

δ = 0.7, α = 1.5
δ = 0.9, α = 1.1
δ = 0.9, α = 1.3
δ = 0.7, α = 1.3
δ = 0.3, α = 1.3
δ = 0.5, α = 1.9
δ = 0.5, α = 1.5
δ = 0.3, α = 1.5
δ = 0.9, α = 1.5
δ = 0.5, α = 1.3
δ = 0.7, α = 1.1
δ = 0.3, α = 1.9
δ = 0.5, α = 1.7
δ = 0.7, α = 1.9
δ = 0.3, α = 1.7
δ = 0.7, α = 1.7
δ = 0.5, α = 1.1
δ = 0.9, α = 1.9
δ = 0.3, α = 1.1
δ = 0.9, α = 1.7
δ = 0.1, α = 1.7
δ = 0.1, α = 1.5
δ = 0.1, α = 1.9
δ = 0.1, α = 1.3
δ = 0.1, α = 1.1

m
e

d
ia

n
 f

it
n

e
s

s
evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

delta = 0.1, alpha = 1.1 5.29 16.12 0.21 2235 25
delta = 0.3, alpha = 1.1 0.07 0.03 0.07 1312 17
delta = 0.5, alpha = 1.1 4.19 13.08 0.06 1302 16
delta = 0.7, alpha = 1.1 0.05 0.02 0.05 1034 12
delta = 0.9, alpha = 1.1 0.05 0.02 0.04 852 6
delta = 0.1, alpha = 1.3 0.17 0.07 0.16 2200 24
delta = 0.3, alpha = 1.3 0.05 0.03 0.04 895 9
delta = 0.5, alpha = 1.3 0.05 0.02 0.05 1016 11
delta = 0.7, alpha = 1.3 0.04 0.02 0.04 752 2
delta = 0.9, alpha = 1.3 0.05 0.03 0.04 858 7
delta = 0.1, alpha = 1.5 0.15 0.07 0.14 2133 23
delta = 0.3, alpha = 1.5 0.05 0.02 0.04 829 5
delta = 0.5, alpha = 1.5 0.04 0.01 0.04 783 3
delta = 0.7, alpha = 1.5 0.04 0.01 0.04 654 1
delta = 0.9, alpha = 1.5 0.05 0.02 0.05 893 8
delta = 0.1, alpha = 1.7 0.14 0.12 0.11 1839 21
delta = 0.3, alpha = 1.7 0.07 0.03 0.06 1237 14
delta = 0.5, alpha = 1.7 0.06 0.02 0.06 1249 15
delta = 0.7, alpha = 1.7 4.37 13.61 0.06 1357 18
delta = 0.9, alpha = 1.7 0.09 0.04 0.09 1552 20
delta = 0.1, alpha = 1.9 0.17 0.09 0.14 2038 22
delta = 0.3, alpha = 1.9 0.05 0.02 0.05 988 10
delta = 0.5, alpha = 1.9 0.05 0.03 0.04 809 4
delta = 0.7, alpha = 1.9 0.06 0.03 0.06 1106 13
delta = 0.9, alpha = 1.9 4.65 14.48 0.07 1452 19

110 6. A Study on Noise Handling Schemes

6.2.2 Results Tuning PUH-CMA-ES on the Noisy Sphere

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

delta = 0.9, alpha = 1.9
delta = 0.7, alpha = 1.9
delta = 0.5, alpha = 1.9
delta = 0.3, alpha = 1.9
delta = 0.1, alpha = 1.9
delta = 0.9, alpha = 1.7
delta = 0.7, alpha = 1.7
delta = 0.5, alpha = 1.7
delta = 0.3, alpha = 1.7
delta = 0.1, alpha = 1.7
delta = 0.9, alpha = 1.5
delta = 0.7, alpha = 1.5
delta = 0.5, alpha = 1.5
delta = 0.3, alpha = 1.5
delta = 0.1, alpha = 1.5
delta = 0.9, alpha = 1.3
delta = 0.7, alpha = 1.3
delta = 0.5, alpha = 1.3
delta = 0.3, alpha = 1.3
delta = 0.1, alpha = 1.3
delta = 0.9, alpha = 1.1
delta = 0.7, alpha = 1.1
delta = 0.5, alpha = 1.1
delta = 0.3, alpha = 1.1
delta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

δ = 0.9, α = 1.3
δ = 0.5, α = 1.3
δ = 0.7, α = 1.3
δ = 0.9, α = 1.1
δ = 0.5, α = 1.9
δ = 0.5, α = 1.5
δ = 0.7, α = 1.1
δ = 0.3, α = 1.7
δ = 0.5, α = 1.7
δ = 0.3, α = 1.5
δ = 0.7, α = 1.5
δ = 0.7, α = 1.9
δ = 0.5, α = 1.1
δ = 0.9, α = 1.5
δ = 0.7, α = 1.7
δ = 0.3, α = 1.9
δ = 0.9, α = 1.9
δ = 0.3, α = 1.3
δ = 0.9, α = 1.7
δ = 0.3, α = 1.1
δ = 0.1, α = 1.9
δ = 0.1, α = 1.1
δ = 0.1, α = 1.7
δ = 0.1, α = 1.5
δ = 0.1, α = 1.3

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

delta = 0.1, alpha = 1.1 0.35 0.14 0.28 2260 24
delta = 0.3, alpha = 1.1 0.16 0.09 0.15 1843 20
delta = 0.5, alpha = 1.1 0.05 0.02 0.05 1044 14
delta = 0.7, alpha = 1.1 0.05 0.05 0.04 839 8
delta = 0.9, alpha = 1.1 0.04 0.02 0.04 707 4
delta = 0.1, alpha = 1.3 0.36 0.12 0.36 2274 25
delta = 0.3, alpha = 1.3 0.07 0.02 0.08 1456 17
delta = 0.5, alpha = 1.3 0.04 0.02 0.04 643 3
delta = 0.7, alpha = 1.3 0.04 0.01 0.04 641 2
delta = 0.9, alpha = 1.3 0.04 0.01 0.03 589 1
delta = 0.1, alpha = 1.5 0.41 0.25 0.33 2231 22
delta = 0.3, alpha = 1.5 0.08 0.11 0.05 998 11
delta = 0.5, alpha = 1.5 0.04 0.01 0.04 757 5
delta = 0.7, alpha = 1.5 0.05 0.02 0.05 852 9
delta = 0.9, alpha = 1.5 0.06 0.03 0.06 1035 12
delta = 0.1, alpha = 1.7 0.32 0.11 0.30 2231 23
delta = 0.3, alpha = 1.7 0.05 0.02 0.04 855 10
delta = 0.5, alpha = 1.7 0.04 0.02 0.04 801 6
delta = 0.7, alpha = 1.7 0.06 0.03 0.06 1160 15
delta = 0.9, alpha = 1.7 0.08 0.03 0.09 1482 18
delta = 0.1, alpha = 1.9 0.25 0.14 0.19 2112 21
delta = 0.3, alpha = 1.9 0.07 0.04 0.07 1184 16
delta = 0.5, alpha = 1.9 0.04 0.01 0.04 824 7
delta = 0.7, alpha = 1.9 0.05 0.02 0.05 1042 13
delta = 0.9, alpha = 1.9 0.07 0.01 0.07 1515 19

6.2. Tuning the Adaptive Averaging Methods 111

6.2.3 Results Tuning UH-(5/2DI , 35)-σSA-ES on the Noisy Sphere

0 0.1 0.2 0.3 0.4

theta = 0.9, alpha = 1.9
theta = 0.7, alpha = 1.9
theta = 0.5, alpha = 1.9
theta = 0.3, alpha = 1.9
theta = 0.1, alpha = 1.9
theta = 0.9, alpha = 1.7
theta = 0.7, alpha = 1.7
theta = 0.5, alpha = 1.7
theta = 0.3, alpha = 1.7
theta = 0.1, alpha = 1.7
theta = 0.9, alpha = 1.5
theta = 0.7, alpha = 1.5
theta = 0.5, alpha = 1.5
theta = 0.3, alpha = 1.5
theta = 0.1, alpha = 1.5
theta = 0.9, alpha = 1.3
theta = 0.7, alpha = 1.3
theta = 0.5, alpha = 1.3
theta = 0.3, alpha = 1.3
theta = 0.1, alpha = 1.3
theta = 0.9, alpha = 1.1
theta = 0.7, alpha = 1.1
theta = 0.5, alpha = 1.1
theta = 0.3, alpha = 1.1
theta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

θ = 0.9, α = 1.1
θ = 0.7, α = 1.1
θ = 0.9, α = 1.7
θ = 0.5, α = 1.5
θ = 0.3, α = 1.3
θ = 0.1, α = 1.1
θ = 0.5, α = 1.3
θ = 0.5, α = 1.1
θ = 0.3, α = 1.1
θ = 0.9, α = 1.5
θ = 0.9, α = 1.9
θ = 0.7, α = 1.9
θ = 0.9, α = 1.3
θ = 0.7, α = 1.5
θ = 0.7, α = 1.3
θ = 0.7, α = 1.7
θ = 0.5, α = 1.9
θ = 0.1, α = 1.3
θ = 0.5, α = 1.7
θ = 0.3, α = 1.5
θ = 0.3, α = 1.7
θ = 0.1, α = 1.5
θ = 0.3, α = 1.9
θ = 0.1, α = 1.9
θ = 0.1, α = 1.7

m
e

d
ia

n
 f

it
n

e
s

s
evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

theta = 0.1, alpha = 1.1 2.58 8.00 0.05 872 6
theta = 0.3, alpha = 1.1 0.06 0.02 0.06 944 8
theta = 0.5, alpha = 1.1 4.56 14.26 0.05 996 9
theta = 0.7, alpha = 1.1 0.05 0.03 0.04 730 3
theta = 0.9, alpha = 1.1 0.05 0.02 0.04 659 1
theta = 0.1, alpha = 1.3 0.08 0.04 0.08 1373 18
theta = 0.3, alpha = 1.3 4.40 13.73 0.05 1102 12
theta = 0.5, alpha = 1.3 0.06 0.02 0.05 1020 10
theta = 0.7, alpha = 1.3 3.01 9.31 0.07 1151 14
theta = 0.9, alpha = 1.3 0.07 0.04 0.06 1084 11
theta = 0.1, alpha = 1.5 0.12 0.04 0.12 1946 22
theta = 0.3, alpha = 1.5 4.72 14.58 0.10 1880 21
theta = 0.5, alpha = 1.5 0.05 0.02 0.05 799 4
theta = 0.7, alpha = 1.5 0.06 0.02 0.06 1154 15
theta = 0.9, alpha = 1.5 0.05 0.02 0.06 901 7
theta = 0.1, alpha = 1.7 0.20 0.12 0.21 1974 24
theta = 0.3, alpha = 1.7 3.38 10.36 0.11 1747 20
theta = 0.5, alpha = 1.7 2.81 8.62 0.09 1685 19
theta = 0.7, alpha = 1.7 0.07 0.01 0.07 1202 16
theta = 0.9, alpha = 1.7 0.05 0.02 0.05 691 2
theta = 0.1, alpha = 1.9 0.25 0.14 0.20 2235 25
theta = 0.3, alpha = 1.9 0.15 0.07 0.14 1946 23
theta = 0.5, alpha = 1.9 4.76 14.82 0.07 1292 17
theta = 0.7, alpha = 1.9 0.07 0.04 0.06 1132 13
theta = 0.9, alpha = 1.9 0.05 0.03 0.06 860 5

112 6. A Study on Noise Handling Schemes

6.2.4 Results Tuning UH-CMA-ES on the Noisy Sphere

0 0.1 0.2 0.3 0.4

theta = 0.9, alpha = 1.9
theta = 0.7, alpha = 1.9
theta = 0.5, alpha = 1.9
theta = 0.3, alpha = 1.9
theta = 0.1, alpha = 1.9
theta = 0.9, alpha = 1.7
theta = 0.7, alpha = 1.7
theta = 0.5, alpha = 1.7
theta = 0.3, alpha = 1.7
theta = 0.1, alpha = 1.7
theta = 0.9, alpha = 1.5
theta = 0.7, alpha = 1.5
theta = 0.5, alpha = 1.5
theta = 0.3, alpha = 1.5
theta = 0.1, alpha = 1.5
theta = 0.9, alpha = 1.3
theta = 0.7, alpha = 1.3
theta = 0.5, alpha = 1.3
theta = 0.3, alpha = 1.3
theta = 0.1, alpha = 1.3
theta = 0.9, alpha = 1.1
theta = 0.7, alpha = 1.1
theta = 0.5, alpha = 1.1
theta = 0.3, alpha = 1.1
theta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

θ = 0.9, α = 1.9
θ = 0.7, α = 1.3
θ = 0.7, α = 1.9
θ = 0.7, α = 1.1
θ = 0.7, α = 1.5
θ = 0.7, α = 1.7
θ = 0.9, α = 1.1
θ = 0.1, α = 1.1
θ = 0.5, α = 1.1
θ = 0.9, α = 1.5
θ = 0.3, α = 1.1
θ = 0.5, α = 1.9
θ = 0.9, α = 1.7
θ = 0.9, α = 1.3
θ = 0.5, α = 1.5
θ = 0.5, α = 1.7
θ = 0.5, α = 1.3
θ = 0.3, α = 1.3
θ = 0.3, α = 1.7
θ = 0.3, α = 1.5
θ = 0.1, α = 1.3
θ = 0.3, α = 1.9
θ = 0.1, α = 1.5
θ = 0.1, α = 1.9
θ = 0.1, α = 1.7

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

theta = 0.1, alpha = 1.1 0.06 0.03 0.06 994 9
theta = 0.3, alpha = 1.1 0.07 0.03 0.06 1207 16
theta = 0.5, alpha = 1.1 0.06 0.03 0.06 958 6
theta = 0.7, alpha = 1.1 0.07 0.03 0.05 1046 11
theta = 0.9, alpha = 1.1 0.08 0.05 0.06 1118 15
theta = 0.1, alpha = 1.3 0.11 0.04 0.11 1694 21
theta = 0.3, alpha = 1.3 0.17 0.31 0.08 1265 17
theta = 0.5, alpha = 1.3 0.07 0.02 0.07 1101 14
theta = 0.7, alpha = 1.3 0.05 0.02 0.05 827 4
theta = 0.9, alpha = 1.3 0.07 0.03 0.07 1097 13
theta = 0.1, alpha = 1.5 0.18 0.07 0.16 2167 23
theta = 0.3, alpha = 1.5 0.09 0.04 0.09 1435 19
theta = 0.5, alpha = 1.5 0.06 0.02 0.07 978 7
theta = 0.7, alpha = 1.5 0.06 0.03 0.05 998 10
theta = 0.9, alpha = 1.5 0.06 0.03 0.06 912 5
theta = 0.1, alpha = 1.7 0.34 0.24 0.27 2355 25
theta = 0.3, alpha = 1.7 0.10 0.05 0.08 1573 20
theta = 0.5, alpha = 1.7 0.07 0.03 0.07 1081 12
theta = 0.7, alpha = 1.7 0.05 0.01 0.05 715 3
theta = 0.9, alpha = 1.7 0.06 0.03 0.07 979 8
theta = 0.1, alpha = 1.9 0.27 0.14 0.23 2314 24
theta = 0.3, alpha = 1.9 0.12 0.05 0.12 1875 22
theta = 0.5, alpha = 1.9 0.26 0.56 0.06 1385 18
theta = 0.7, alpha = 1.9 0.05 0.02 0.05 693 2
theta = 0.9, alpha = 1.9 0.05 0.02 0.04 608 1

6.2. Tuning the Adaptive Averaging Methods 113

6.2.5 Results Tuning IUH-(5/2DI , 35)-σSA-ES on the Noisy Sphere

0 0.05 0.1 0.15 0.2

theta = 0.9, alpha = 1.9
theta = 0.7, alpha = 1.9
theta = 0.5, alpha = 1.9
theta = 0.3, alpha = 1.9
theta = 0.1, alpha = 1.9
theta = 0.9, alpha = 1.7
theta = 0.7, alpha = 1.7
theta = 0.5, alpha = 1.7
theta = 0.3, alpha = 1.7
theta = 0.1, alpha = 1.7
theta = 0.9, alpha = 1.5
theta = 0.7, alpha = 1.5
theta = 0.5, alpha = 1.5
theta = 0.3, alpha = 1.5
theta = 0.1, alpha = 1.5
theta = 0.9, alpha = 1.3
theta = 0.7, alpha = 1.3
theta = 0.5, alpha = 1.3
theta = 0.3, alpha = 1.3
theta = 0.1, alpha = 1.3
theta = 0.9, alpha = 1.1
theta = 0.7, alpha = 1.1
theta = 0.5, alpha = 1.1
theta = 0.3, alpha = 1.1
theta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

θ = 0.5, α = 1.3
θ = 0.3, α = 1.9
θ = 0.7, α = 1.7
θ = 0.1, α = 1.5
θ = 0.5, α = 1.1
θ = 0.3, α = 1.7
θ = 0.5, α = 1.5
θ = 0.1, α = 1.3
θ = 0.3, α = 1.3
θ = 0.7, α = 1.9
θ = 0.5, α = 1.9
θ = 0.3, α = 1.5
θ = 0.5, α = 1.7
θ = 0.9, α = 1.7
θ = 0.1, α = 1.7
θ = 0.7, α = 1.5
θ = 0.9, α = 1.9
θ = 0.1, α = 1.1
θ = 0.1, α = 1.9
θ = 0.7, α = 1.3
θ = 0.3, α = 1.1
θ = 0.7, α = 1.1
θ = 0.9, α = 1.5
θ = 0.9, α = 1.3
θ = 0.9, α = 1.1

m
e

d
ia

n
 f

it
n

e
s

s
evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

theta = 0.1, alpha = 1.1 0.05 0.03 0.06 1104 7
theta = 0.3, alpha = 1.1 3.17 9.82 0.07 1517 21
theta = 0.5, alpha = 1.1 3.42 10.68 0.04 918 5
theta = 0.7, alpha = 1.1 0.08 0.03 0.07 1610 23
theta = 0.9, alpha = 1.1 0.14 0.06 0.14 2149 25
theta = 0.1, alpha = 1.3 0.06 0.03 0.05 1243 12
theta = 0.3, alpha = 1.3 0.06 0.02 0.05 1168 9
theta = 0.5, alpha = 1.3 0.04 0.01 0.03 673 2
theta = 0.7, alpha = 1.3 0.07 0.04 0.07 1508 20
theta = 0.9, alpha = 1.3 0.09 0.04 0.09 1864 24
theta = 0.1, alpha = 1.5 0.04 0.02 0.04 833 4
theta = 0.3, alpha = 1.5 4.26 13.31 0.06 1288 16
theta = 0.5, alpha = 1.5 0.07 0.05 0.05 1211 10
theta = 0.7, alpha = 1.5 0.06 0.02 0.06 1258 13
theta = 0.9, alpha = 1.5 0.08 0.04 0.08 1572 22
theta = 0.1, alpha = 1.7 0.06 0.02 0.06 1239 11
theta = 0.3, alpha = 1.7 0.05 0.02 0.05 950 6
theta = 0.5, alpha = 1.7 3.51 10.91 0.06 1336 17
theta = 0.7, alpha = 1.7 0.04 0.01 0.04 744 3
theta = 0.9, alpha = 1.7 0.07 0.03 0.06 1455 19
theta = 0.1, alpha = 1.9 0.06 0.03 0.07 1272 14
theta = 0.3, alpha = 1.9 0.04 0.02 0.04 661 1
theta = 0.5, alpha = 1.9 3.35 10.43 0.06 1277 15
theta = 0.7, alpha = 1.9 3.80 11.85 0.06 1149 8
theta = 0.9, alpha = 1.9 0.06 0.02 0.06 1376 18

114 6. A Study on Noise Handling Schemes

6.2.6 Results Tuning IUH-CMA-ES on the Noisy Sphere

0 0.1 0.2 0.3 0.4

theta = 0.9, alpha = 1.9
theta = 0.7, alpha = 1.9
theta = 0.5, alpha = 1.9
theta = 0.3, alpha = 1.9
theta = 0.1, alpha = 1.9
theta = 0.9, alpha = 1.7
theta = 0.7, alpha = 1.7
theta = 0.5, alpha = 1.7
theta = 0.3, alpha = 1.7
theta = 0.1, alpha = 1.7
theta = 0.9, alpha = 1.5
theta = 0.7, alpha = 1.5
theta = 0.5, alpha = 1.5
theta = 0.3, alpha = 1.5
theta = 0.1, alpha = 1.5
theta = 0.9, alpha = 1.3
theta = 0.7, alpha = 1.3
theta = 0.5, alpha = 1.3
theta = 0.3, alpha = 1.3
theta = 0.1, alpha = 1.3
theta = 0.9, alpha = 1.1
theta = 0.7, alpha = 1.1
theta = 0.5, alpha = 1.1
theta = 0.3, alpha = 1.1
theta = 0.1, alpha = 1.1

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

θ = 0.5, α = 1.5
θ = 0.1, α = 1.3
θ = 0.5, α = 1.7
θ = 0.3, α = 1.7
θ = 0.3, α = 1.5
θ = 0.7, α = 1.9
θ = 0.3, α = 1.9
θ = 0.7, α = 1.5
θ = 0.1, α = 1.7
θ = 0.1, α = 1.5
θ = 0.3, α = 1.3
θ = 0.7, α = 1.7
θ = 0.5, α = 1.9
θ = 0.1, α = 1.9
θ = 0.7, α = 1.3
θ = 0.9, α = 1.7
θ = 0.3, α = 1.1
θ = 0.5, α = 1.1
θ = 0.1, α = 1.1
θ = 0.5, α = 1.3
θ = 0.9, α = 1.9
θ = 0.9, α = 1.3
θ = 0.7, α = 1.1
θ = 0.9, α = 1.5
θ = 0.9, α = 1.1

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

theta = 0.1, alpha = 1.1 0.08 0.05 0.08 1367 18
theta = 0.3, alpha = 1.1 0.07 0.02 0.07 1275 13
theta = 0.5, alpha = 1.1 0.10 0.07 0.08 1524 19
theta = 0.7, alpha = 1.1 0.15 0.11 0.12 1947 24
theta = 0.9, alpha = 1.1 0.23 0.13 0.20 2241 25
theta = 0.1, alpha = 1.3 0.04 0.02 0.04 578 1
theta = 0.3, alpha = 1.3 0.06 0.03 0.06 1099 11
theta = 0.5, alpha = 1.3 0.10 0.05 0.09 1532 20
theta = 0.7, alpha = 1.3 0.08 0.05 0.07 1348 17
theta = 0.9, alpha = 1.3 0.14 0.18 0.10 1610 22
theta = 0.1, alpha = 1.5 0.06 0.01 0.06 1006 8
theta = 0.3, alpha = 1.5 0.05 0.03 0.05 807 3
theta = 0.5, alpha = 1.5 0.05 0.03 0.04 734 2
theta = 0.7, alpha = 1.5 0.06 0.01 0.06 985 6
theta = 0.9, alpha = 1.5 0.12 0.07 0.12 1704 23
theta = 0.1, alpha = 1.7 0.06 0.02 0.06 1043 9
theta = 0.3, alpha = 1.7 0.06 0.03 0.05 935 5
theta = 0.5, alpha = 1.7 0.06 0.02 0.05 842 4
theta = 0.7, alpha = 1.7 0.07 0.03 0.06 1211 12
theta = 0.9, alpha = 1.7 0.12 0.14 0.07 1322 15
theta = 0.1, alpha = 1.9 0.07 0.03 0.07 1295 14
theta = 0.3, alpha = 1.9 0.10 0.15 0.06 1075 10
theta = 0.5, alpha = 1.9 0.07 0.02 0.07 1335 16
theta = 0.7, alpha = 1.9 0.06 0.04 0.06 994 7
theta = 0.9, alpha = 1.9 0.15 0.15 0.09 1566 21

6.3. Adaptive Versus Non-Adaptive Averaging 115

6.3 Adaptive Versus Non-Adaptive Averaging
Given the tuned adaptive averaging techniques, the final question that we aim to answer is
whether adaptive averaging is better than explicit resampling, implicit averaging, or even a
canonical implementation. For the algorithmic schemes considered in this work we will attempt
to answer this question based on empirical comparison on a number of artificial test problems
in the context of Gaussian additive noise.

Table 6.2 shows the general setup adopted in the experiments. Table 6.3 shows the set of
test problems used in the comparison. This set is partially based on the test problems used
in [SHL+05, HFRA09b, HFRA09a, HFRA10]. Full descriptions of these test problems are
given in Appendix A. Table 6.4 shows the noise handling schemes that are considered for
comparison. For implicit and explicit averaging we consider the optimal sample size or
population size for each test problem, therewith aiming to compare the adaptive averaging
techniques to optimally tuned non-adaptive schemes. For this, Section 6.3.1 and Section 6.3.2
present the results of an empirical study to find for each test problem the optimal sample size
or population size. In Section 6.3.3 these results are used for the full empirical comparison.

General experimental settings

Search space dimension size n = 10

Evaluation budget per run 10,000
Runs per algorithmic scheme 100
Performance indicators Final solution quality w.r.t. the underlying signal

function (mean, std, median) over all runs, and rank sum
for ranking of the algorithmic schemes

Table 6.2: The general experimental setup.

Test problem Properties of the underlying signal function

Noisy Sphere Problem unimodal separable well-conditioned
Noisy Ellipsoid Problem unimodal non-separable ill-conditioned
Noisy Step Ellipsoid Problem unimodal non-separable ill-conditioned
Noisy Rosenbrock Problem unimodal non-separable well-conditioned
Noisy Ackley Problem multimodal separable well-conditioned
Noisy Griewank Problem multimodal separable well-conditioned
Noisy Rastrigin Problem multimodal separable well-conditioned
Noisy Schaffer’s F7 Problem multimodal separable well-conditioned
Noisy Branke’s Multipeak Problem multimodal separable well-conditioned
Noisy Keane’s Bump Problem multimodal non-separable well-conditioned

Table 6.3: The test problems used for empirical comparison.

116 6. A Study on Noise Handling Schemes

Noise handling schemes used for empirical comparison

Canonical A canonical (5/2DI , 35)-σSA-ES and CMA-ES.
MEM Explicit resampling, optimally tuned for each test problem.
MPM Implicit averaging, optimally tuned for each test problem.
PUH The poset-based adaptive averaging method.
UH The rank-based adaptive averaging method.
IUH The inversions-based adaptive averaging method.

Table 6.4: The techniques considered in the empirical study on noise handling schemes.

6.3.1 The Optimal Sample Size for Explicit Averaging

This experiment is done in order to determine, for each test problem, the optimal sample size
for explicit averaging. Different instances of the MEM-(5/2DI , 35)-σSA-ES and the MEM-
CMA-ES are considered with varying sample sizes: m = 2, 4, . . . , 16. These sample sizes are
compared on the test problems listed in Table 6.3 using the experimental setup shown in Table
6.2. The results of these experiments are shown in the tables and figures of Section 6.3.1.1 and
Section 6.3.1.2 for the MEM-(5/2DI , 35)-σSA-ES and the MEM-CMA-ES respectively.

The results show the trade-off between taking too few samples, leading to early stagnation,
and too many samples, leading to slow convergence. In between lies an optimal sample size
for the considered evaluation budget of 10, 000 function evaluations. For the explicit averaging
schemes for each of the test problems with respect to the general experimental setup the optimal
sample sizes lie, with an approximate error of ±1, at the values shown in Table 6.5. From this
table we see that the sample sizes for the MEM-(5/2DI , 35)-σSA-ES are generally low and
for the MEM-CMA-ES it seems that slightly higher sample sizes should be used.

Test problem MEM-(5, 35)-σSA-ES MEM-CMA-ES

Noisy Sphere Problem m = 4 m = 12
Noisy Ellipsoid Problem m = 4 m = 8
Noisy Step Ellipsoid Problem m = 2 m = 2
Noisy Rosenbrock Problem m = 2 m = 4
Noisy Ackley Problem m = 4 m = 6
Noisy Griewank Problem m = 6 m = 14
Noisy Rastrigin Problem m = 2 m = 2
Noisy Schaffer’s F7 Problem m = 2 m = 4
Noisy Branke’s Multipeak Problem m = 4 m = 2
Noisy Keane’s Bump Problem m = 4 m = 2

Table 6.5: The optimal sample size for the MEM approach with an approximate error of±1 to achieve
best convergence accuracy on a budget of 10, 000 function evaluations.

6.3. Adaptive Versus Non-Adaptive Averaging 117

6.3.1.1 Results MEM-(5/2DI , 35)-σSA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

m = 2 2.65 9.46 0.37 27616 3
m = 4 1.12 5.45 0.31 21548 1
m = 6 1.30 6.54 0.33 22462 2
m = 8 2.77 8.84 0.41 31286 4
m = 10 2.85 8.96 0.54 40452 5
m = 12 2.52 5.56 0.88 50776 6
m = 14 7.33 12.70 1.86 60611 7
m = 16 5.61 8.47 2.77 65649 8

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

m = 2 1.95 4.00 0.85 22374 2
m = 4 1.86 4.32 0.81 20584 1
m = 6 3.09 5.93 0.97 27054 3
m = 8 2.63 3.71 1.37 33075 4
m = 10 4.68 5.38 2.23 46163 5
m = 12 5.54 5.33 3.91 52517 6
m = 14 6.72 6.13 4.58 56617 7
m = 16 8.87 7.30 5.90 62016 8

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

m = 2 1.18 3.77 0.00 13133 1
m = 4 1.97 4.52 1.00 23326 2
m = 6 1.19 2.56 1.00 24521 3
m = 8 3.28 5.48 1.00 37849 4
m = 10 3.67 4.35 2.00 45768 5
m = 12 5.39 5.32 4.00 54037 6
m = 14 6.12 5.05 4.00 57872 7
m = 16 8.39 6.02 7.00 63894 8

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

m = 2 8.63 1.10 8.74 15838 1
m = 4 8.79 1.15 8.91 17670 2
m = 6 9.11 1.00 9.10 20403 3
m = 8 12.04 8.18 10.16 31062 4
m = 10 19.52 14.37 14.22 45578 5
m = 12 38.13 30.13 27.73 57724 6
m = 14 53.66 46.84 39.92 62745 7
m = 16 87.22 75.31 66.17 69380 8

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

m = 2 1.18 1.99 0.60 18224 2
m = 4 1.13 1.93 0.66 18101 1
m = 6 1.23 1.54 0.77 22770 3
m = 8 2.23 2.01 1.53 38075 4
m = 10 2.69 1.65 2.27 45781 5
m = 12 3.24 1.54 3.09 52847 6
m = 14 3.82 1.25 3.58 59927 7
m = 16 4.43 1.42 4.01 64675 8

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

m = 2 1.29 0.40 1.20 44960 6
m = 4 1.27 0.44 1.15 37310 4
m = 6 1.19 0.27 1.14 33226 1
m = 8 1.18 0.19 1.13 33330 2
m = 10 1.22 0.32 1.15 36458 3
m = 12 1.23 0.29 1.17 39513 5
m = 14 1.25 0.23 1.20 45903 7
m = 16 1.36 0.38 1.21 49700 8

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

m = 2 27.79 37.93 12.06 16549 1
m = 4 49.94 42.88 31.42 26768 2
m = 6 66.15 33.99 70.44 32571 3
m = 8 82.83 22.06 78.51 41122 4
m = 10 90.65 23.09 87.51 47240 5
m = 12 94.16 19.57 93.40 50716 7
m = 14 93.36 19.08 89.77 50053 6
m = 16 100.06 20.33 100.72 55381 8

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

m = 2 6.11 13.90 2.40 9634 1
m = 4 11.05 16.89 4.72 20150 2
m = 6 18.86 17.13 12.19 31284 3
m = 8 22.65 13.39 18.31 37013 4
m = 10 32.46 13.82 26.99 49204 5
m = 12 37.37 14.42 34.08 54709 6
m = 14 39.45 12.61 35.54 57584 7
m = 16 42.26 11.18 41.26 60822 8

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

m = 2 0.37 0.10 0.34 30149 3
m = 4 0.35 0.06 0.33 23717 1
m = 6 0.35 0.07 0.33 27505 2
m = 8 0.38 0.09 0.34 34868 4
m = 10 0.41 0.09 0.37 44727 5
m = 12 0.42 0.09 0.38 47615 6
m = 14 0.44 0.09 0.42 53656 7
m = 16 0.46 0.09 0.44 58163 8

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

m = 2 -0.59 0.14 -0.64 17807 2
m = 4 -0.60 0.07 -0.61 17351 1
m = 6 -0.55 0.10 -0.56 26485 3
m = 8 -0.48 0.11 -0.52 37184 4
m = 10 -0.43 0.11 -0.45 46214 5
m = 12 -0.39 0.09 -0.39 53539 6
m = 14 -0.35 0.08 -0.35 59281 7
m = 16 -0.33 0.09 -0.33 62539 8

118 6. A Study on Noise Handling Schemes

NOISY SPHERE PROBLEM

0 2 4 6 8 10

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ELLIPSOID PROBLEM

0 5 10 15 20

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY STEP ELLIPSOID PROBLEM

0 5 10 15 20

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ROSENBROCK PROBLEM

0 20 40 60 80 100 120 140 160

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ACKLEY PROBLEM

0 1 2 3 4 5 6 7

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY GRIEWANK PROBLEM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY RASTRIGIN PROBLEM

0 20 40 60 80 100 120 140

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY SCHAFFER’S F7 PROBLEM

0 10 20 30 40 50 60

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

6.3. Adaptive Versus Non-Adaptive Averaging 119

6.3.1.2 Results MEM-CMA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

m = 2 0.44 0.18 0.42 61210 8
m = 4 0.32 0.14 0.30 49041 7
m = 6 0.85 6.02 0.23 37108 6
m = 8 2.46 9.91 0.20 36067 5
m = 10 0.71 4.74 0.22 34633 3
m = 12 1.36 7.88 0.21 32802 1
m = 14 1.06 5.81 0.21 33597 2
m = 16 1.95 9.80 0.21 35942 4

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

m = 2 1.31 1.70 1.07 50014 8
m = 4 1.14 2.53 0.86 38460 5
m = 6 1.55 5.31 0.70 33460 2
m = 8 1.80 4.81 0.67 31769 1
m = 10 1.87 4.37 0.75 36178 3
m = 12 2.35 7.13 0.78 37697 4
m = 14 3.51 9.52 0.88 44445 6
m = 16 3.86 7.93 1.11 48377 7

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

m = 2 1.27 3.44 0.00 22837 1
m = 4 1.05 1.18 1.00 29963 3
m = 6 1.50 3.97 1.00 29819 2
m = 8 2.19 8.57 1.00 35177 4
m = 10 2.73 6.74 1.00 45646 5
m = 12 2.11 4.29 1.00 46145 6
m = 14 3.36 6.47 1.00 53768 7
m = 16 5.04 8.48 2.00 57045 8

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

m = 2 38.99 261.44 9.63 31838 2
m = 4 71.43 408.26 9.25 28336 1
m = 6 86.79 404.63 9.52 32392 3
m = 8 217.35 639.96 9.78 38770 5
m = 10 210.64 636.02 9.54 36780 4
m = 12 283.76 832.69 9.98 43746 6
m = 14 310.96 766.21 12.08 50537 7
m = 16 431.76 1015.12 20.58 58001 8

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

m = 2 1.10 0.68 0.86 56409 8
m = 4 0.90 1.23 0.53 43022 6
m = 6 0.69 1.14 0.39 29784 1
m = 8 0.90 1.80 0.42 30780 2
m = 10 0.78 1.49 0.41 31160 3
m = 12 0.63 0.80 0.47 34489 4
m = 14 0.72 0.61 0.53 40276 5
m = 16 1.24 1.31 0.81 54480 7

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

m = 2 1.08 0.32 1.17 46503 7
m = 4 1.11 0.18 1.14 47223 8
m = 6 1.09 0.20 1.13 45640 6
m = 8 1.14 0.32 1.10 40570 5
m = 10 1.08 0.13 1.10 35794 4
m = 12 1.13 0.23 1.09 35078 3
m = 14 1.09 0.08 1.09 34535 1
m = 16 1.15 0.30 1.08 35057 2

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

m = 2 16.09 14.75 13.54 17294 1
m = 4 21.95 25.06 14.75 21551 2
m = 6 26.91 25.97 16.50 24969 3
m = 8 46.89 36.19 28.91 37678 4
m = 10 64.43 35.16 67.65 48504 5
m = 12 71.29 28.52 77.92 53043 6
m = 14 81.88 22.42 82.71 59232 8
m = 16 81.21 21.02 79.88 58129 7

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

m = 2 5.06 6.53 3.72 20228 3
m = 4 5.37 8.95 3.30 19009 1
m = 6 4.62 3.40 3.30 20120 2
m = 8 9.31 12.27 5.99 33921 4
m = 10 12.20 11.78 8.91 44711 5
m = 12 16.42 13.37 12.14 54832 6
m = 14 19.27 13.63 15.17 60625 7
m = 16 21.14 8.90 19.39 66954 8

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

m = 2 0.36 0.11 0.33 31570 1
m = 4 0.40 0.16 0.33 33160 2
m = 6 0.44 0.18 0.33 36489 3
m = 8 0.44 0.16 0.34 37489 4
m = 10 0.45 0.17 0.35 39659 5
m = 12 0.48 0.16 0.47 44608 6
m = 14 0.50 0.15 0.54 48942 8
m = 16 0.50 0.15 0.53 48483 7

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

m = 2 -0.42 0.17 -0.47 27358 1
m = 4 -0.41 0.16 -0.44 27921 2
m = 6 -0.37 0.16 -0.35 34292 3
m = 8 -0.34 0.15 -0.33 37736 4
m = 10 -0.29 0.13 -0.27 45434 5
m = 12 -0.27 0.11 -0.26 48101 7
m = 14 -0.28 0.10 -0.28 45571 6
m = 16 -0.24 0.09 -0.23 53987 8

120 6. A Study on Noise Handling Schemes

NOISY SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ELLIPSOID PROBLEM

0 0.5 1 1.5 2 2.5 3 3.5

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY STEP ELLIPSOID PROBLEM

−1 0 1 2 3 4 5 6 7 8 9

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ROSENBROCK PROBLEM

−100 0 100 200 300 400 500 600 700

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY ACKLEY PROBLEM

0 0.5 1 1.5 2 2.5 3

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY GRIEWANK PROBLEM

0 0.2 0.4 0.6 0.8 1 1.2

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY RASTRIGIN PROBLEM

0 50 100 150

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY SCHAFFER’S F7 PROBLEM

0 5 10 15 20 25 30 35

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

m = 16

m = 14

m = 12

m = 10

m = 8

m = 6

m = 4

m = 2

6.3. Adaptive Versus Non-Adaptive Averaging 121

6.3.2 The Optimal Sample Size for Implicit Averaging

This experiment is done in order to determine, for each test problem, the optimal population
size for implicit averaging. Different instances of the (µ/2DI , λ)-σSA-ES and the CMA-ES
with varying population sizes are considered. For the (µ/2DI , λ)-σSA-ES: (5, 35), (10, 70),
(20, 140), (30, 210), (40, 280), (50, 350), (60, 420). For the CMA-ES: (5, 10), (10, 20),
(20, 40), (30, 60), (40, 80), (50, 100), (60, 120), (70, 140). These different population sizes
are compared on the test problems listed in Table 6.3 using the experimental setup as
displayed in Table 6.2. The results of these experiments are shown in the tables and figures of
Section 6.3.2.1 and Section 6.3.2.2 for the MPM-(µ/2DI , λ)-σSA-ES and the MPM-CMA-ES
respectively.

Similar to the results of explicit averaging, the results show the trade-off that exists between
taking too small population sizes that leads to early stagnation and too high population sizes
that leads to slow convergence. In between lies an optimal population size for the considered
evaluation budget of 10, 000 function evaluations. Based on these results, we can conclude
that for the implicit averaging schemes, the MPM-(µ/2DI , λ)-σSA-ES and the MPM-CMA-
ES, given the experimental setup, the optimal sample sizes lie at the values shown in Table 6.6.
When taking α as the scaling factor of the default population sizes for both schemes, the error
of these results is ±10 for µ, maintaining the default ratios between µ and λ. From Table 6.6
we observe that for the MPM-(µ/2DI , λ)-σSA-ES, the implicit averaging factor is generally
low and for the CMA-ES, slightly higher factors are optimal. This observation is similar to
what is observed in the experiments of Section 6.3.1 in the comparison of different sample size
for explicit averaging.

Test problem MPM-(µ/2DI , λ)-σSA-ES MPM-CMA-ES

Noisy Sphere Problem (10,70) (50,100)
Noisy Ellipsoid Problem (20,140) (40,80)
Noisy Step Ellipsoid Problem (20,140) (30,60)
Noisy Rosenbrock Problem (20,140) (40,80)
Noisy Ackley Problem (10,70) (40,80)
Noisy Griewank Problem (20,140) (40,80)
Noisy Rastrigin Problem (20,140) (30,60)
Noisy Schaffer’s F7 Problem (10,70) (20,40)
Noisy Branke’s Multipeak Problem (20,140) (30,60)
Noisy Keane’s Bump Problem (10,70) (30,60)

Table 6.6: For each multi-population scheme for each test problem the optimal population size to
achieve best convergence accuracy on a budget of 10, 000 function evaluations. When taking α as the
scaling factor of the default population sizes for both schemes, the error of these results is ±10 for µ,
maintaining the default ratios between µ and λ.

122 6. A Study on Noise Handling Schemes

6.3.2.1 Results MPM-(µ/2DI , λ)-σSA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

(5,35) 2.80 8.95 0.59 40598 5
(10,70) 0.41 0.19 0.37 23013 1
(20,140) 0.42 0.23 0.35 23713 2
(30,210) 0.52 0.23 0.51 33364 3
(40,280) 0.59 0.30 0.52 36746 4
(50,350) 0.68 0.31 0.65 44069 6
(60,420) 0.87 0.34 0.84 55173 7
(70,490) 1.14 0.47 1.09 63724 8

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

(5,35) 1.88 3.64 1.02 31179 4
(10,70) 1.40 3.05 0.94 25903 2
(20,140) 1.07 1.12 0.82 25236 1
(30,210) 1.09 0.57 0.97 28911 3
(40,280) 1.49 0.69 1.41 41165 5
(50,350) 1.74 0.74 1.73 47970 6
(60,420) 2.17 0.96 2.11 55671 7
(70,490) 2.85 1.23 2.56 64365 8

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

(5,35) 1.91 5.25 1.00 23880 3
(10,70) 1.16 3.44 0.00 23053 2
(20,140) 0.38 0.58 0.00 21802 1
(30,210) 0.58 0.73 0.00 30540 4
(40,280) 1.00 0.92 1.00 41283 5
(50,350) 1.46 1.04 1.00 51105 6
(60,420) 2.12 1.20 2.00 61149 7
(70,490) 2.68 1.38 3.00 67588 8

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

(5,35) 9.36 6.42 8.70 26691 3
(10,70) 8.55 0.99 8.57 22443 2
(20,140) 8.54 0.75 8.53 21091 1
(30,210) 8.91 0.80 8.84 28526 4
(40,280) 9.38 0.83 9.20 36718 5
(50,350) 10.17 1.00 10.19 48650 6
(60,420) 12.00 1.46 12.17 64043 7
(70,490) 14.10 2.19 13.98 72238 8

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

(5,35) 1.98 2.76 0.85 24915 3
(10,70) 1.27 2.06 0.65 15895 1
(20,140) 1.03 0.80 0.87 18688 2
(30,210) 1.72 0.51 1.71 32300 4
(40,280) 2.66 0.72 2.67 45007 5
(50,350) 3.28 0.61 3.27 54289 6
(60,420) 3.85 0.58 3.85 63504 7
(70,490) 4.04 0.66 4.01 65802 8

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

(5,35) 1.40 0.46 1.28 46229 7
(10,70) 1.21 0.11 1.20 32629 3
(20,140) 1.19 0.11 1.18 28874 1
(30,210) 1.21 0.10 1.19 31370 2
(40,280) 1.26 0.11 1.25 42578 5
(50,350) 1.26 0.13 1.25 41984 4
(60,420) 1.28 0.15 1.27 45009 6
(70,490) 1.33 0.16 1.32 51727 8

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

(5,35) 25.66 36.95 11.27 33009 4
(10,70) 15.12 29.17 5.75 20476 2
(20,140) 7.16 16.56 3.94 10749 1
(30,210) 20.52 19.30 12.32 30308 3
(40,280) 44.92 12.00 46.97 48249 5
(50,350) 51.65 9.00 51.81 54729 6
(60,420) 56.01 10.28 56.51 59848 7
(70,490) 58.29 7.27 57.89 63032 8

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

(5,35) 5.12 11.47 2.28 15876 2
(10,70) 2.68 5.17 2.08 10141 1
(20,140) 3.44 0.65 3.45 22667 3
(30,210) 6.22 1.20 6.23 34166 4
(40,280) 10.26 1.69 10.26 44882 5
(50,350) 14.33 2.23 13.99 55410 6
(60,420) 17.77 2.44 17.73 64592 7
(70,490) 21.17 2.68 21.10 72666 8

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

(5,35) 0.38 0.09 0.35 31124 4
(10,70) 0.36 0.06 0.34 25428 2
(20,140) 0.34 0.02 0.34 20688 1
(30,210) 0.36 0.03 0.35 29870 3
(40,280) 0.38 0.05 0.37 40128 5
(50,350) 0.41 0.06 0.40 52021 6
(60,420) 0.43 0.06 0.42 59024 7
(70,490) 0.45 0.06 0.45 62117 8

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

(5,35) -0.53 0.19 -0.59 37524 4
(10,70) -0.67 0.07 -0.68 14122 1
(20,140) -0.66 0.07 -0.67 16270 2
(30,210) -0.61 0.09 -0.62 28437 3
(40,280) -0.54 0.09 -0.56 42853 5
(50,350) -0.48 0.07 -0.49 53171 6
(60,420) -0.42 0.07 -0.42 61586 7
(70,490) -0.39 0.06 -0.39 66437 8

6.3. Adaptive Versus Non-Adaptive Averaging 123

NOISY SPHERE PROBLEM

0 0.5 1 1.5 2

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY ELLIPSOID PROBLEM

0 1 2 3 4 5

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY STEP ELLIPSOID PROBLEM

0 1 2 3 4 5 6

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY ROSENBROCK PROBLEM

0 2 4 6 8 10 12 14 16 18

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY ACKLEY PROBLEM

0 1 2 3 4 5

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY GRIEWANK PROBLEM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY RASTRIGIN PROBLEM

0 10 20 30 40 50 60 70

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY SCHAFFER’S F7 PROBLEM

0 5 10 15 20 25

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25

(70,490)

(60,420)

(50,350)

(40,280)

(30,210)

(20,140)

(10,70)

(5,35)

124 6. A Study on Noise Handling Schemes

6.3.2.2 Results MPM-CMA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

(5,10) 0.64 0.30 0.57 72163 8
(10,20) 0.32 0.13 0.30 58550 7
(20,40) 0.41 2.24 0.16 39097 6
(30,60) 0.15 0.08 0.13 30397 3
(40,80) 1.30 5.95 0.13 31001 4
(50,100) 0.13 0.07 0.12 27863 1
(60,120) 0.14 0.09 0.13 29096 2
(70,140) 0.16 0.11 0.13 32233 5

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

(5,10) 1.88 4.43 1.29 67558 8
(10,20) 0.98 0.47 0.83 61041 7
(20,40) 1.24 3.51 0.45 42527 6
(30,60) 0.50 1.43 0.27 27724 2
(40,80) 0.35 0.24 0.26 26619 1
(50,100) 0.40 0.29 0.34 31036 4
(60,120) 0.42 0.44 0.31 29705 3
(70,140) 0.49 0.58 0.38 34190 5

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

(5,10) 1.25 1.34 1.00 42626 6
(10,20) 0.78 1.15 0.00 33268 2
(20,40) 0.93 2.27 0.00 35117 3
(30,60) 0.66 2.56 0.00 30781 1
(40,80) 0.39 0.94 0.00 35860 4
(50,100) 0.35 0.95 0.00 40772 5
(60,120) 0.19 0.60 0.00 46332 7
(70,140) 0.33 0.77 0.00 55644 8

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

(5,10) 72.01 616.49 9.76 54698 8
(10,20) 9.26 0.77 9.31 45337 6
(20,40) 36.26 201.84 9.07 40242 4
(30,60) 14.37 56.67 8.65 29441 2
(40,80) 8.54 0.63 8.50 24091 1
(50,100) 8.91 0.95 8.80 32494 3
(60,120) 9.16 0.78 9.07 40896 5
(70,140) 10.03 1.79 9.57 53201 7

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

(5,10) 1.98 1.17 1.89 71112 8
(10,20) 0.74 0.89 0.53 50352 6
(20,40) 0.60 1.56 0.29 27570 3
(30,60) 0.56 1.50 0.25 23687 2
(40,80) 0.27 0.10 0.25 20831 1
(50,100) 0.40 0.52 0.31 29462 4
(60,120) 0.72 1.13 0.47 45430 5
(70,140) 0.73 0.58 0.55 51956 7

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

(5,10) 1.27 0.18 1.27 64831 8
(10,20) 1.10 0.20 1.14 54192 7
(20,40) 1.02 0.20 1.07 34586 5
(30,60) 1.05 0.17 1.06 33716 4
(40,80) 1.05 0.08 1.05 31175 1
(50,100) 1.08 0.17 1.05 32149 2
(60,120) 1.06 0.06 1.06 32849 3
(70,140) 1.10 0.20 1.06 36902 6

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

(5,10) 14.92 5.02 14.79 56521 7
(10,20) 7.56 2.83 6.99 41094 5
(20,40) 7.32 16.49 4.31 27918 3
(30,60) 6.12 14.81 3.29 20923 1
(40,80) 9.16 18.17 3.66 25880 2
(50,100) 13.06 16.23 4.54 35720 4
(60,120) 19.77 17.00 13.59 49587 6
(70,140) 30.88 20.04 30.56 62757 8

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

(5,10) 5.91 6.55 4.49 64893 8
(10,20) 2.17 1.35 1.82 31858 4
(20,40) 2.83 8.60 1.27 16479 1
(30,60) 2.02 5.77 1.38 17063 2
(40,80) 2.58 5.96 1.77 28836 3
(50,100) 2.42 0.60 2.33 42748 5
(60,120) 3.09 0.70 3.05 54625 6
(70,140) 4.12 1.51 3.84 63898 7

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

(5,10) 0.37 0.11 0.34 49302 7
(10,20) 0.34 0.06 0.33 40695 5
(20,40) 0.33 0.07 0.32 30137 3
(30,60) 0.33 0.06 0.31 25950 1
(40,80) 0.32 0.04 0.32 30013 2
(50,100) 0.33 0.03 0.32 38527 4
(60,120) 0.34 0.04 0.34 48637 6
(70,140) 0.36 0.05 0.35 57139 8

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

(5,10) -0.48 0.13 -0.50 57303 8
(10,20) -0.54 0.15 -0.58 43049 5
(20,40) -0.60 0.10 -0.62 30184 3
(30,60) -0.62 0.08 -0.64 25179 1
(40,80) -0.62 0.05 -0.62 28369 2
(50,100) -0.58 0.08 -0.59 38621 4
(60,120) -0.56 0.07 -0.57 45886 6
(70,140) -0.54 0.08 -0.54 51809 7

6.3. Adaptive Versus Non-Adaptive Averaging 125

NOISY SPHERE PROBLEM

0 0.2 0.4 0.6 0.8 1 1.2

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY ELLIPSOID PROBLEM

0 0.5 1 1.5 2 2.5 3

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY STEP ELLIPSOID PROBLEM

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY ROSENBROCK PROBLEM

0 2 4 6 8 10 12

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY ACKLEY PROBLEM

0 0.5 1 1.5 2 2.5 3 3.5

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY GRIEWANK PROBLEM

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY RASTRIGIN PROBLEM

0 10 20 30 40 50 60 70 80 90

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY SCHAFFER’S F7 PROBLEM

0 2 4 6 8 10 12

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25

(70,140)

(60,120)

(50,100)

(40,80)

(30,60)

(20,40)

(10,20)

(5,10)

126 6. A Study on Noise Handling Schemes

6.3.3 Comparison Adaptive versus Non-Adaptive

Lastly we run an empirical comparative study of the best instances of the five noise handling
schemes incorporated in the (5/2DI , 35)-σSA-ES and the CMA-ES, compared against the
canonical instance of both schemes on the complete set of test problems (see Table 6.3). Each
instance uses the optimal settings as found in the previous sections (see Table 6.7). For the
MEM and the MPM schemes, this varies for each test problem. The question that we aim to
answer with this empirical comparison is: how do the adaptive averaging techniques compare
to optimally tuned MEM and MPM schemes?

(5/2DI , 35)-σSA-ES CMA-ES

Canonical default default
MEM see Table 6.5 see Table 6.5
MPM see Table 6.6 see Table 6.6
PUH δ = 0.9, α = 1.3 δ = 0.5, α = 1.7

UH θ = 0.9, α = 1.1 θ = 0.9, α = 1.5

IUH θ = 0.1, α = 1.7 θ = 0.3, α = 1.5

Table 6.7: Algorithm settings comparison noise handling techniques.

Section 6.3.3.1 and Section 6.3.3.2 show the results for the (5/2DI , 35)-σSA-ES and the
CMA-ES respectively. Table 6.8 shows the combined rank scores of the compared schemes.

(5/2DI , 35)-σSA-ES CMA-ES

Canonical 354,792 384,091
MEM 296,002 291,950
MPM 289,257 135,653
PUH 335,450 344,457
UH 265,871 329,444
IUH 261,628 317,405

Table 6.8: Combined rank sums of the full comparison of noise handling techniques on the full set of
test problems.

For the (5/2DI , 35)-σSA-ES, the statistics tables and the boxplots show that overall, all
schemes yield comparable results except for a few outliers. On the sphere problem, the adaptive
averaging schemes clearly outperform the static schemes, which also holds for the Griewank
problem and Branke’s multipeak problem. On the Rastriging problem, the implicit averaging
scheme is clearly better. A remarkable negative result is observed for the PUH scheme on the
Ackley problem, Schaffer’s f7 problem, and the Keane bump problem, where it is clearly worse
than all other schemes. This can be attributed to a very slow convergence rate that is due to a

6.3. Adaptive Versus Non-Adaptive Averaging 127

fast increase of the sample size. The canonical instantiation of the (5/2DI , 35)-σSA-ES is in
most, but not all cases outperformed by the other schemes.

For the CMA-ES, the implicit averaging scheme shows to be a clear winner, ranking first
on all test problems. Although implicit averaging already showed to be more suitable for
(weighted) intermediate recombination in Section 5.3.3, the gain is remarkable. Hence, for
the CMA-ES, using larger population sizes for noisy objective functions is clearly beneficial.
No clear winner can be identified when comparing the adaptive averaging schemes against the
explicit resampling scheme. However, Table 6.8 shows a slightly better combined rank sum
for the MEM approach. Of the adaptive averaging techniques, the PUH scheme is the worst
choice and the IUH seems to be marginally better than the UH scheme. Also here, the canonical
instantiation is generally outperformed by the other schemes.

To summarize, a well-tuned static noise handling scheme can yield competitive or better
results than adaptive averaging scheme. Increasing the population size is, especially for the
CMA-ES, a promising strategy for noise handling. Among the adaptive averaging schemes,
the UH and the IUH scheme yield better results than the PUH scheme, and the difference
between the UH and the IUH scheme is marginal. Finally, the results confirm that the
noise handling schemes generally yield better results than the canonical instantiations of the
(5/2DI , 35)-σSA-ES and the CMA-ES.

128 6. A Study on Noise Handling Schemes

6.3.3.1 Results (5/2DI , 35)-σSA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

Canonical 2.39 9.45 0.48 45077 6
MEMopt 2.09 7.86 0.28 33477 4
MPMopt 1.03 4.08 0.39 41957 5
PUH 1.97 8.02 0.17 18400 1
UH 1.27 6.04 0.20 21950 3
IUH 1.23 6.01 0.18 19439 2

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

Canonical 1.60 2.62 1.07 37491 6
MEMopt 2.39 4.94 0.83 31699 4
MPMopt 1.14 1.64 0.89 31829 5
PUH 2.19 5.27 0.86 31632 3
UH 1.51 4.00 0.72 25089 2
IUH 1.62 4.26 0.64 22560 1

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

Canonical 1.46 4.49 0.50 20917 1
MEMopt 1.32 3.23 1.00 26712 3
MPMopt 0.48 0.63 0.00 24501 2
PUH 1.60 3.69 1.00 36378 5
UH 1.58 4.64 0.00 33421 4
IUH 1.85 5.28 0.00 38371 6

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

Canonical 8.93 1.16 8.90 34190 6
MEMopt 8.72 1.13 8.71 30623 5
MPMopt 8.58 0.73 8.51 27934 2
PUH 9.48 6.97 8.65 29283 3
UH 8.64 1.01 8.66 30395 4
IUH 9.16 6.68 8.52 27875 1

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

Canonical 1.52 2.34 0.77 33316 5
MEMopt 0.95 1.50 0.58 25200 3
MPMopt 1.14 1.80 0.70 29322 4
PUH 2.17 1.68 1.79 48382 6
UH 1.59 2.71 0.49 22154 2
IUH 1.06 1.93 0.53 21926 1

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

Canonical 1.32 0.35 1.23 44692 6
MEMopt 1.16 0.21 1.12 29809 4
MPMopt 1.22 0.12 1.21 42350 5
PUH 1.10 0.24 1.08 19199 1
UH 1.14 0.35 1.09 21755 2
IUH 1.18 0.40 1.08 22495 3

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

Canonical 23.63 35.54 10.56 32775 2
MEMopt 26.91 39.33 10.52 33178 4
MPMopt 9.54 21.66 4.26 11411 1
PUH 25.59 35.93 11.53 35138 6
UH 24.80 36.01 10.59 33095 3
IUH 33.85 44.41 11.50 34703 5

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

Canonical 7.88 17.14 2.34 30599 5
MEMopt 7.49 16.26 2.24 28243 3
MPMopt 2.02 0.42 1.97 19458 1
PUH 10.41 17.84 3.61 45587 6
UH 10.05 20.42 2.14 26159 2
IUH 10.15 20.34 2.30 30254 4

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

Canonical 0.39 0.12 0.35 42964 6
MEMopt 0.34 0.06 0.33 30442 4
MPMopt 0.35 0.02 0.34 40114 5
PUH 0.35 0.07 0.33 28137 3
UH 0.34 0.08 0.32 22750 2
IUH 0.32 0.06 0.31 15893 1

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

Canonical -0.53 0.20 -0.60 32771 5
MEMopt -0.61 0.09 -0.64 26619 2
MPMopt -0.63 0.12 -0.66 20381 1
PUH -0.49 0.13 -0.50 43314 6
UH -0.57 0.15 -0.62 29103 4
IUH -0.59 0.12 -0.62 28112 3

6.3. Adaptive Versus Non-Adaptive Averaging 129

NOISY SPHERE PROBLEM

0 0.2 0.4 0.6 0.8 1

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ELLIPSOID PROBLEM

0 0.5 1 1.5 2 2.5

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY STEP ELLIPSOID PROBLEM

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ROSENBROCK PROBLEM

0 2 4 6 8 10

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ACKLEY PROBLEM

0 0.5 1 1.5 2 2.5 3 3.5

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY GRIEWANK PROBLEM

0 0.5 1 1.5

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY RASTRIGIN PROBLEM

0 5 10 15 20 25 30

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY SCHAFFER’S F7 PROBLEM

0 1 2 3 4 5 6 7 8

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2

IUH

UH

PUH

MPMopt

MEMopt

Canonical

130 6. A Study on Noise Handling Schemes

6.3.3.2 Results CMA-ES

NOISY SPHERE PROBLEM

Mean Std Med
∑

#

Canonical 0.58 0.24 0.54 52492 6
MEMopt 2.03 8.76 0.20 32436 5
MPMopt 0.14 0.09 0.12 19068 1
PUH 0.16 0.08 0.15 22805 2
UH 0.18 0.07 0.16 26880 4
IUH 0.79 6.19 0.17 26619 3

NOISY ELLIPSOID PROBLEM

Mean Std Med
∑

#

Canonical 1.96 3.72 1.30 46425 6
MEMopt 1.86 4.45 0.83 33230 5
MPMopt 0.35 0.25 0.28 10562 1
PUH 1.37 4.36 0.69 28530 2
UH 1.24 2.78 0.77 31731 4
IUH 0.98 1.42 0.70 29822 3

NOISY STEP ELLIPSOID PROBLEM

Mean Std Med
∑

#

Canonical 1.17 1.03 1.00 27668 3
MEMopt 1.11 2.02 1.00 25590 2
MPMopt 0.30 0.73 0.00 16698 1
PUH 1.88 7.00 1.00 32718 4
UH 1.90 5.55 1.00 38420 5
IUH 1.20 2.37 1.00 39206 6

NOISY ROSENBROCK PROBLEM

Mean Std Med
∑

#

Canonical 10.08 6.11 9.83 38624 6
MEMopt 56.56 327.76 9.25 31418 3
MPMopt 8.64 0.63 8.67 21359 1
PUH 56.58 402.82 9.34 31974 5
UH 66.85 352.85 9.22 31785 4
IUH 8.73 0.99 8.75 25140 2

NOISY ACKLEY PROBLEM

Mean Std Med
∑

#

Canonical 2.14 1.21 2.11 43224 5
MEMopt 0.80 1.57 0.43 17300 2
MPMopt 0.35 0.41 0.28 8159 1
PUH 2.19 1.27 2.03 44090 6
UH 1.55 1.33 1.28 34218 4
IUH 1.45 1.35 1.15 33309 3

NOISY GRIEWANK PROBLEM

Mean Std Med
∑

#

Canonical 1.25 0.26 1.23 47773 6
MEMopt 1.11 0.18 1.10 31302 5
MPMopt 1.05 0.07 1.05 19048 1
PUH 1.12 0.28 1.08 27034 2
UH 1.08 0.06 1.08 27569 3
IUH 1.08 0.07 1.08 27574 4

NOISY RASTRIGIN PROBLEM

Mean Std Med
∑

#

Canonical 15.69 12.86 13.94 35374 5
MEMopt 15.10 11.95 13.36 34359 4
MPMopt 4.61 7.33 3.25 7810 1
PUH 16.25 14.13 14.20 36903 6
UH 14.62 8.53 13.37 33823 3
IUH 14.70 14.38 12.32 32031 2

NOISY SCHAFFERS F7 PROBLEM

Mean Std Med
∑

#

Canonical 5.32 6.62 4.00 34220 3
MEMopt 4.78 6.55 3.12 29294 2
MPMopt 2.96 10.21 1.15 6829 1
PUH 6.25 6.34 4.91 39970 6
UH 5.04 2.91 3.86 35461 5
IUH 5.64 7.15 4.02 34526 4

NOISY BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

Canonical 0.39 0.12 0.35 32235 5
MEMopt 0.40 0.15 0.34 30623 3
MPMopt 0.32 0.05 0.31 17366 1
PUH 0.49 0.15 0.51 38577 6
UH 0.42 0.16 0.33 29348 2
IUH 0.44 0.16 0.34 32151 4

NOISY KEANE BUMP PROBLEM

Mean Std Med
∑

#

Canonical -0.44 0.17 -0.48 26056 2
MEMopt -0.43 0.16 -0.48 26398 3
MPMopt -0.62 0.10 -0.63 8754 1
PUH -0.27 0.10 -0.25 41856 6
UH -0.28 0.11 -0.26 40209 5
IUH -0.32 0.15 -0.29 37027 4

6.3. Adaptive Versus Non-Adaptive Averaging 131

NOISY SPHERE PROBLEM

0 0.2 0.4 0.6 0.8 1

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ELLIPSOID PROBLEM

0 0.5 1 1.5 2 2.5 3

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY STEP ELLIPSOID PROBLEM

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ROSENBROCK PROBLEM

0 2 4 6 8 10

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY ACKLEY PROBLEM

0 0.5 1 1.5 2 2.5 3 3.5 4

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY GRIEWANK PROBLEM

0 0.5 1 1.5

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY RASTRIGIN PROBLEM

0 5 10 15 20 25

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY SCHAFFER’S F7 PROBLEM

0 2 4 6 8 10 12

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY BRANKE’S MULTIPEAK PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

IUH

UH

PUH

MPMopt

MEMopt

Canonical

NOISY KEANE’S BUMP PROBLEM

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

IUH

UH

PUH

MPMopt

MEMopt

Canonical

132 6. A Study on Noise Handling Schemes

6.4 Summary and Discussion
In this chapter, the technique of adaptive averaging was studied in more detail, particularly
focusing on poset based adaptive averaging (PUH), rank-change based adaptive averaging
(UH), and rank-inversions based adaptive averaging or (IUH).

A theoretical study is presented on the growth rate of the sample size in case of an optimally
adapted sample size for the noisy sphere problem. For the (µ/µI , λ)-ES on the noisy sphere, it
is shown that the sample size must grow quartically with respect to the distance to the optimum
to keep positive or optimal progress. Consequently, to achieve linear convergence over the
number of generations, the sample size must grow exponentially. Hence, a multiplicative
update rule should be used for the sample size within inter-generation adaptive resampling
methods.

Furthermore, optimal settings have been derived for the adaptive averaging techniques
for the (5/2DI , 35)-σSA-ES and the CMA-ES, based on an empirical study on the noisy
sphere problem (see Table 6.1). The adaptive averaging techniques seem to be quite robust
for different settings of the uncertainty threshold δ/θ and the growth rate of the sample size α.

Finally, from the empirical study in the last part of this chapter we conclude that the
adaptive averaging techniques yield results that are comparable to optimally tuned static noise
handling techniques. That is, except for the implicit averaging scheme in case of the CMA-
ES, which clearly outperforms the other schemes. Hence, in terms of sampling efficiency (see
Section 5.6) the adaptive averaging techniques do not yield a gain by starting out with a few
samples for each individual and gradually increase the sample budget. The exponential growth
required to achieve positive progress possibly negates the gain in earlier generations. On the
other hand, advantages of using adaptive averaging over non-adaptive techniques are that they
do not require the a priori setting of a sample size or population size and that they allow for
arbitrary convergence accuracy. The newly introduced algorithmic parameters (the uncertainty
threshold δ/θ and the growth rate of the sample size α) are more robust than the sample size
(i.e., weak parameter reduction is achieved). Of the adaptive averaging schemes, the rank-
change based adaptive averaging scheme (UH) and the inversions-based adaptive averaging
scheme (IUH) provide the most promising results.

In conclusion, for solving noisy optimization problems, well-tuned implicit or explicit aver-
aging techniques are simple but effective ways to counter the effects of noise. The rank-change
based and rank-inversions based adaptive averaging technique can yield results comparable to
well-tuned static noise handling schemes and are therefore well-suited alternatives when it is
not possible to tune the static noise handling approaches.

As a future direction, in the context of global intermediate recombination, instead of
increasing the sample size, it might be interesting to consider adaptive averaging techniques
based on increasing the population size.

Chapter 7

Finding Robust Optima

This chapter focuses on the scenario depicted in Figure 7.1. In this scenario we have to deal
with the fact that in the real-world system, the design variables cannot be set arbitrarily precise,
yet there is a (simulation) model in which the solutions can be evaluated arbitrarily precise and
that replaces the real-world system. Hence, the aim is to find optima that are actually useful in
practice even when the real-world realizations of these solutions differ from their theoretically
optimal or desired settings due to uncertainties and noise.

The intent of this chapter is to answer the following questions: 1) How can the aim of
finding robust optima be modeled in the optimization problem statement? 2) How does the aim
to find robust optima affect the difficulty of an optimization problem? 3) How should Evolution
Strategies be adapted in order to find robust optima?

Figure 7.1: A typical robust optimization scenario: there is a real-world system in which the solutions
cannot be realized arbitrarily precise. For the optimization, a (simulation) model (for which the solutions
can be evaluated arbitrarily precise) replaces the real-world system; the aim is to find optima that are
robust with respect to the anticipated input disturbances.

134 7. Finding Robust Optima

This chapter starts in Section 7.1 with providing an overview of the main concepts of the prob-
lem of finding robust optima for general real-parameter optimization problems. Section 7.2
focuses on the application of Evolution Strategies to a more specific class of optimization
problems, namely on unconstrained single objective optimization problems. Here, we will
restrict ourselves to a particular type of noise and a particular type of robustness measure. For
this, we summarize and compare several techniques that have been proposed in the literature.
Section 7.3 closes with a summary and discussion.

7.1 Problem Definitions for Finding Robust Optima
For the scenario depicted in Figure 7.1, the objective and constraint functions are of the same
form as a normal real-parameter optimization problem, however, instead of aiming to find
optima for the normal objective and constraint functions, the aim is to find solutions that are
optimal for the problem formulation

fi(x + δx)→ min, i = 1, . . . , k, (7.1)

gj(x + δx) ≥ 0, j = 1, . . . , p. (7.2)

Here, δx denotes the uncertainty or possible variability of the input variables, of which the
distribution pdfδx

is assumed to be known. Hence, for each candidate solution, the objective
and constraint functions become uncertain variables of which the possible variation depends
on the quality of neighboring solutions that can be possible perturbations of that candidate
solution. Or, in other words, the quality of a candidate solutions x is based on the η-
neighborhood, defined as:

Definition 7.1.1 (η-neighborhood): For a real-parameter optimization problem (X ,F ,G) for
which disturbances of the design variables and environmental parameters are anticipated, the
neighborhood ηx is the set of possible disturbances of x, i.e.,

ηx = {x′ | z = x− x′ and pdfδx
(z) > 0}. (7.3)

Similar to when having noisy objective functions, also for uncertainty and/or noise in the
design variables we can distinguish between stationary and non-stationary noise/uncertainty.
That is, in a stationary noise case, δx is independent of x and hence can simply be written
as δ. Otherwise, δx is said to be non-stationary. In this work we will restrict ourselves to
stationary uncertainty/noise and henceforth we will use the notation δ for denoting the input
perturbations.

Although the idea behind the desire to find robust optima is clear, there are different (possibly
conflicting) ways to define a quality measure or robustness measure. That is, to define a
measure that incorporates both quality and robustness. Choosing a robustness measure is
a design choice that should be made when modeling a given problem as an optimization
problem. For every objective and every constraint, one should consciously ask in which respect

7.1. Problem Definitions for Finding Robust Optima 135

Figure 7.2: Illustration of the trade-off between quality and stability: with variation δ ∼ U(−σε, σε) in
design variable x, optimizer x1 = 3 is the more stable, but optimizer x2 = 8 is still qualitatively better,
given the variation bandwidth σε = 0.5.

solutions are desired to be robust. Moreover, the aim for robustness may be different for each
objective and each constraint. Especially between objectives and constraints there may be
different aims for robustness. In the context of robust design, Park [Par07] notes that there
is a distinction between reliability design and robust design. In robust design the emphasis
lies on low sensitivity with respect to the objective function(s), while in reliability design the
emphasis lies on assuring that the constraints are not violated.

7.1.1 Robustness Measures for Objective Functions

For objective functions, the notion of robustness refers to the quality of a solution with respect
to variations caused by uncertainties and noise. As noted by Jin and Sendhoff [JS03], the aim
for robustness can be approached from two points of view that are often conflicting: robustness
and performance (or: quality and stability):

• Performance / quality: Robustness of a solution is measured from the perspective of
overall performance under the variation of the uncertain parameters of the solution.

• Robustness / stability: The robustness of a solution is measured from the perspective of
minimal performance variation under the variation of the uncertain parameters of the
solution.

Figure 7.2 illustrates the trade-off between quality and stability. It shows the fitness landscape
of a one-dimensional, single objective, real-parameter optimization problem with design
variable x that has a uniform uncertainty variation δ ∼ U(−σε, σε), with σε = 0.5. One could
choose here for the most stable optimum at x1 = 3 which has almost constant performance
with respect to variations of x, or one could choose for the qualitatively best solution x2 = 8,
which has a better overall objective function value than x1, but is less stable.

136 7. Finding Robust Optima

Although the choice for quality or stability generally provides an indication of what is meant
by robust quality, there are still varying ways in which these aims can be translated into a robust
quality measure. That is, a formulation of effective or robust objective functions is required to
capture the aim for robustness in a concrete measure. Commonly used measures for robust
quality are:

• Expected solution quality: The expected performance under variation of the uncertain
design variables. This measure is considered in, amongst others, [TG97, WHB98, Tsu99,
Bra98, Bra01, TG03, BS06a, ONL06, PBJ06]. For an objective function f(x), this
measure is described as an expected objective function as:

feff(x) = fexp(x) = E [f(x + δ) |x] =

∫
z∈Rn

f(x + z) pdfδx
(z) dz. (7.4)

Obviously, this measure requires that the uncertainties in the design variables δ are of
stochastic nature, or at least can be modeled as such, with a probability density function
pdfδx

(z).

• Worst-case solution quality: The worst-case quality with respect to the alternatives
under variation of the uncertain variables (considered in, e.g., [LOL05, ONL06]). For
an objective function f(x) that is to be minimized, the robust objective function is
determined as the maximum function value in the η-neighborhood of each candidate
solution. That is,

feff(x) = fwc(x) = sup
x′∈ηx

f(x′). (7.5)

Note that for this measure, the η-neighborhood should be bounded and candidate
solutions should have distinct η-neighborhoods in order to obtain distinct objective
function values.

• Threshold acceptance probability: The maximal probability that a perturbation of a
solution satisfies a certain threshold (considered in, e.g., [BS06b]). Or, in other words,
maximizing the probability that a perturbation of a solution is part of the Lq level set.
Given a threshold value q that indicates the acceptable solution quality, the optimization
goal is to maximize the conditional probability of the objective functions satisfying this
threshold:

feff(x) = fsat(x) = P[f(x + δ) ≤ q |x]→ max . (7.6)

Likewise, commonly used measures for stability are:

• Performance variance: Minimizing the performance variance under variation of the
uncertain design variables. In this case, the original objective function f(x) can be

7.1. Problem Definitions for Finding Robust Optima 137

remodeled into a robust objective function feff(x) as to minimize the conditional
variance:

feff(x) = fvar(x) = Var[f(x + δ) |x]→ min . (7.7)

Similar to the expected objective function Eq. 7.4, this measure requires that the
uncertainties in the design variables δ are of stochastic nature or at least can be modeled
as such. Moreover, this measure should be accompanied by an additional objective that
also takes solution quality into account. In [JL02] and [JS03] methods are proposed
that implement this measure in a multi-objective setting by combining it with the
optimization of the expected objective function.

• Sensitivity region / trust region: Maximization with respect to the region around
the candidate solutions in which the deviation in performance is still acceptable. This
measure can be used when the solutions need to be as stable as possible and is also
frequently accompanied by an additional objective that aims for the optimization of the
initial objective function. Examples of approaches that adopt this aim can be found in
[BA06] and [LAA05].

Mathematically, in a more general sense, a robust objective function feff(x) implement-
ing this aim can be constructed as:

feff(x) = sup{r ∈ R+ |Br(x) ⊆ L(x)} → max, (7.8)

with

L(x) = {x′ | f(x′) ∈ [f(x)− q, f(x) + q]}, (7.9)

Br(x) = {x′ ∈ Rn | d(x,x′) < r}. (7.10)

Here, L(x) denotes the set of all points which are within the region of tolerance, and
Br(x) denotes the set of points within radius r from the point x (hence, it aims to
maximize a sphere-like region). The distance measure d(x,x′) should be proportional
or related to the probability of obtaining x′ from x. For example, in Euclidean spaces, the
Euclidean distance is a suitable distance measure for uncorrelated Gaussian noise, and
for uncorrelated uniform noise, the Tchebychev distance is a suitable distance measure.

7.1.2 Robustness of Constraint Satisfaction

For constraints, the aim for robustness is different. Ideally constraints are always satisfied,
however, this is not always possible. As noted by Samsatli et al. [SPS98] a distinction can be
made a between hard constraints and soft constraints.

138 7. Finding Robust Optima

Hard constraints are the constraints that may not be violated under any circumstances, and
should therefore hold under for all possible variations in ηx, i.e.,

geff(x) = inf
x′∈ηx

g(x′) ≥ 0. (7.11)

Also here, the η-neighborhood should be bounded in order to be of practical use.

Soft constraints are less strict and may occasionally be violated (as long as the probability of
violation is small). These types of constraints can be accounted for in different ways:

• Probabilistic constraints: One possibility is to redefine a constraint function g(x) in a
probabilistic form, where the probability of satisfying the constraint should be above a
certain threshold c, i.e.,

geff(x) = P [g(x + δ) ≥ 0 |x]− c ≥ 0. (7.12)

With 0 < c ≤ 1. Note that equation (7.11) can be defined in terms of equation (7.12) by
setting c = 1.

• Virtual bounds for uncertainty variations: Soft constraints also arise in cases where
the variation due to uncertainty is theoretically unbounded (e.g., Gaussian variation).
In these cases it is theoretically not possible to require the satisfaction of each strict
constraint, unless the constraint is independent of the particular uncertain variable. A
solution to deal with theoretically unbounded variation in the design variables (besides
using probabilistic constraints) is to assign virtual bounds to the uncertainty variations
between which the uncertainty variations are practically always expected to be. For
example: common practice for Gaussian uncertain variables is to assume−6σ < δ < 6σ

for every uncertain variable δ. This is also the general principle behind design for “six
sigma” [KYG04]. The way in which this is modeled for a given constraint g(x) is the
following:

geff(x) = inf
x′∈η′x⊂ηx

g(x′) ≥ 0, (7.13)

with η′x being a proper bounded subset of the η-neighborhood of x.

• Transformation to objective functions: Remodeling or transforming soft constraints
as additional objective functions. Instead of requiring that a constraint is satisfied, one
could also grade the degree by which a constraint is satisfied and use that as an additional
objective function. For example, maximization of the satisfaction probability:

feff(x) = P [g(x + δ) ≤ 0 |x]→ max . (7.14)

7.1.3 Multi-Objective Robustness Measures

When dealing with the trade-off between stability and quality, the robust optimization of one
objective can also seen as a multi-objective task (see, e.g., [JS03]). Hence, individual objective

7.1. Problem Definitions for Finding Robust Optima 139

functions can be split up into multiple robust objective functions. By doing so, particularly the
trade-off between stability and quality can be controlled. For constraints a translation of one
constraint to multiple robust constraints is not reasonable. However, as shown in the previous
section, certain soft constraints can be transformed into additional objective functions.

7.1.4 Robustness Transformations

Given the various different measures for robustness, an obvious next question is: does it really
matter which robustness measure is used? Or, is it even worthwhile at all to use a robustness
measure instead of performing an optimization on the objective functions in their normal form?
Straightforwardly, the answer to these questions is: sometimes it matters and sometimes not;
this depends on the optimization problem at hand. However, in order to give an example of
how drastic the impact of choosing different robustness measures could be, we consider the
following one-dimensional function and suppose that we want to minimize it over x in the
interval [0, 10]:

f(x) = 1 + f1(x) + f2(x), (7.15)

f1(x) =

(
x−4

5

)2
, x < 4

1 , otherwise
,

f2(x) = −1.8 · exp

(
− (x− 5)2

0.2

)
− 2 · exp

(
− (x− 7)2

0.1

)
.

For this function, consider an uncertainty of δ ∼ U(−σε, σε), σε = 0.5 of the design variable
x and consider the following measures for robustness:

• optimize the expected objective function fexp(x),

• optimize the worst-case objective function fwc(x),

• optimize on the normal objective function f(x).

Figure 7.3 shows the fitness landscapes of these three different measures. In this example both
robust objective functions are very different from the original objective function. Moreover,
the optimal solutions for all three measures lie in different parts of the search space. Hence,
from this example it can be seen that considering uncertainty can change a problem very much.
Although this does not have to be the case for every optimization problem, one should be aware
of this, and realize that performing optimization without accounting for the uncertainty/noise
in the input variables and/or environmental parameters might yield results of which the
realizations are of very poor quality. For constraints, a similar message holds. That is, in some
cases optimal solutions might be prone to feasibility failure when considering uncertainty in
the design variables in which case it matters, yet in other cases it might not matter at all.

140 7. Finding Robust Optima

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

f
f
exp

f
wc

Figure 7.3: A one-dimensional objective function in which different measures of robustness produce
different fitness landscapes, given uncertainty/noise in the design variables.

Besides the differences that occur due to the use of different robustness measures, another
important factor is the magnitude of the anticipated variation. Small perturbations, for example,
yield only small differences between the original objective function landscape and the effective
objective function landscape, while large perturbations of the uncertainty/noise level may
cause severe differences. Figure 7.4 illustrates how the original objective function landscape
of the one-dimensional function Eq. 7.16 with input disturbances δ ∼ U(−σε, σε) changes for
increasing values of σε, considering the expected and worst-case objective function.

Mathematically, one can see the robustness measures described in the previous section as
integral transformations (or filters) of the original objective functions and constraints. That
is, a robustness measure is a transformation Teff(f(x),g(x)) that maps the original objective
and constraint functions f(x) and g(x) to new objective and constraint functions feff(x) and
geff(x).

To view the problem of finding robust optima in terms of robustness transformations of the
objective function landscape allows us to get some insight into the difference of normal op-
timization and the goal of finding robust optima. For example, consider the expected objective
function transformation fexp(x) with Gaussian noise in the design variables. One can observe
that this transformation is an integral transform with the original objective function convoluted
with the Gaussian probability density function. More specific, the robustness transformation
acts as a Gaussian filter or generalized Weierstrass transform (see, e.g., [Zay96]) from which
we know that:

1. the effective objective function landscape should be smoother, hence easier for optimiz-
ation since the spatial correlation is increased due to this smoothing operation,

7.1. Problem Definitions for Finding Robust Optima 141

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

σ

0 1 2 3 4 5 6 7 8 9 10

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x

σ

Figure 7.4: Illustration of the change of the effective objective function landscapes when varying the
magnitude of the anticipated disturbances (σε ∈ [0, 2]) in the design variables. Top: the landscape
dynamics for the expected solution quality. Bottom: the landscape dynamics for the worst-case solution
quality. Left column: a surface plot of the landscape changing for different magnitudes of the input
disturbances. Right column: contour plots showing also the locations of the optima for different
uncertainty/noise magnitudes.

142 7. Finding Robust Optima

2. the extremal values (both minima and maxima) will lie between the extrema of the
original objective function,

3. if the original objective function is an integrable function, then so is the effective
objective function.

For other standard noise distributions besides Gaussian (e.g., uniform or Cauchy), these prop-
erties also hold. However, for different transformations than the expected objective function
transformation, other properties might hold (e.g., the worst-case robustness measure).

Paenke et al. [PBJ06] classified the differences that could occur between the original objective
function landscape and the effective objective function landscape in four categories:

• Identical Optimum: The original optimum and robust optimum are identical.

• Neighborhood Optimum: The original optimum and the robust optimum are located
on the same hill (with respect to the original objective function landscape).

• Local-Global-Flip: An originally local optimum becomes the robust optimum.

• Max-Min-Flip: The robust optimum (for minimization) is located at a local maximum
of the original objective function.

Figure 7.5 provides an example for each category of this classification.
As an alternative to this classification, we propose to classify robust optimizers by means
of their explicit characteristics. This alternative classification is based on whether a robust
optimizer is shifted with respect to some original global optimizer or whether it emerges anew:

Definition 7.1.2 (Shifted Robust Optimizer and Emergent Robust Optimizer): Let σ denote
a scaling of the magnitude of the input disturbance δ and let x∗σ denote a robust optimizer
of feffσ(x). That is, feffσ(x) denotes the effective objective function for input perturbations
δ′ = σδ. A robust optimizer x∗σ=1 = x∗eff is called a shifted robust optimizer if there exists a
path p : [0, 1] → X such that for all t ∈ [0, 1] : p(t) ∈ argminx∈Xfeffσ=t(x), p(0) = x∗σ=0,
and p(1) = x∗σ=1, where x∗σ=0 = x∗ is some optimizer for the original objective function
f(x). Otherwise, it is an emergent robust optimizer.

That is, if by gradually increasing the magnitude of the input disturbances the robust optimizer
follows a connected path, it shifts. Otherwise, if a small increment of the noise magnitude leads
to a completely different robust optimizer, it emerges anew, hence it is called emergent. The
advantage of this classification is that it relates more closely to two major issues of finding
robust optima: 1) accurately targeting robust optima (in case of shifts), and 2) targeting the
right attractor regions in which a/the emergent robust optimizer is located (emergent robust
optimizers). The first challenge relates to algorithms which are good in exploitation, the second
challenge requires explorative strength.

7.1. Problem Definitions for Finding Robust Optima 143

0 2 4 6 8 10
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

f
f
exp

f
wc

(a)

0 2 4 6 8 10
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

f
f
exp

f
wc

(b)

0 2 4 6 8 10
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

f
f
exp

f
wc

(c)

0 2 4 6 8 10
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

f
f
exp

f
wc

(d)

Figure 7.5: Illustrations of the four categories of differences in objective function landscape of the
original objective function and the robust objective function according to Paenke et al. [PBJ06]: (a)
identical optimum, (b) neighborhood optimum, (c) local-global-flip, (d) max-min-flip.

144 7. Finding Robust Optima

When we consider once again the function of Eq. 7.16 and look at the plots of Figure 7.4, we
see in the right column that there are certain catastrophic events in which the optimum location
“jumps” from one location to another. This happens three times for the expected objective
function, and two times for the worst-case objective function. Besides these jumps, one can also
identify shifts, for instance for the worst-case objective function, when σε & 0.4. Moreover,
besides these shifts and jumps, Sendhoff et al. [SBO04] show that input disturbances can even
induce multimodality, meaning that an original optimizer might “split up” into multiple robust
optimizers when increasing the noise strength. Lastly, it should be noted that two “robust
optimizer branches” might also join when increasing the disturbance magnitude.

7.1.5 Computing the Robustness of Optima

The transformation of objective and constraint functions to functions that incorporate the
notion of robustness is is the essence of the problem of finding robust optima. From this,
we can identify two main issues that govern the problem of finding robust optima:

1. Choosing the appropriate robustness measure for the problem at hand.

2. Computing or approximating the robustness measure for candidate solutions.

The former is a part of the problem modeling, based on the preference of the user/expert and
optimization problem context. The latter is a mathematical or algorithmic problem, which is
challenging because exact computation of the solution quality for the robustness measures is
often not possible.

In many cases it is either difficult or impossible to obtain exact derivations of the effective
objective and constraint functions. Hence, alternative evaluation methods are needed that ap-
proximate the function values of the robustness measures, for instance, by sampling. Adopting
the notation used in this work, we use f̂eff(x) to denote an approximation function for the
effective objective function feff(x) and ĝeff(x) to denote the approximation function for the
effective constraint functions geff(x).

There are two types of approaches to determine the robust quality of a solution: analytical
approaches and statistical approaches. Analytical approaches determine the robustness of a
solution by means of analytical techniques, such as using (approximations of) first-order and
second-order derivatives in order to obtain an accurate estimate of the robust quality. Statistical
methods determine the robustness of a solution by means of statistical approximation. An
obvious example is to approximate the expected objective function by means of Monte-Carlo
integration. In any case, it is clear that in order to determine the robust objective function
value for a given solution x, information is needed about the quality of the solutions in
the neighborhood of x. The challenge when searching for robust optima is to obtain good
approximations of the robust quality of candidate solutions as efficiently as possible in order
to perform optimization on the transformed objective function landscape.

7.2. Strategies for Finding Robust Optima 145

7.2 Strategies for Finding Robust Optima
From here on, we will focus on unconstrained single-objective optimization problems and
consider as robustness measure the expected fitness in the light of a known uncorrelated
multivariate probability density function of the disturbances, which is either completely
uniform or completely Gaussian. In this section, we will summarize approaches that can be
used for Evolution Strategies to solve such problems. These approaches are categorized as:

• Myopic approaches (Section 7.2.1)

• Single- and multi-evaluation approaches (Section 7.2.2, Section 7.2.3, and Section 7.2.4)

• Adaptive averaging approaches (Section 7.2.5 and Section 7.2.6)

• Archive based approaches (Section 7.2.7)

• Metamodeling approaches (Section 7.2.8)

• Niching approaches (Section 7.2.9)

• Overlap exploiting approaches (Section 7.2.10)

7.2.1 The Myopic Approach for Finding Robust Optima

The simplest approach for finding robust optima is doing nothing extra, but to rely on the
inherent attraction of Evolutionary Algorithms for finding robust optima. Branke [Bra98]
states: “The standard EA by nature favors hills over peaks, since usually the probability that
some individuals of the initial population are somewhere in the basin of attraction of a hill
is higher, also the average fitness of individual in the hill area is higher.”. Combining this
observation with the fact that for some problems, the original optimizer is also the robust
optimizer (or at least is located close to the robust optimizer), it is reasonable to consider
normal Evolutionary Algorithms as good alternatives for finding robust optima as well. In this
work, we will call this approach the myopic approach.

Experiment 7.2.1 (The inherent attraction of robust peaks): For testing the inherent attraction
of robust peaks, we perform 1000 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a
CMA-ES (see Section 4.2.3) on a 10-dimensional instance of Branke’s multipeak problem
(see Appendix B.6). This problem consists of 2n = 1024 peaks varying in robustness. After
each run, the peak score of the final solution is recorded (see Technical Note 7.1). For each
run, an evaluation budget of 10, 000 function evaluations is considered.

Figure 7.7 shows histograms of the peak score of the final solution of 1000 optimization
runs of the (5/2DI , 35)-σSA-ES and the CMA-ES on a 10-dimensional instance of Branke’s
multipeak problem. From these plots, the inherent attraction of robust peaks is very apparent.
The (5/2DI , 35)-σSA-ES converges to the robust peak in more than 65% of the runs and

146 7. Finding Robust Optima

Technical Note 7.1: The Peak Score of Branke’s Multipeak Problem

Branke’s multipeak problem is described in detail in Appendix B.6 and visualized in
Figure 7.6. In the uncertainty free case, the optima are located at {−1, 1}n, where the quality
of the local optima is ranked by the number of positive elements of the optimizer, i.e., the
global optimum is located at [1]n, the “worst” local optimum is located at [−1]n, and peaks
with the same number of positive and negative elements are equivalent (hence, there are n
classes of equivalent peaks).
When considering the expected objective function for an input uncertainty δ ∼
U(−1/2,1/2), the order in peak quality is reversed. Hence, the most robust peak is located at
[−1]n, the least robust peak is located at [1]n. We can construct a peak score ps that identifies
the type of peak in which a solution x is located as

ps(x) =

n∑
i=1

signum(xi). (7.16)

Here, ps = 0 identifies the most robust peak and ps = n identifies the least robust, but
highest peak. Using this peak score, we can analyze the attraction of the different peaks of
myopic approaches and therefore the inherent attraction of robust peaks.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 7.6: A plot of the objective function landscape of a two-dimensional instance of Branke’s
multipeak problem. This problem consists of 2n peaks, varying in robustness.

shows a clear preference for the robust peak. The CMA-ES hits the robust peak in more than
30% of the runs and also shows a clear preference for the robust peak, but less clear than the
(5/2DI , 35)-σSA-ES.

In this small example, it can be seen clearly that the myopic approaches are biased towards

7.2. Strategies for Finding Robust Optima 147

0 2 4 6 8 10
0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

Figure 7.7: Histograms of the peak score of the final solution of 1000 optimization runs of the
(5/2DI , 35)-σSA-ES (left) and the CMA-ES (right) on a 10-dimensional instance of Branke’s multipeak
problem.

converging to the more robust peaks, making these approaches for the problem of identifying
the more robust peaks already very promising. As an intuitive explanation of the inherent
attraction of the more robust peaks as opposed to the sharper peaks, two factors play an
important role: 1) the basin of attraction, and 2) the probability that a random point in the robust
peak is better than a random point in the sharper peak. That is, the basin of attraction determines
the probability of actually generating search points in a certain peak and the probability of
a random solution in the robust peak being better than a random solution in the non-robust
peak determines the possibility of the former solution to survive. For robust peaks, the latter
probability can be assumed to be relatively high (i.e., the solutions in the neighborhood should
be of relatively good quality, otherwise the peak is not robust). Hence, for Evolution Strategies,
individuals located in these peaks have a high probability to survive and the population will be
attracted to these peaks.

The tendency of myopic implementations to converge to the more robust peaks can be
seen as undesirable from the perspective of classical optimization, but is advantageous when
searching for robust optima. For this, myopic approaches could be serious alternatives for the
problem of finding robust optima.

Experiment 7.2.2 (The robust precision of the myopic approach): We perform 50 runs of
a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) on a 10-
dimensional instance of the Heaviside sphere problem (see Appendix B.2). The Heaviside
sphere problem is a problem in which the robust optimizer is a shifted version of the uncertainty
free optimizer. A two-dimensional instance of the Heaviside sphere problem is visualized in
Figure 7.8. Each run has a budget of 10, 000 function evaluations.

Figure 7.9 shows the results of Experiment 7.2.2 in terms of the performance, measured in

148 7. Finding Robust Optima

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

Figure 7.8: A plot of the objective function landscape of a two-dimensional instance of the Heaviside
sphere problem. This problem consists one optimizer at the edge of the ridge. The robust optimizer will
lie at a distance from the ridge.

0 2000 4000 6000 8000 10000
10

0

10
1

10
2

Myopic

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations
0 2000 4000 6000 8000 10000

10
0

10
1

10
2

Myopic

m
ed

ia
n

 d
is

ta
n

ce
 t

o
 t

h
e

o
p

ti
m

u
m

evaluations

Figure 7.9: Results of Experiment 7.2.2. The performance of running canonical instances of
the (5/2DI , 35)-σSA-ES and the CMA-ES on a 10-dimensional instance of the Heaviside sphere
problem. The performance is measured in terms of median distance to the optimum. Left column: the
(5/2DI , 35)-σSA-ES. Right column: the CMA-ES. The results are obtained using 50 runs for each
scheme.

7.2. Strategies for Finding Robust Optima 149

terms of median distance to the optimum. For this unimodal test problem with a shifted robust
optimizer, it is apparent that myopic approaches will not always target the robust optimum. In
this case, both algorithms target the uncertainty free optimum and not the robust optimum and
find solutions that are sub-optimal with respect to the effective objective function. Moreover,
in addition, even if myopic approaches get close to a robust optimizer, they are not able to
detect this and can easily deviate from them again. In Figure 7.9 this “overshooting” behavior
can be observed for both the (5/2DI , 35)-σSA-ES and the CMA-ES, where the stagnation
distance is higher than the closest distance, reached at approximately 1000 and 500 evaluations
respectively.

From the two small experiments performed in this section, we observe that the robust regions
of the search space have an inherent attraction on canonical Evolution Strategies. That is,
blunt peaks are preferred over sharp peaks of a similar height. For the (5/2DI , 35)-σSA-ES
it seems that this attraction is more pronounced than for the CMA-ES. However, when the
robust optimizer is a shifted version of the uncertainty free optimizer, myopic approaches will
naturally fail to zoom in on the robust optimizer with arbitrary precision. The challenge of
finding robust optima is therefore to adapt these such that they can accurately target (or zoom
in on) robust optima, and improve their already present bias towards the robust peaks.

7.2.2 Single- and Multi-Evaluation Methods

A straightforward way to approximate the expected solution quality is to use Monte-Carlo
integration. That is, approximating fexp(x) for a candidate solution x as

f̂exp(x) =

m∑
i=1

f(x + zi) , zi ∼ δ, (7.17)

with z1, . . . , zm being m disturbances sampled from the distribution of the anticipated input
noise. This approach was proposed originally by Tsutsui et al. [TGF96] for m = 1 and shortly
after that generalized for arbitrary m in, amongst others, [Bra98, WHB98, Tsu99]. An obvious
effect of this evaluation method is that it introduces a measurement error of the expected
objective function, i.e., noise. This error can be decreased by increasing the number of samples
m. Tsutsui [Tsu99] distinguished between the extreme case of taking only one sample for the
evaluation and the generalized version, naming the former the Single Evaluation Mode (SEM)
and the latter the Multi Evaluation Mode (MEM). Here, we also adopt this terminology.

We observe a clear resemblance when comparing this approximation method to the approxim-
ation of the expected objective function for noisy objective functions of Eq. 5.12. Essentially
there is no difference between the two as one could see the objective function value for
each disturbance f(x + zi) as a noisy evaluation of the expected objective function at x.
Hence, the problem of finding robust optima can, in principle, be transformed into the problem
of optimizing a noisy objective function, bearing in mind that the noise introduced by this

150 7. Finding Robust Optima

approximation method is non-stationary and, more importantly, biased with respect to the
original objective function f(x). Properties of noise introduced by input perturbations have
been studied in, e.g., [BOS03, SBO04, BS06b].

For notational convenience, in this work we will include the number of samples in the
identification of the particular MEM scheme. For instance, MEM5 will refer to the MEM
evaluation scheme with m = 5 samples and MEM10 refers to the MEM evaluation scheme
with m = 10 samples.

In order to obtain an insight into how the SEM and MEM evaluation scheme influence the
performance of the (5/2DI , 35)-σSA-ES and the CMA-ES and how they compare to canonical
instances of these algorithms, we perform the following experiment:

Experiment 7.2.3 (Performance of the SEM/MEM evaluation scheme for finding robust
optima): We perform 50 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES
(see Section 4.2.3) using different evaluation schemes: the canonical evaluation scheme, the
SEM evaluation scheme, the MEM5 evaluation scheme, and the MEM10 evaluation scheme.
The experiments are performed on the 10-dimensional test problems: the Heaviside sphere
problem (see Appendix B.2) and Branke’s multipeak problem (see Appendix B.6). Each run
has a budget of 10, 000 function evaluations.

The results of Experiment 7.2.3 are shown in Figure 7.10 by means of plots of the devel-
opment of the median fitness, a posteriori approximated using Monte-Carlo integration with
m = 100 samples. For the Heaviside sphere problem, the canonical implementations of the
(5/2DI , 35)-σSA-ES and the CMA-ES are clearly outperformed by the SEM/MEM evaluation
schemes. That is, these canonical instances converge to the non-robust optimizer which is not
the robust optimizer. Moreover, we observe the same effects of using more samples as can be
seen with explicit averaging in case of noisy objective functions; using the SEM evaluation
scheme yields a fast convergence, yet also stagnates at a certain distance to the optimizer.
When using more samples for the MEM scheme, the convergence accuracy increases, but at
the cost of slower convergence. For the sphere problem and for Branke’s multipeak problem a
major difference is the good performance of the myopic instances of the (5/2DI , 35)-σSA-ES
and the CMA-ES. For Branke’s multipeak problem, this is surprising. Apparently, the bias of
the myopic instances to converge to more robust peaks is already very high and combining
this with the fact that the robust optimizer for this problem is a local optimizer of the original
objective function, the canonical instances will converge with high precision and prove to be
competitive alternatives.

Experiment 7.2.4 (The attraction of robust peaks): For testing the attraction of robust peaks for
the different MEM variants, we perform 500 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2)
and a CMA-ES (see Section 4.2.3) on a 10-dimensional instance of Branke’s multipeak prob-
lem (see Appendix B.6) using different evaluation schemes: the canonical evaluation scheme,

7.2. Strategies for Finding Robust Optima 151

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

Myopic

MEM5

MEM10

SEM

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

Myopic

MEM5

MEM10

SEM

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

MEM10

MEM5

SEM

Myopic

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

MEM10

MEM5

SEM

Myopic

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Myopic

MEM5

MEM10

SEM

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Myopic

MEM5

SEM

MEM10

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.10: Results of Experiment 7.2.3. The performance of the (5/2DI , 35)-σSA-ES (left column)
and the CMA-ES (right column) using the SEM/MEM evaluation scheme with different sample sizes
compared against canonical instances of the (5/2DI , 35)-σSA-ES and the CMA-ES. The performance
is measured in terms of median fitness approximated a posteriori using Monte-Carlo sampling with 100
samples. Top row: the results on the sphere problem. Middle row: the results on the Heaviside sphere.
Bottom row: the results on Branke’s multipeak problem. The results are obtained using 50 runs for each
scheme.

152 7. Finding Robust Optima

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

500

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

Figure 7.11: Histograms of the peak scores of the final solution of 500 optimization runs of
the (5/2DI , 35)-σSA-ES (top) and the CMA-ES (bottom) on a 10-dimensional instance of Branke’s
multipeak problem with varying evaluation schemes. From left to right: myopic, SEM, MEM5, and
MEM10.

the SEM evaluation scheme, the MEM5 evaluation scheme, and the MEM10 evaluation
scheme. For each run, an evaluation budget of 10, 000 function evaluations is considered.

The results of Experiment 7.2.4 are shown in Figure 7.11 by means of histograms of the
peak scores of the final solution of all runs. For the (5/2DI , 35)-σSA-ES it can be seen that
the frequency of finding the most robust peak indeed slightly increases for MEM evaluation
approaches. For the CMA-ES, almost the inverse seems to be happening. That is, comparing
the myopic approach with the SEM approach for the CMA-ES, there is a huge drop in the
frequency with which the robust optimizer is targeted. For the MEM5 and MEM10 approach,
a slight improvement is obtained with respect to the SEM approach, but the bias for the myopic
approach is still higher.

7.2.3 Reducing the Sampling Variance

For the MEM evaluation scheme, a modification proposed by Branke [Bra01] is to use
Latin Hypercube Sampling (LHS) [MBC00] to obtain a well-distributed sample set of input
disturbances in a box around the solution, and using these in a weighted way to determine the
robustness, i.e.,

f̂exp(x) =

∑m
i=1 w(zi)f(x + zi)∑m

i=1 w(zi)
, (7.18)

with {z1, . . . , zm} ∼ LHS(−σε,σε) being the set of sample points drawn using Latin
Hypercube Sampling from an appropriately set hypercube [−σε,σε] and w(zi) ∝ pdfδ(zi).
In [Bra01], this modification was shown to yield a better convergence accuracy compared
to the normal MEM evaluation scheme, attributed to a reduced sampling variance among the
fitness estimates of the individuals in the population. Additionally, an extra gain in convergence

7.2. Strategies for Finding Robust Optima 153

accuracy was reported when using the same set of disturbances for all individuals in the
population.

For notational convenience, we will use the following notation to distinguish between the
different variants of the SEM/MEM scheme. A subscript is used for indicating the sampling
method when using Eq. 7.18, i.e., MEMMS when using Monte-Carlo sampling, and MEMLHS

when using Latin Hypercube Sampling. Furthermore, the superscripts + and − are used to
indicate whether or not the same disturbances are used for all the individuals in the current
population, i.e., MEM+ when using the same disturbances for all individuals in the population
and MEM− when resampling the disturbances for every individual in the population. When no
subscript or superscript is used (as in Experiment 7.2.3), we assume that the evaluation follows
Eq. 7.17 and different disturbance samples for every individual in the population.

In order to obtain an insight into how these different variants of the MEM scheme influence
the performance of the (5/2DI , 35)-σSA-ES and the CMA-ES, we perform the following
experiment:

Experiment 7.2.5 (Performance of basic techniques for finding robust optima): We perform 50

runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) using the
different variants of the MEM evaluation scheme, namely MEM5−MC, MEM5+

MC, MEM5−LHS,
and MEM5+

LHS. The experiments are performed on the sphere problem (see Appendix B.1), the
Heaviside sphere problem (see Appendix B.2), and Branke’s multipeak problem (see Appendix
B.6). Each run has a budget of 10, 000 function evaluations.

The results of Experiment 7.2.5 are shown in Figure 7.12 by means of plots of the development
of the median fitness, a posteriori approximated using Monte-Carlo integration with 100
samples. For the sphere problem and for Branke’s multipeak problem, the results confirm
the results obtained by Branke [Bra01], i.e., using Latin Hypercube sampling yields better
results than Monte-Carlo sampling and also using the same perturbations for all individuals in
the current generations yields an additional gain in solution quality. The significance of these
results can be read from the boxplots that are shown in Figure 7.13.

However, when looking at the results on the Heaviside sphere problem, remarkably
different behavior can be observed. Here, especially for the CMA-ES, the LHS methods seem
to be outperformed by the Monte-Carlo based methods and using the same perturbations for all
individuals in the population yields a worse final solution quality. Looking at the convergence
plot of the CMA-ES (Figure 7.12) we see that the schemes that reuse the same perturbations
for all individuals in the current generation show divergent behavior for this particular test
problem. The same divergent behavior is exhibited in the other schemes, but less drastically.
For the (5/2DI , 35)-σSA-ES, these effects are less severe. A possible explanation for this is
that the two alterations of the MEM scheme exploit local symmetry, which is beneficial in case
of the sphere and Branke’s multipeak, but is harmful in case of the Heaviside sphere.

154 7. Finding Robust Optima

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

MEM5 LHS+

MEM5 LHS−

MEM5 MS+

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

MEM5 LHS+

MEM5 LHS−

MEM5 MS+

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

MEM5 MS−

MEM5 LHS+

MEM5 MS+

MEM5 LHS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

MEM5 MS−

MEM5 LHS−

MEM5 MS+

MEM5 LHS+
m

e
d

ia
n

 f
it

n
e

s
s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MEM5 LHS+

MEM5 LHS−

MEM5 MS+

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MEM5 LHS+

MEM5 LHS−

MEM5 MS+

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.12: Results of Experiment 7.2.5. The performance of the (5/2DI , 35)-σSA-ES (left column)
and the CMA-ES (right column) using different variants of the MEM evaluation. The performance is
measured in terms of median fitness approximated a posteriori using Monte-Carlo sampling with 100
samples. Top row: the results on the sphere problem. Middle row: the results on the Heaviside sphere
problem. Bottom row: the results on Branke’s multipeak problem. The results are obtained using 50 runs
for each scheme.

7.2. Strategies for Finding Robust Optima 155

3.4 3.6 3.8 4 4.2 4.4

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

0.385 0.39 0.395 0.4 0.405 0.41 0.415

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

MEM5 MS+

MEM5 LHS+

MEM5 MS−

MEM5 LHS−

Figure 7.13: Results of Experiment 7.2.5. The final solution quality of the (5/2DI , 35)-σSA-ES and
the CMA-ES using different variants of the MEM evaluation. The solution quality is approximated a
posteriori using Monte-Carlo sampling with 1000 samples. Top row: the results on the sphere problem.
Middle row: the results on the Heaviside sphere problem. Bottom row: the results on Branke’s multipeak
problem. Left column: the (5/2DI , 35)-σSA-ES. Right column: the CMA-ES. The results are obtained
using 50 runs for each scheme.

156 7. Finding Robust Optima

From these results we can conclude that the proposed alternatives can be beneficial in cases
where the objective function landscape is symmetric around the robust optimizer. However,
when considering local discontinuities around the optimizer that shift the robust optimizer, they
might yield divergent behavior. In the remainder of this chapter, we will consider the extremal
cases of Monte-Carlo sampling without reusing the same disturbances for all individuals in the
population (MEM5−MC) and Latin Hypercube sampling in combination with using the same
disturbances for all individuals in the population (MEM5+

LHS) for further investigation.

7.2.4 Implicit Versus Explicit Averaging for Finding Robust Optima

For noisy objective functions, we have observed that implicit averaging is competitive to or
even better than explicit averaging. This is true when considering Gaussian additive noise.
The MEM evaluation approach for finding robust optima is essentially generating noisy fitness
evaluations, however, for smaller values of m, this noise cannot be assumed to be Gaussian.
An interesting question is therefore whether implicit averaging is also applicable in these
scenarios. In order to obtain an insight into the differences between implicit and explicit
averaging in this scenario, we perform the following experiment:

Experiment 7.2.6 (Implicit versus explicit averaging for finding robust optima): We perform
50 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) using
two variants of the MEM evaluation scheme (using m = 5) and compare the results obtained
with these two variants against two variants of the SEM scheme in which the population size
is increased with a factor 5 (i.e., implicit averaging). The two MEM variants are MEM5−MC

and MEM5+
LHS, and the two SEM variants are 5SEM− and 5SEM+. The experiments are

performed on the sphere problem (see Appendix B.1), the Heaviside sphere problem (see
Appendix B.2), and on Branke’s multipeak problem (see Appendix B.6). Each run has a budget
of 10, 000 function evaluations.

The results of Experiment 7.2.6 are shown in Figure 7.14 by means of plots of the devel-
opment of the median fitness, a posteriori approximated using Monte-Carlo integration with
100 samples. From the results we see that, in general, the explicit resampling approaches
outperform the implicit averaging schemes. That is, when not taking into account the divergent
behavior obtained with the MEM5+

LHS approach on the Heaviside sphere. Comparing this to the
conclusion of the previous chapter, in which the implicit averaging scheme showed remarkably
good performance, especially for the CMA-ES, this result is surprising. It is reasonable to
assume that difference is caused by the fact that the noise that is introduced by using a SEM
evaluation scheme is not Gaussian and non-stationary. However, this should be investigated in
more detail.

7.2. Strategies for Finding Robust Optima 157

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

MEM5 LHS+

MEM5 MS−

5SEM−

5SEM+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

MEM5 LHS+

5SEM−

MEM5 MS−

5SEM+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

MEM5 MS−

MEM5 LHS+

5SEM−

5SEM+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

MEM5 MS−

5SEM+

MEM5 LHS+

5SEM−
m

e
d

ia
n

 f
it

n
e

s
s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MEM5 LHS+

MEM5 MS−

5SEM+

5SEM−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

MEM5 LHS+

5SEM−

MEM5 MS−

5SEM+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.14: Results of Experiment 7.2.6. The performance, in terms of median fitness (a posteriori
approximated using Monte-Carlo integration with 100 samples) of different variants of the SEM/MEM
evaluation scheme, comparing implicit versus explicit averaging. Top row: the results on the sphere
problem. Middle row: the results on the Heaviside sphere. Bottom row: the results on Branke’s multipeak
problem. Left column: the (5/2DI , 35)-σSA-ES. Right column: the CMA-ES. The results are obtained
using 50 runs for each scheme.

158 7. Finding Robust Optima

7.2.5 Adaptive Averaging for Finding Robust Optima

As mentioned in Section 7.2.2, using MEM evaluation methods for approximating the expected
objective function is essentially the same as using explicit averaging for a noisy objective
function. Moreover, also here we encounter the same trade-off between using few samples,
yielding a low approximation accuracy or obtaining a high approximation accuracy at the cost
of requiring many samples. A straightforward approach to deal with this problem is therefore
to use the adaptive averaging techniques proposed in the context of noisy optimization for
improving the convergence accuracy of schemes that aim to find robust solutions.

In [KRD+11] such an approach is followed. Here, the UH-CMA-ES proposed in
[HNGK09] is adapted for resampling and the objective function is replaced by a MEM+

LHS

evaluation scheme. The incorporation of this idea is straightforward: for any of the adaptive
averaging techniques, a MEM evaluation scheme using m samples can be used instead of m
times resampling the noisy objective function. The scheme that we will consider in this work
as an implementation of this idea is shown in Algorithm 7.1. Here, the rank-change based
adaptive averaging technique as described in Section 5.4.5 is modified for incorporation of
any MEM evaluation scheme.

In order get an impression of how such a scheme performs in this setting, we consider the
following experiment:

Experiment 7.2.7 (Performance of adaptive averaging for finding robust optima): We perform
50 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see Section 4.2.3) using
a MEM evaluation scheme adopting the rank-change based adaptive averaging technique (see
Section 5.4.5). The experiments are performed on the sphere problem (see Appendix B.1),
the Heaviside sphere problem (see Appendix B.2), and on Branke’s multipeak problem (see
Appendix B.6). For the adaptive averaging schemes, the settings α = 1.2 and θ = 0.6 are
used, according to [KRD+11]. Each run uses a budget of 10, 000 function evaluations.

The results of Experiment 7.2.7 are shown in Figure 7.15 by means of convergence plots of the
median fitness (a posteriori approximated using Monte-Carlo integration with 100 samples).
From the figure it can be seen that for the unimodal problems, the convergence speed in the
early stages is much higher, however, for the sphere problem, the normal MEM5+

LHS yields a
higher convergence accuracy than the adaptive averaging schemes. For the Heaviside sphere
problem, the adaptive averaging approaches yield a higher convergence accuracy than their
non-adaptive counterparts. For Branke’s multipeak problem, using adaptive averaging seems
not to be beneficial and might even be noted to be worse. The latter complies with the results
reported in [KRD+11] that adaptive averaging seems only beneficial for improving the local
convergence accuracy, but it does not increase the tendency to converge to the more robust
peaks.

7.2. Strategies for Finding Robust Optima 159

Algorithm 7.1: Rank-Change Based Adaptive Resampling for
Finding Robust Optima

Procedure parameters: confidence level θ, averaging increment factor α

Procedure variables: sample size indicator meval, initialized at meval = 2

1. For all candidate solutions x1, . . . ,xλ obtain robustness estimates
f̂exp1,old, . . . , f̂expλ,old based on a MEM evaluation scheme using m1 = dmeval/2e
perturbations for each individual

Lold = {f̂exp1,old, . . . , f̂expλ,old}. (7.19)

2. Repeat step 1 using m2 = bmeval/2c perturbations for each individual and store the
mean objective function values in the set Lnew = {f̂exp1,new, . . . , f̂expλ,new}.

3. Compute the rank-changes ∆1, . . . ,∆λ using

∆i = rank(Lnew
i)− rank(Lold

i)− signum
(
rank(Lnew

i)− rank(Lold
i)
)
. (7.20)

4. Compute the uncertainty level based on the rank-changes

s =
1

λreev

λreev∑
i=1

(2|∆i|

−∆lim
θ

(
rank (Lnew

i)− I{Lnew
i > Lold

i }
)

(7.21)

− ∆lim
θ

(
rank

(
Lold
i

)
− I{Lold

i > Lnew
i }

))
,

5. Update the sample size meval using the update rule

meval =

{
α ·meval , if s > 0

meval , otherwise
. (7.22)

6. Generate a ranking x1:λ, . . . ,xλ:λ based on the combined fitness approximations

f̂expi =
f̂exp1,old + f̂exp1,new

2
, i = 1, . . . , λ. (7.23)

160 7. Finding Robust Optima

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

MEM5 LHS+

UH MEM LHS+

UH MEM MS−

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

MEM5 LHS+

UH MEM LHS+

UH MEM MS−

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

UH MEM LHS+

UH MEM MS−

MEM5 MS−

MEM5 LHS+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

UH MEM LHS+

UH MEM MS−

MEM5 MS−

MEM5 LHS+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MEM5 LHS+

UH MEM LHS+

UH MEM MS−

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

MEM5 LHS+

UH MEM LHS+

MEM5 MS−

UH MEM MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.15: Results of Experiment 7.2.7. The performance, in terms of median fitness (a posteriori
approximated using Monte-Carlo integration with 100 samples) comparing static explicit averaging
versus adaptive averaging for finding robust optima. Top row: results on the Heaviside sphere. Bottom
row: the results on Branke’s multipeak problem. Left column: the (5/2DI , 35)-σSA-ES. Right column:
the CMA-ES. The results are obtained using 50 runs for each scheme.

7.2. Strategies for Finding Robust Optima 161

7.2.6 Mutation as Robustness Tester

Beyer and Sendhoff [BS06a] also propose an adaptation of Evolution Strategies that can be
classified as an adaptive averaging approach. However, it also introduces an alternative way of
sampling for finding robust optima.

The focus in [BS06a] lies on optimization of the expected objective function with Gaussian
input perturbations and they consider the SEM− evaluation approach in the context of a
(µ/µI , λ)-ES. For generating offspring, they suggest to include mutation itself as a robustness
tester. That is, instead of generating an offspring xo = xp + zo and evaluating on xo + zε,
zε ∼ pdf(δ), they propose to interpret zε + zo as a mutation in its own right. In addition
to this, they observe that selection tends to favor solutions with smaller disturbance vectors
lengths |zε|. For this, they propose a control mechanism for adding input perturbations such
that the variance amongst the µ selected parents is equal to the desired input perturbations. A
third modification with respect to canonical Evolution Strategies is the inclusion of an adaptive
averaging scheme. In order to prevent stagnation they propose an adaptive averaging technique
that increases the population size when necessary (i.e., implicit averaging).

Technical Note 7.2 describes the mutation operator and the control mechanism for assuring that
the measured disturbances of the µ selected offspring are distributed according to the targeted
noise distribution pdf(δ). As mentioned, the approach is including the input disturbances in the
mutation operator, measuring the realized perturbation lengths of the selected individuals, and
scaling the perturbation magnitude such that the realized perturbation length will approximate
the desired input pertrubation length. Technical Note 7.3 describes the adaptive averaging
approach suggested in [BS06a], which is based on increasing the population size with a certain
factor whenever the uncertainty indicator ∆F is below 0, which is checked every ∆g = n

generations. The uncertainty indicator is based on tracking the improvement/decrement of the
average population fitness of the select individuals.

The approach suggested in [BS06a] showed promising results on a number of test problems as
compared to myopic approaches. The results were obtained using a (µ/µI , λ)-ES. For integ-
ration of this concept into a CMA-ES, it should take into account the full covariance matrix in
the control mechanism for assuring that the measured disturbances of the selected offspring are
equal to the targeted disturbances. Furthermore, note that the proposed scheme is specifically
designed for SEM− approaches. When using a SEM+ or MEM+, the observation of selection
favoring smaller disturbance lengths does not hold anymore, because the disturbances are
reused for all individuals in the population. One could think of using these approaches as
an alternative fix to prevent selection from having this bias.

162 7. Finding Robust Optima

Technical Note 7.2: Mutation as Robustness Tester

Consider input perturbations δ ∼ N (0,D), with D = diag((σε)
2
1, . . . , (σε)

2
n). The mutation

operator of Evolution Strategies can be adapted as

xi = 〈x〉i +
√
σ2
i + ε2i · N (0, 1) , i = 1, . . . , n, (7.24)

where ε = [ε1, . . . , εn] is not equivalent to the desired/targeted input noise σε =
[(σε)1, . . . , (σε)n], but is controlled such that the observed standard deviations d =
[d1, . . . , dn] of the µ selected individuals are close to σε. This is accomplished by using
the following update rule after every generation:

εi = εi exp(τε · sign((σε)i − di)), (7.25)

where τε = cx/3 is a damping constant and cx = n−1 is a cumulation rate.

The observed standard deviations d = [d1, . . . , dn] are measured over the main axes of µ
selected individuals, which in this case are computed using a cumulated version of di =√

Var[{(x1:λ)i, . . . , (xµ:λ)i}]:

di =

√
x2
i − x2

i , i = 1, . . . , n, (7.26)

with

xi = (1− cx)xi + cx〈xi〉, (7.27)

x2
i = (1− cx)x2

i + cx〈x2
i 〉, (7.28)

〈xi〉 =
1

µ

µ∑
m=1

(xm:λ)i, (7.29)

〈x2
i 〉 =

1

µ

µ∑
m=1

(xm:λ)2
i . (7.30)

7.2. Strategies for Finding Robust Optima 163

Technical Note 7.3: Adaptive Population Size Control

As an uncertainty indicator, the average parental fitness change ∆F is given by

∆F = 〈F 〉(g) − 〈F 〉(g−1), (7.31)

where 〈F 〉(g) = 1
µ

∑µ
i=1 f̂eff i:λ for the current generation g. This indicator is smoothened as

∆F = (1− cf)∆F + cf (〈F 〉(g) − 〈F 〉(g−1)). (7.32)

This indicator is checked every ∆g = n generations and when ∆F ≤ 0, then the uncertainty
treatment mechanism should be applied:

µ = dαµe, (7.33)
λ = dµ/ηe, (7.34)

with η = µ0/λ0.

7.2.7 Archiving for Finding Robust Optima

Using resampling methods for approximating the robustness of candidate solutions can be-
come computationally expensive. In an attempt to reduce the number of objective function
evaluations, Branke [Bra98] suggested to evaluate each individual based on its own fitness and
the fitness of the other individuals in the neighborhood. More specifically, the expected fitness
of each individual x is approximated as the weighted mean of its own fitness and the fitness of
previously evaluated neighboring points x′ using

f̂exp(x) =

∑
x′ w(x′ − x) · f(x′)∑

x′ w(x′ − x)
, (7.35)

wherew(x′−x) is a weight function for which it should hold thatw(x′−x) ∝ pdfδ(x′−x) (cf.
Eq. 7.18). Although computing the distances between each pair (x,x′) introduces an overhead
cost, in many cases it is fair to assume that the cost of evaluating one candidate solution is
larger than this extra overhead cost. In [KEB10], this idea was extended by means of a method
to obtain a more representative archive, which is also used in [SRS11].

A way in which such a scheme can be incorporated into an Evolutionary Algorithm is depicted
in Technical Note 7.4. It is similar to a canonical evolution cycle, only a few extra steps
are included involving the evaluation of candidate solutions. Note that this framework differs
slightly from the description provided in [KEB10].

The evaluation procedure knows two stages. The first stage concerns updating the archive.
An optional step is to evaluate each individual precisely. Also, it is checked whether the archive
is representative enough to be used for obtaining approximations of the expected fitness. If
not, then additional samples are chosen and added to the archive. The approach of Branke
[Bra98] omits the latter step, but evaluates each individual precisely. The approach presented

164 7. Finding Robust Optima

in [KEB10] includes a method for checking the archive and selecting appropriate additional
sample points which will be described below. In the second stage, appropriate archive points
are selected for each individual and based on that approximations of the expected fitness are
obtained following Eq. 7.35. An optional operation after each generation is to include a method
to clean up the archive and prevent it to grow out of bounds.

The separation between the archive maintenance and evaluation (which is a difference with
respect to the approach presented in [KEB10]) is to be recommended because during the first
stage of this algorithm, the archive will be filled with samples that could be relevant for all
individuals. Hence, in order to allow all individuals to benefit from the additional samples
taken in the first stage, the evaluation stage is decoupled from the first stage. This should
prevent the selection from being biased due to the order in which the individuals are handled.

A difference between the approach presented in [Bra98] and the alternative approach presented
in [KEB10] is the way in which additional archive points are selected. In [Bra98] this is
based on precise evaluation of the candidate solutions in the population, however, a major
drawback of this is that the points in the archive are by no means guaranteed to be well-
spread over the region of possible variation for each candidate solution. That is, the archive
points are selected by the optimization algorithm, which yields a distribution of points that
is dependent on the way in which subsequent candidate solutions are selected. Especially in
focused searching strategies such as Evolution Strategies, this might lead to an archive that
holds limited information about the (local) objective function landscape. In [KEDB10b], an
approach is suggested to counter this drawback. The general idea of this approach is to generate
a reference sample set of disturbances that should represent an ideal sample set. For each
individual, additional sampling is determined by the reference set point that is least represented
in the archive. Hence, additional sampling is done in the parts of the regions of uncertainty that
are not underrepresented in the archive. By using a Latin Hypercube Sampling reference set, it
can be assumed that the reference set is space filling and clustering is avoided.

Algorithm 7.2 describes the archive based selection method as proposed in [KEDB10b]. It
takes as arguments a reference sample set Xref = {x(1)

r , . . . ,x
(m)
r } of m samples, which

should be the LHS reference set for an individual for which a robustness estimate is required,
and the archive A = {(x(1)

a , f
(1)
a), (x

(2)
a , f

(2)
a), . . .} which contains design point / objective

function value tuples.
For each reference sample xr in Xref the algorithm searches for the closest point in the

archive. Then, for each of these selected archive points, it is checked whether the reference
points for which they are selected are also the closest reference points. The archive points for
which this is the case are then, together with their objective function values, added to the set
Asel of selected archive points. For the archive points for which this is not the case one can
conclude that the region around its reference point is underrepresented in the archive (making
this reference point a good candidate for extra sampling). It is therefore added to the set Xcand

7.2. Strategies for Finding Robust Optima 165

Technical Note 7.4: General Framework of an Archive Based
Evolutionary Algorithm for Finding Robust Solutions

1: initialize parent population and archive

2: while not terminate do

3: generate offspring from parents

4: for each individual do

5: (optional: evaluate individual and add to archive)

6: if not enough samples or no appropriate sample set available then

7: find appropriate additional sample points

8: evaluate additional sample points and add to archive

9: end if

10: end for

11: for each individual do

12: select archive points for effective fitness approximation

13: compute effective fitness approximation using the archive

14: end for

15: select best individual

16: (optional: clean up archive)

17: end while

166 7. Finding Robust Optima

Algorithm 7.2: Reference Set Based Archive Selection for Finding
Robust Optima

input: reference sample set Xref , archive A

output: selected archive points Asel, sampling candidates Xcand

1: Asel ← ∅

2: Xcand ← ∅

3: for each xr ∈ Xref do

4: (xa, fa)← {(xa, fa) ∈ A | for all (x′a, f
′
a) ∈ A : d(xr,xa) ≤ d(xr,x

′
a)}

5: if (for all x′r ∈ Xref : d(xr,xa) ≤ d(x′r,xa)) then

6: Asel ← Asel ∪ {(xa, fa)}

7: else

8: Xcand ← Xcand ∪ {xr}

9: end if

10: end for

11: return (Asel,Xcand)

of candidate sample points. In case that all reference points have been assigned archive points,
then the reference point of the archive point / reference point pair that are located farthest apart
from each other is selected as candidate for extra sampling1. This will assure that the archive
is always updated in the region in which it needs the extra samples the most.

Figure 7.16 illustrates the scheme: Step a) displays archive points using the •-symbol,
the reference samples with the ⊗-symbol, and the box represents the η-neighborhood of
the solution to be evaluated. In step b) for each reference point, the closest archive point is
identified. In step c) it is checked whether the reference points are also the closest reference
points of their selected archive points and in step d) the archive points for which this is the case
are selected as archive points (solid circles) and the reference points for which this is not the
case are selected as candidates for additional sampling (dashed circles).

The framework provided in Technical Note 7.4 combined with the archive selection scheme of
Algorithm 7.2 yields an evaluation scheme for finding robust optima that can be integrated
within any type of Evolutionary Algorithm. In this work, we adopt a slightly modified
version of the scheme as considered in [KEDB10b]. It is presented in Algorithm 7.3. For

1This step is not shown in the algorithmic description of Algorithm 7.2.

7.2. Strategies for Finding Robust Optima 167

Figure 7.16: An illustration of the reference set based archive selection method proposed in
[KEDB10b]. Step a): the archive points are displayed with the •-symbol, the reference samples with
the ⊗-symbol, and the box represents the η-neighborhood of the to be evaluated solution. Step b): for
each reference point, the closest archive point is identified. Step c): check whether the reference points
are also the closest reference points of their selected archive points. Step d): the archive points for which
this is the case are selected as archive points (solid circles) and the reference points for which this is not
the case are selected as candidates for additional sampling (dashed circles).

168 7. Finding Robust Optima

each individual, a reference set Xref of m samples is used to obtain a set of selected
archive points Asel = {(x(1)

s , f
(1)
s), (x

(2)
s , f

(2)
s), . . .} and a set Xcand = {x(1)

c ,x
(2)
c , . . .} of

suggested candidates for extra sampling. Then, in this variant, instead of all, only one of the
suggested candidate points for extra sampling is evaluated and added to A. An expected fitness
approximation is thereafter generated by considering all archive points and using the weighted
function as in Eq. 7.35.

Note that it is also possible to take for each individual a sample set using the reference set
based archive selection method. However, it should be noted that this set should be selected
anew in order to allow all individuals to use the same archive for evaluation. Using the complete
archive for evaluation is justifiable when assuming that the archive will be locally well-
spread (because additional samples will be taken in the least represented areas). An additional
advantage of this is allows to take arbitrarily many samples for the evaluation (in the sense of
adaptive averaging) and only requires a setting for m for the maintenance of the archive.

In [KEB10] an example of the behavior of this way of maintaining an archive is given
by showing the archive development on a two-dimensional version of the Heaviside sphere
(see Appendix B.2). Here, the archive based reference set selection scheme (named ABRSS)
is compared against the archiving method as considered in [Bra98] (named PROX), both
incorporated into a CMA-ES (see Section 4.2.3). Figure 7.17 shows, for a run of both the
ABRSS scheme and the PROX scheme, the archive after 100, 200, and 300 generations
respectively. Here, the small plots inside each plot are magnified versions on the interval
[0, 2]2 (i.e., the interval around the optimum). The asset of the archive maintenance scheme
can be seen clearly; whereas the PROX method zooms in on a narrow region, the ABRSS
scheme takes into account the whole region of uncertainty around the point on which it zooms
in, leading to a well-spread set of archive points around the optimum (in effect generating
more accurate fitness approximations). Although in higher dimensions it will take more time
to build up a well-spread archive, the ABRSS scheme, in contrast to the PROX scheme, has
the potential to do so.

Finally, in order to get an impression of the performance of this archive maintenance scheme
on 10-dimensional problems, we consider the following experiment:

Experiment 7.2.8 (Performance of archive based evaluation for finding robust optima):
We perform 50 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see
Section 4.2.3) using the archive based reference set approach for assessment of the expected
fitness as described in Algorithm 7.3. The experiments are performed on the sphere problem
(see Appendix B.1), the Heaviside sphere problem (see Appendix B.2), and on Branke’s
multipeak problem (see Appendix B.6). For the archive based reference set selection, a sample
size of m = 2n = 20 is used. Each run uses a budget of 10, 000 function evaluations.

7.2. Strategies for Finding Robust Optima 169

Algorithm 7.3: Archive Maintenance in Evolutionary Algorithms for
Finding Robust Optima

Procedure parameters: the number of samples used for generating the reference set m

Procedure variables: solution archive A

1: P← generate initial population()

2: A← ∅

3: while not terminate do

4: O← generate offspring(P)

5: for each x ∈ O do

6: Xref ← latin hypercube sampling(x,σε,m)

7: (Asel,Xcand)← reference set based archive selection(Xref ,A)

8: for a random xc ∈ Xcand do

9: fc ← evaluate(xc)

10: A← A ∪ {(xc, fc)}

11: end for

12: end for

13: for each x ∈ O do

14: f̂exp(x)← (
∑
{xa,fa}∈A w(xa − x) · fa)/(

∑
{xa,fa}∈A w(xa − x))

15: end for

16: P← select(O)

17: end while

170 7. Finding Robust Optima

Figure 7.17: Archive after 100, 200, and 300 generations of the ABRSS scheme (top row) and
PROX scheme (bottom row) on a two-dimensional instance of the heaveyside sphere. The zoom window
magnifies the interval [0, 2]2.

Figure 7.18 and Figure 7.19 show the results of Experiment 7.2.8. In Figure 7.18 the per-
formance is shown in terms of median fitness (a posteriori approximated using Monte-Carlo
integration with 100 samples) and in Figure 7.19 the final solution quality (approximated a
posteriori using Monte-Carlo sampling with 1000 samples) is displayed. From the figures it
can be seen that the methods incorporating the ABRSS scheme outperforms the MEM−MS

scheme on all runs. Comparing it, however, to the MEM+
LHS scheme, it is outperformed on

the sphere problem, and on Branke’s multipeak problem, but is clearly better on the Heaviside
sphere. The results suggest that the ABRSS is indeed capable on zooming in on the robust
optimum, but for 10-dimensional problem spaces, it might take some while for the archive
to fill. When the objective function landscape is symmetric around the (robust) optimum, the
MEM+

LHS, that exploits such symmetry, will be able to zoom in on the robust optimum more
quickly. The convergence speed obtained by using the ABRSS scheme (see Figure 7.19) is
much higher than when using the MEM schemes.

In conclusion, using an archive of previously evaluated solutions provides a way for efficiently
using objective function evaluations. By using the archive maintenance approach as proposed
in [KEB10], it can be assured that the archive will be updated in the places where it is
underrepresented. This approach is suitable especially for low-dimensional search spaces
(dimension . 10). The higher the dimensionality of the search space, the longer it will take
before the archive is filled sufficiently well to be representative. Regarding the computational

7.2. Strategies for Finding Robust Optima 171

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

MEM5 LHS+

ABRSS

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

MEM5 LHS+

ABRSS

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

ABRSS

MEM5 MS−

MEM5 LHS+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

ABRSS

MEM5 MS−

MEM5 LHS+
m

e
d

ia
n

 f
it

n
e

s
s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

MEM5 LHS+

ABRSS

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

MEM5 LHS+

ABRSS

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.18: Results of Experiment 7.2.8. The performance, in terms of median fitness (a posteriori
approximated using Monte-Carlo integration with 100 samples) of the ABRSS evaluation scheme
incorporated into the (5/2DI , 35)-σSA-ES and the CMA-ES, compared against two variants of the MEM
evaluation schemes. Top row: results on the sphere. Middle row: results on the Heaviside sphere. Bottom
row: the results on Branke’s multipeak problem. Left column: the (5/2DI , 35)-σSA-ES. Right column:
the CMA-ES. The results are obtained using 50 runs for each scheme.

172 7. Finding Robust Optima

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

ABRSS

MEM5 LHS+

MEM5 MS−

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

ABRSS

MEM5 LHS+

MEM5 MS−

0.05 0.1 0.15 0.2 0.25 0.3

ABRSS

MEM5 LHS+

MEM5 MS−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

ABRSS

MEM5 LHS+

MEM5 MS−

0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48

ABRSS

MEM5 LHS+

MEM5 MS−

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75

ABRSS

MEM5 LHS+

MEM5 MS−

Figure 7.19: Results of Experiment 7.2.8. The final solution quality of the ABRSS evaluation
scheme incorporated into the (5/2DI , 35)-σSA-ES and the CMA-ES, compared against two variants
of the MEM evaluation schemes. The solution quality is approximated a posteriori using Monte-Carlo
sampling with 1000 samples. Top row: the results on the sphere problem. Middle row: the results on
the Heaviside sphere problem. Bottom row: the results on Branke’s multipeak problem. Left column:
the (5/2DI , 35)-σSA-ES. Right column: the CMA-ES. The results are obtained using 50 runs for each
scheme.

7.2. Strategies for Finding Robust Optima 173

cost of using the archive maintenance approach as considered in this section, it should be
noted that a serious additional overhead is introduced by following this method. It is therefore
specifically useful when the (computational) cost of an objective function evaluation is high.

7.2.8 Metamodeling for Finding Robust Optima

Metamodeling approaches are closely related to archive based approaches and are also particu-
larly useful when objective function evaluations are expensive. The general idea is to construct
(local) approximation models (or metamodels) of the objective function for which evaluation
is cheap and obtain accurate robustness approximations based on these metamodels. In the
context of classical optimization using Evolutionary Algorithms, metamodeling techniques
know many applications (for an overview, see, e.g., [Jin05]) and it is also applied in the context
of noisy optimization (see Section 5.5). In the context of finding robust optima, for which the
demand for objective function evaluations is high, the application possibilities are apparent.
Approaches that are proposed in this context are, e.g., [ONL06, PBJ06, PL09, KEDB10a].

The way in which metamodeling techniques can be integrated into a scheme for finding robust
optima depends on a number of matters, i.e.,

• the modeling assumptions and modeling approach used for constructing the metamodels,

• the way in which archive points are selected for constructing metamodels,

• the frequency of the model updates / regenerations and the usage of the metamodels,

• the robustness measure and approximation method used on the metamodels.

Studying and testing all possible configurations for these different issues is obviously infeas-
ible. Regarding the modeling assumptions and the modeling approach, this depends largely
on the problem at hand and the same holds for the robustness measure and the approximation
method. As an indication of the variety of possibilities, Paenke et al. [PBJ06] consider linear
interpolation, quadratic interpolation, linear regression, and quadratic regression, Ong et al.
[ONL06] consider radial basis functions, and Poles and Locison [PL09] consider polynomial
models. The way in which the archive is maintained and the frequency of the model updates
are more general choices. For the former, choosing additional sample points is much related
to the discussion of the Section 7.2.7. The quality of a metamodel depends largely on the
available sample set, which should contain “sufficient” information for generating an accurate
model (see Section 5.5.3 for a discussion). As an indication for the possibilities regarding the
frequency of the model updates and the usage of the metamodels, four possibilities studied by
Paenke et al. [PBJ06] are:

• Singe model: generate a metamodel for each individual separately.

174 7. Finding Robust Optima

• Nearest model: construct a metamodel for each individual separately, but use for each
sample point the closest model to estimate its objective function value.

• Ensemble: construct a metamodel for each individual in the population and use the
ensemble of metamodels of all individuals in a weighted way to obtain objective function
value approximations.

• Multiple models: generate a separate metamodel for each sample point that is to be
evaluated.

Technical Note 7.5 shows a (possible) general framework of how metamodeling techniques can
be integrated into an Evolutionary Algorithm for finding robust optima. For each offspring, a
suitable set of archive points is selected which can be used to construct a local metamodel.
In case such a suitable set of archive points does not exist, additional samples are taken,
evaluated on the original objective function and also added to the archive. Thereafter, the
fitness is determined by obtaining a robustness approximation based on the local metamodel
or (optional) on the ensemble of metamodels of all offspring.

Note that the framework of Technical Note 7.5 much resembles the framework shown in
Technical Note 7.4 on page 165. In fact, it can be argued that the archiving method of
Section 7.2.7 is a simple form of metamodeling.

In this section, we will restrict ourselves to one configuration of the framework of Technical
Note 7.5. This configuration is similar to the one considered in [KRD+11] and serves as an
example case to represent the metamodeling based approaches. This approach uses ordinary
Kriging as metamodeling technique, which is briefly summarized in Appendix C. For main-
taining an archive, the archive maintenance method as presented in Section 7.2.7 is used. A
separate model is constructed for each individual in the population (i.e., the single model is
followed). The robustness measure that will be adopted is the expected fitness, approximated
using a MEM+

LHS evaluation scheme. The implementation of this specific configuration is
described in Algorithm 7.4.

Experiment 7.2.9 (Performance of Kriging based evaluation for finding robust optima):
We perform 50 runs of a (5/2DI , 35)-σSA-ES (see Section 4.2.2) and a CMA-ES (see
Section 4.2.3) using the Kriging based approach for assessment of the expected fitness as
described in Algorithm 7.4. The experiments are performed on the sphere problem (see
Appendix B.1), the Heaviside sphere problem (see Appendix B.2), and on Branke’s multipeak
problem (see Appendix B.6). For building the Kriging metamodels, a sample size of nkrig =

2n = 20 is used, and for the approximation for the expected fitness, a MEM50+
LHS approach

is followed. Each run uses a budget of 10, 000 function evaluations.

Figure 7.20 and Figure 7.21 show the results of Experiment 7.2.9. In Figure 7.20 the per-
formance is shown in terms of median fitness (a posteriori approximated using Monte-Carlo

7.2. Strategies for Finding Robust Optima 175

Technical Note 7.5: General Framework of a Metamodel Assisted
Evolutionary Algorithm for Finding Robust Optima

1: initialize parent population

2: initialize archive

3: while not terminate do

4: generate offspring

5: for each offspring do

6: (optional: evaluate offspring and add to archive)

7: select archive points for metamodel construction

8: if no representative set of samples available then

9: get extra sample points

10: evaluate the extra sample points

11: add the extra sample points to the archive

12: construct a local metamodel for the current individual

13: end if

14: end for

15: for each offspring do

16: evaluate robust fitness using the (ensemble of) local metamodel(s)

17: end for

18: select best offspring as new parent population

19: (optional: clean up archive)

20: end while

176 7. Finding Robust Optima

Algorithm 7.4: Kriging Based Evolutionary Algorithm for Finding
Robust Optima

Procedure parameters: number of samples used for metamodel construction nkrig, number

of samples used for estimating the effective fitness m

Procedure variables: solution archive A

1: P← generate initial population()

2: A← ∅

3: while not terminate do

4: O← generate offspring(P)

5: for each xo ∈ O do

6: Xref ← latin hypercube sampling(xo,σε, nkrig)

7: (Asel,Xcand)← reference set based archive selection(Xref ,A)

8: for a random xc ∈ Xcand do

9: fc ← evaluate(xc)

10: A← A ∪ {(xc, fc)}

11: Asel ← Asel ∪ {(xc, fc)}

12: end for

13: f̂xo(x)← calibrate kriging(Asel)

14: f̃xo
← f̂eff(f̂(x)xo

,xo)

15: end for

16: P← select(O)

17: end while

7.2. Strategies for Finding Robust Optima 177

0 2000 4000 6000 8000 10000
0

5

10

15

20

25

30

35

40

45

MEM5 LHS+

Kriging

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

10

20

30

40

50

60

MEM5 LHS+

Kriging

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5

Kriging

MEM5 MS−

MEM5 LHS+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0

0.5

1

1.5

2

2.5

3

MEM5 MS−

Kriging

MEM5 LHS+
m

e
d

ia
n

 f
it

n
e

s
s

evaluations

0 2000 4000 6000 8000 10000
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

MEM5 LHS+

Kriging

MEM5 MS−

m
e

d
ia

n
 f

it
n

e
s

s

evaluations
0 2000 4000 6000 8000 10000

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Kriging

MEM5 MS−

MEM5 LHS+

m
e

d
ia

n
 f

it
n

e
s

s

evaluations

Figure 7.20: Results of Experiment 7.2.9. The performance, in terms of median fitness (a posteriori
approximated using Monte-Carlo integration with 100 samples) of the Kriging based evaluation scheme
incorporated into the (5/2DI , 35)-σSA-ES and the CMA-ES, compared against two variants of the MEM
evaluation schemes. Top row: results on the sphere. Middle row: results on the Heaviside sphere. Bottom
row: the results on Branke’s multipeak problem. Left column: the (5/2DI , 35)-σSA-ES. Right column:
the CMA-ES. The results are obtained using 50 runs for each scheme.

178 7. Finding Robust Optima

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

Kriging

MEM5 LHS+

MEM5 MS−

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1

Kriging

MEM5 LHS+

MEM5 MS−

0.05 0.1 0.15 0.2 0.25 0.3 0.35

Kriging

MEM5 LHS+

MEM5 MS−

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Kriging

MEM5 LHS+

MEM5 MS−

0.385 0.39 0.395 0.4 0.405 0.41 0.415

Kriging

MEM5 LHS+

MEM5 MS−

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Kriging

MEM5 LHS+

MEM5 MS−

Figure 7.21: Results of Experiment 7.2.8. The final solution quality of the Kriging based evaluation
scheme incorporated into the (5/2DI , 35)-σSA-ES and the CMA-ES, compared against two variants
of the MEM evaluation schemes. The solution quality is approximated a posteriori using Monte-Carlo
sampling with 1000 samples. Top row: the results on the sphere problem. Middle row: the results on
the Heaviside sphere problem. Bottom row: the results on Branke’s multipeak problem. Left column:
the (5/2DI , 35)-σSA-ES. Right column: the CMA-ES. The results are obtained using 50 runs for each
scheme.

7.2. Strategies for Finding Robust Optima 179

integration with 100 samples) and in Figure 7.21 the final solution quality (approximated a
posteriori using Monte-Carlo sampling with 1000 samples) is displayed. From the figures it
can be seen that we can draw similar conclusions as for the ABRSS approach of the previous
section. The methods incorporating the Kriging scheme outperforms the MEM−MS scheme on
all runs except for one where it is comparable. However, comparing it to the MEM+

LHS scheme,
it is outperformed on the sphere problem and on Branke’s multipeak problem, but is clearly
better on the Heaviside sphere. The convergence speed obtained by using the Kriging based
scheme (see Figure 7.21) is in the early stages a bit slower which is due to the fact that the
archive needs to fill. Once the archive is filled, the Kriging based approach quickly zooms in
and catches up with the MEM schemes.

In conclusion, we note that metamodeling can be successfully employed within Evolutionary
Algorithms for finding robust optima. As the cost of constructing metamodels is high, such
methods are only applicable if the evaluation cost of the original objective function is higher
than the cost of constructing the metamodel. When this is the case, performing sampling on
the metamodels is a promising way to get estimate for the effective fitness. A downside of
metamodeling based approaches is that when it is too expensive to use all archive points for
constructing the metamodels (e.g., as in Kriging), a subset selection should be made. This
introduces an algorithm parameter that highly affects the accuracy of the metamodels. That
is, when using a limited number of samples for metamodel construction, the metamodel itself
is limited with respect to the prediction accuracy. In this sense, modeling approaches that use
iterative updates are favorable, as those should be able to use the complete archive.

Additionally, an issue worthwhile mentioning is the possibility of performing exact robust-
ness analysis on the metamodels instead of using sampling methods. That is, the metamodels
themselves are not black-box functions, but have an explicit mathematical description. For
some of these techniques, explicit derivation of the effective objective function measures might
be possible. Poles and Lovison [PL09] already present such an approach in the context of
polynomial models.

7.2.9 Niching for Finding Robust Optima

All techniques that have been discussed up to now have been noted to work well with respect
to zooming in on the robust optimizer in case it is shifted, but do not noticeably improve the
capabilities of Evolution Strategies to target the more robust peaks. This observation has been
made, for instance, in [KEB10] in the context of archiving and in [KRD+11] in the context
of adaptive averaging. Niching techniques are designed to improve the explorative behavior of
Evolutionary Algorithms by actively separating sub-populations in different parts of the search
space. For finding robust optima, such techniques could also be incorporated, with the specific
goal in mind to find the more robust parts of the search space. Preliminary results, providing
a proof of concept for this idea, are presented by Tsutsui and Ghosh [TG97]. In this study,

180 7. Finding Robust Optima

the sharing scheme of Goldberg and Richardson [GR87] is used in combination with a SEM
evaluation approach. However, despite promising results, no further studies exist that include
niching techniques for finding robust optima.

A straightforward incorporation of niching into a scheme for finding robust optima is, for
instance, to use a SEM/MEM evaluation scheme and include a basic niching approach, e.g., as
proposed by Shir et al. [SB09]. Algorithm 7.5 describes the general framework of this niching
approach, in which the evaluation procedure should simply be a SEM/MEM approach when
aiming to find robust optima.

In this framework, q niches are maintained, which are in the simplest case q parent
individuals which are separated in the search space (i.e., the niche leaders or alpha individuals).
Every generation λ offspring are generated for each niche separately. After that, the full
population of offspring is evaluated, and based on the fitness, the dynamic peak set, which
is the set of new niche leaders for the next generation, is selected by means of the dynamic
peak identification procedure (see Algorithm 7.6). Each individual in the DPS forms a separate
niche and inherits the strategy parameters from its parent, which are updated according to the
normal update rules. Finally, if there are fewer than q niches, new niches are created randomly.

The dynamic peak identification algorithm, as described in Algorithm 7.6 works by sorting
the individuals by fitness, and then considering them in that order (i.e., fitter individuals are
treated earlier). The best individual is always a niche leader and will always form a niche. The
other individuals will form a niche only if they are not within a radius ρ of an already formed
niche and if there are not yet q niches. This way, a set of at most q individuals is selected,
which are the niche leaders for the next generation.

Regarding the two important parameters ρ and q: the number of desired niches is a design
choice and the niche radius is recommended to be set relative to the number of niches,

ρ =

√∑n
i=1((xu)i − (xl)i)2

2 n
√
q

. (7.36)

Although the approach sounds reasonable, a simple experiment on a two-dimensional instance
of Branke’s multipeak problem shows that it is more complicated than this:

Experiment 7.2.10 (Dynamics of niching for finding robust optima): We consider four two-
dimensional instance of Branke’s multipeak problem (see Appendix B.6) in which the anticip-
ated input uncertainties vary. The noise levels are: δ = 0 (no noise), δ ∼ U(−0.05,0.05)

(low noise), δ ∼ U(−0.1,0.1) (medium noise), δ ∼ U(−0.5,0.5) (default noise). On these
problems we run a normal CMA-ES (see Section 4.2.3) incorporating a SEM− evaluation
scheme and a niching based CMA-ES, which uses q = 4 niches, one parent per niche (i.e.,
µ = 1), λ = 10 offspring per niche, and also the SEM− evaluation scheme. For both schemes
one run is performed on each problem instance.

Figure 7.22 shows the results of Experiment 7.2.10 in terms of distance to the robust optimizer

7.2. Strategies for Finding Robust Optima 181

Algorithm 7.5: Niching Based Evolutionary Algorithm for Finding
Robust Optima

Procedure parameters: Number of niches q, niching radius ρ

1: initialize parent population

2: while not terminate do

3: for each niche do

4: generate λ offspring from the current niche

5: end for

6: evaluate offspring

7: compute the Dynamic Peak Set (DPS) of the population

8: for each individual in the DPS do

9: set the current individual as niche

10: inherit the strategy parameters from the parent

11: update the strategy parameters of the current niche

12: end for

13: if |DPS| < q then

14: generate new niche from scratch

15: end if

16: end while

182 7. Finding Robust Optima

Algorithm 7.6: Dynamic Peak Identification (DPI)

Procedure parameters: Number of niches q, niching radius ρ

1: Sort the population according to fitness: P = {x1:qλ, . . . ,x1:qλ}

2: i← 1

3: numpeaks ← 0

4: DPS ← ∅

5: while numpeaks < q and i ≤ q · λ do

6: is niche ← true

7: for each xniche ∈ DPS do

8: if ||xniche − xi:qλ|| < ρ then

9: is niche ← false

10: break

11: end if

12: end for

13: if is niche then

14: DPS ← DPS ∪ {xi:qλ}

15: numpeaks ← numpeaks + 1

16: end if

17: i← i+ 1

18: end while

19: return DPS

7.2. Strategies for Finding Robust Optima 183

Figure 7.22: A single run of the niching approach incorporating a SEM evaluation scheme (top) and a
normal MEM approach. The plot shows the results in terms of distance to the robust optimizer at [−1]n.

at [−1]n. From this plot it can be seen that when there is no noise, the niching approach
easily settles in the four optima that exist in two dimensions. However, when increasing the
anticipated input disturbances, the niching approach will encounter more and more difficulties
for forming the niches. Hence, the niche formation process seems to become unstable in this
particular scenario. An explanation for why this instability can arise is that the four peaks lie
very close to each other. At times, neighboring niches might be destroyed when an individual
in one niche with a randomly high fitness lies to close to the other niche. This way, niches can
be destroyed and prevent each other to settle in a peak.

From the small preliminary study, we can conclude that although including niching techniques
might be a good idea, using straightforward niching implementations in combination with
SEM/MEM evaluation may cause undesirable instabilities. For the niching approach con-
sidered in this section it would be interesting to study its behavior first on noisy optimization
problems and find out how it can be stabilized before including it in the context of finding
robust optima. When this is achieved, an interesting idea with respect to the niche radius is to
link the niche radius to the magnitude of the input uncertainty. That is, the input uncertainties
provide an indicator that fits naturally for specifying the niche radius. The latter remains a
parameter that depends on the problem at hands.

184 7. Finding Robust Optima

Figure 7.23: Overlap sketch: two solutions x and x′ around which square regions are drawn indicating
the regions of uncertainty ηx and ηx′ .

7.2.10 Exploiting Overlap

The approaches that have been discussed so far aim to obtain as accurate as possible fitness
approximations using as few as possible objective function evaluations. In [KEDB10b], a
different approach is followed.

An important observation when aiming to find robust optima is that sampling regions
(i.e., η-neighborhoods) of different candidate solutions in (successive) populations are often
overlapping, particularly in later stages of the optimization where the population focuses on
a single region of the search space. Hence, the evaluations made in overlapping regions can
be used at the same time for evaluating the robustness of different candidate solutions. Or, in
some cases, it is even possible to discard a large part of the sampling space when comparing
solutions. Consider, for example, the scenario displayed in Figure 7.23, where two solutions
x and x′ are compared given a uniform distribution of the input noise. Here, it suffices to
sample the non-intersecting regions, because the contribution of the intersecting region to the
expected fitness is the same for both solutions. Instead of trying to acquire an estimate of
the effective fitness for each candidate solution separately, alternatively one could compare
solutions based on how they relate in their effective fitness; therewith exploiting the overlap of
their η-neighborhoods.

Consider the special case of comparing two candidate solutions x and x′ on their expected
fitness based on a uniform perturbation δ ∼ U(−l, l). By normalizing the search space we
can transform the sampling intervals of the independent input variables such that they have the
same width l. For this scenario (illustrated in Figure 7.24), the intersection region A of ηx and

7.2. Strategies for Finding Robust Optima 185

Figure 7.24: A two-dimensional sketch of the overlap of the regions of uncertainty ηx and ηx′ of the
two solutions x and x′.

ηx′ contributes the same to the expected fitness of both solutions, i.e.,

fexpx =

∫
x̃∈ηx\A

f(x̃) px(x̃) dx̃ +

∫
x̃∈A

f(x̃) px(x̃) dx̃, (7.37)

fexpx′ =

∫
x̃∈ηx′\A

f(x̃) px′(x̃) dx̃ +

∫
x̃∈A

f(x̃) px′(x̃) dx̃, (7.38)

fexpx − fexpx′ =

∫
x̃∈ηx\A

f(x̃) px(x̃) dx̃−
∫
x̃∈ηx′\A

f(x̃) px′(x̃) dx̃, (7.39)

where px(x̃) ∼ pdf(x + δ) and px′(x̃) ∼ pdf(x′ + δ). Hence, for comparisons, A offers no
relevant information. Moreover, when x and x′ are located close to each other, A will be large
compared to ηx\A and ηx′\A and for an evaluation method based on sampling in ηx and ηx′ ,
the probability of sampling within ηx\A and ηx′\A will be small. Given the surface area (or
volume) |A| of A, the probability that one uniformly drawn random sample in ηx hits ηx\A is

P (sample not in A | sample in ηx) = 1− |A|
|ηx|

= 1− |A|
2nln

. (7.40)

Let X denote the discrete random variable for the number of samples n until the first sample
in ηx\A is obtained. For a pure Monte-Carlo sampling scheme, this leads to the following

186 7. Finding Robust Optima

expected number of samples needed to obtain one sample in ηx that is not in A

E(X) =

∞∑
n=1

n · P (X = n) =
1

1− |A|ηx
=

2nln

2nln − |A|
. (7.41)

Obviously, the same reasoning can be followed for ηx′ . Provided that there is an overlap in the
regions of uncertainty, |A| can be computed as

|A| =
n∏
i=1

(2l − |xi − x′i|) . (7.42)

Or, alternatively, in two dimensions the following expression can be derived for |A|, given that
x and x′ lie at a distance r from each other and make an angle α with respect to the x-axis

|A| =

(2l − rx) · (2l − ry) , if rx ≤ 2l and ry ≤ 2l

0 , otherwise
. (7.43)

Here, rx = |r cosα| and ry = |r sinα|. From this, and assuming a periodicity of π/2 for α
(i.e., α ∈ [0, π/2]), an expression can be derived for the expected number of samples in ηx, m,
needed in order to hit the area ηx\A at least c times

m =

4cl2/
(
2lr (cosα+ sinα)− r2 cosα sinα

)
, if rx ≤ 2l and ry ≤ 2l

c , otherwise
.(7.44)

By expressing r in terms of l, substituting r = kl, this can be simplified to

m =

4c/
(
2k (cosα+ sinα)− k2 cosα sinα

)
, k cosα ≤ 2 and k sinα ≤ 2

c , otherwise
.(7.45)

The derivation above is still dependent on the angle α between x and x′. It is desirable to
have an approximation independent of α. This yields a general approximation for the required
number of samples m needed for two individuals at a distance r (still using r = lk, i.e.,
k = r/l) to have at least c samples in the regions ηx and ηx′ respectively. For this, we look
at the upper bound of |A| with respect to α and note that for |A| to be maximized, α = 0 or
α = π/4

|A| =

max{4l2 − 2kl2, 4l2 − 2
√

2kl2 + 1
2k

2l2} , if k ≤ 2
√

2

0 , otherwise

=

4l2 − 2

√
2kl2 + 1

2k
2l2 , if k ≤ 4

(√
2− 1

)
4l2 − 2kl2 , if 4

(√
2− 1

)
< k ≤ 2

√
2

0 , otherwise

. (7.46)

7.2. Strategies for Finding Robust Optima 187

This upper bound of A can be used to approximate (the upper bound of) m

m =

8c/

(
4
√

2k − k2
)

, if k ≤ 4
(√

2− 1
)

2c/k , if 4
(√

2− 1
)
< k ≤ 2

√
2

0 , otherwise

. (7.47)

For general n-dimensional cases, |A| can be assumed to be maximized in the cases equivalent
to the two-dimensional cases of α = 0 and α = π/4. Following this, and again using the
substitution r = kl, we obtain

|A| =

2nln max
{(

1− 1
2k
)
,
(

1− 1
2
√
n
k
)n}

, if k ≤ 2
√
n

0 , otherwise
, (7.48)

which can be used to obtain an expression for the expected number of samples in ηx needed to
hit ηx\A at least c times

m =

cmax
{

2
k , 1/

(
1−

(
1− 1

2
√
n
k
)n)}

, if k ≤ 2
√
n

c , otherwise
. (7.49)

It is clear that when using normal sampling approaches, many samples are practically wasted
when the distance between two solutions becomes small. Figure 7.25 shows the number of
required samples m needed to hit ηx\A at least once versus k for n = 100, 101, . . . , 106.
Interestingly, the plots are not much different for all values of n. For k . 1.7 the term 2/k

becomes the determining factor and the other term leads to m ≈ 1, even for n = 106. Hence,
the following rule-of-thumb can be used to indicate the growth of m relative to k

m =

 2c
k , if k ≤ 1.7

c , otherwise
. (7.50)

In [KEDB10b], a rejection based sampling procedure is proposed to obtain m samples in
ηx\ηx′ . This approach is described in Algorithm 7.7 and simply works by uniformly sampling
in ηx and rejecting samples in ηx ∩ ηx′ . Although the practical viability of this scheme is
limited, it can be incorporated into a simple (1+1)-Evolution Strategy to test the approach
of exploiting overlap. Additionally, besides the fact that we can either avoid the region A in
case of uniform noise, or at least reuse the samples for the evaluation of x and x′ in case of
other noise distributions, there is also a symmetry in the regions ηx\A and ηx′\A. Given a
perturbation xp ∼ U(−l, l) we note that

x + xp ∈ ηx\A⇔ x′ − xp ∈ ηx′\A. (7.51)

Hence, when using the rejection based sampling algorithm of Algorithm 7.7, it is only required
to obtain one set of samples for every pair x and x′, because X′ can be deduced from X.

188 7. Finding Robust Optima

Figure 7.25: The number of samples needed to obtain at least 1 sample in the region ηx\A, plotted
against the normalized distance k between x and x′ for n = 100, 101, . . . , 106 with a zoom on the
interval k ∈ [1.5, 2.5].

Algorithm 7.7: Rejection Based Uniform Sampling in ηx\ηx′
input: η-neighborhoods ηx and ηx′

output: a set X of m uniformly drawn samples in ηx\ηx′

1: X← ∅

2: while |X| < m do

3: xs ∼ U(ηx)

4: if xs /∈ ηx′ then

5: X← X ∪ {xs}

6: end if

7: end while

8: return X

As a proof of concept, in [KRD+11], two versions of the (1+1)-ES are compared on the sphere
problem (see Appendix B.1): one incorporating a MEM+

MS scheme (and reevaluation of the
parent) and one using the rejection based sampling approach for comparing the parent and the
offspring. In both schemes the sample size was set to m = 2n = 20 and an evaluation budget
of 2 · 106 was used. The results of one run of both schemes are shown in Figure 7.26.

From the convergence plots (the top left plot for the normal sampling approach and the top

7.2. Strategies for Finding Robust Optima 189

Figure 7.26: Left column: distance to the optimum and ordering error frequency of the normal
sampling approach. Middle column: distance to the optimum and ordering error frequency of the focused
sampling approach. Top right: the required number of samples and an upper bound estimator for the
required number of samples of the focused sampling run. Bottom right: the stepsize development for
both approaches.

right plot for the rejection based sampling approach) it can be seen that while the normal
sampling stagnates after about 5·105 evaluations, there is no sign of stagnation for the approach
implementing the focused sampling. Hence, although it still uses m = 20 samples for each
evaluation, the rejection based sampling approach remains making progress. Supported also
by the stepsize plots (bottom right), these empirical results suggest linear generation- and
evaluation-wise convergence for this particular problem.

The error frequency plots (bottom left for the normal sampling approach and bottom right
for the rejection based sampling approach) show the frequency of false negatives and false
positives versus the number of generations (these frequencies are computed over a window
of 1000 generations). For both approaches, the error frequencies stay at the same levels at a
certain point in time. For the normal sampling approach, this can be related to the stagnation
of the stepsize (i.e., the error rate is coupled to the noise ratio, which is directly coupled to the
stepsize). However, for the rejection based sampling approach the error rates stay at the same
levels even with the stepsize decreasing.

The number of samples that required in order to obtain m samples in ηx\A is shown
in the top right plot. Note that the implementation used for these experiments uses the simple

190 7. Finding Robust Optima

rejection method of Algorithm 7.7. The thick solid line shows for every generation the expected
upper bound of the number of samples, computed using the simple rule-of-thumb of Eq. 7.50,
with r = σ

√
n. This plot shows how this rule-of-thumb accurately determines the upper bound

for the required number of samples, but also that in many cases fewer samples suffice.

In conclusion, the ideas proposed in [KEDB10b] provide an alternative view on robustness
evaluation where the focus is not on trying to obtain accurate robustness estimates for
individual candidate solutions, but rather to compare the solutions of (successive) populations
with respect to robustness.

The experiments on the (1+1)-ES show how the proposed idea can successfully be
integrated in common optimization algorithms. However, a step is still to be made to also
include this concept in population based schemes that work with sets of candidate solutions
rather than two. An implementation for tournament selection can easily be derived, but for
(µ/ρ+, λ)-selection, more sophisticated schemes are required. For (µ/ρ+, λ)-schemes, samples
of overlapping regions can at least be reused when evaluating candidate solutions, but specific-
ally targeting non-overlapping regions will become computationally more expensive. An idea
that requires further development is to replace the rejection based sampling by Gibbs sampling
[CG92, GW92]. This would decrease the computational complexity of the sampling method
tremendously, making this approach from that perspective viable.

Finally, two issues that should still be addressed are: 1) the way in which this sampling
strategy can be adopted in cases of other input noise distributions, and 2) the applicability
of this method in case there are disturbance-free design variables. In the former case, the
overlapping region may still be relevant for comparing two candidate solutions. In the latter
case, there will never be an overlap, hence, in principle this method cannot be applied.

7.3 Summary and Discussion
This chapter has discussed the problem of finding robust optima. It has been shown how
these types of problems may be modeled within the optimization problem statement and how
different robustness measures can be derived from this. The problem of finding robust optima
is therefore reformulated into the problem of optimization of the effective objective functions,
while satisfying the effective constraints.

The effective objective and constraint functions can be seen as transformations of the
original objective and constraint functions. However, as precise evaluation of these functions
is often impossible, approximation methods are required. The algorithmic design aspect is
therewith reduced to efficient approximation or comparison of candidate solutions with respect
to the effective objective and constraint functions.

In the second part of this chapter, techniques have been reviewed that can be used within
Evolution Strategies to find robust optima. The particular focus of this chapter was on single
objective optimization of the expected objective function.

7.3. Summary and Discussion 191

The myopic approach (Section 7.2.1) is the strategy which simply uses canonical instances
of the (5/2DI , 35)-σSA-ES and the CMA-ES. This view relies on the observation that
Evolutionary Algorithms in practice already tend to converge to the more robust peaks. It has
been shown to be quite effective for identifying the more robust peaks, but it fails in case of
shifted robust optimizers.

When actively accounting for robustness, using Monte-Carlo integration methods is the
most straightforward way to evaluate the effective fitness of candidate solutions. Compared to
myopic approaches, these evaluation approaches (named SEM when using only one sample
and MEM when using multiple samples) allow for a closer convergence to shifted robust
optimizers. Additionally, for MEM evaluation approaches one could use the same sample
perturbations for all individuals in the population and base the Monte-Carlo integration on
a sample set obtained with Latin Hypercube sampling. These modifications seem to be
beneficial when the region around the robust optimum is symmetric, but can yield divergent
behavior when sharp ridges cause the robust optimizer to be shifted. A brief comparison of
MEM evaluation approaches with m samples to the alternative of using SEM evaluation and
increasing the population size with the same rate m (i.e., implicit averaging) shows that for
finding robust optima, explicit resampling seems to work better.

Similar to noisy objective functions, adaptive averaging techniques can also be used in the
context of finding robust optima. These techniques provide a way of omitting the problem of
determining an appropriate sample size m and in theory allow Evolution Strategies to zoom in
on the optimizer with arbitrary precision, although in practice convergence can be slow.

For objective functions for which evaluations are expensive, archive based approaches
and metamodeling approaches can be used for finding robust optima. These techniques aim
to efficiently use an archive of previous evaluations to serve as samples for robustness
evaluation. Although the overhead cost of these methods is considerable, these techniques
provide promising results compared to standard MEM approaches. A difficulty is, however,
that especially in higher dimensional search spaces it takes a while before the archive is filled
and can effectively be used for robustness estimation or metamodeling.

When aiming to actively improve the capabilities of targeting the more robust peaks, it has
been suggested to use niching techniques. However, although this idea sounds promising, in
this chapter it has been observed that a straightforward implementation of niching with a MEM
evaluation approach tends to become unstable. In this context it should be accounted for that
objective function evaluations are noisy, hence, the niching technique should be robust against
noise. The niching technique considered in Section 7.2.9 is, without modifications, not suitable
for this.

Lastly, an alternative evaluation scheme has been considered in which it is suggested
to compare pairs of individuals with respect to their robustness rather than trying to obtain
accurate robustness estimates. By exploiting the overlap in the regions of uncertainty (or η-
neighborhoods) it is in some cases possible to drastically improve the convergence accuracy

192 7. Finding Robust Optima

of MEM evaluation approaches (Section 7.2.10). However, this approach has been formulated
so far only for simple (1+1)-schemes and requires further study to be applied in practical
scenarios.

The techniques for finding robust optima that are discussed in this chapter represent the main
classes of approaches that can be followed. Based on this review, the myopic approach, the
MEM+

LHS and MEM−MS, the adaptive averaging approach, the archive based approach, and
the metamodeling approach are feasible approaches for practical scenarios. The question that
remains is which of these techniques can best be used in practice. In Chapter 8, we will study
this question.

Chapter 8

Empirical Study on Finding Robust

Optima

In Chapter 7, the problem of finding robust optima in the context of Evolution Strategies has
been discussed and an overview has been given of techniques for solving such problems. In
this review, the myopic approach, the MEM+

LHS approach, the MEM−MS approach, the adaptive
averaging approach, the archive based approach, and the metamodeling approach are shown
to be feasible approaches for practical scenarios. An interesting and yet unanswered question
is: how do these different techniques compare against each other with respect to performance?
This chapter presents the results of an empirical study that is designed to shed some light on
this question.

The structure of this chapter is as follows: Section 8.1 describes the general experimental setup
adopted in this empirical study. Section 8.2 shows the results of an empirical study for finding
the optimal sample sizes for the MEM+

LHS and the MEM−MS approach. Section 8.3 shows
the results of a full empirical comparison of the different methods for finding robust optima.
Section 8.4 closes with a summary and discussion.

8.1 Experimental Setup

The purpose of the experimental study is to find out how the different evaluation techniques
for finding robust optima compare when used within the same algorithmic basis, namely the
(5/2DI , 35)-σSA-ES and the CMA-ES. The general experimental settings, shown in Table
8.1, restrict to one particular search space dimension size, n = 10, and an evaluation budget
of 10, 000 function evaluations, which is taken as a standard setup throughout this chapter. For
the assessment of the quality of each scheme, we record the final solution quality over multiple
runs. Here, the final solution quality refers to a highly accurate Monte-Carlo approximation
(using m = 1000 samples) of the expected objective function value of the solution returned
after each optimization run).

194 8. Empirical Study on Finding Robust Optima

General experimental settings

Search space dimension size n = 10

Evaluation budget per run 10,000
Runs per algorithmic scheme 50
Performance indicators Final solution quality, approximated with Monte-Carlo

integration using 1000 samples, (mean, std, median)
over all runs, and rank sum for ranking of the
algorithmic schemes

Table 8.1: The general experimental setup.

The test problems are enlisted in Table 8.2 and full descriptions can be found in Appendix B.
The set of test problems is constructed based on test problems from literature. It incorporates
different difficulties that can be encountered within these types of optimization problems.

The RO Sphere Problem is a modified version of the original Sphere Problem. Obviously,
a myopic approach will perform much better on this test problem than any scheme that aims
to approximate the expected objective function. However, it is still useful as a test problem for
comparing the convergence limitations of the schemes designed for finding robust optima. The
RO Heaviside Sphere Problem and the RO Sawtooth Problem are problems with a shifted robust
optimizer that emerges due to a sharp ridge at the original optimum. The RO Volcano Problem
is a problem with a plateau where the robust is located in the center. The other problems have
multimodal objective functions in which the robust optimizer is classified as emergent. The RO
Pickelhaube Problem is a problem with two peaks, and the algorithmic challenge is to target
the most robust peak. The RO Branke Multipeak Problem has 2n peaks, varying in robustness.
The other two multipeak problems are more complex and provide cases in which the emergent
optimizer is also shifted with respect to the original local optimizers.

Test problem Properties of the underlying signal function

RO Sphere Problem unimodal robust optimizer equals original
optimizer

RO Heaviside Sphere Problem unimodal shifted robust optimizer
RO Sawtooth Problem unimodal shifted robust optimizer
RO Volcano Problem unimodal shifted robust optimizer
RO Pickelhaube Problem multimodal emergent robust optimizer
RO Branke’s Multipeak Problem multimodal emergent robust optimizer
RO Multipeak F1 Problem multimodal emergent robust optimizer
RO Multipeak F2 Problem multimodal emergent robust optimizer

Table 8.2: The test problems used for empirical comparison.

8.2. Tuning the Static Resampling Schemes 195

The different evaluation schemes for finding robust optima that are compared in this empirical
study are enlisted in Table 8.3. For the multi-evaluation methods, two variants are considered,
namely MEM−MS and MEM+

LHS. Theses are considered to be tuned optimally for each test
problem, therefore, Section 8.2 presents the results of the tuning of these methods. Both
resampling methods are also considered in an adaptive averaging form: UH-MEM−MS and
UH-MEM+

LHS. These two adaptive averaging methods use the rank-based adaptive averaging
approach for updating the sample size, as described in Section 7.2.5. The ABRSS and the
Kriging metamodeling approach are used as presented in Section 7.2.7 and Section 7.2.8
respectively.

Evaluation schemes for finding robust optima

Myopic A canonical (5/2DI , 35)-σSA-ES and CMA-ES.
MEM−MS The multi-evaluation method (MEM) using Monte-Carlo integration and

resampling the disturbances for all individuals in a generation.
MEM+

LHS The multi-evaluation method (MEM) using Latin Hypercube sampling
and the same disturbances for all individuals in a generation.

UH-MEM−MS The rank-based adaptive averaging method using the MEM−MS

evaluation scheme.
UH-MEM+

LHS The rank-based adaptive averaging method using the MEM+
LHS

evaluation scheme.
ABRSS The archive based evaluation approach.
Kriging The Kriging (metamodeling) based evaluation approach.

Table 8.3: The methods considered in the empirical study for finding robust optima.

8.2 Tuning the Static Resampling Schemes

For the empirical comparison of the schemes enlisted in Table 8.3, we consider optimally tuned
versions of the MEM−MS and the MEM+

LHS schemes for each test problem. Hence, before
presenting the results on the full comparison, Section 8.2.1 shows the results of the tuning
experiments of the MEM−MS evaluation scheme and Section 8.2.2 shows the results of the
tuning experiments of the MEM+

LHS evaluation scheme.

8.2.1 The Optimal Sample Size for MEM-
MS

This experiment is done in order to determine, for each test problem, the optimal sample size
for the MEM−MS evaluation scheme. Different instances of the MEM−MS-(5/2DI , 35)-σSA-ES
and the MEM−MS-CMA-ES are considered with varying sample sizes:m = 1, 2, . . . , 10. These
sample sizes are compared on the test problems listed in Table 8.2 using the experimental setup
shown in Table 8.1. The results of these experiments are shown in the tables and figures of

196 8. Empirical Study on Finding Robust Optima

Section 8.2.1.1 and Section 8.2.1.2 for the MEM−MS-(5/2DI , 35)-σSA-ES and the MEM−MS-
CMA-ES respectively.

Based on the results, we conclude that for the explicit averaging schemes (the MEM−MS-
(5/2DI , 35)-σSA-ES and the MEM−MS-CMA-ES) for each of the test problems with respect
to the general experimental setup the optimal sample sizes lie at the values shown in Table
8.4. From these results we observe the trade-off in convergence speed versus convergence
accuracy. It depends on the test problem which sample size is most suitable, i.e., there is no
clear winner. It seems that for the CMA-ES a slightly higher sample size is required than for the
(5/2DI , 35)-σSA-ES. Also, we see that for these test problems, the SEM evaluation approach
is not optimal in any case.

MEM-
MS-(5/2DI , 35)-σSA-ES MEM-

MS-CMA-ES

RO Sphere Problem m = 6 m = 10
RO Heaviside Sphere Problem m = 9 m = 7
RO Sawtooth Problem m = 4 m = 8
RO Volcano Problem m = 5 m = 10
RO Pickelhaube Problem m = 3 m = 4
RO Branke’s Multipeak Problem m = 3 m = 4
RO Multipeak F1 Problem m = 2 m = 6
RO Multipeak F2 Problem m = 6 m = 8

Table 8.4: The optimal sample size for the MEM−MS approach to achieve best convergence accuracy
on a budget of 10, 000 function evaluations.

8.2. Tuning the Static Resampling Schemes 197

8.2.1.1 Results MEM−MS-(5/2DI , 35)-σSA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 MS- 8.61 11.88 4.85 20487 10
MEM2 MS- 4.13 0.33 4.06 13628 8
MEM3 MS- 7.64 12.98 3.97 12697 6
MEM4 MS- 4.34 3.00 3.81 9550 2
MEM5 MS- 5.33 7.12 3.85 9790 3
MEM6 MS- 3.89 0.30 3.80 8695 1
MEM7 MS- 6.27 8.41 3.95 11791 5
MEM8 MS- 6.46 9.32 3.89 10880 4
MEM9 MS- 4.96 5.40 4.03 13067 7
MEM10 MS- 7.42 10.27 4.18 14665 9

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.49 0.39 0.42 20794 10
MEM2 MS- 0.28 0.16 0.26 16241 9
MEM3 MS- 0.25 0.24 0.22 14843 8
MEM4 MS- 0.17 0.08 0.16 11802 7
MEM5 MS- 0.15 0.07 0.13 9861 3
MEM6 MS- 0.21 0.25 0.15 11672 5
MEM7 MS- 0.25 0.40 0.15 11718 6
MEM8 MS- 0.18 0.25 0.12 8944 2
MEM9 MS- 0.18 0.37 0.10 8183 1
MEM10 MS- 0.22 0.31 0.14 11192 4

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.33 0.12 0.29 19929 10
MEM2 MS- 0.26 0.04 0.25 12821 7
MEM3 MS- 0.30 0.13 0.25 12676 6
MEM4 MS- 0.25 0.04 0.24 8721 1
MEM5 MS- 0.26 0.06 0.25 10063 3
MEM6 MS- 0.25 0.03 0.24 9248 2
MEM7 MS- 0.27 0.09 0.24 10284 4
MEM8 MS- 0.26 0.06 0.25 10917 5
MEM9 MS- 0.29 0.10 0.26 14090 8
MEM10 MS- 0.29 0.08 0.27 16501 9

RO VOLCANO PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.88 0.40 0.77 17980 10
MEM2 MS- 0.82 0.42 0.73 13189 8
MEM3 MS- 0.77 0.26 0.72 11845 5
MEM4 MS- 0.79 0.37 0.71 9808 2
MEM5 MS- 0.75 0.26 0.71 8412 1
MEM6 MS- 0.76 0.26 0.72 10592 4
MEM7 MS- 0.77 0.30 0.71 10340 3
MEM8 MS- 0.85 0.43 0.73 13006 7
MEM9 MS- 0.86 0.42 0.73 12872 6
MEM10 MS- 0.99 0.56 0.77 17206 9

RO PICKELHAUBE PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.31 0.20 0.29 13072 6
MEM2 MS- 0.26 0.03 0.24 8561 3
MEM3 MS- 0.26 0.03 0.24 7914 1
MEM4 MS- 0.26 0.03 0.24 7980 2
MEM5 MS- 0.30 0.22 0.28 10740 4
MEM6 MS- 0.27 0.04 0.28 10900 5
MEM7 MS- 0.34 0.27 0.30 14810 7
MEM8 MS- 0.32 0.10 0.29 15474 8
MEM9 MS- 0.34 0.09 0.32 17538 9
MEM10 MS- 0.37 0.11 0.33 18261 10

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.43 0.09 0.41 17123 10
MEM2 MS- 0.41 0.03 0.40 13275 7
MEM3 MS- 0.40 0.01 0.40 9237 1
MEM4 MS- 0.42 0.06 0.40 11051 4
MEM5 MS- 0.40 0.01 0.40 11268 5
MEM6 MS- 0.40 0.02 0.40 9877 2
MEM7 MS- 0.40 0.01 0.40 10710 3
MEM8 MS- 0.42 0.06 0.40 12789 6
MEM9 MS- 0.41 0.02 0.40 14230 8
MEM10 MS- 0.43 0.05 0.41 15690 9

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

MEM1 MS- -0.50 0.09 -0.52 13893 7
MEM2 MS- -0.56 0.08 -0.58 8450 1
MEM3 MS- -0.54 0.08 -0.57 9747 2
MEM4 MS- -0.53 0.09 -0.55 11273 5
MEM5 MS- -0.53 0.09 -0.56 10464 3
MEM6 MS- -0.54 0.08 -0.57 10640 4
MEM7 MS- -0.50 0.10 -0.53 13312 6
MEM8 MS- -0.48 0.07 -0.47 15946 9
MEM9 MS- -0.48 0.07 -0.48 16074 10
MEM10 MS- -0.48 0.08 -0.46 15451 8

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

MEM1 MS- -0.34 0.20 -0.25 18940 10
MEM2 MS- -0.50 0.22 -0.62 12415 6
MEM3 MS- -0.52 0.22 -0.64 11268 4
MEM4 MS- -0.56 0.20 -0.66 10659 3
MEM5 MS- -0.58 0.16 -0.65 10153 2
MEM6 MS- -0.57 0.18 -0.68 9857 1
MEM7 MS- -0.53 0.18 -0.63 12242 5
MEM8 MS- -0.53 0.17 -0.59 12522 7
MEM9 MS- -0.51 0.17 -0.55 13298 8
MEM10 MS- -0.51 0.14 -0.52 13896 9

198 8. Empirical Study on Finding Robust Optima

RO SPHERE PROBLEM

3 3.5 4 4.5 5 5.5 6 6.5 7

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO SAWTOOTH PROBLEM

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36 0.38

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO VOLCANO PROBLEM

0.65 0.7 0.75 0.8 0.85 0.9 0.95

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO PICKELHAUBE PROBLEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO BRANKE MULTIPEAK PROBLEM

0.38 0.4 0.42 0.44 0.46 0.48 0.5

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO MULTIPEAK F2 PROBLEM

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

8.2. Tuning the Static Resampling Schemes 199

8.2.1.2 Results MEM−MS-CMA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 MS- 4.76 0.92 4.60 21779 10
MEM2 MS- 4.99 6.47 3.97 17971 9
MEM3 MS- 3.93 0.31 3.81 15537 8
MEM4 MS- 3.81 0.23 3.75 13268 7
MEM5 MS- 4.02 2.15 3.70 11048 6
MEM6 MS- 5.17 10.44 3.65 10029 4
MEM7 MS- 3.65 0.12 3.63 8952 3
MEM8 MS- 6.52 10.36 3.66 10610 5
MEM9 MS- 4.21 4.10 3.57 7873 1
MEM10 MS- 5.55 9.55 3.62 8183 2

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.27 0.15 0.26 20171 10
MEM2 MS- 0.23 0.48 0.16 16851 9
MEM3 MS- 0.16 0.09 0.14 15401 8
MEM4 MS- 0.23 0.56 0.10 12720 6
MEM5 MS- 0.11 0.04 0.10 11926 5
MEM6 MS- 0.26 0.63 0.11 12924 7
MEM7 MS- 0.09 0.07 0.08 8429 2
MEM8 MS- 0.17 0.40 0.09 10358 4
MEM9 MS- 0.14 0.36 0.08 9127 3
MEM10 MS- 0.08 0.03 0.07 7343 1

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.29 0.03 0.29 21324 10
MEM2 MS- 0.27 0.03 0.26 18009 9
MEM3 MS- 0.25 0.03 0.25 15046 8
MEM4 MS- 0.25 0.03 0.24 12988 7
MEM5 MS- 0.25 0.05 0.24 11193 5
MEM6 MS- 0.25 0.08 0.23 10102 4
MEM7 MS- 0.25 0.06 0.24 11798 6
MEM8 MS- 0.23 0.01 0.23 7403 1
MEM9 MS- 0.24 0.05 0.23 9228 3
MEM10 MS- 0.26 0.10 0.23 8159 2

RO VOLCANO PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.76 0.06 0.76 20957 10
MEM2 MS- 0.71 0.04 0.71 16305 9
MEM3 MS- 0.75 0.30 0.70 15816 8
MEM4 MS- 0.70 0.03 0.69 12757 7
MEM5 MS- 0.69 0.02 0.69 11052 5
MEM6 MS- 0.73 0.33 0.69 11309 6
MEM7 MS- 0.72 0.29 0.68 9737 4
MEM8 MS- 0.76 0.38 0.68 9622 3
MEM9 MS- 0.68 0.02 0.68 8966 2
MEM10 MS- 0.68 0.02 0.68 8729 1

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.26 0.03 0.24 12457 7
MEM2 MS- 0.26 0.03 0.28 11990 4
MEM3 MS- 0.26 0.02 0.28 11023 3
MEM4 MS- 0.29 0.22 0.28 10173 1
MEM5 MS- 0.32 0.30 0.28 10280 2
MEM6 MS- 0.36 0.26 0.28 12318 6
MEM7 MS- 0.36 0.23 0.28 12174 5
MEM8 MS- 0.57 0.40 0.30 16495 10
MEM9 MS- 0.37 0.21 0.28 13432 8
MEM10 MS- 0.43 0.30 0.28 14908 9

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

MEM1 MS- 0.45 0.07 0.44 13547 7
MEM2 MS- 0.48 0.13 0.41 13000 6
MEM3 MS- 0.46 0.10 0.41 11511 3
MEM4 MS- 0.46 0.12 0.40 10393 1
MEM5 MS- 0.49 0.14 0.44 12248 5
MEM6 MS- 0.49 0.14 0.40 11151 2
MEM7 MS- 0.53 0.15 0.44 13875 10
MEM8 MS- 0.53 0.14 0.44 13685 8
MEM9 MS- 0.52 0.14 0.45 13790 9
MEM10 MS- 0.50 0.13 0.44 12050 4

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

MEM1 MS- -0.51 0.07 -0.52 17313 10
MEM2 MS- -0.53 0.07 -0.54 15347 9
MEM3 MS- -0.56 0.05 -0.57 11377 3
MEM4 MS- -0.55 0.08 -0.57 11941 6
MEM5 MS- -0.56 0.06 -0.57 11243 2
MEM6 MS- -0.56 0.07 -0.58 10063 1
MEM7 MS- -0.54 0.09 -0.58 11649 5
MEM8 MS- -0.55 0.07 -0.57 11595 4
MEM9 MS- -0.54 0.09 -0.57 11942 7
MEM10 MS- -0.54 0.07 -0.56 12780 8

RO FNIM F2 PROBLEM

Mean Std Med
∑

#

MEM1 MS- -0.53 0.12 -0.55 19015 10
MEM2 MS- -0.60 0.11 -0.63 13772 9
MEM3 MS- -0.64 0.05 -0.66 11116 3
MEM4 MS- -0.63 0.09 -0.63 12606 7
MEM5 MS- -0.60 0.12 -0.63 13417 8
MEM6 MS- -0.63 0.08 -0.63 11119 4
MEM7 MS- -0.64 0.05 -0.63 11705 6
MEM8 MS- -0.64 0.07 -0.65 10395 1
MEM9 MS- -0.61 0.14 -0.63 11465 5
MEM10 MS- -0.64 0.07 -0.66 10640 2

200 8. Empirical Study on Finding Robust Optima

RO SPHERE PROBLEM

3.5 4 4.5 5 5.5 6

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO SAWTOOTH PROBLEM

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO VOLCANO PROBLEM

0.65 0.7 0.75 0.8 0.85

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO PICKELHAUBE PROBLEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO BRANKE MULTIPEAK PROBLEM

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

RO MULTIPEAK F2 PROBLEM

−0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3

MEM10 MS−

MEM9 MS−

MEM8 MS−

MEM7 MS−

MEM6 MS−

MEM5 MS−

MEM4 MS−

MEM3 MS−

MEM2 MS−

MEM1 MS−

8.2. Tuning the Static Resampling Schemes 201

8.2.2 The Optimal Sample Size for MEM+
LHS

A first experiment is done in order to determine, for each test problem, the optimal
sample size for the MEM+

LHS evaluation scheme. Different instances of the MEM+
LHS-

(5/2DI , 35)-σSA-ES and the MEM+
LHS-CMA-ES are considered with varying sample sizes:

m = 1, 2, . . . , 10. These sample sizes are compared on the test problems listed in Table
8.2 using the experimental setup shown in Table 8.1. The results of these experiments are
shown in the tables and figures of Section 8.2.2.1 and Section 8.2.2.2 for the MEM+

LHS-
(5/2DI , 35)-σSA-ES and the MEM+

LHS-CMA-ES respectively.
Based on the results, we conclude that for the explicit averaging schemes, the MEM+

LHS-
(5/2DI , 35)-σSA-ES and the MEM+

LHS-CMA-ES, for each of the test problems with respect
to the general experimental setup the optimal sample sizes lie at the values shown in Table
8.5. The results show a similar picture as observed in the results of Section 8.2.1. Hence,
also here the trade-off between convergence accuracy and convergence speed is well visible.
Moreover, it seems that the MEM+

LHS method has a slightly higher optimal sample size, as
compared to the MEM−MS. Also here, the CMA-ES seems to accept a higher sample size than
the (5/2DI , 35)-σSA-ES.

MEM+
LHS-(5/2DI , 35)-σSA-ES MEM+

LHS-CMA-ES

RO Sphere Problem m = 5 m = 8
RO Heaviside Sphere Problem m = 8 m = 10
RO Sawtooth Problem m = 7 m = 10
RO Volcano Problem m = 6 m = 10
RO Pickelhaube Problem m = 4 m = 3
RO Branke’s Multipeak Problem m = 5 m = 6
RO Multipeak F1 Problem m = 5 m = 6
RO Multipeak F2 Problem m = 3 m = 8

Table 8.5: The optimal sample size for the MEM+
LHS approach to achieve best convergence accuracy

on a budget of 10, 000 function evaluations.

202 8. Empirical Study on Finding Robust Optima

8.2.2.1 Results MEM+
LHS-(5/2DI , 35)-σSA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 7.72 10.14 4.50 22457 10
MEM2 LHS+ 4.36 6.10 3.48 17008 8
MEM3 LHS+ 4.91 7.63 3.37 10973 5
MEM4 LHS+ 3.36 0.01 3.35 6628 2
MEM5 LHS+ 3.97 4.35 3.35 5229 1
MEM6 LHS+ 5.65 9.21 3.35 6997 3
MEM7 LHS+ 6.12 9.88 3.35 7696 4
MEM8 LHS+ 5.18 8.64 3.41 14000 6
MEM9 LHS+ 5.00 7.43 3.42 15258 7
MEM10 LHS+ 5.48 8.21 3.54 19004 9

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.53 0.32 0.52 19521 9
MEM2 LHS+ 0.64 0.26 0.67 21204 10
MEM3 LHS+ 0.43 0.24 0.36 17431 8
MEM4 LHS+ 0.31 0.31 0.25 14883 7
MEM5 LHS+ 0.22 0.28 0.17 11439 6
MEM6 LHS+ 0.25 0.47 0.17 10409 5
MEM7 LHS+ 0.16 0.27 0.12 7649 3
MEM8 LHS+ 0.17 0.28 0.11 7185 1
MEM9 LHS+ 0.24 0.41 0.12 8203 4
MEM10 LHS+ 0.13 0.09 0.12 7326 2

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.38 0.11 0.35 22446 10
MEM2 LHS+ 0.28 0.05 0.27 19425 9
MEM3 LHS+ 0.26 0.07 0.24 15067 8
MEM4 LHS+ 0.25 0.08 0.23 10824 6
MEM5 LHS+ 0.23 0.01 0.23 8006 2
MEM6 LHS+ 0.25 0.08 0.23 8719 3
MEM7 LHS+ 0.24 0.06 0.23 7889 1
MEM8 LHS+ 0.26 0.10 0.23 9876 4
MEM9 LHS+ 0.24 0.05 0.23 10530 5
MEM10 LHS+ 0.27 0.09 0.24 12468 7

RO VOLCANO PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.76 0.07 0.76 21241 10
MEM2 LHS+ 0.66 0.01 0.66 13464 6
MEM3 LHS+ 0.76 0.44 0.65 9709 4
MEM4 LHS+ 0.72 0.34 0.65 7378 3
MEM5 LHS+ 0.72 0.32 0.65 7193 2
MEM6 LHS+ 0.68 0.24 0.65 5547 1
MEM7 LHS+ 0.76 0.43 0.65 10555 5
MEM8 LHS+ 0.84 0.54 0.66 13604 7
MEM9 LHS+ 0.86 0.51 0.68 17686 8
MEM10 LHS+ 0.83 0.42 0.69 18873 9

RO PICKELHAUBE PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.27 0.03 0.28 13646 7
MEM2 LHS+ 0.26 0.02 0.27 10019 4
MEM3 LHS+ 0.30 0.25 0.27 8408 3
MEM4 LHS+ 0.25 0.03 0.23 6950 1
MEM5 LHS+ 0.28 0.19 0.23 7814 2
MEM6 LHS+ 0.28 0.13 0.26 11643 5
MEM7 LHS+ 0.30 0.21 0.27 13508 6
MEM8 LHS+ 0.30 0.08 0.28 15522 8
MEM9 LHS+ 0.38 0.23 0.32 17867 9
MEM10 LHS+ 0.44 0.22 0.40 19873 10

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.42 0.06 0.41 21356 10
MEM2 LHS+ 0.40 0.04 0.39 15944 7
MEM3 LHS+ 0.39 0.04 0.38 11200 5
MEM4 LHS+ 0.39 0.01 0.38 6913 3
MEM5 LHS+ 0.39 0.01 0.38 5516 1
MEM6 LHS+ 0.38 0.00 0.38 5742 2
MEM7 LHS+ 0.39 0.00 0.38 9205 4
MEM8 LHS+ 0.39 0.02 0.39 14390 6
MEM9 LHS+ 0.41 0.04 0.39 16018 8
MEM10 LHS+ 0.42 0.05 0.39 18966 9

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ -0.49 0.10 -0.52 18600 10
MEM2 LHS+ -0.61 0.04 -0.62 9928 4
MEM3 LHS+ -0.62 0.02 -0.62 8693 3
MEM4 LHS+ -0.60 0.07 -0.62 8388 2
MEM5 LHS+ -0.62 0.04 -0.62 7648 1
MEM6 LHS+ -0.58 0.09 -0.62 10752 5
MEM7 LHS+ -0.57 0.07 -0.60 12625 6
MEM8 LHS+ -0.55 0.08 -0.58 14524 7
MEM9 LHS+ -0.53 0.08 -0.53 16398 8
MEM10 LHS+ -0.51 0.08 -0.51 17694 9

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ -0.35 0.22 -0.25 20208 10
MEM2 LHS+ -0.57 0.20 -0.68 12574 6
MEM3 LHS+ -0.64 0.17 -0.72 8437 1
MEM4 LHS+ -0.64 0.16 -0.72 9752 2
MEM5 LHS+ -0.64 0.14 -0.70 9753 3
MEM6 LHS+ -0.60 0.17 -0.68 12047 5
MEM7 LHS+ -0.65 0.14 -0.70 10254 4
MEM8 LHS+ -0.61 0.14 -0.65 12637 7
MEM9 LHS+ -0.59 0.14 -0.63 14434 8
MEM10 LHS+ -0.58 0.12 -0.62 15154 9

8.2. Tuning the Static Resampling Schemes 203

RO SPHERE PROBLEM

3.5 4 4.5 5 5.5 6

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO SAWTOOTH PROBLEM

0.2 0.25 0.3 0.35 0.4

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO VOLCANO PROBLEM

0.65 0.7 0.75 0.8 0.85 0.9

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO PICKELHAUBE PROBLEM

0.2 0.3 0.4 0.5 0.6 0.7 0.8

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO BRANKE MULTIPEAK PROBLEM

0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO MULTIPEAK F2 PROBLEM

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

204 8. Empirical Study on Finding Robust Optima

8.2.2.2 Results MEM+
LHS-CMA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 4.18 0.52 4.05 23549 10
MEM2 LHS+ 4.06 4.47 3.42 20890 9
MEM3 LHS+ 4.41 7.43 3.36 17957 8
MEM4 LHS+ 3.35 0.01 3.34 15081 7
MEM5 LHS+ 3.34 0.00 3.34 12612 6
MEM6 LHS+ 4.45 7.88 3.34 9429 5
MEM7 LHS+ 4.64 9.22 3.34 7519 4
MEM8 LHS+ 3.34 0.00 3.34 5681 1
MEM9 LHS+ 3.34 0.00 3.33 6016 2
MEM10 LHS+ 3.34 0.01 3.34 6516 3

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.58 0.21 0.65 17032 8
MEM2 LHS+ 0.70 0.35 0.72 18879 9
MEM3 LHS+ 0.68 0.18 0.74 19527 10
MEM4 LHS+ 0.59 0.38 0.74 16824 7
MEM5 LHS+ 0.50 0.51 0.38 14130 6
MEM6 LHS+ 0.28 0.22 0.19 10187 4
MEM7 LHS+ 0.29 0.32 0.20 10288 5
MEM8 LHS+ 0.16 0.07 0.15 6904 3
MEM9 LHS+ 0.22 0.45 0.12 6435 2
MEM10 LHS+ 0.17 0.35 0.11 5044 1

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.34 0.06 0.33 22652 10
MEM2 LHS+ 0.28 0.05 0.27 19178 9
MEM3 LHS+ 0.26 0.06 0.25 16762 8
MEM4 LHS+ 0.25 0.05 0.24 14660 7
MEM5 LHS+ 0.24 0.06 0.23 13380 6
MEM6 LHS+ 0.25 0.10 0.23 11685 5
MEM7 LHS+ 0.24 0.09 0.22 8434 4
MEM8 LHS+ 0.22 0.02 0.22 6097 2
MEM9 LHS+ 0.24 0.09 0.22 6698 3
MEM10 LHS+ 0.23 0.08 0.21 5704 1

RO VOLCANO PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.73 0.06 0.71 23447 10
MEM2 LHS+ 0.66 0.01 0.65 19907 9
MEM3 LHS+ 0.65 0.00 0.65 15461 8
MEM4 LHS+ 0.69 0.30 0.65 13183 7
MEM5 LHS+ 0.64 0.00 0.64 10220 6
MEM6 LHS+ 0.64 0.00 0.64 8402 2
MEM7 LHS+ 0.69 0.36 0.64 8420 3
MEM8 LHS+ 0.67 0.18 0.64 9092 4
MEM9 LHS+ 0.68 0.30 0.64 9126 5
MEM10 LHS+ 0.68 0.26 0.64 7992 1

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.30 0.22 0.28 16067 10
MEM2 LHS+ 0.25 0.02 0.23 11381 4
MEM3 LHS+ 0.29 0.19 0.25 10555 1
MEM4 LHS+ 0.27 0.07 0.27 11202 3
MEM5 LHS+ 0.37 0.38 0.27 11768 5
MEM6 LHS+ 0.36 0.37 0.27 12038 6
MEM7 LHS+ 0.33 0.19 0.27 11198 2
MEM8 LHS+ 0.40 0.31 0.27 12270 7
MEM9 LHS+ 0.35 0.22 0.27 12784 8
MEM10 LHS+ 0.45 0.29 0.28 15987 9

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ 0.45 0.09 0.42 15641 10
MEM2 LHS+ 0.42 0.09 0.39 12631 6
MEM3 LHS+ 0.45 0.11 0.38 13058 8
MEM4 LHS+ 0.45 0.12 0.38 11931 4
MEM5 LHS+ 0.48 0.13 0.41 12026 5
MEM6 LHS+ 0.44 0.10 0.40 10595 1
MEM7 LHS+ 0.50 0.15 0.38 11928 3
MEM8 LHS+ 0.47 0.13 0.38 10956 2
MEM9 LHS+ 0.48 0.13 0.43 12888 7
MEM10 LHS+ 0.50 0.14 0.43 13596 9

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ -0.55 0.08 -0.58 15431 10
MEM2 LHS+ -0.59 0.05 -0.60 12617 7
MEM3 LHS+ -0.59 0.04 -0.60 12144 4
MEM4 LHS+ -0.58 0.07 -0.60 12287 6
MEM5 LHS+ -0.58 0.06 -0.60 13128 8
MEM6 LHS+ -0.59 0.07 -0.61 10713 1
MEM7 LHS+ -0.58 0.08 -0.61 11500 2
MEM8 LHS+ -0.59 0.06 -0.60 11948 3
MEM9 LHS+ -0.56 0.10 -0.59 13280 9
MEM10 LHS+ -0.57 0.08 -0.61 12202 5

RO FNIM F2 PROBLEM

Mean Std Med
∑

#

MEM1 LHS+ -0.59 0.11 -0.60 18079 10
MEM2 LHS+ -0.66 0.05 -0.67 13923 9
MEM3 LHS+ -0.65 0.08 -0.68 12630 7
MEM4 LHS+ -0.66 0.05 -0.68 11758 6
MEM5 LHS+ -0.67 0.05 -0.68 10415 2
MEM6 LHS+ -0.64 0.09 -0.67 11753 5
MEM7 LHS+ -0.66 0.05 -0.68 11226 3
MEM8 LHS+ -0.66 0.08 -0.68 10107 1
MEM9 LHS+ -0.64 0.11 -0.68 11673 4
MEM10 LHS+ -0.64 0.09 -0.64 13686 8

8.2. Tuning the Static Resampling Schemes 205

RO SPHERE PROBLEM

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO SAWTOOTH PROBLEM

0.2 0.25 0.3 0.35 0.4

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO VOLCANO PROBLEM

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78 0.8

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO PICKELHAUBE PROBLEM

0.2 0.4 0.6 0.8 1 1.2

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO BRANKE MULTIPEAK PROBLEM

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

RO MULTIPEAK F2 PROBLEM

−0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45

MEM10 LHS+

MEM9 LHS+

MEM8 LHS+

MEM7 LHS+

MEM6 LHS+

MEM5 LHS+

MEM4 LHS+

MEM3 LHS+

MEM2 LHS+

MEM1 LHS+

206 8. Empirical Study on Finding Robust Optima

8.3 Full Comparison of Schemes Finding Robust Optima
Finally, a full empirical comparison between all schemes for finding robust optima (see Table
8.3) is performed. The MEM−MS and the MEM+

LHS schemes are assumed to be near optimally
tuned, with the settings as found in Table 8.4 and Table 8.5. The question is: do the advanced
evaluation schemes provide yield better results than optimally tuned static schemes?

Approach Strategy parameters

Myopic Default
MEM−MS See Table 8.4
MEM+

LHS See Table 8.5
UH-MEM−MS θ = 0.6, α = 1.2

UH-MEM+
LHS θ = 0.6, α = 1.2

ABRSS Reference set sample size: m = 2n = 20

Kriging Samples for metamodel construction: nkrig = 2n = 20. Sampling on the
metamodel for approximation of the expected fitness: MEM50+

LHS

Table 8.6: Algorithm settings used for the empirical comparison between the evaluation techniques for
finding robust optima.

Section 8.3.1 and Section 8.3.2 show the results for the (5/2DI , 35)-σSA-ES and the CMA-
ES respectively. Table 8.7 shows the combined rank scores of the compared schemes on all
benchmark problems.

(5/2DI , 35)-σSA-ES CMA-ES

Myopic 75,157 80,532
MEM−MS 94,463 85,032
MEM+

LHS 48,882 49,925
UH-MEM−MS 88,812 83,494
UH-MEM+

LHS 46,923 48,684
ABRSS 66,191 65,102
Kriging 70,972 78,631

Table 8.7: Combined rank sums on the set of test problems.

From the results, we see that the myopic approach outperforms the other approaches on three
of the eight test problems. For the sphere problem this is not surprising, being a unimodal test
problem where the original optimizer is also the robust optimizer. On the other two problems,
Branke’s multipeak problem and the pickelhaube problem, which are multimodal problems
with emergent robust optimizers, the myopic approach apparently seems to be just as good in
targeting the robust peak as the other approaches. Or, the myopic instances seem to be largely

8.3. Full Comparison of Schemes Finding Robust Optima 207

attracted by the robust peaks. For the pickelhaube problem, this is even more surprising given
the fact that both peaks have the same basin of attraction areas and cover the same volume.

A possible explanation is the following: The attraction of a peak on an Evolution Strategy is
determined by two matters: 1) the probability of generating individuals in that particular peak,
and 2) the probability that a random solution of that peak is better than a random solution of
the other peaks. For the pickelhaube problem, the probability of generating individuals in both
peaks is equal, but the probability that a random solution of the robust peak is better than a
random solution of the non-robust peak is larger. This could explain the inherent attraction of
the robust peak on the myopic approaches.

On the other problems, however, the myopic approach is clearly not a good alternative.
Furthermore, we observe that an optimally tuned MEM+

LHS evaluation approach yields better
results than an optimally tuned MEM−MS approach. Also for the uncertainty handling schemes,
the MEM+

LHS is to be recommended. When looking at the advanced approaches for finding
robust optima, we see that the ABRSS yields remarkably good results on the Heaviside sphere
problem and the sawtooth problem, but yields comparably poor results on the other test
problems. The Kriging approach, on the other hand, yields good results on the multipeak f1
problem and the multipeak f2 problem, and average results on the other problems. An approach
that yields good results across the spectrum is the UH-MEM+

LHS approach, which always ranks
as one of the three best approaches. The MEM+

LHS also yields good results across the set of
test problems.

To summarize, besides the myopic approach, the MEM−MS, and the UH-MEM−MS, all
approaches seem to yield comparable results. The ABRSS and the Kriging approach yield
particularly good results on specific test problems, the UH-MEM+

LHS yields good results across
the full set of test problems, and also a well-tuned static MEM+

LHS seems to work very well,
however, slightly worse than the UH-MEM+

LHS.

208 8. Empirical Study on Finding Robust Optima

8.3.1 Results (5/2DI , 35)-σSA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

Myopic 5.16 9.09 3.33 1913 1
MEM MS- 5.63 9.02 3.84 14775 7
MEM LHS+ 4.59 6.13 3.35 5126 2
UH MS- 3.64 0.15 3.60 12523 6
UH LHS+ 4.24 6.21 3.35 5538 3
ABRSS 4.56 7.23 3.49 10593 4
Kriging 5.56 8.43 3.52 10957 5

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

Myopic 0.79 0.03 0.78 16075 7
MEM MS- 0.19 0.24 0.12 11193 6
MEM LHS+ 0.14 0.26 0.09 9555 4
UH MS- 0.07 0.02 0.07 6324 2
UH LHS+ 0.08 0.02 0.07 6520 3
ABRSS 0.09 0.28 0.05 1721 1
Kriging 0.15 0.24 0.11 10037 5

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

Myopic 0.55 0.01 0.55 15370 7
MEM MS- 0.27 0.09 0.25 11067 6
MEM LHS+ 0.27 0.11 0.23 7484 3
UH MS- 0.26 0.07 0.25 10538 5
UH LHS+ 0.24 0.09 0.22 5655 2
ABRSS 0.21 0.06 0.20 1573 1
Kriging 0.28 0.11 0.24 9738 4

RO VOLCANO PROBLEM

Mean Std Med
∑

#

Myopic 0.72 0.31 0.68 11078 5
MEM MS- 0.82 0.43 0.71 14590 7
MEM LHS+ 0.75 0.42 0.65 3989 2
UH MS- 0.86 0.55 0.68 11705 6
UH LHS+ 0.65 0.00 0.65 2709 1
ABRSS 0.77 0.40 0.66 8660 3
Kriging 0.67 0.01 0.67 8694 4

RO PICKELHAUBE PROBLEM

Mean Std Med
∑

#

Myopic 0.25 0.02 0.23 4075 1
MEM MS- 0.29 0.18 0.28 12691 7
MEM LHS+ 0.28 0.14 0.27 7743 3
UH MS- 0.28 0.13 0.28 10969 6
UH LHS+ 0.25 0.02 0.23 6462 2
ABRSS 0.26 0.02 0.27 10026 5
Kriging 0.25 0.02 0.23 9459 4

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

Myopic 0.39 0.02 0.38 3177 1
MEM MS- 0.41 0.02 0.40 13167 7
MEM LHS+ 0.38 0.01 0.38 4032 2
UH MS- 0.41 0.03 0.40 13033 6
UH LHS+ 0.39 0.04 0.38 6185 3
ABRSS 0.44 0.11 0.40 12109 5
Kriging 0.39 0.02 0.39 9722 4

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

Myopic -0.53 0.09 -0.57 9958 6
MEM MS- -0.55 0.08 -0.57 9572 4
MEM LHS+ -0.60 0.06 -0.62 4363 1
UH MS- -0.46 0.06 -0.47 13553 7
UH LHS+ -0.56 0.09 -0.60 7828 3
ABRSS -0.51 0.12 -0.57 9926 5
Kriging -0.59 0.04 -0.60 6225 2

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

Myopic -0.29 0.17 -0.27 13511 7
MEM MS- -0.57 0.18 -0.66 7408 4
MEM LHS+ -0.56 0.21 -0.68 6590 3
UH MS- -0.45 0.14 -0.45 10167 5
UH LHS+ -0.61 0.16 -0.67 6026 1
ABRSS -0.38 0.23 -0.30 11583 6
Kriging -0.63 0.16 -0.67 6140 2

8.3. Full Comparison of Schemes Finding Robust Optima 209

RO SPHERE PROBLEM

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO SAWTOOTH PROBLEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO VOLCANO PROBLEM

0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO PICKELHAUBE PROBLEM

0.23 0.24 0.25 0.26 0.27 0.28 0.29

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO BRANKE MULTIPEAK PROBLEM

0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45 0.46 0.47 0.48

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35 −0.3

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO MULTIPEAK F2 PROBLEM

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

210 8. Empirical Study on Finding Robust Optima

8.3.2 Results CMA-ES

RO SPHERE PROBLEM

Mean Std Med
∑

#

Myopic 3.33 0.00 3.33 1924 1
MEM MS- 3.61 0.11 3.60 13651 7
MEM LHS+ 4.39 7.47 3.34 3690 2
UH MS- 5.80 11.43 3.49 10832 4
UH LHS+ 4.45 7.80 3.34 6111 3
ABRSS 3.61 0.16 3.57 12941 6
Kriging 3.55 0.09 3.54 12276 5

RO HEAVISIDE SPHERE PROBLEM

Mean Std Med
∑

#

Myopic 0.78 0.03 0.78 16225 7
MEM MS- 0.13 0.28 0.08 9209 4
MEM LHS+ 0.14 0.06 0.13 11649 6
UH MS- 0.07 0.01 0.06 6364 3
UH LHS+ 0.06 0.01 0.06 5305 2
ABRSS 0.06 0.00 0.05 1720 1
Kriging 0.11 0.04 0.11 10953 5

RO SAWTOOTH PROBLEM

Mean Std Med
∑

#

Myopic 0.56 0.02 0.55 16182 7
MEM MS- 0.24 0.02 0.23 9923 4
MEM LHS+ 0.22 0.02 0.21 5212 2
UH MS- 0.25 0.06 0.24 11216 6
UH LHS+ 0.22 0.02 0.21 5514 3
ABRSS 0.21 0.02 0.20 2267 1
Kriging 0.25 0.05 0.24 11111 5

RO VOLCANO PROBLEM

Mean Std Med
∑

#

Myopic 0.68 0.01 0.68 14242 7
MEM MS- 0.72 0.31 0.67 12347 6
MEM LHS+ 0.70 0.37 0.64 3046 2
UH MS- 0.78 0.47 0.66 9410 3
UH LHS+ 0.64 0.00 0.64 2610 1
ABRSS 0.67 0.02 0.66 9546 4
Kriging 0.67 0.01 0.67 10224 5

RO PICKELHAUBE PROBLEM

Mean Std Med
∑

#

Myopic 0.26 0.02 0.27 6018 1
MEM MS- 0.28 0.12 0.23 11225 7
MEM LHS+ 0.30 0.22 0.27 7912 3
UH MS- 0.25 0.02 0.23 9392 4
UH LHS+ 0.28 0.22 0.23 6287 2
ABRSS 0.29 0.22 0.27 10244 5
Kriging 0.32 0.27 0.27 10347 6

RO BRANKE MULTIPEAK PROBLEM

Mean Std Med
∑

#

Myopic 0.41 0.04 0.38 4411 1
MEM MS- 0.52 0.15 0.45 12012 6
MEM LHS+ 0.47 0.13 0.38 7088 2
UH MS- 0.54 0.15 0.47 12378 7
UH LHS+ 0.47 0.13 0.38 7925 4
ABRSS 0.44 0.08 0.43 9804 5
Kriging 0.41 0.06 0.39 7807 3

RO MULTIPEAK F1 PROBLEM

Mean Std Med
∑

#

Myopic -0.56 0.05 -0.57 9338 6
MEM MS- -0.55 0.09 -0.59 8548 4
MEM LHS+ -0.60 0.05 -0.60 5373 1
UH MS- -0.48 0.07 -0.47 13621 7
UH LHS+ -0.56 0.10 -0.60 7431 2
ABRSS -0.56 0.07 -0.57 9186 5
Kriging -0.57 0.08 -0.59 7928 3

RO MULTIPEAK F2 PROBLEM

Mean Std Med
∑

#

Myopic -0.56 0.10 -0.58 12192 7
MEM MS- -0.62 0.10 -0.66 8117 4
MEM LHS+ -0.64 0.11 -0.65 5955 1
UH MS- -0.58 0.12 -0.62 10281 6
UH LHS+ -0.62 0.10 -0.64 7501 2
ABRSS -0.61 0.08 -0.63 9394 5
Kriging -0.63 0.09 -0.64 7985 3

8.3. Full Comparison of Schemes Finding Robust Optima 211

RO SPHERE PROBLEM

3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO HEAVISIDE SPHERE PROBLEM

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO SAWTOOTH PROBLEM

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO VOLCANO PROBLEM

0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.7 0.71

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO PICKELHAUBE PROBLEM

0.23 0.24 0.25 0.26 0.27 0.28 0.29

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO BRANKE MULTIPEAK PROBLEM

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO MULTIPEAK F1 PROBLEM

−0.65 −0.6 −0.55 −0.5 −0.45 −0.4

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

RO MULTIPEAK F2 PROBLEM

−0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4

Kriging

ABRSS

UH LHS+

UH MS−

MEM LHS+

MEM MS−

Myopic

212 8. Empirical Study on Finding Robust Optima

8.4 Summary and Discussion
This chapter has presented the results of an empirical comparison on different techniques that
can be used within Evolution Strategies for finding robust optima. From this empirical study
we conclude that the myopic approach can be a very risky approach when aiming to find robust
optima. It highly depends on the particularities of the objective function landscape, whether this
approach will work. However, because the particularities of the objective function landscape
are not known beforehand, this approach is not recommendable.

When considering optimally tuned resampling approaches, the results clearly show that
the MEM−MS is, overall, outperformed by the MEM+

LHS approach. Hence, it is recommended
to use Latin Hypercube Sampling within a resampling approach as well as to use the same
sampling disturbances/perturbations for all individuals in the population.

When considering the more advanced methods, we see that the ABRSS and the Kriging
approach yield particularly good results on specific test problems, but do not yield exception-
ally good performance on other test problems. Of the two, the Kriging approach seems to yield
slightly more stable results across all test problems, but ABRSS yields exceptionally good
results on the Heaviside sphere and the sawtooth problem.

Two methods that yield a good performance across the full set of test problems are the
UH-MEM+

LHS approach and a well tuned MEM+
LHS approach. However, the empirical results

in Section 8.2.1 and Section 8.2.2 have shown that the setting of the sample size highly
affects the performance of Evolution Strategies for finding robust optima. Therefore, the
adaptive averaging approach, the UH-MEM+

LHS seems to be a promising method for finding
robust optima. Based on these empirical results, we conclude therefore by recommending UH-
MEM+

LHS as the most promising approach when aiming to find robust optima.

Chapter 9

Conclusion

In this work we have presented a definition and a framework of robust optimization that extends
the definition of classical optimization and provided practical guidelines for approaching
such problems. For two particular scenarios of robust optimization, namely the problem of
optimization of noisy objective functions and the problem of finding robust optima, we have
studied how Evolution Strategies should be adapted in order to tackle such problems. For these
two scenarios we have provided a systematic overview of existing methods and pointed out yet
unexplored directions of algorithmic improvement. The algorithmic contributions presented in
this work aim to fill these blanks. The empirical comparisons presented in this work provide a
refined benchmark set for algorithmic comparison for the two scenarios of robust optimization.

Section 9.1 provides a summary of this work and discusses the conclusions that can be drawn
from this research and Section 9.2 closes with an outlook on possible future directions of
research.

9.1 Summary

Real-world optimization problems often involve various types of uncertainties and noise
emerging in different parts of the optimization problem. When not accounting for these matters,
optimization may fail, or may yield solutions that are optimal in the classical strict notion of
optimality, but fail in practice. Robust optimization is the practice of optimization that accounts
for uncertainties and/or noise in the system or (simulation) model. That is, it considers all types
of noise and uncertainties that emerge within the system or (simulation) model, but it does not
include uncertainties in the formulation of the goals and constraints.

The goal of robust optimization is twofold: 1) to find optimal solutions despite uncertainties
and noise in the optimization model, and 2) to find optimal solutions that are robust with respect
to uncertainties and noise, and therewith useful in practice. Dealing with robust optimization
problems requires the integration of the notion of robustness in the specification of solution
quality. That is, effective objective and constraint functions are needed that incorporate the

214 9. Conclusion

notion of robustness or robust quality. This notion changes the original goal of optimization,
because robustness and solution quality are often conflicting objectives.

The different sources and types of uncertainty and noise causes a combinatorial explo-
sion of different robust optimization scenarios. However, some scenarios occur more often
than others. In this work, two particular robust optimization scenarios are considered: 1)
optimization of noisy objective functions, and 2) finding robust optima. These two scenarios
frequently emerge in different forms in real-world optimization settings. It is studied how two
Evolution Strategy instances, namely the (5/2DI , 35)-σSA-ES and the CMA-ES, perform in
their canonical form on these two scenarios and how they should be adapted to make them
more robust.

Optimization of noisy objectives requires a measure for optimization that includes an account
for noise, i.e., an effective objective function. When considering the expected quality of
candidate solutions as such a measure, Evolution Strategies are fairly insensitive when the
noise is relatively small. However, if a higher convergence accuracy is required, additional
measures should be taken.

Implicit and explicit averaging provide a straightforward way to increase the convergence
accuracy. Implicit averaging refers to the practice of increasing the population size and explicit
averaging refers to assessing the quality of candidate solutions by taking the average over
multiple evaluations. However, these two techniques require the a priori specification of a
sample size or population size and still yield a limited convergence accuracy.

Adaptive averaging techniques are extensions of static noise handling techniques that aim
to automatically adapt the evaluation intensity within the process of evolution. These tech-
niques consist of two components: 1) an uncertainty quantification mechanism that measures
the effects of noise on the selection operator, and 2) an uncertainty treatment mechanism that
involves a static noise handling scheme (such as explicit averaging) and a way to adapt the
evaluation intensity (e.g., the sample size) based on the uncertainty quantification.

In this work we consider adaptive averaging schemes that are based on explicit averaging
as noise handling method. For a simple quadratic model with Gaussian additive noise it is
shown that for an optimally tuned adaptive averaging strategy the resampling effort grows
cubically with the inverse distance to the optimum. To achieve a linear convergence rate over
the generations, it is thus necessary to at least exponentially increase the resampling effort.

An empirical study shows that an uncertainty measure that is based on rank-differences
that emerge when splitting up the evaluation in two rounds is the most promising method
for quantifying the uncertainty. Moreover, it is shown that adaptive averaging schemes can
yield results comparable to well tuned static noise handling schemes. That is, except for
one scenario; a well-tuned implicit averaging scheme for the CMA-ES outperforms all other
methods. Being less sensitive to parameter settings, adaptive averaging techniques provide a
good alternative to implicit and explicit averaging techniques.

9.1. Summary 215

When aiming to find robust optima given anticipated input uncertainty, a number of different
effective objective functions can be constructed. Among these, the expected solution quality
under consideration of its possible perturbations is a common measure. The expected objective
function can be seen as an integral transform of the original objective function. The difficulty
of this scenario lies in the fact that precise evaluation of the effective objective function is
impossible, hence methods are needed that can approximate the robust quality of candidate
solutions. Two types of robust optima can be distinguished: 1) shifted robust optima and 2)
emergent robust optima. These types yield two distinct challenges.

The simplest approach for finding robust optima is to do nothing at all, but to rely
on the inherent capabilities of Evolution Strategies to target the more robust peaks. This
myopic approach is supported by the observation that Evolutionary Algorithms already have
an inherent tendency to converge to the more robust parts of the search space. However, it fails
when the robust optimizer is a shifted version of the original optimizer.

When actively targeting for robustness, Monte-Carlo integration methods can be used to
approximate the expected objective function values for candidate solutions. It is pointed out
that doing so yields approximations of the expected objective function value of candidate
solutions that makes the problem of finding robust optima very similar to optimization of
noisy objective functions. However, in this scenario the noise in the objective function is due
to approximation errors and not an inherent part of the system. The limitation of Monte-Carlo
integration methods is that they are limited in approximation accuracy and therefore limit the
accuracy with which robust optima can be targeted.

Similar to when dealing with noisy objective functions, adaptive noise handling strategies
can also be used for finding robust optima. Using this approach has the same advantages as
with noisy optimization, namely that it does not suffer from convergence accuracy limitations
and it does not require the a priori specification of a sample size.

Another branch of approaches is formed by archiving and metamodeling approaches.
These approaches store previously evaluated candidate solutions and use these for estimating
the objective function values for newly generated candidate solutions. This makes them
especially useful when objective function evaluations are (computationally) expensive. An
archive maintenance approach is reviewed that incorporates an advanced scheme to update
the archive and to make sure that it is well usable for the obtaining reliable approximations
for newly generated candidate solutions. Besides this, a Kriging metamodeling approach is
considered and tested that uses the archive not directly, but builds a model from which effective
objective function estimates are obtained.

The idea of using niching approaches for the goal of finding robust optima has the alleged
advantage that the search focuses on more regions of the search space (which in particular
for emergent robust optima looks promising). A straightforward implementation of a standard
niching strategy shows, however, that using this idea directly introduces more problems than
it solves. For these kinds of purposes, niching strategies are required that can deal with noisy

216 9. Conclusion

objective functions.
Last but not least, a method to boost accuracy when aiming to find robust optima is to

exploit the overlap of the regions of uncertainty (or η-neighborhoods) of candidate solutions
and base the evaluation on how pairs of solutions compare rather than aiming to obtain precise
approximations of the effective objective function.

The results of an empirical comparative study show that an adaptive averaging strategy
using Latin Hypercube Sampling and using the same disturbances for all individuals in the
population for evaluation of the effective objective function is the most promising approach.
Compared to the myopic approach and optimally tuned resampling, it yields better perform-
ance across the set of test problems. The archive based evaluation approach and the metamodel
based approach yield a good performance on specific test problems.

9.2 Outlook
There are many other scenarios that have not been discussed in detail, but which also fall within
the scope of robust optimization. Although the observations for the two scenarios considered in
this work can be used to a great extent in other scenarios as well, particular dynamics remain to
be studied. In particular the scenario of optimization under uncontrollable perturbations of the
design variables (see, e.g., [BOS03, SBO04, BS06b]) and the scenario of optimization given
uncertainties in the environmental parameters form two interesting classes. Besides this, both
scenarios considered in this work can be researched in more depth. For instance, by considering
different types of noise distributions or uncertainties and different types of effective objective
function measures.

Extending this research to multi-objective optimization is another direction that is useful
for many real-world optimization problems. Approaches that have been proposed to find robust
optima for multi-objective optimization are presented in, e.g., [JS03, DG06, GA05, LAA05,
LOL05, BA06, PL09, Bad10, SRS11]. Linking the observations and findings of this thesis to
these studies forms a challenging project. Along the same line of thought, it would interesting
to extend this work to robust optimization with constraints.

In this work, the focus was on Evolution Strategies, and in particular the
(5/2DI , 35)-σSA-ES and the CMA-ES. Extending this research in the direction of other
Evolution Strategy variants or other Evolutionary Algorithms is another logical next step.
Besides that, it would be interesting to see to what extent the methods for robust optimization
that have been presented in this work can be used within other types of optimization
algorithms.

Besides extending this research to different types of robust optimization scenarios, some ap-
proaches are well worth to be investigated in more detail, also from the algorithmic perspective.

In Section 5.4.6, an alternative uncertainty quantification approach is proposed. The
empirical results of Chapter 6 show that this approach yields comparable results to the

9.2. Outlook 217

uncertainty quantification measure of Hansen et al. [HNGK09] (see Section 5.4.5). This
measure counts the rank-inversions for the uncertainty quantification and compares them with
known statistics on purely random orderings. Compared to the uncertainty quantification of
Hansen et al. [HNGK09], it has a more stable statistical basis, it is simpler to implement,
and yields comparable results. Investigating this uncertainty quantification in more depth is
therefore important.

The empirical results of Chapter 6 show that implicit averaging is a very efficient way of
countering the effects of noise for the CMA-ES. Studying adaptive averaging techniques that
use implicit averaging as noise treatment scheme is therefore a worthwhile object of study.

Maintaining an archive of previously evaluated solutions for the purpose of reusing them
for the evaluation of other candidate solutions can enhance the efficiency of optimization
when function evaluations are costly. A promising approach for doing so is presented in
Section 7.2.7. This approach aims to fill the archive such that it is better spread in the region
of interest (i.e., the region around candidate solutions). Also combining this approach in
combination with other metamodeling techniques, as shown in Section 7.2.8, is worthwhile
being studied.

Also niching for finding robust optima (discussed in Section 7.2.9) is an issue worthwhile
of further investigation. Although the straightforward utilization of a standard niching tech-
nique does not function well, the idea of focusing the optimization on multiple parts of the
search space is interesting. Assuming that the noise in the robustness approximations of the
candidate solutions is the main cause of the failure of the niching approach in this context,
niching for noisy objective functions is an interesting line of study.

A particularly promising idea is to exploit the overlap in the regions of uncertainty when
aiming to find robust optima, presented in Section 7.2.10. For this only a proof of concept
is given. Extending this method for efficient comparison among multiple candidate solutions
could potentially make this approach very suitable for finding robust optima. However, this
remains to be studied.

Finally, this work has provided a benchmark setup for empirical comparison. Based on test
problems from literature, two benchmark sets have been defined that are small, representative
test sets for 1) optimization of noisy objective functions with Gaussian additive noise, and
2) optimization for finding robust optima given uniform input noise. The test problems are
described in detail in Appendices A and B. Although the empirical testing in this thesis is
limited to 10-dimensional search spaces, the set of benchmarks is generalizable for arbitrary
dimensions. The results of the experiments presented in Chapter 6 and Chapter 8 respectively
can be used for comparison of new algorithmic methods. Extending the empirical study to
higher dimensional problems is a relatively simple, but is interesting future step.

Bibliography
[AB02] D.V. Arnold and H.-G. Beyer. Performance Analysis of Evolution Strategies

with Multi-Recombination in High-Dimensional RN-Search Spaces Disturbed
by Noise. Theoretical Computer Science, 289:629–647, October 2002.

[AB04] D.V. Arnold and H.-G. Beyer. Performance Analysis of Evolutionary
Optimization with Cumulative Step Length Adaptation. IEEE Transactions on
Automatic Control, 49(4):617–622, April 2004.

[AB08] D.V. Arnold and H.-G. Beyer. Evolution Strategies with Cumulative Step Length
Adaptation on the Noisy Parabolic Ridge. Natural Computing, 7:555–587,
December 2008.

[AMB+92] B. Abraham, J. MacKay, G. Box, R.N. Kacker, T.J. Lorenzen, J.M. Lucas, R.H.
Myers, G.G. Vining, J.A. Nelder, M.S. Phadke, J. Sacks, W.J. Welch, A.C.
Shoemaker, K.L. Tsui, S. Taguchi, and C.F.J. Wu. Taguchi’s Parameter Design:
A Panel Discussion. Technometrics, 34(2):127–161, May 1992.

[AW93] A.N. Aizawa and B.W. Wah. Dynamic Control of Genetic Algorithms in a Noisy
Environment. In Proceedings of the Fifth International Conference on Genetic
Algorithms, pages 48–55. Morgan Kaufman, 1993.

[AW94] A.N. Aizawa and B.W. Wah. Scheduling of Genetic Algorithms in a Noisy
Environment. Evolutionary Computation, 2(2):97–122, June 1994.

[BA06] C. Barrico and C. Henggeler Antunes. Robustness Analysis in Multi-Objective
Optimization Using a Degree of Robustness Concept. In IEEE Congress on
Evolutionary Computation (CEC 2006). IEEE Press, July 2006.

[Bäc96] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, 1996.

[Bad10] J.M. Bader. Hypervolume-Based Search for Multiobjective Optimization:
Theory and Methods. CreateSpace, 2010.

[BBC11] D. Bertsimas, D.B. Brown, and C. Caramanis. Theory and Applications of
Robust Optimization. SIAM Review, 53(3):464–501, August 2011.

[Bey94] H.-G. Beyer. Toward a Theory of Evolution Strategies: The (µ, λ)-Theory.
Evolutionary Computation, 2:381–407, December 1994.

[Bey95] H.-G. Beyer. Towards a Theory of Evolution Strategies: On the Benefits of Sex
— The (µ/ρ, λ) Theory. Evolutionary Computation, 3:81–111, March 1995.

[Bey96] H.-G. Beyer. On the Asymptotic Behavior of Multi-Recombinant Evolution
Strategies. In Parallel Problem Solving from Nature (PPSN IV), volume 1141
of LNCS, pages 122–133. Springer, 1996.

[Bey98] H.-G. Beyer. Mutate Large, but Inherit Small! On the Analysis of Rescaled
Mutations in (1,λ)-ES with Noisy Fitness Data. In Parallel Problem Solving
from Nature (PPSN V), volume 1498 of LNCS, pages 109–118. Springer-Verlag,
1998.

220 BIBLIOGRAPHY

[Bey00] H.-G. Beyer. Evolutionary Algorithms in Noisy Environments: Theoretical
Issues and Guidelines for Practice. Computer Methods in Applied Mechanics
and Engineering, 186(2-4):239–267, June 2000.

[BH94] T. Bäck and U. Hammel. Evolution Strategies Applied to Perturbed Objective
Functions. In IEEE Congress on Evolutionary Computation (CEC 1994), pages
40–45. IEEE Press, 1994.

[BNT10] D. Bertsimas, O. Nohadani, and K.M. Teo. Robust Optimization for
Unconstrained Simulation-Based Problems. Operations Research, 58(1):161–
178, January 2010.

[BOS03] H.-G. Beyer, M. Olhofer, and B. Sendhoff. On the Behavior of (µ/µI , λ)-
ES Optimizing Functions Disturbed by Generalized Noise. In Foundations of
Genetic Algorithms 7, pages 307–328. Morgan Kaufmann, 2003.

[BP09] B. Burgstaller and F. Pillichshammer. The Average Distance Between Two
Points. Bulletin of the Australian Mathematical Society, 80(3):353–359, May
2009.

[Bra98] J. Branke. Creating Robust Solutions by Means of Evolutionary Algorithms. In
Parallel Problem Solving from Nature (PPSN V), volume 1498 of LNCS, pages
119–128. Springer-Verlag, 1998.

[Bra01] J. Branke. Reducing the Sampling Variance when Searching for Robust
Solutions. In Genetic and Evolutionary Computation Conference (GECCO
2001), pages 235–242. Morgan Kaufmann, 2001.

[BS02] H.-G. Beyer and H.-P. Schwefel. Evolution Strategies A Comprehensive
Introduction. Natural Computing, 1:3–52, May 2002.

[BS06a] H.-G. Beyer and B. Sendhoff. Evolution Strategies for Robust Optimization. In
IEEE Congress on Evolutionary Computation (CEC 2006), pages 1346–1353.
IEEE Press, 2006.

[BS06b] H.-G. Beyer and B. Sendhoff. Functions with Noise-induced Multi-Modality:
A Test for Evolutionary Robust Optimization — Properties and Performance
Analysis. IEEE Transactions on Evolutionary Computation, 10(5):507–526,
October 2006.

[BS07] H.-G. Beyer and B. Sendhoff. Robust optimization — A Comprehensive Survey.
Computer Methods in Applied Mechanics and Engineering, 196(33-34):3190–
3218, July 2007.

[BSS01] J. Branke, C. Schmidt, and H. Schmeck. Efficient Fitness Estimation in Noisy
Environments. In Genetic and Evolutionary Computation Conference (GECCO
2001), pages 243–250, 2001.

[BST+88] G. Box, A.C. Shoemaker, K.-L. Tsui, R.V. León, W.C. Parr, V.N. Nair,
D. Pregibon, R.J. Carroll, D. Ruppert, B. Gunter, and N.R. Ullman. Signal-
To-Noise Ratios, Performance Criteria, and Transformations. Technometrics,
30(1):1–40, February 1988.

[BTGGN04] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable
Robust Solutions of Uncertain Linear Programs. Mathematical Programming,
99(2):351–376, March 2004.

[BZ70] R.E. Bellman and L.A. Zadeh. Decision-Making in a Fuzzy Environment.
Management Science, 17(4), December 1970.

BIBLIOGRAPHY 221

[CG92] G. Casella and E.I. George. Explaining the Gibbs Sampler. The American
Statistician, 46(3):167–174, August 1992.

[Cox05] D.R. Cox. Frequentist and Bayesian Statistics: A Critique (Keynote Address).
In Statistical Problems in Particle Physics, Astrophysics and Cosmology:
Proceedings of PHYSTAT05, pages 3–6. Imperial College Press, September
2005.

[CP04] E. Cantú-Paz. Adaptive Sampling for Noisy Problems. In Genetic and
Evolutionary Computation Conference (GECCO 2004), pages 947–958. ACM,
2004.

[CWZ99] W. Chen, M.M. Wiecek, and J. Zhang. Quality Utility — A Compromise
Programming Approach to Robust Design. Journal of Mechanical Design,
121(2):179–187, June 1999.

[Dan55] G.B. Dantzig. Linear Programming Under Uncertainty. Management Science,
1(3-4):197–206, April 1955.

[DG06] K. Deb and H. Gupta. Introducing Robustness in Multi-Objective Optimization.
Evolutionary Computation, 14(4):463–494, December 2006.

[Dun61] O.J. Dunn. Multiple Comparisons Among Means. Journal of the American
Statistical Association, 56(293):52–64, March 1961.

[EH02] I.C. Parmee (Editor) and P. Hajela. Optimization in Industry. Springer, 2002.
[EHM+08] M.T.M. Emmerich, C.J. Hopfe, R. Marijt, J. Hensen, C. Struck, and P. Stoelinga.

Evaluating Optimization Methodologies for Fture Integration in Building
Performance Tools. In Proceedings of the 8th International Conference on
Adaptive Computing on Design and Manufacture (ACDM 2008), 2008.

[ES03] A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer-
Verlag, 2003.

[FG88] J.M. Fitzpatrick and J.J. Grefenstette. Genetic Algorithms in Noisy Environ-
ments. Machine Learning, 3:101–120, October 1988.

[FSK08] A. Forrester, A. Sobester, and A. Keane. Engineering Design via Surrogate
Modelling: A Practical Guide. Wiley, September 2008.

[GA05] S. Gunawan and S. Azarm. Multi-Objective Robust Optimization Using a
Sensitivity Region Concept. Structural and Multidisciplinary Optimization,
29(1):50–60, January 2005.

[GR87] D.E. Goldberg and J. Richardson. Genetic Algorithms with Sharing for
Multimodal Function Optimization. In Proceedings of the Second International
Conference on Genetic algorithms and their Application, pages 41–49. L.
Erlbaum Associates Inc., 1987.

[GW92] W.R. Gilks and P. Wild. Adaptive Rejection Sampling for Gibbs Sampling.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 41(2):337–
348, 1992.

[HB94] U. Hammel and T. Bäck. Evolution Strategies on Noisy Functions, How to
Improve Convergence Properties. In Parallel Problem Solving from Nature
(PPSN III), volume 866 of LNCS, pages 159–168. Springer, 1994.

[HFRA09a] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box
Optimization Benchmarking 2009: Noiseless Functions Definitions. Research
Report RR-6829, INRIA, 2009.

222 BIBLIOGRAPHY

[HFRA09b] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-Parameter Black-Box
Optimization Benchmarking 2009: Noisy Functions Definitions. Research
Report RR-6869, INRIA, 2009.

[HFRA10] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter Black-
Box Optimization Benchmarking 2010: Presentation of the Noisy Functions.
Technical report, INRIA, 2010.

[HHPW07] C.J. Hopfe, J.L.M. Hensen, W. Plokker, and A.J.T.M. Wijsman. Model
Uncertainty and Sensitivity Analysis for Thermal Comfort Prediction. In
Proceedings of the 12th Symposium for Building Physics, pages 103–112.
Technische Universität Dresden, March 2007.

[HM11] V. Heidrich-Meisner. Evolutionary Direct Policy Search in Noisy Environments.
PhD thesis, Fakultät für Physik und Astronomie der Ruhr-Universität Bochum,
2011.

[HMI09a] V. Heidrich-Meisner and C. Igel. Hoeffding and Bernstein Races for Selecting
Policies in Evolutionary Direct Policy Search. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 401–408.
ACM, 2009.

[HMI09b] V. Heidrich-Meisner and C. Igel. Uncertainty Handling CMA-ES for
Reinforcement Learning. In Genetic and Evolutionary Computation Conference
(GECCO 2009), pages 1211–1218. ACM, 2009.

[HNGK09] N. Hansen, A.S.P. Niederberger, L. Guzzella, and P. Koumoutsakos. A Method
for Handling Uncertainty in Evolutionary Optimization with an Application
to Feedback Control of Combustion. IEEE Transactions on Evolutionary
Computation, 13(1):180–197, February 2009.

[HO96] N. Hansen and A. Ostermeier. Adapting Arbitrary Normal Mutation
Distributions in Evolution Strategies: The Covariance Matrix Adaptation. In
IEEE Congress on Evolutionary Computation (CEC 1996), pages 312–317.
IEEE Press, 1996.

[HO01] N. Hansen and A. Ostermeier. Completely Derandomized Self-Adaptation in
Evolution Strategies. Evolutionary Computation, 9(2):159–195, June 2001.

[Hop09] C.J. Hopfe. Uncertainty and Sensitivity Analysis in Building Performance
Simulation for Decision Support and Design Optimization. PhD thesis,
Eindhoven University of Technology, 2009.

[HTHB11] P. Hoes, M. Trcka, J.L.M. Hensen, and B. Hoekstra Bonnema. Optimizing
Building Designs Using a Robustness Indicator with respect to User Behavior.
In Building Simulation 2011 — Proceedings of the 12th Conference of the
International Building Performance Simulation Association, pages 1710–1717,
2011.

[IR00] M. Inuiguchi and J. Ramı́k. Possibilistic Linear Programming: A Brief
Review of Fuzzy Mathematical Programming and a Comparison with Stochastic
Programming in Portfolio Selection Problem. Fuzzy Sets and Systems, 111(1):3–
28, April 2000.

[JB05] Y. Jin and J. Branke. Evolutionary Optimizationin Uncertain Environments —
A Survey. IEEE Transaction on Evolutionary Computation, 9(3):303–317, June
2005.

BIBLIOGRAPHY 223

[Jin05] Y. Jin. A Comprehensive Survey of Fitness Approximation in Evolutionary
Computation. Soft Computing, 9:3–12, January 2005.

[JL02] D.H. Jung and B.C. Lee. Development of a Simple and Efficient Method
for Robust Optimization. International Journal for Numerical Methods in
Engineering, 53(9):2201–2215, March 2002.

[JS03] Y. Jin and B. Sendhoff. Trade-off Between Performance and Robustness:
An Evolutionary Multiobjective Approach. In Proceedings of the Second
International Conference on Evolutionary Multicriterion Optimization, pages
237–251. Springer-Verlag, 2003.

[JSW98] D.R. Jones, M. Schonlau, and W.J. Welch. Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization, 13(4):455–
492, December 1998.

[KAE+09] J.W. Kruisselbrink, A. Aleman, M.T.M. Emmerich, A.P. IJzerman, A. Bender,
T.H.W. Bäck, and E. van der Horst. Enhancing Search Space Diversity in Multi-
Objective Evolutionary Drug Molecule Design using Niching. In Genetic and
Evolutionary Computation Conference (GECCO 2009), pages 217–224. ACM,
2009.

[KBIvdH08] J.W. Kruisselbrink, T.H.W. Bäck, A.P. IJzerman, and E. van der Horst.
Evolutionary Algorithms for Automated Drug Design Towards Target Molecule
Properties. In Genetic and Evolutionary Computation Conference (GECCO
2008), pages 1555–1562. ACM, 2008.

[KD09] A. Der Kiureghian and O. Ditlevsen. Aleatory or Epistemic? Does it Matter?
Structural Safety, 31(2):105–112, March 2009.

[KEB09a] J.W. Kruisselbrink, M.T.M. Emmerich, and T.H.W. Bäck. On the Limitations
of Adaptive Resampling Using the Student’s t-Test in Evolution Strategies.
In Genetic and Evolutionary Computation Conference (GECCO 2009), pages
2649–2656. ACM, 2009.

[KEB+09b] J.W. Kruisselbrink, M.T.M. Emmerich, T.H.W. Bäck, A.P. IJzerman, and
E. van der Horst. Combining Aggregation with Pareto Optimization: A Case
Study in Evolutionary Molecular Design. In Conference on Evolutionary Multi-
Criterion Optimization (EMO 2009), volume 5467 of LNCS, pages 453–467.
Springer-Verlag, 2009.

[KEB10] J.W. Kruisselbrink, M.T.M. Emmerich, and T. Bäck. An Archive Maintenance
Scheme for Finding Robust Solutions. In Parallel Problem Solving from Nature
(PPSN XI), volume 6238 of LNCS, pages 214–223. Springer-Verlag, 2010.

[KEDB10a] J.W. Kruisselbrink, M.T.M. Emmerich, A.H. Deutz, and T. Bäck. A Robust Op-
timization Approach using Kriging Metamodels for Robustness Approximation
in the CMA-ES. In IEEE Congress on Evolutionary Computation (CEC 2010),
pages 1–8, 2010.

[KEDB10b] J.W. Kruisselbrink, M.T.M. Emmerich, A.H. Deutz, and T. Bäck. Exploiting
Overlap when Searching for Robust Optima. In Parallel Problem Solving from
Nature (PPSN XI), volume 6238 of LNCS, pages 63–72. Springer-Verlag, 2010.

[Kol33] A.N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer,
1933.

[KRD+11] J.W. Kruisselbrink, E. Reehuis, A.H. Deutz, T. Bäck, and M.T.M. Emmerich.
Using the Uncertainty Handling CMA-ES for Finding Robust Optima. In

224 BIBLIOGRAPHY

Genetic and Evolutionary Computation Conference (GECCO 2011). ACM,
2011.

[KW94] P. Kall and S.W. Wallace. Stochastic Programming. John Wiley, 1994.

[KYG04] P.N. Koch, R.-J. Yang, and L. Gu. Design for Six Sigma Through Robust
Optimization. Structural and Multidisciplinary Optimization, 26(3-4):235–248,
January 2004.

[LAA05] M. Li, S. Azarm, and V. Aute. A Multi-Objective Genetic Algorithm for Robust
Design Optimization. In Genetic and Evolutionary Computation Conference
(GECCO 2005), pages 771–778. ACM, 2005.

[Li09] R. Li. Mixed-Integer Evolution Strategies for Parameter Optimization and Their
Applications to Medical Image Analysis. PhD thesis, University of Leiden, 2009.

[LLDF01] C. Lipinski, F. Lombardo, B. Dominy, and P. Feeney. Experimental and
Computational Approaches to Estimate Solubility and Permeability in Drug
Discovery and Developments Settings. Advanced Drug Delivery Reviews, 46(1-
3):3–26, March 2001.

[LOL05] D. Lim, Y.-S. Ong, and B.-S. Lee. Inverse Multi-Objective Robust Evolutionary
Design Optimization in the Presence of Uncertainty. In Genetic and
Evolutionary Computation Conference (GECCO 2005), pages 55–62. ACM,
2005.

[Mar01] B.H. Margolius. Permutations with Inversions. Journal of Integer Sequences,
4(2):1–4, 2001.

[MBC00] M.D. McKay, R.J. Beckman, and W.J. Conover. A Comparison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output from
a Computer Code. Technometrics, 42(1):55–61, February 2000.

[MG96] B.L. Miller and D.E. Goldberg. Genetic Algorithms, Selection Schemes, and the
Varying Effects of Noise. Evolutionary Computation, 4:113–131, June 1996.

[MM94] O. Maron and A.W. Moore. Hoeffding Races: Accelerating Model Selection
Search for Classification and Function Approximation. In Advances in Neural
Information Processing Systems 6, pages 59–66. Morgan Kaufmann, 1994.

[MM97] O. Maron and A.W. Moore. The Racing Algorithm: Model Selection for Lazy
Learners. Artificial Intelligence Review, 11(1-5):193–225, February 1997.

[MMA+01] S. Markon, O. Markon, D.V. Arnold, T. Bäck, T. Beielstein, and H.-G.
Beyer. Thresholding — A Selection Operator for Noisy ES. In Congress on
Evolutionary Computation (CEC’01), pages 465–472. IEEE Press, 2001.

[MNB08] S. Meyer-Nieberg and H.-G. Beyer. Why Noise May Be Good: Additive Noise
on the Sharp Ridge. In Genetic and Evolutionary Computation Conference
(GECCO 2008), pages 511–518, 2008.

[MVZ95] J.M. Mulvey, R.J. Vanderbei, and S.A. Zenios. Robust Optimization of Large-
Scale Systems. Operations Research, 43(2):264–281, March/April 1995.

[NAP09] C.A. Nicolaou, J. Apostolakis, and C.S. Pattichis. De Novo Drug Design Using
Multiobjective Evolutionary Graphs. Journal of Chemical Information and
Modeling, 49(2):295–307, January 2009.

[NW06] J. Nocedal and S.J. Wright. Numerical Optimization. Operations Research.
Springer, 2006.

BIBLIOGRAPHY 225

[O’H04] T. O’Hagan. Dicing with the Unknown. Significance, 1(3):132–133, October
2004.

[ONL06] Y.-S. Ong, P.B. Nair, and K.Y. Lum. Max-Min Surrogate-Assisted Evolutionary
Algorithm for Robust Design. IEEE Transactions on Evolutionary Computation,
10(4):392–404, August 2006.

[Par07] G.-J. Park. Analytic Methods for Design Practice. Springer-Verlag, 2007.

[PBJ06] I. Paenke, J. Branke, and Y. Jin. Efficient Search for Robust Solutions by Means
of Evolutionary Algorithms and Fitness Approximation. IEEE Transactions on
Evolutionary Computation, 10(4):405–420, August 2006.

[PC96] M.E. Paté-Cornell. Uncertainties in Risk Analysis: Six Levels of Treatment.
Reliability Engineering & System Safety, 54(2-3):95–111, November 1996.

[Pha89] M.S. Phadke. Quality Engineering using Robust Design. Prentice Hall, 1989.

[PL09] S. Poles and A. Lovison. A Polynomial Chaos Approach to Robust
Multiobjective Optimization. In Hybrid and Robust Approaches to Multiob-
jective Optimization, number 09041 in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl — Leibniz-Zentrum für Informatik, Germany, 2009.

[PLBG07] S. Pannier, M. Liebscher, M. Beer, and W. Graf. Fuzzy Stochastic Simulation of
Deep Drawing Processes. In EUROMECH Colloquium 482 — Efficient Methods
for Robust Design and Optimisation, 2007.

[Rec73] I. Rechenberg. Evolutionsstrategie Optimierung Technischer Systeme nach
Prinzipien der Biologischen Evolution. Friedrich Frommann Verlag, 1973.

[Rec94] I. Rechenberg. Evolutionstrategie ’94. Frommann-Holzboog, 1994.

[RKD+11] E. Reehuis, J.W. Kruisselbrink, A.H. Deutz, T. Bäck, and M.T.M. Emmerich.
Multiobjective Optimization of Water Distribution Networks using SMS-
EMOA. In Proceedings of EUROGEN 2011, pages 269–279. CIRA, 2011.

[Rud01] G. Rudolph. A Partial Order Approach to Noisy Fitness Functions. In IEEE
Congress on Evolutionary Computation (CEC 2001), pages 318–325. IEEE
Press, 2001.

[Sah04] N.V. Sahinidis. Optimization under Uncertainty: State-of-the-Art and Opportun-
ities. Computers and Chemical Engineering, 28(6-7):971–983, June 2004.

[SB09] O.M. Shir and T. Bäck. Niching with Derandomized Evolution Strategies
in Artificial and Real-World Landscapes. Natural Computing, 8(1):171–196,
March 2009.

[SBO04] B. Sendhoff, H.-G. Beyer, and M. Olhofer. The Influence of Stochastic
Quality Functions on Evolutionary Search. In Recent Advances in Simulated
Evolution and Learning, Advances in Natural Computation, pages 152–172.
World Scientific, 2004.

[Sch77] H.-P. Schwefel. Numerische Optimierung von Computer–Modellen Mittels
der Evolutionsstrategie, volume 26 of Interdisciplinary Systems Research.
Birkhäuser, 1977.

[SH04] O. Schenk and M. Hillmann. Optimal Design of Metal Forming die Surfaces
with Evolution Strategies. Computers and Structures, 82(20-21):1695–1705,
August 2004.

226 BIBLIOGRAPHY

[SHL+05] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger, and
S. Tiwari. Problem Definitions and Evaluation Criteria for the CEC 2005
Special Session on Real Parameter Optimization. Technical report, Nanyang
Technological University, 2005.

[SJ08] G.I. Schuëller and H.A. Jensen. Computational Methods in Optimization
Considering Uncertainties — An Overview. Computer Methods in Applied
Mechanics and Engineering, 198(1):2–13, May 2008.

[SK00] Y. Sano and H. Kita. Optimization of Noisy Fitness Functions by Means of
Genetic Algorithms Using History of Search. In Parallel Problem Solving from
Nature (PPSN VI), volume 1917 of LNCS, pages 571–580. Springer, 2000.

[SK02] Y. Sano and H. Kita. Optimization of Noisy Fitness Functions by Means of
Genetic Algorithms Using History of Search with Test of Estimation. In IEEE
Congress on Evolutionary Computation (CEC 2002), pages 360–365. IEEE
Press, 2002.

[SPS98] N.J. Samsatli, L.G. Papageorgiou, and N. Shah. Robustness Metrics for
Dynamic Optimization Models Under Parameter Uncertainty. AIChE Journal,
44(9):1993–2006, April 1998.

[SRS11] A. Saha, T. Ray, and W. Smith. Towards Practical Evolutionary Robust Multi-
Objective Optimization. In IEEE Congress on Evolutionary Computation (CEC
2006), pages 2123–2130, 2011.

[Sta98] P. Stagge. Averaging Efficiently in the Presence of Noise. In Parallel Problem
Solving from Nature (PPSN V), volume 1498 of LNCS, pages 188–200. Springer-
Verlag, 1998.

[SWMW89] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and Analysis of
Computer Experiments. Statistical Science, 4(4):409–423, November 1989.

[TA84] H. Tanaka and K. Asai. Fuzzy Linear Programming with Fuzzy Numbers. Fuzzy
Sets and Systems, 13(1):1–10, May 1984.

[Tag78] G. Taguchi. Performance Analysis Design. International Journal of Production
Research, 16(6):521–530, 1978.

[Tag86] G. Taguchi. Introduction to Quality Engineering: Designing Quality into
Products and Processes. Quality Resources (Asian Productivity Organisation),
1986.

[Tag89] G. Taguchi. Introduction to Quality Engineering. American Supplier Institute,
1989.

[TAW03] M.W. Trosset, N.M. Alexandrov, and L.T. Watson. New Methods for Robust
Design Using Computer Simulations. In Proceedings of the Section on Physical
and Engineering Science, pages 4287–4291. American Statistical Association,
2003.

[TG97] S. Tsutsui and A. Ghosh. Genetic Algorithms with a Robust Solution Searching
Scheme. IEEE Transactions on Evolutionary Computation, 1(3):201–208,
September 1997.

[TG03] S. Tsutsui and A. Ghosh. Effects of Adding Perturbations to Phenotypic
Parameters in Genetic Algorithms for Searching Robust Solutions. In Advances
in Evolutionary Computing: Theory and Applications, pages 351–365. Springer-
Verlag, 2003.

BIBLIOGRAPHY 227

[TGF96] S. Tsutsui, A. Ghosh, and Y. Fujimoto. A Robust Solution Searching Scheme
in Genetic Search. In Parallel Problem Solving from Nature (PPSN IV), volume
1141 of LNCS, pages 543–552. Springer-Verlag, 1996.

[TOA74] H. Tanaka, T. Okuda, and K. Asai. On Fuzzy Mathematical Programming.
Journal of Cybernetics, 3(4):37–46, 1974.

[Tob70] W.R. Tobler. A Computer Movie Simulating Urban Growth in the Detroit
Region. Economic Geography, 46(2):234–240, June 1970.

[Tro97] M.W. Trosset. Taguchi and Robust Optimization. Technical report 96–31,
Department of Computational & Applied Mathematics, Rice University, March
1997.

[Tsu99] S. Tsutsui. A Comparative Study on the Effects of Adding Perturbations to
Phenotypic Parameters in Genetic Algorithms with a Robust Solution Searching
Scheme. In IEEE Systems, Man, and Cybernetics Conference (SMC 1999), pages
585–591, 1999.

[TZ89] A. A. Törn and A. Zilinskas. Global Optimization, volume 350 of LNCS.
Springer, 1989.

[Wet66] R.J.B. Wets. Programming Under Uncertainty: The Equivalent Convex Program.
SIAM Journal on Applied Mathematics, 14(1):89–105, January 1966.

[WHB98] D. Wiesmann, U. Hammel, and T. Bäck. Robust Design of Multilayer
Optical Coatings by means of Evolutionary Algorithms. IEEE Transactions on
Evolutionary Computation, 2(4):162–167, November 1998.

[Zad65] L.A. Zadeh. Fuzzy Sets. Information Control, 8(3):338–353, June 1965.

[Zay96] A.I. Zayed. Handbook of Function and Generalized Function Transformations.
Mathematical Sciences Reference Series. CRC Press, 1996.

[Zim76] H.J. Zimmermann. Description and Optimization of Fuzzy Systems. Interna-
tional Journal of General Systems, 2(4):209–215, 1976.

Appendix A

Test Problems for Noisy Optimization

230 A. Test Problems for Noisy Optimization

A.1 Noisy Sphere Problem
The noisy sphere is a simple scalable test function for studying optimization of noisy real-
valued objective functions using Evolution Strategies. It reads

f(x) =

n∑
i=1

z2
i , (A.1)

z = x− x∗, (A.2)

with x∗ ∈ Rn being the location of the optimum. The noisy sphere function, reads:

f(x) =

n∑
i=1

z2
i +N (0, σ2

ε (x)), (A.3)

z = x− x∗. (A.4)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].

−5

0

5

−5

0

5
−20

−10

0

10

20

30

40

50

60

−5

0

5

−5

0

5
0

5

10

15

20

25

30

35

40

45

50

Figure A.1: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

A.2. Noisy Ellipsoid Problem 231

A.2 Noisy Ellipsoid Problem
The ellipsoid function is a transformed (stretched and rotated) version of the sphere function.

f(x) =

n∑
i=1

z2
i , (A.5)

z = RD (x− x∗) . (A.6)

with x∗ ∈ Rn being the location of the optimum, R being a rotation matrix, and D being a
diagonal (scaling) matrix. The noisy ellipsoid function reads:

f(x) =

n∑
i=1

z2
i +N (0, σ2

ε (x)), (A.7)

z = RD (x− x∗) . (A.8)

In this work, stationary noise is assumed with σ2
ε (x) = 2. The rotation matrix R is generated

from normally distributed entries and scaling matrix D has a condition number of 10 with
equally spaced eigenvalues. Furthermore, in experimental settings, the optimum location is set
to x∗ = [0, . . . , 0] and the search interval is set to xl = [−1, . . . ,−1] and xu = [1, . . . , 1].

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−50

0

50

100

150

200

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

120

140

160

180

200

Figure A.2: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

232 A. Test Problems for Noisy Optimization

A.3 Noisy Step Ellipsoid Problem
The step ellipsoid function is an ellipsoid function transformed such that it has a non-steady
surface consisting of plateaus. It reads

f(x) =

n∑
i=1

bzic2, (A.9)

z = RD (x− x∗) . (A.10)

Here x∗ ∈ Rn is the location of the optimum, R is a rotation matrix, and D is a diagonal
(scaling) matrix. The noisy step ellipsoid function reads

f(x) =

n∑
i=1

bzic2 +N (0, σ2
ε (x)), (A.11)

z = RD (x− x∗) . (A.12)

In this work, stationary noise is assumed with σ2
ε (x) = 2. The rotation matrix R is generated

from normally distributed entries and scaling matrix D has a condition number of 10 with
equally spaced eigenvalues (these matrices are the same as for the noisy ellipsoid function).
Furthermore, in experimental settings, the optimum location is set to x∗ = [0, . . . , 0] and the
search interval is set to xl = [−1, . . . ,−1] and xu = [1, . . . , 1].

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−50

0

50

100

150

200

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

20

40

60

80

100

120

140

160

180

200

Figure A.3: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

A.4. Noisy Rosenbrock Problem 233

A.4 Noisy Rosenbrock Problem
The Rosenbrock function is a unimodal test function for real-valued optimization. The partic-
ular characteristic of this function is that its fitness landscape shows a bent valley that leads
towards the optimum and the direction of the steepest descent changes continuously when
nearing the optimum. It is defined as

f(x) =

n−1∑
i=1

(
100

(
z2
i − zi+1

)2
+ (zi − 1)

2
)
, (A.13)

z = (x− x∗) + 1. (A.14)

Here x∗ ∈ Rn is the location of the optimum. The noisy Rosenbrock function reads

f(x) =

n−1∑
i=1

(
100

(
z2
i − zi+1

)2
+ (zi − 1)

2
)

+N (0, σ2
ε (x)), (A.15)

z = (x− x∗) + 1. (A.16)

In this work, stationary noise is assumed with σ2
ε (x) = 2. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−2, . . . ,−2] and xu = [2, . . . , 2].

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
−6000

−4000

−2000

0

2000

4000

6000

8000

10000

12000

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0

2000

4000

6000

8000

10000

12000

Figure A.4: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

234 A. Test Problems for Noisy Optimization

A.5 Noisy Ackley Problem
The Ackley function is a multi-modal test function, defined as

f(x) = −c1 · exp

−c2
√√√√ 1

n

n∑
i=1

z2
i

− exp

(
1

n

n∑
i=1

cos(c3 · zi)

)
+c1 + exp(1), (A.17)

z = x− x∗. (A.18)

Here, c1 = 20, c2 = 0.2, c3 = 2π, and x∗ ∈ Rn is the location of the optimum. The noisy
Ackley function reads

f(x) = −c1 · exp

−c2
√√√√ 1

n

n∑
i=1

z2
i

− exp

(
1

n

n∑
i=1

cos(c3 · zi)

)
+c1 + exp(1) +N (0, σ2

ε (x)), (A.19)

z = x− x∗. (A.20)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].

−5

0

5

−5

0

5
−5

0

5

10

15

20

−5

0

5

−5

0

5
0

5

10

15

Figure A.5: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

A.6. Noisy Griewank Problem 235

A.6 Noisy Griewank Problem
The Griewank function is a multi-modal test function, defined as

f(x) = 1 +
1

4000

n∑
i=1

z2
i −

n∏
i=1

cos

(
zi√
i

)
, (A.21)

z = x− x∗. (A.22)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) = 1 +
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+N (0, σ2

ε (x)), (A.23)

z = x− x∗. (A.24)

In this work, stationary noise is assumed with σ2
ε (x) = 0.5. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−60, . . . ,−60] and xu = [60, . . . , 60].

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60
−2

−1

0

1

2

3

4

5

−60

−40

−20

0

20

40

60

−60

−40

−20

0

20

40

60
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure A.6: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

236 A. Test Problems for Noisy Optimization

A.7 Noisy Rastrigin Problem
The Rastrigin function is a multi-modal test function, defined as

f(x) = 10n+

n∑
i=1

(z2
i − 10 cos(2π · zi)), (A.25)

z = x− x∗. (A.26)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) = 10n+

n∑
i=1

(z2
i − 10 cos(2π · zi)) +N (0, σ2

ε (x)), (A.27)

z = x− x∗. (A.28)

In this work, stationary noise is assumed with σ2
ε (x) = 2. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−5, . . . ,−5] and xu = [5, . . . , 5].

−5

0

5

−5

0

5
−20

0

20

40

60

80

100

−5

0

5

−5

0

5
0

10

20

30

40

50

60

70

80

90

Figure A.7: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

A.8. Noisy Schaffer’s F7 Problem 237

A.8 Noisy Schaffer’s F7 Problem
Schaffer’s F7 function is a multi-modal test function, defined as

f(x) =

n−1∑
i=1

(z2
i + z2

i+1)0.25(sin2(50(z2
i + z2

i+1)0.1) + 1), (A.29)

z = x− x∗. (A.30)

Here x∗ ∈ Rn is the location of the optimum. The noisy Griewank function reads

f(x) =

n−1∑
i=1

(z2
i + z2

i+1)0.25(sin2(50(z2
i + z2

i+1)0.1) + 1) +N (0, σ2
ε (x)), (A.31)

z = x− x∗. (A.32)

In this work, stationary noise is assumed with σ2
ε (x) = 1. Furthermore, in experimental

settings, the optimum location is set to x∗ = [0, . . . , 0] and the search interval is set to
xl = [−5, . . . ,−5] and xu = [5, . . . , 5].

−50

0

50

−50

0

50
−5

0

5

10

15

20

−50

0

50

−50

0

50
0

2

4

6

8

10

12

14

16

Figure A.8: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

238 A. Test Problems for Noisy Optimization

A.9 Noisy Branke’s Multipeak Problem
Branke’s Multipeak function is a multi-modal test function with 2n peaks, defined as

f(x) =
1

n

n∑
i−1

(c− g(xi)) , (A.33)

g(xi) =

− (xi + 1)

2
+ 1 if − 2 ≤ xi < 0

c · 2−8|xi−1| if 0 ≤ xi ≤ 2

0 otherwise

. (A.34)

Here c = 1.3 and the global optimum is located at x = [1, . . . , 1]. The noisy version of
Branke’s multipeak function reads

f(x) =
1

n

n∑
i−1

(c− g(xi)) +N (0, σ2
ε (x)), (A.35)

g(x) =

− (x+ 1)

2
+ 1 if − 2 ≤ x < 0

c · 2−8|x−1| if 0 ≤ x ≤ 2

0 otherwise

. (A.36)

In this work, stationary noise is assumed with σ2
ε (x) = 0.1. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the search interval is set to
xl = [−2, . . . ,−2] and xu = [2, . . . , 2].

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1

0

1

2
−0.5

0

0.5

1

1.5

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure A.9: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization of
the noise-free underlying objective function landscape.

A.10. Noisy Keane’s Bump Problem 239

A.10 Noisy Keane’s Bump Problem
Keane’s Bump function is a highly multi-modal test function, defined as

min f(x) = −
|
∑n
i=1 cos4(xi)− 2

∏n
i=1(cos2(xi))|√∑n

i=1 i · x2
i

, (A.37)

s.t.

n∏
i=1

xi > 0.75 ,

n∑
i=1

xi <
15n

2
, xi ∈]0, 10[. (A.38)

The global minimizer for this function is unknown. The noisy version adopted in this work
uses a penalty mechanism to aggregate the constraints in one objective function. It reads

f(x) = g(x) +N (0, σ2
ε (x)), (A.39)

g(x) =

−
|
∑n
i=1 cos4(xi)−2

∏n
i=1(cos2(xi))|√∑n

i=1 i·x2
i

if
∏n
i=1 xi > 0.75 and

∑n
i=1 xi <

15n
2

0 otherwise
.

(A.40)

In this work, stationary noise is assumed with σ2
ε (x) = 0.05. Unless stated otherwise, we will

assume stationary noise. Furthermore, in experimental settings, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [0, . . . , 0] and xu = [10, . . . , 10].

0

2

4

6

8

10

0

2

4

6

8

10
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0

2

4

6

8

10

0

2

4

6

8

10
−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

Figure A.10: Left: 2D visualization of the noisy objective function landscape. Right: 2D visualization
of the noise-free underlying objective function landscape.

Appendix B

Test Problems for Finding Robust

Optima

242 B. Test Problems for Finding Robust Optima

B.1 RO Sphere Problem
A simple unimodal test function for finding robust optima that can be used to assess the
quality of a robust optimization algorithm w.r.t. zooming in on the robust optimum. For this
function the robust optimizer and the optimizer of the original function are the same. The
sphere function reads

f(x) =

n∑
i=1

z2
i , z = x− x∗, (B.1)

with x∗ ∈ Rn being the location of the optimum. In this work, the optimum location is set to
x∗ = [0, . . . , 0] and the search interval is set to xl = [−5, . . . ,−5] and xu = [5, . . . , 5]. The
uncertainty in the design variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.2)

This function has as robust optimizer for the expected objective function

x∗exp = x∗. (B.3)

Figure B.1 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−5

0

5

−5

0

5
0

5

10

15

20

25

30

35

40

45

50

−5

0

5

−5

0

5
0

10

20

30

40

50

60

Figure B.1: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

B.2. RO Heaviside Sphere Problem 243

B.2 RO Heaviside Sphere Problem
The Heaviside sphere function reads

f(x) =

(
1−

2∏
i=1

g(xi)

)
+

n∑
i=1

(xi
10

)2

, g(xi) =

0 if xi < 0

1 otherwise
, (B.4)

with search interval xl = [−10, . . . ,−10] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.5)

This function has as robust optimizer for the expected objective function

x∗exp = [1, . . . , 1]n. (B.6)

Figure B.2 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

3.5

Figure B.2: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

244 B. Test Problems for Finding Robust Optima

B.3 RO Sawtooth Problem
The sawtooth function, originally proposed in [Bra01], reads

f(x) = 1− 1

n

n∑
i=1

g(xi) , g(xi) =

xi + 0.8 if − 0.8 ≤ xi < 0.2

0 otherwise
, (B.7)

(B.8)

with search interval xl = [−1, . . . ,−1] and xu = [1, . . . , 1]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.2,0.2). (B.9)

This function has as robust optimizer for the expected objective function

x∗exp = [0, . . . , 0]n. (B.10)

Figure B.3 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

0

1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure B.3: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

B.4. RO Volcano Problem 245

B.4 RO Volcano Problem
The volcano function reads

f(x) =

√
||x|| − 1 if ||x|| > 1

0 otherwise
, (B.11)

with search interval xl = [−10, . . . ,−10] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−1.5,1.5). (B.12)

This function has as robust optimizer for the expected objective function

x∗exp = [0, . . . , 0]n. (B.13)

Figure B.4 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−10
−8

−6
−4

−2
0

2
4

6
8

10

−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

−10
−8

−6
−4

−2
0

2
4

6
8

10

−10

−5

0

5

10

0

0.5

1

1.5

2

2.5

3

Figure B.4: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

246 B. Test Problems for Finding Robust Optima

B.5 RO Pickelhaube Problem
The objective function reads

f(x) =
5

5−
√

5
−max {g0(x), g1a(x), g1b(x), g2(x)} , (B.14)

g0(x) =
1

10
· e− 1

2 ·||x||, (B.15)

g1a(x) =
5

5−
√

5
·

(
1−

√
||x + 5||
5 ·
√
n

)
, (B.16)

g1b(x) = c1 ·

(
1−

(
||x + 5||
5 ·
√
n

)4
)
, (B.17)

g2(x) = c2 ·

(
1−

(
||x + 5||
5 ·
√
n

)d2)
, (B.18)

with c1 = 625/624, c2 = 1.5975, d2 = 1.1513, and search interval xl = [−10, . . . ,−10] and
xu = [10, . . . , 10]. The uncertainty in the design variables is of the form

x = x + δ , δ ∼ U(−1,1). (B.19)

This function has as robust optimizer for the expected objective function

x∗exp = [5, . . . , 5]n. (B.20)

Figure B.5 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

0

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

−10 −8 −6 −4 −2 0 2 4 6 8 10−10

0

10

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure B.5: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

B.6. RO Branke’s Multipeak Problem 247

B.6 RO Branke’s Multipeak Problem
Objective function from [Bra98]. Originally posed as a maximization problem, converted to a
minimization problem. The objective function reads

f(x) = max{c1, c2} −
1

n

n∑
i−1

g(xi), (B.21)

g(xi) =

c1 ·

(
1− 4(xi+ b1

2)
2

(b1)2

)
if − b1 ≤ xi < 0

c2 · 16
−2|b2−2xi|

b2 if 0 ≤ xi ≤ b2
0 otherwise

, (B.22)

with b1 > 0, b2 > 0, c1 > 0, c2 > 0 and search interval xl = [−b1, . . . ,−b1] and xu =

[b2, . . . , b2]. In this work, we use the settings b1 = 2, b2 = 2, c1 = 1, c2 = 1.3. The uncertainty
in the design variables is of the form

x = x + δ , δ ∼ U(−0.5,0.5). (B.23)

This function has as robust optimizer for the expected objective function

x∗exp = [−b1/2, . . . ,−b1/2]n. (B.24)

Figure B.6 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure B.6: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

248 B. Test Problems for Finding Robust Optima

B.7 RO Multipeak F1 Problem
A multimodal test problem used in, e.g., [TGF96, TG97]. Originally posed as maximization
problem, converted to minimization. The objective function reads

f(x) =
1

n

n∑
i=1

g(x), (B.25)

g(xi) =

e−2 ln 2(x−0.1
0.8)

2√
| sin(5πxi)|, if 0.4 < xi ≤ 0.6

e−2 ln 2(x−0.1
0.8)

2

sin6(5πxi), otherwise
, (B.26)

with search interval xl = [0, . . . , 0] and xu = [1, . . . , 1]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.0625,0.0625). (B.27)

This function has as robust optimizer for the expected objective function

x∗exp ≈ [0.4911, . . . , 0.4911]n. (B.28)

Figure B.7 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Figure B.7: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

B.8. RO Multipeak F2 Problem 249

B.8 RO Multipeak F2 Problem
A multimodal test problem used in, e.g., [PBJ06]. Originally posed as maximization problem,
converted to minimization. The objective function reads

f(x) =
1

n

n∑
i=1

g(x), (B.29)

g(xi) = 2 sin (10 exp(−0.2xi)xi) exp (−0.25xi) , (B.30)

with search interval xl = [0, . . . , 0] and xu = [10, . . . , 10]. The uncertainty in the design
variables is of the form

x = x + δ , δ ∼ U(−0.5,0.5). (B.31)

This function has as robust optimizer for the expected objective function

x∗exp ≈ [3.5, . . . , 3.5]n. (B.32)

Figure B.8 shows 2D visualizations of the original objective function landscape and the
effective objective function landscape.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure B.8: Left: 2D visualization of the original objective function landscape. Right: 2D visualization
of the effective objective function landscape.

Appendix C

Kriging Metamodeling

252 C. Kriging Metamodeling

Kriging Metamodeling
A basic assumption of function modeling through Kriging is that the deviation of a function
from a general trend or mean value can be modeled as a realization of a Gaussian random field
Fx, x ∈ Rn, whereFx is a Gaussian random variable indexed by space. Two random variables
Fx and Fx′ are correlated via a spatial correlation function c(x,x′). Often c(x,x′) is based on
the difference x−x′ (stationary correlation) or on the distance d(x,x′) (isotropic correlation).
When c is fully specified, then it is possible to compute the conditional distribution of Fx

for a new point x given a number of measured realizations y1 = Fx1
, . . . , ym = Fxm . The

mean value of the conditional distribution can be interpreted as a predictor for the function
value f(x) and the standard deviation of Fx can be interpreted as a measure of prediction
uncertainty. Ordinary Kriging, used in this work, assumes a constant trend β. It thus estimates
f(x) as Fx = β +Rx, where Rx, x ∈ Rn is a Gaussian random field model with mean zero
and global variance s2. The Kriging predictor f̂(x) for an unknown point x is

f̂(x) = β + (y − 1 · β)T ·C−1 · c(x), (C.1)

with y = [y1, . . . , ym]T , C = [c(xi,xj)]i=1,...,m,j=1,...m, and c(x) = [c(x,x1), . . . , c(x,xn)]T .
Here, β and s2 are estimated using generalized least square estimates (see, [JSW98]),

β̂ =
1T ·C−1 · y
1T ·C−1 · 1

, (C.2)

ŝ =
(y − 1 · β̂)T ·C−1 · (y − 1 · β̂)

m
. (C.3)

The correlation function c(x,x′) can have different shapes. The choice of the correlation
function can be based on a-priori knowledge or on the correlation structure, e.g., maximum
likelihood estimation. Typically, isotropic kernel functions are of the form

cθ(x,x
′) = exp (−θ · |x− x′|q) , q > 0. (C.4)

Setting θ is done by maximizing the likelihood of Fx1
= y1∧ . . .∧Fxm = ym by minimizing

m log ŝ(θ) + log detC(θ). (C.5)

The same principle can be applied for multiparametric kernels, though this requires multi-
dimensional optimization demanding considerably more evaluations of the log-likelihood
expression.

The calibration procedure is algorithmically described in Algorithm C.1. In this description,
the minimization of θ is omitted. In this work, a grid search method is adopted using a
logarithmically scaled grid on the interval [10−50, 105].

Advantages of Kriging are that it is an exact interpolator (i.e., it returns the sample value as the
estimate at the sample points) and that the prediction confidence range can be locally assessed.

C. Kriging Metamodeling 253

Algorithm C.1: Ordinary Kriging Calibration

Input: Archive A = {(x1, f1), . . . , (xm, fm)}

Output: Kriging model fkrig(x)

1: Set parameters: q ← 2, minimization method for θ

2: θ ← minθ{m log ŝ(θ) + log detC(θ)} , with

C←

cθ(x1,x1) · · · cθ(x1,xm)

...
. . .

...

cθ(xm,x1) · · · cθ(xm,xm)

 , cθ(x,x′) = exp (−θ · |x− x′|q) ,

ŝ =
(y − 1 · β̂)T ·C−1 · (y − 1 · β̂)

m
.

3: fkrig(x)← β̂ + (y − 1 · β̂)T ·C−1 · c(x) , with

β̂ =
1T ·C−1 · y
1T ·C−1 · 1

, c(x) = [cθ(x,x1), . . . , cθ(x,xn)]T .

4: return fkrig(x)

A disadvantage is the computational effort (repeated inversion and determinant computation
for C(θ) within the likelihood minimization over θ). Besides, the points x1, . . . ,xm do not
only have to be unique so that the C is positive definite, but one should also ensure that these
points are well distributed to prevent that C gets ill-conditioned, which could cause failure due
to numerical errors.

Samenvatting (Dutch)

Evolutionaire algoritmen zijn door natuurlijke evolutie geı̈nspireerde algoritmen voor het op-
lossen van complexe optimalisatieproblemen. Door het simuleren van evolutie worden binnen
deze klasse van algoritmen populaties van kandidaatoplossingen gekweekt tot (sub)optimale
oplossingen. Hierbij wordt de evolutionaire “fitness” van een kandidaatoplossing bepaald door
de kwaliteit ten opzichte van het optimalisatieprobleem.

Praktische optimalisatieproblemen zijn vaak onderhevig aan onzekerheid en ruis. Wanneer
hiermee geen rekening wordt gehouden, kan optimalisatie falen of leiden tot oplossingen die
onbruikbaar zijn in de praktijk. Robuuste optimalisatie is de praktijk van optimalisatie waarbij
actief rekening gehouden wordt met onzekerheid en ruis. Het doel van dit onderzoek is het
afbakenen van het begrip robuuste optimalisatie en het bestuderen hoe evolutiestrategieën, een
subklasse van evolutionaire algoritmen voor reële parameter optimalisatie, zich gedragen in
robuuste optimalisatie scenario’s of hoe deze hiervoor moeten worden aangepast.

Robuuste optimalisatie beslaat alle soorten van onzekerheid en ruis die voor kunnen komen
binnen het model of systeem dat wordt beschouwd voor optimalisatie. Het behelst echter
niet eventuele onzekerheden in de formulering van de doelen en randvoorwaarden. Het doel
is tweeledig: het vinden van optimale oplossingen ondanks dat onzekerheden en ruis de
optimalisatie bemoeilijken en het vinden van optimale oplossingen die robuust zijn ten opzichte
van onzekerheden en ruis. Robuuste optimalisatie vereist de integratie van de notie van
robuustheid in de specificatie van de kwaliteit van oplossingen. Dit zijn de zogenaamde
effectieve doelfuncties en randvoorwaarden.

De verschillende soorten van onzekerheid en ruis die kunnen bestaan binnen een op-
timalisatieprobleem zorgen voor een combinatorische explosie van verschillende scenario’s
voor robuuste optimalisatie. Echter, sommige scenario’s komen vaker voor dan andere. In
dit proefschrift zijn twee scenarios’s eruit gelicht: optimalisatie van systemen met ruis en het
vinden van robuuste optima.

Optimalisatie van systemen met ruis vereist een kwaliteitsmaat die de notie van robuustheid ten
opzichte van de ruis omvat: een effectieve doelfunctie. Uitgaande van de verwachtingswaarde
van de kwaliteit (de verwachte doelfunctie) van kandidaatoplossingen zijn evolutiestrategieën
robuust wanneer de ruis relatief klein is. Wanneer er echter een hoge convergentieprecisie
vereist is, zijn extra aanpassingen nodig.

256 Samenvatting (Dutch)

Impliciet en expliciet middelen zijn simpele technieken om de convergentieprecisie van
evolutiestrategieën te vergroten. Impliciet middelen is de praktijk van het vergroten van de
populatiegrootte en expliciet middelen betreft het evalueren van de kwaliteit van kandidaatop-
losssingen door het middelen over meerdere evaluaties. Het nadeel van deze twee technieken is
dat ze een a priori specificatie van een populatiegrootte of het aantal evaluaties voor middeling
vereisen en dat de convergentieprecisie nog steeds beperkt is. Adaptieve middelingstechnieken
zijn uitbreidingen die de evaluatie-intensiteit automatisch proberen aan te passen (dus, te
vergroten) gedurende de optimalisatie.

In dit proefschrift beschouwen we adaptieve middelingstechnieken die zijn gebaseerd op
expliciet middelen. Hiervoor is voor een simpel testprobleem aangetoond dat een exponen-
tieel groeiend aantal evaluaties per kandidaatoplossing nodig is om lineaire convergentie ten
opzichte van het aantal generaties te bereiken. Een empirische studie laat zien dat een onzeker-
heidsmaat gebaseerd op rangverschillen de meestbelovende methode is voor het kwantificeren
van onzekerheid. Daarnaast is aangetoond dat adaptieve middelingstechnieken vergelijkbare
resultaten kunnen opleveren als optimaal ingestelde statische ruisbehandelingsmethoden. Voor
één scenario geldt dit echter niet; een optimaal ingestelde impliciete middelingsmethode in de
CMA-ES werkt beter dan alle andere geteste evaluatietechnieken voor doelfuncties met ruis.
Omdat ze minder gevoelig zijn voor parameterinstellingen zijn adaptieve middelingstechnie-
ken een goed alternatief voor impliciete en expliciete middeling.

Het vinden van robuuste optima is van belang wanneer kandidaatoplossingen niet exact
gerealiseerd kunnen worden, maar afwijken of fluctueren. Van de verschillende effectieve
doelfuncties die voor optimalisatie mogelijk zijn is de verwachte kwaliteit een veelgebruikte
maat. De moeilijkheid van zulke scenario’s is dat exacte evaluatie van de effectieve doelfunctie
vaak onmogelijk is en er daarom benaderingsmethoden nodig zijn voor de bepaling van de
robuuste kwaliteit van kandidaatoplossingen. Diverse methoden voor het vinden van robuuste
optima kunnen worden onderscheiden.

De simpelste methode voor het vinden van robuuste optima is om niets te doen en
erop te vertrouwen dat evolutiestrategieën vanuit zichzelf al convergeren naar de robuuste
pieken in het functielandschap. Deze myopische methode wordt gesteund door de observatie
dat evolutionaire algoritmen een inherente neiging hebben om naar de robuustere pieken te
convergeren, maar faalt wanneer er sprake is van een verschoven robuust optimum.

Monte-Carlo integratietechnieken kunnen worden gebruikt om de robuustheid van kandi-
daatoplossingen te benaderen. Dit verschuift het probleem in de richting van het optimaliseren
van doelfuncties met ruis. Hoewel deze technieken de effectieve doelfunctie benaderen zijn
ze beperkt in precisie en daarmee beperken ze de convergentieprecisie van evolutiestrategieën.
Net als bij doelfuncties met ruis kan ook voor het vinden van robuuste optima gebruik gemaakt
worden van adaptieve middelingstechnieken. Dit heeft als voordeel dat het de convergentie-
precisie niet beperkt, noch een a priori instelling van het aantal evaluaties voor Monte-Carlo

Samenvatting (Dutch) 257

benadering vereist.
Een andere klasse van methoden wordt gevormd door archief- en metamodelingmethoden.

Deze slaan eerder geëvalueerde kandidaatoplossingen op om ze te gebruiken voor het bena-
deren van de kwaliteit van nieuwe kandidaatoplossingen. Doordat ze efficiënt omgaan met
functie-evaluaties zijn deze methoden in het bijzonder bruikbaar wanneer functie-evaluaties
(computationeel) duur zijn. Een methode voor het bijhouden van een archief van kandidaat-
oplossingen is hiervoor vereist om ervoor te zorgen dat het archief bruikbaar is voor het
verkrijgen van betrouwbare benaderingen voor nieuwe kandidaatoplossingen. Het gebruiken
van metamodeling technieken, zoals Kriging, op basis van dit archief is een uitbreiding hierop.

Het idee om gebruik te maken van niching technieken voor het vinden van robuuste optima
heeft het veronderstelde voordeel dat de optimalisatie zich richt op verschillende gebieden van
de zoekruimte. Hoewel dit idee theoretisch zinnig is introduceert een directe integratie van een
standaard niching strategie meer problemen dan het oplost. De resultaten gepresenteerd in dit
proefschrift laten zien dat voor deze doeleinden een niching strategie vereist is die om kan gaan
met doelfuncties met ruis.

Een laatste techniek die gebruikt kan worden om de evaluatieprecisie voor het vinden van
robuuste optima te vergroten is het uitbuiten van de overlap van de onzekerheidsgebieden bij
het vergelijken van paren van kandidaatoplossingen. In plaats van te proberen om zo precies
mogelijke benaderingen te krijgen van de robuuste kwaliteit van kandidaatoplossingen wordt
er in deze techniek gekeken naar hoe paren van oplossingen zich tot elkaar verhouden. De
overlap van de gebieden van onzekerheid kan hierbij vaak worden uitgesloten van evaluatie.

Een empirisch vergelijkende studie laat zien dat voor evolutiestrategieën een adaptieve
middelingsstrategie de meestbelovende strategie is voor het vinden van robuuste oplossingen.
Hierbij moet voor evaluatie gebruik gemaakt worden van Latin Hypercube sampling en moet
voor iedere generatie dezelfde set van perturbaties gebruikt worden voor alle individuen in
de populatie. In vergelijking met statische evaluatiemethoden leidt dit tot betere robuuste
oplossingen over het hele spectrum van benchmarkproblemen. De archief-gebaseerde methode
en de metamodeling methode leiden vooral op bepaalde testproblemen tot goede oplossingen.

De bijdrage van dit onderzoek bestaat uit een aantal onderdelen. Allereerst is er een algemene
definitie gegeven voor de term “robuuste optimalisatie” waarmee wordt afgebakend wat er
wel en niet onder deze noemer valt. Daarnaast wordt er een algemene wijze van aanpak voor
robuuste optimalisatieproblemen gegeven aan de hand van twee representatieve scenario’s:
het optimaliseren van systemen met ruis en het vinden van robuuste optima. Voor deze
twee scenario’s wordt in detail onderzocht hoe evolutiestrategieën zich gedragen en hoe
deze aangepast moeten worden voor het vinden van robuuste optima. Hierbij worden zowel
technieken uit de literatuur beschouwd als nieuwe methoden voorgesteld. Als laatste worden
er in dit proefschrift op basis van conceptuele overwegingen en empirische vergelijkingen
aanbevelingen gegeven voor het toepassen van evolutiestrategieën voor robuuste optimalisatie.

Curriculum Vitae

Johannes Willem Kruisselbrink was born on July 4th 1983 in Nijmegen, the Netherlands. In
2002 he started the study Computer Science at Rijksuniversiteit Groningen where he received
his BSc in 2006. The research of the Natural Computing Group of prof. T. Bäck inspired him
to move to Leiden in 2006. He received his MSc degree (with distinction) in Computer Science
in 2008 at Leiden University. Right after, he joined the Natural Computing Group as a PhD
student on the NWO-funded project “Robust Design Optimization” (RODEO). Besides his
main research on evolution strategies for robust optimization problems, he also participated in
joint research with the group of prof. A. IJzerman of LACDR, Leiden University on molecular
design using evolutionary algorithms.

	Introduction
	I From Optimization to Robust Optimization
	Optimization
	Robust Optimization

	II Evolution Strategies for Robust Optimization
	Evolutionary Algorithms and Evolution Strategies
	Optimization of Noisy Objective Functions
	A Study on Noise Handling Schemes
	Finding Robust Optima
	Empirical Study on Finding Robust Optima
	Conclusion
	Bibliography
	Test Problems for Noisy Optimization
	Test Problems for Finding Robust Optima
	Kriging Metamodeling
	Samenvatting (Dutch)
	Curriculum Vitae

