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AN AUTOMATED REGIONAL WALL MOTION

ABNORMALITY DETECTION BY COMBINING REST AND

STRESS CARDIAC MRI: CORRELATION WITH

INFARCT TRANSMURALITY FROM

CONTRAST-ENHANCED MRI



Abstract

Objective: To evaluate the performance of an automated regional wall motion abnormal-
ity (RWMA) detection method given the combination of rest and dobutamine-induced
stress cardiac MR data and to correlate the automated RWMA results with infarct trans-
murality assessments from contrast-enhancedMRI.
Materials and Methods: The automated RWMA method is built upon a statistical model
of normokinetic myocardial contours. Forty-one rest cine-MRI of healthy volunteers were
collected to build the model. Independent Component Analysis (ICA) was used to gen-
erate the probability distributions of normokinetic myocardium after several registration
steps. Three normokinetic ICA models were built independently: base, mid-ventricular
and apex. Twelve patients with the presence ofmyocardial infarction were included in the
experiment. Their rest, dobutamine-induced stress and contrast-enhancedMR images in
short-axis view were semi-automatically analyzed.
Results: A total of 192 myocardial segments were analyzed; 116 scar and 76 non-scar
(normal) segments. For scar tissue detection, adding stress data significantly improved
the performance compared to rest data only. Mean RWMA probability value differences
between scar and non-scar regions with rest-stress data were wider and significant differ-
ences (p < 0.001, CI = 99.9%) were present in all ICA models. Combined sensitivity was
79% (base: 90%, mid: 79%, apex: 67%) and specificity was 80% (base: 83%, mid: 85%,
apex: 70%). Correlated with CE-MRI, RWMA probability values decrease progressively as
infarct transmurality increases.
Conclusion: Combining rest and stress MR data using automated RWMA assessment
method detects scar regionsmore accurately than using restingMRI alone. The presented
automated abnormality detector correlates well with infarct transmurality.

Submitted.
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To know is to remember what you have seen.
To see is to know without remembering.

Benim Adım Kırmızı (My Name Is Red)
ORHAN PAMUK

C
ORONARY artery disease (CAD) has been a leading cause of death in Europe and
North America and is responsible for 70% of congestive heart failure cases [1].
Although overall survival has improved, its treatment is a partial success [2, 3].
In patients with contractile reserve, where reversible myocardial dysfunction is

present, treatment by coronary revascularization may lead to significant functional im-
provements.

In clinical practice, the assessment of dysfunctional but viable myocardium is indi-
cated by the increase of systolic wall thickening from rest to stress. Reversible myocardial
dysfunction can also be identified by contrast-enhanced MRI (CE-MRI) [4, 5]. CE-MRI
allows imaging ofmyocardial infarction, inwhich scar tissues appear hyperenhanced, and
the extent of infarction is the main predictor for functional outcome after revasculariza-
tion. Head-to-head comparisons between rest-stress MR with infarct transmurality from
CE-MRI for predicting functional improvement have been performed and they have been
proven to be correlated [6–8].

During the assessment of LV functional improvement, rest and dobutamine-induced
stress cine-MR images are usually compared visually. Visual wall motion scoring is prone
to observer variability. Observer experience clearly affects the quality of the assessment [9].
A computer-assisted diagnosis method for the assessment of myocardial contractile re-
serve can be helpful to reduce the variability.

A model-based automated RWMA method has been developed in [10] and it shows
good correlation with systolic wall thickening and visual wall motion score from rest MRI.
This paper focuses on the improvement of the automated RWMA detection through the
integration of rest and stress MR data. Evaluation is performed against scar regions (in-
farct transmurality) from CE-MRI.

7.1 Materials and Methods

7.1.1 Study design

Two study protocols were designed to collect control and patient groups. For the control
group, forty-one healthy subjects were voluntarily enrolled in a cardiac MRI acquisition
session. These subjects were part of a larger study to collect normal cardiac cine MR
images from healthy population which was conducted between 2000–2004. Only short-
axis viewMR images were included in this study.

The patient group consisted of twelve patients suffering from chronic coronary artery
disease. Each patient gave written informed consent to the study protocol that was ap-
proved by the local ethics committee. Mild to severe myocardial infarctions were present
in these patients. The baseline characteristics of the patient and control groups are given
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TABLE 7.1: Patient and Control Groups Statistics.a

Patients Controls
Subjects 12 41
Males/females 12/0 30/11

Ejection fraction (%)
44.85 (21.30)b 67.91 (11.13)
41.40 (17.23)c

Stroke volume (ml)
117.62 (73.87)b 105.04 (32.16)
82.44 (32.73)c

a All statistics are in average (standard deviation) form.
b Values from rest MR.
c Values from stress MR.

in Table 7.1. Themean ejection fraction in Table 7.1 indicates separation between the two
groups.

7.1.2 Data acquisition

Acquisition of baselineMR imageswas performed on 1.5TGyroscan ACS-NTMRI Scanner
(Philips Medical System, Best, the Netherlands) using a 5-element synergy coil during
breath-holds andwere gated to the electrocardiogram. The heart was imaged fromapex to
basewith 10 to 12 imaging levels in the short-axis orientation. Typical imaging parameters
are 400× 400 mm2 field-of-view, 10 mm slice thickness, 256× 256 image resolution and
1.5 mm pixel size.

Geometry settings in baseline scanswere stored and repeated for low-dose dobutamine
and contrast-enhanced acquisitions. The dobutamine-induced stress (DSMR) and CE-
MRI acquisitions were only applied to the patient group. CE-MR images were acquired 15
minutes after a bolus injection of gadolinium diethylenetriamine pentaacetic acid (0.15
mmol/kg, Magnevist; Schering/Berlex, Berlin, Germany). Typical imaging parameters for
dobutamineMRI were similar with the rest condition and also for the CE-MRI, except that
the slice thickness for CE-MRI is smaller (5 mm), which gives CE-MRI more slice levels
than rest MRI.

7.1.3 Slice selection

Three short-axis slice levels were visually determined in rest MRI by using particular ana-
tomical landmarks. The basal level was defined at the short-axis slice level before the
septal opening is visible. The apical level was set to the short-axis slice level where LV
blood cavity is still visible in all cardiac phases. The mid-ventricular level was defined at
the middle level between the basal and the apical slices. Their corresponding slice levels
in DSMR and CE-MRI were automatically calculated based on 3D geometrical informa-
tion obtained by using MR Analytical Software System (MASS, v5.0, Medis, Leiden, the
Netherlands) [11]. Due to the smaller slice thickness of CE-MRI compared to cine-MRI,
one or two CE-MR images can be associated to a slice level in cine-MRI. In case of two
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(a) (b) (c) (d)

FIGURE 7.1: Patient shape results after each registration step: (a) input contours, (b) post
Procrustes alignment, (c) unit contraction, and (d) post rest-stress normalization. Vectors show
contraction from ED to ES. Rest and dobutamine-induced stress contraction are shown with
light grey and dark grey vectors, respectively.

CE-MR images were selected, the analysis of infarct transmurality from these images were
averaged.

7.1.4 Myocardial contour delineation and segmental definition

An expert delineated endo- and epicardial contours by using the MASS software [11].
Papillary muscles were considered as part of LV cavity and epicardial fat was excluded.
Only contours at end-diastole (ED) and end-systole (ES) were taken for the automated
analysis. The same software was used to delineate infarct regions on CE-MRI.

Between endo- and epicardial contours, the myocardium was divided into several
segments during the validation. The 17-segment model conforming to American Heart
Association [12] was applied. Only the 17th segment (the apical tip in long-axis view) was
excluded in this study.

7.1.5 Normokinetic myocardial shape models

A myocardial shape was defined as a sequential concatenation of endo- and epicardial
landmark points, which were taken from both end-diastole (ED) and end-systole (ES)
cardiac phases. Landmark points were determined by equi-angular homologous sam-
pling starting from the inferior intersection between right and left ventricles clockwise. A
normokinetic myocardial shape is a myocardial shape from the control group. To elim-
inate shape variations induced by cardiac position, orientation, size and movement be-
tween individual subjects, Procrustes alignment and thin-plate spline warping methods
were applied [10].

The registration method in Chapter 6 was modified to allow a proper comparison
between rest and stress myocardial shapes. Additional thin-plate spline warping was per-
formed at the last registration step to remove epicardial shape variations at ES. Without
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FIGURE 7.2: Schematic diagram of the automated RWMA assessment. An example of a patient
with hypokinetic segment around the lateral inferior wall is presented (light gray=rest, dark
gray=stress). These hypokinetic landmark points fall outside the normokinetic distributions
(the black strip region in the rightmost figure).

this step, shapes induced by dobutamine stress may produce false abnormal region from
epicardial contour. Epicardial landmark points at ES might fall outside the distribution
of control points. An example of step-by-step registration results are shown in Figure 7.1.
After the last registration step, shape variations are only present in the es-endo contour.

7.1.6 Building RWMA probability density functions

The processes of building the statistical shapemodel and estimating RWMA density func-
tions were equivalent to the methods reported earlier in Chapter 6. Independent Compo-
nent Analysis (ICA) was applied to decompose local shape variations. Probability density
functions of control group coefficient values were constructed for each independent com-
ponent. Based on the statistical independency assumption of ICA, the density functions
were propagated from the independent component domain to the shape domain. This
allows direct landmark point evaluation of a patient shape without projecting it first into
the ICAmodel. The schematic diagram of the RWMA assessment is shown in Figure 7.2.

7.1.7 RWMA evaluation

RWMA evaluation was performed by aligning a patient myocardial shape with the ICA
model of the control group and calculating the probability values from the aligned shape
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FIGURE 7.3: An example of RWMA probability values from rest (top row images) and stress
(bottom row images) MR images. This example is taken from the mid-ventricular level (seg-
ments S7, S8, S9, S10, S11 and S12).

with respect to the RWMA density functions. When the RWMA probability values of two
myocardial shapes from the same patient were evaluated, they will produce similar profile
lines. This behavior was observed in the rest and stress shapes of the same patient (see
Figure 7.3(c) and Figure 7.3(f) for an example). Hypokinetic regions that do not increase
its function at stress will be visible due to the last registration step that normalizes myo-
cardial shape at stress. In the example in Figure 7.3, non-improved hypokinetic regions
are present in segment S10 and S11. These segments show small increase of RWMA prob-
ability values from rest to stress.

The combination of rest and stress data can therefore be used to detect improved
and non-improved segments in terms of RWMA probability value changes. Since the ICA
model was built from baseline control groups, themyocardial shape at rest can be used as
the baseline to quantify the changes.

Let N be the total number of landmark points from concatenating epicardial and en-
docardial contours after the equi-angular sampling. Each landmark point will have its
own RWMA density function, i = 1, . . . ,N . Let ρ(i )

r and ρ(i )
s be the RWMA probability val-

ues of the ith landmark point for rest and stress, respectively. The magnitude of RWMA
probability value changes from rest to stress can be formulated as follows

ΔP (i ) = ρ(i )
r −ρ(i )

s

1+max
{
ρ(i )

r ,ρ(i )
s

} (7.1)

A negative value of ΔP (i ) indicates no wall motion improvement and a positive ΔP (i )
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FIGURE 7.4: Transmurality chord lines. In the left figure, the white segments are the transmural
extent of the chord lines (gray lines).

value shows a possible improvement of the myocardium towards normokinetic motion.
The RWMA probability value changes from rest to stress is given by

P (i ) = (1−ρ(i )
r )+ΔP (i ) (7.2)

7.1.8 Transmural extent

Infarct transmurality was calculated by creating a series of chord lines (see Figure 7.4). The
percentage of transmurality is defined as

TE= AB

w
×100% (7.3)

where AB is the transmural length over the chord line and w is the wall thickness.
During the experiment, TE values were averaged on each myocardial segment and

graded into the following groups: absence of hyperenhancement, transmural extent of
less than 25%, transmural extent of between 25%–50%, between 50%–75%, and transmu-
ral extent more than 75%.

7.1.9 Statistical analysis

Statistical shape modeling, registrations, and patient evaluation were implemented in
Matlab (Matlab v7.0, The Mathworks, Natick, MA, USA). The Matlab implementation of
FastICA method to generate ICA components was applied [13]. Receiver operating char-
acteristics (ROC) graph was produced by ROCR library package (ROCR v1.0.2) [14]. The
optimal cut-off value from the ROC curve is defined by minimizing (1−sensitivity)2+ (1−
specificity)2. Standard sensitivity and specificity measurements were used to show the
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TABLE 7.2: Segmental RWMA probability values.

segments samples rest only rest-stress
S′ S P̂r ∈S′ P̂r ∈S P̂s ∈S′ P̂s ∈S

basal anterior 9 3 0.25 (0.14) 0.43 (0.15) 0.29 (0.10) 0.5 (0.23)
basal anteroseptal 11 1 0.33 (0.15) ∗ 0.32 (0.15) ∗
basal inferoseptal 7 5 0.15 (0.12) 0.39 (0.13) 0.41 (0.16) 0.46 (0.26)
basal inferior 4 8 0.34 (0.13) 0.38 (0.13) 0.27 (0.07) 0.74 (0.20)
basal inferolateral 3 9 0.36 (0.21) 0.57 (0.18) 0.24 (0.10) 0.81 (0.15)
basal anterolateral 4 8 0.39 (0.20) 0.44 (0.12) 0.27 (0.20) 0.57 (0.26)
base 38 34 0.30 (0.16) 0.46 (0.14) 0.30 (0.13) 0.62 (0.22)
mid anterior 6 6 0.39 (0.29) 0.48 (0.07) 0.31 (0.10) 0.62 (0.20)
mid anteroseptal 5 7 0.39 (0.39) 0.53 (0.11) 0.27 (0.20) 0.71 ( 0.18)
mid inferoseptal 4 8 0.33 (0.16) 0.44 (0.14) 0.42 (0.22) 0.54 (0.15)
mid inferior 5 7 0.55 (0.16) 0.43 (0.19) 0.32 (0.20) 0.82 (0.12)
mid inferolateral 3 9 0.48 (0.13) 0.62 (0.18) 0.27 (0.15) 0.81 (0.17)
mid anterolateral 3 9 0.74 (0.13) 0.44 (0.17) 0.39 (0.26) 0.63 (0.16)
middle 26 46 0.48 (0.21) 0.49 (0.14) 0.33 (0.19) 0.69 (0.16)
apical anterior 5 7 0.68 (0.22) 0.66 (0.17) 0.47 (0.25) 0.82 (0.16)
apical septal 2 10 0.68 (0.09) 0.72 (0.17) 0.44 (0.24) 0.61 (0.20)
apical inferior 2 10 0.81 (0.17) 0.75 (0.15) 0.68 (0.01) 0.80 (0.13)
apical lateral 3 9 0.77 (0.05) 0.67 (0.21) 0.66 (0.10) 0.88 (0.10)
apex 12 36 0.74 (0.13) 0.70 (0.17) 0.56 (0.15) 0.78 (0.15)

S′ is non-scar segments andS is scar segments. P̂r ∈S′ and P̂r ∈S are the mean RWMA probability values at
rest for non-scar and scar segments, respectively. P̂s ∈S′ and P̂s ∈S are the mean RWMA probability values at
stress for non-scar and scar segments, respectively. All values are in mean (standard deviation) format. The
symbol ∗ indicates non-available statistical data because the number of samples for that particular case is
not enough. Segments are labeled as defined by American Heart Association standardization for myocardial
segments [12].

method’s performance [15]. The significant differences of RWMA probability values be-
tween scar and non-scar segments were tested by unpaired two-tailed t-tests with 99.9%
confidence interval. P-values < 0.001 were considered significant.

7.2 Results

7.2.1 Rest versus rest-stress data

Two evaluations for scar tissue detection were compared: RWMA probability values from
rest MRI only and RWMA probability values from the combination of rest and stress MRI.
A scar tissue is a region where transmural extent exceeds 1%. The results are shown in
Table 7.2.

The mean differences between scar and non-scar segments for rest-stress data in Ta-
ble 7.2 are significantly larger than for rest data only. This indicates a better separation
of scar tissues by the combination of rest and stress data. The unpaired t-tests resulted
in significant differences of mean RWMA probability values between scar and non-scar
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(b) rest-stress

FIGURE 7.5: Distributions of RWMA probability values from scar and non-scar (normal)
segments for each slice model, presented by box-and-whisker plots. Unpaired t-tests were
performed with 99% confidence level to get the p-values.

segments in all three slice levels (p < 0.001 for base, mid-ventricular and apex) when rest
and stress data were combined. If only rest data were used, then only the basal model
showed significant difference (p < 0.001); the mid-ventricular model resulted p = 0.06
and apical model was p = 0.94. These findings are graphically presented by box plots in
Figure 7.5. Based on this observation, the remaining experimental studies in this paper
used only the combination of rest and stress data.

7.2.2 Scar tissue detection

Receiver operating characteristics (ROC) curve to detect scar tissue by using rest and stress
data is given in Figure 7.6. The area under the ROC curve was 0.88. Sensitivity and speci-
ficity of the method were 79% and 80%, respectively. These were combined from basal,
mid-ventricular and apicalmodels. The sensitivity values for eachmodel were 90% (base),
79% (mid-ventricular) and 67% (apex), while for specificity values were 83% (base), 85%
(mid-ventricular) and 70% (apex).
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FIGURE 7.6: ROC curve of the
method performance to detect
hyperenhanced segments.
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FIGURE 7.7: Distributions of RWMA
probability values grouped by infarct
transmuralities. Error bars indicate
standard error values.

7.2.3 Correlation with infarct transmurality

From the total of 192 segments, 116 (60.4%) segments showed hyperenhancement. Out
of these scar segments, 32 (16.7%) segments had less than 25% transmurality, 40 (20.8%)
segments with 25%–50% transmurality and 32 (16.7%) segments with 50%–75% transmu-
rality. Severe infarct transmurality of over 75% was observed in 12 (6.2%) segments.

Distributions of RWMA probability values over each of the scarring score groups are
shown in Figure 7.7. It shows that the RWMA probability values decrease progressively
as infarct transmurality increases. There is a clear separation between transmural and
non-transmural regions. This shows that the automated rest-stress RWMA assessment
method correlates well with the infarct transmurality from CE-MRI. A visual example of
this finding is illustrated in Figure 7.8.

7.3 Discussion

Two main objectives were addressed in this chapter: (1) to evaluate the performance of
the automated RWMA detection method when stress and rest data are combined, and (2)
to correlate the RWMA probability changes estimated from the automated method with
infarct transmurality from CE-MR images. From the result section, the RWMA probabil-
ity values from the combined rest and stress data has proven to produce a significant
improvement in distinguishing scar regions compared to the use of rest data only. The
separation between scar and non-scar regionswidened considerablywhen stress datawas
included.

On the detection of scar regions, the performance of the automated method with the
combination of rest and stress data was relatively high. The area under RWMA probability
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FIGURE 7.8: Visual comparisons of RWMA profile lines (top rows) and their corresponding CE-
MR images (bottom rows). In the profile lines, solid lines are infarct transmurality and the
dashed lines are the RWMA probability values from rest to stress.

value curve was 0.88 (see Figure 7.6), which proves the method’s capability to detect scar
regions. Significant differences of mean RWMA probability values between scar and non-
scar regions were demonstrated in all models.

Correlated with the infarct transmurality, the automated detection method produced
decreasing RWMA probability values as the transmural extent increases. In Kim et. al. [4]
the likelihood of improvement in dysfunctional segments after revascularization increases
when the transmural extent decreases. This means that the estimated RWMA probability
values may explain the same likelihood of contractile reserve.

Currently, myocardial contours for both control and patient groups, including the hy-
perenhanced boundaries, were drawn manually by an expert. This experimental study
was conducted to demonstrate the proof of concept of the automated RWMA assessment
for the rest and stress data. However, providing manual contours is prone to subjectiv-
ity and a tedious task. Especially for the apical regions, drawing endocardial borders is
problematic because of the low contrast at the later systolic phases. Endocardial borders
were sometimes almost invisible at end-systole. As a result, the apical model yielded the
lowest score in detecting scar regions (67% sensitivity and 70% specificity) compared to
basal and mid-ventrical models. This raises the necessity to apply an objective segmen-
tationmethod formyocardium. Statistical-based segmentationmethods that incorporate
temporal information, e.g. [16–18], can be applied in this case to solve this problem.

The main limitation of this study is the lack of follow up data after revascularization
to assess functional recovery completely. The current validation used infarct transmu-
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rality as the ground truth, but CE-MRI also possesses significant problems for viability
assessment [19]. Therefore this study does not evaluate the method’s capability to assess
myocardial viability, but the proposed method shows good correlation with infarct trans-
murality. Additional pre- and post-treatment patient data is needed to further explore the
capability of the proposed method to quantify regional LV functional improvement.

The current statistical model is trained from ED and ES phases only. The results show
that building the statistical model from these two phases is enough to capture the kinetics
of heart motion. However, a higher temporal resolution may improve the performance of
the method, but at the expense of more contour drawing.

In conclusion, we have presented an automatic quantificationmethod of RWMA anal-
ysis that combines information from resting and stress MR. Validated against CE-MRI,
the automated method behaves as expected, i.e., it decreases when transmural extent
increases. Hence, the proposed method correlates well with CE-MRI and therefore is a
promising diagnostic tool to automatically assess RWMA from cardiac MR images.
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