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Abstract

In this section, a statistical shape analysis method for myocardial contraction is presented
that was built to detect and locate regional wall motion abnormalities (RWMA). For each
slice level (base, middle and apex), 44 short-axis MR images were selected from healthy
volunteers to train a statistical model of normal myocardial contraction using indepen-
dent component analysis (ICA). A classification algorithm was constructed from the ICA
components to automatically detect and localize abnormally contracting regions of the
myocardium. The algorithm was validated on 45 patients suffering from ischemic heart
disease. Two validations were performed; one with visual wall motion scores (VWMS) and
the other with wall thickening (WT) used as references. Accuracy of the ICA-based method
on each slice level was 69.93% (base), 89.63% (middle) and 72.78% (apex) when WT was
used as reference, and 63.70% (base), 67.41% (middle) and 66.67% (apex) when VWMS
was used as reference. From this observation, it is concluded that the proposed method
is a promising diagnostic support tool to assist clinicians in reducing the subjectivity in
VWMS.

This chapter was adapted from:

A. Suinesiaputra, A. E Frangi, T. A. M. Kaandorp, H. J. Lamb, J. J. Bax, J. H. C. Reiber, and
B. P E Lelieveldt. Automated detection of regional wall motion abnormalities based on a statistical
model applied to multi-slice short-axis cardiac MR images. IEEE Trans Med Imaging, 4(28):595-607,
Apr 2009.



All the knowledge I possess everyone else can
acquire, but my heart is all my own.

Die Leiden des jungen Werther
(The Sorrows of Young Werther)
JOHANN WOLFGANG VON GOETHE

SSESSMENT of wall motion is important to determine cardiac function in rest, in
stress-induced ischemia (with high dose dobutamine echocardiographic proto-
cols) and in the assessment of viability (with low dose dobutamine protocols).
In practice, dobutamine stress echo is often applied, but there are some diffi-

culties to image the heart properly in patients with a bad acoustic window. The analysis
is also subjective, with moderate reproducibility, and quantification is not very accurate.
Dobutamine MRI is an alternative method to assess regional wall motion abnormalities
(RWMA). MRI has a higher resolution and does not depend on acoustic window and there-
fore enables more accurate quantification.

In clinical practice however, RWMA assessment mainly relies on visual analysis and
interpretation of wall motion. Visual Wall Motion Scoring (VWMS) is commonly per-
formed by following a standard issued by the American Heart Association (AHA) [1], where
seventeen myocardial segments are graded by an expert from cine-MR images. Segments
are graded on a five point scale: normo-kinetic, mild-hypokinetic, severe hypokinetic,
akinetic and dyskinetic.

The main problem with VWMS is the high interobserver variability. The subtle dif-
ferences in cardiac motion abnormalities are difficult to score, which makes VWMS less
reproducible and less objective. Also, the segment boundaries are often decided based
on qualitative criteria, and may vary depending on the location of the diseased myocar-
dium. In two studies, the interobserver agreement to assess RWMA has been investigated.
Paetsch et al. [2], assessed interobserver agreement of RWMA from stress studies and
their kappa coefficient (x) is 0.59. Hoffmann et al. [3] compared 3 different modalities:
echocardiography (x = 0.41 without contrast agent and « = 0.77 with contrast agent), MRI
(k = 0.43) and cineventriculography (x = 0.56). In conclusion, there was no modality that
achieved a near perfect agreement and reader differences continue to exist even with high
quality images [3]. Both studies underscore that VWMS is very subjective, not to mention
that it requires an elaborate training of the observer.

The goal of the present study is to develop an automated tool to detect and localize
myocardial regions that show an abnormal contractile behavior based on statistics trained
from healthy wall motion. Such an automated tool would have the advantage that it would
reduce the inter- and intra observer variability and subjectivity in the analysis, and as
subsequently it may assist less experienced readers to arrive at a reliable assessment of
regional wall motion abnormalities.
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6.1 Introduction

6.1.1 Automated RWMA detection methods

There have been prior studies aimed at developing an automatic detection of wall motion
abnormalities. These studies are mainly based on shape statistics, that are described using
a point distribution model (PDM) [4]. In a PDM, myocardial shapes are subsampled into a
number of landmark points. A statistical model is then estimated from the set of landmark
points, expressing the training population as a linear combination of an average shape
and a set of characteristic eigenvariations. PDMs have been used extensively, particularly
for segmentation purposes, because the model has been restricted to search such a statis-
tically plausible shape in the image, e.g. [5, 6].

Shape parameterization using PDMs for the diagnosis of cardiac shape abnormalities
was first explored by Mitchell et al. [7]. A mixed model of patients and healthy volunteers
is created by taking myocardial contours only from end-diastole (ED) phase. Principal
component analysis (PCA) is then used to parameterize the model. The classification
between normal and abnormal shapes was evaluated by leave-one-out validation using
three classification techniques: linear discriminant analysis (LDA), kernel LDA and near-
est neighbor classifier. A comparable performance was found for all three classifiers. In
spite of that, the model was based on static ED images, therefore solely based on shape,
not incorporating any motion or contraction.

Remme et al. [8] developed a 3D left ventricle (LV) model using a fitted finite-element
mesh onto the ED LV surface and selected nine clinically-termed deformation modes that
were calculated by PCA. The LV deformation was estimated using tagged MR images. Two
models from normal and patient subjects were investigated and the statistical inference
on each nine PCA modes were estimated independently. Five out of nine PCA modes
showed significant differences between normal and patient subjects. The method is useful
to make a global classification between normal and patients, but not to locate the RWMA.

The first attempt to make a statistical model to quantify RWMA was proposed by Bosch
et al. [9]. Only infarct patients from echocardiographic images were included to build
the statistical model. The classification performance was tested by randomly splitting the
data into training and test sets. PCA was used to parameterize the shape. To perform
regional classification, multivariate linear regression was used to select principal compo-
nents that have good correlation with the corresponding VWMS values. Bosch et al.’s study
showed that VWMS correlated to the global PCA modes, although only weak correlations
were found.

The drawbacks of the previous automatic wall motion abnormality studies lie on two
main issues of their shape modeling. First, the typical PCA modes of shape variation
affect global shape. Classifying different shape groups can only reveal global shape differ-
ences [10]. There is no information on the exactlocation of shape differences through PCA
components. Second, the model generalization ability is limited because both patients
and normal subjects are mixed in the training set (Mitchell study [7]), or only patients are
included (Bosch et al. study [9]). These models are biased towards the trained pathology
and they may not generalize well towards other pathologies.
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6.1.2 Sparse decomposition in statistical shape analysis

Recently, an extension of PCA, which exploits sparseness by adding constraints of the
number of nonzero loadings [11], has gained interest in shape analysis. Local variations
of landmark position, as well as texture, can be achieved from Sparse PCA [12]. Applied
to corpus callosum shapes, Sparse PCA reveals some position preferences of a local shape
variation over a certain physiologically meaningful clinical outcome [13]. A preliminary
report of Sparse PCA for characterizing myocardial wall motion abnormality from echocar-
diograms has also been reported [14].

Sparsity in Sparse PCA is induced deliberately with the additional constraint. Rather
than imposing some regression techniques to enforce sparsity, an assumption of statis-
tical independency can be applied to get a sparse decomposition. Here, Independent
Component Analysis (ICA) is applied in the shape domain. ICA was originally developed
in signal processing to separate mixing signals into sources without any knowledge, ex-
cept the mixing signals themselves [15, 16]. The only assumption that can be made is
that the source signals are independent. Typically, a mixture of signals is observed and
the independent source signals can be estimated either by maximizing non-Gaussianity
(the FastICA method [16]), maximizing entropy (the infomax principle [17])), or by using
fourth-order cumulant matrix (the JADE algorithm [18]), among other ICA algorithms.

In shape analysis, the observed mixed signals are the training shapes. Since these
signals are taken from the same group, all signals have similar characteristics and after
ICA, the independent sources exhibit sparse regional spikes. Regional spike signals appear
because these signals maximize statistical independency between each other for similar
source signals. This phenomenon is what drives sparse decomposition for shape mod-
eling with ICA. Unlike Sparse PCA, sparsity comes directly from ICA without additional
constraints.

The statistical independency property gives an advantage of ICA over Sparse PCA for
classification purposes. It allows a simple joint probability density function estimation
from all components. Consequently, a probability density function can be defined for
each landmark point, as will be explained in details in Section 6.2. One limitation of
ICA compared to PCA (and Sparse PCA) is that the ICA components are not necessarily
linked to any anatomical or physiological meaning of the training shapes. For some ICA
algorithms, such as FastICA, the source signal results can even vary between different
estimations due to its stochastic nature. In this study, however, anatomically meaningful
sparse decomposition is not the main interest. ICA is used only for feature extraction
rather than for anatomical description.

ICA has been previously used for statistical shape analysis [19, 20]. The sparseness
characteristic of ICA has been exploited for an automated detection of tissue disorders in
3D aortic vessels [21] and for image segmentation [22]. In a comparison study of statisti-
cal shape analysis between different non-Euclidean metrics, it is reported that a method
equivalent with ICA (Maximum Autocorrelation Factors) is one of the superior methods
to decompose large shape variations [23].
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6.1.3 Contribution of this chapter

In Chapter 3, it has been demonstrated that ICA has an advantage over PCA for local shape
classification, because ICA decomposes shapes into local shape descriptors [10]. There-
fore ICA is suitable to be used as a local feature classifier compared to PCA. In Chapter 4,
ICA has been applied in cardiac shapes to locate abnormal regions in mid-ventricular
slice level of myocardium [24]. By selecting ‘abnormal’ independent components, an
ICA-based classifier gives good visual correspondence with infarcted regions indicated by
delayed-enhancement MR images.

In this chapter, the ICA-based detection method is improved and quantitative valida-
tions are presented. The contribution of this chapter is twofold:

1. Proposing a statistical method to extract local myocardial contraction patterns from
multi-slice short-axis MRI by ICA, and a method to detect and to localize regional
wall motion abnormalities based on the ICA shape parameterization.

2. Quantitative validations of the proposed statistics-based method are presented with
45 patients suffering from ischemic heart disease.

This chapter is further organized as follows. Section 6.2 describes the methodology
in-depth from building the statistical model of healthy cardiac contraction until the con-
struction of RWMA detectors. In Section 6.3, the method is quantitatively validated, fol-
lowed by a discussion in Section 6.4 and conclusions in Section 6.5.

6.2 Methodology

This section starts off by introducing the cardiac contraction modeling from a set of myo-
cardial contours, such that all pose and shape variations, including shapes at the starting
point of contraction (end-diastolic phase), are eliminated. In Section 6.2.2, the model
is decomposed into local shape descriptors using ICA. The ICA algorithm requires the
number of independent components as a parameter. A robust estimation method to
estimate this parameter is given in Section 6.2.3. After the ICA model is constructed,
distributions of model’s coefficient can be estimated, as described in Section 6.2.4. Finally,
Section 6.2.5 explains the RWMA detection method by propagating probability density
functions from ICA domain into shape domain.

6.2.1 Statistical Shape Modeling of Cardiac Contraction

Landmark-based statistical shape analysis was introduced in 1980s as a method to inves-
tigate the geometrical statistics of a set of shapes and their relative positions [25]. Land-
marks are homologous points with point-to-point correspondences between shapes, that
can be defined either mathematically, anatomically or manually. Let (x;, y;) be a 2D Carte-
sian coordinate of the i-th landmark point. A shape vector x € R?"’ with P landmarks is
defined by

X=[xlryl;x2ry2r--~»xP’yP]T' (61)
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Shapes are aligned by using Procrustes alignment [26] to eliminate variations in loca-
tion, size and shape orientation. This is given by
x' fx

xP = , 6.2
Tx (6.2)

where xP is the shape x aligned to the mean shape fi. The aligned shapes are invariant
under scale, translation and rotation transformations.

The mean shape fI is estimated from a training set {x;},i = 1,..., N. Let S be a matrix
defined as

>

T
ixi

S=

(6.3)

M=

1

Il
—

XITX,'

The mean shape fi can be found as the eigenvector corresponding to the largest eigenvalue
of S, provided that {x;} are centered to its origin, i.e. x; -1 = 0. It has been proven that f is
unique up to rotation [26]. All rotations of fi are also solutions, which correspond to the
same mean shape.

The aligned shape xP can be expressed in a linear generative model, given as

xP =i+ Oc, (6.4)
where ® € R?"*M s the component matrix with M < 2P number of components and
c € RM is a coefficient vector. The matrix ® decomposes the training set {x;} into M
components.

In Chapter 4, four contours (endocardial and epicardial contours at end-diastole (ED)
and end-systole (ES)) were combined serially to form a shape vector [24]. This sufficed
to capture myocardial contraction. However, since the main focus is to statistically com-
pare ‘contraction shapes’ between two individuals, geometrical variation of shapes at the
beginning of contraction must be removed. Consequently, all training samples start the
contraction from the same shape, providing a unit contraction model. This is similar to
Bookstein’s coordinate system [27], where two landmark points are sent to a fixed posi-
tion (known as baseline landmarks) allowing P — 2 non-zero variation of landmark point
distributions.

However, instead of using a rigid similarity transformation, thin-plate splines are ap-
plied [28] to allow deformation of the heart shape. This is necessary in particular for
patients because their myocardial shapes are dissimilar from normal subjects. As an ex-
ample, the effect of thin-plate spline warping on a patient shape is shown in Figure 6.1
(light gray arrows) and it is noticeable on the lower part of myocardium. On the contrary,
only moving contraction vectors from the patient shape to the mean shape (dark gray
arrows in Figure 6.1) does not compensate for deformation.

With the unit contraction model, the linear generative model (6.4) can be estimated
only from the ES shape part. This gives an advantage of reducing half the dimension dur-
ing ICA computation while preserving the contraction information. Figure 6.2 shows com-
parison of the point distribution model between serially combined vectors (Figure 6.2(a))
and the unit contraction model (Figure 6.2(b)).
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FIGURE 6.1: An example of the effect of thin-plate splines warping to the mean shape (dashed
lines) during the unit contraction modeling. Light gray arrows show original contraction vector
from ED to ES, while dark gray arrows show unit contraction vector from ED to ES.
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FIGURE 6.2: Shapes of endocardial and epicardial contours from 50 healthy volunteers after
the Procrustes fit. The mean shapes are depicted as black thick solid lines.

6.2.2 Myocardial Shape Decomposition with ICA

Independent component analysis (ICA) is then applied to estimate ® and c in (6.4) by
maximizing the statistical independency. In ICA terminology, the mixed signals are {x? -
vectors, the source signals are {c;} vectors and the mixing matrix is ®.

The k-th mode of shape variation, z; € R%P is defined by

7z =+ ®de, e = 1 i=k (6.5)
KRR ST ik '

The modes of shape variation describe variation of the landmark point’s location, trig-
gered only by one component. The value of 6 determines the distance of the generated
shape zy from the mean shape. It is usually determined from the variance of the k-th
coefficient values oi from the model, e.g. —30 <6 < 30%.

Four examples of ICA modes of variation from the myocardial contraction shape are
shown in Figure 6.3, which clearly show local shape variations associated with a certain
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FIGURE 6.3: ICA modes of shape variation applied for myocardial contraction with their
associated regions in the myocardium.

region in the myocardium. The modes of shape variation are useful to inspect a statistical
shape model or to generate a new shape. In this study, the component matrix @ is going
to be exploited for classification purposes.

6.2.3 Robust Estimation of Independent Components

The main difficulty in ICA is to determine the number of independent components (ICs)
into which the source signals should be decomposed. Any number can be given between 1
and N. Itis straightforward for a case where the number of source signals is a priori known,
however, in many cases, the number of real ICs that constitute the dataset is unknown.

The number of ICs can be estimated by selecting ICs that are reliable. An IC is said
to be reliable if the source signal passes a test based on specific criteria. There have been
several approaches to such a reliability test, i.e. by using mutual information [29], neural
networks [30], a Bayesian approach [31] or clustering techniques[32].

The clustering technique, proposed by Himberg et al. [32], is chosen in this work, be-
cause this approach is suitable for the FastICA algorithm [16]. Reliable ICs are calculated
from a certain number of different ICA estimations. At each realization, ICs are collected
and mapped onto a cluster space. Strong ICs are shown by their clusters that are compact
and well separated from the other clusters. One disadvantage of this technique is that
it needs to perform the ICA algorithm several times to estimate the number of reliable
components. However, in model construction, computation time is not a critical issue,
because building the ICA model is only performed once.
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FIGURE 6.4: The Iz vs number of clusters plot (left) and the clusters of ICs from the unit
contraction model (right). The model was reduced first by PCA to eliminate noise by retaining
99% of the total variance. Note that the left figure only to show relative Iy values, therefore the
y-axis units are not given.

To indicate strong ICs, the ratio between the within-cluster and between-cluster scat-
ter matrices is used. It is defined as

M 1n
k

Z@. (6.6)

k=1°k

where Si,? and S7* are the within-cluster and between-cluster scatter matrices respectively,
defined by

Sin _ (1 a; )»
k |Ck|2 i ];Ck .

o _ 1-a;)),
k k’#k |Ck||Ck’ lezC:k]EZC:k’ !

with Cy and Cyp,k =1,..., M are two sets of indices that belong and do not belong to the
k-th cluster, respectively. The a;; is a similarity measurement between the i-th and j-th
clusters, using the absolute value of their mutual correlation coefficient. A compact clus-
ter has a high S7* value and an isolated cluster shows a low Sikn value. A minimal I value is
preferred. An example of an I plot over the number of ICs is shown in Figure 6.4(a). The
corresponding cluster space is shown in Figure 6.4(b).

This clustering method is applied to determine two FastICA parameters: the number
of computed ICs and the initial guess position. The number of computed ICs is selected
from clusters that give a low Iy from (6.6). The initial guess parameter value is defined
from the centroid of the IC clusters.
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(a) Basal level ICA model (b) Middle level ICA model (c) Apicallevel ICA model

FIGURE 6.5: Three images of coefficient values from three ICA models (basal, middle and
apical levels), where rows are shapes and columns are independent components. There are
two groups for each figure separated by a solid black line; the lower part is a group of patient
shapes with ischemia (a test set) and the bottom part is a group of healthy volunteer shapes
(the training set). Note that the different pattern of the two groups is apparent.

The modes of shape variation in ICA are not ordered, because all independent compo-
nents are equally important. This is not a problem in this study, because all independent
components are used as local shape detectors for abnormal shape components.

6.2.4 Estimating Density Functions of Independent Components

Lety € R*” be a new shape that is not in the training shapes {x;}, and it is aligned by (6.2).
Using the Moore-Penrose pseudo-inverse, the projection of y onto ® can be calculated by

c,=(@"®) o7 (y-p). 6.7)

If shape y is similar to the training shapes {x;}, then ¢, resembles any one of {c;} in
(6.4). On the contrary, if y comes from a different group, for example y is a pathological
shape and {x;} is normal (healthy) shapes, then the coefficient values of ¢y lie outside the
distribution of {c;}. This is shown in Figure 6.5, which displays the coefficient values from
the control group (healthy volunteers) and ischemic patient group from basal, middle and
apical ICA models.

Classification is then performed by specifying which elements of ¢, lie outside the
distribution of the model. Since an IC is related to a certain segment in a shape (an ICA
mode of variation exhibits local shape variation as seen in Figure 6.6(d)), detecting the i-th
element of ¢, as an outlier yields a segment in the shape that deviates from the model.

Let Wi,k =1,..., M, be random variables, each corresponds to the k-th component.
By the independency, the joint probability density function of the ICA model coefficient
values is defined by

M
fW],Wz,...,WM(wlr Wwa,..., LUM) = l_[ fWk(wk) (68)
k=1
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Hence, the distribution of the ICA model coefficient values can be simplified by estimating
the density function of each component separately.

ICs have non Gaussian distributions, or at most only one component with a normal
distribution [16]. Consequently, the normal density assumption cannot be used to esti-
mate the density functions. Non-parametric kernel density estimation [33] is more suit-
able, because it does not assume a particular distribution. The density function for the
k-th component can be estimated by

N .
fWk(W):ﬁiZiK(wT%)’ 6.9)
where w is a real value, h is the bandwidth of a kernel function K(u) and c; ¢ is the k-the
element of the model coefficient vector c;.

Kernel density estimation method uses a mixture of N kernel functions, where N is
the number of samples. Notice that in (6.9), each kernel is centered on each sample. The
specific choice of kernel function is not critical [33], so the unit Gaussian kernel function
is chosen, as defined below

K(u)—Lex (—u—z) (6.10)
T Vvar P2 ) '

However, the selection of bandwidth £ is the important factor [33]. The bandwidth
controls the amount of smoothing. A small difference in % can yield a big difference in the
density function. The Sheather-Jones solve-the-plugin method [34] is applied to estimate
the optimal bandwidth, which solves unknown functional parameters directly from the
sample distribution.

6.2.5 Detecting Abnormal Regions

Based on the combination of the localized ICA model of myocardial contraction and the
estimated density functions, a classification boundary separating normal and abnormal
subjects can be developed. ‘Abnormal components’ can be defined from parameters that
yield low probability values from the corresponding density functions. By selecting only
these abnormal components, and due to the local nature of the ICA modes, the spatial
location of the wall motion abnormality can be located, and thus RWMA assessment can
be automatically carried out.

Classifying a component as abnormal does not directly identify abnormal regions. The
abnormal components need to be mapped to the shape domain to identify abnormal
regions. Therefore, propagation of the estimated M density functions { fWk(w)} to the
shape domain is needed, resulting in a density function for each element in the shape
vector.

The propagation of density functions can be calculated by using the inverse relation
of (6.7), which transforms values in the component domain to the shape domain with
the same form as in (6.4). Let f1 in (6.7) be defined as 0. For notational simplicity, let us
focus only on a single element in a shape vector and define Y as a random variable for the
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element. From the inverse of (6.7), the random variable Y is defined as
M
Y=p1Wi+@oWot - +dpyWar = ) W, (6.11)

where ¢1,...,¢ ) are elements of the corresponding row of @ for the shape vector element.
Let Uy,..., Uy be M new random variables, each defined as

Uk = o Wg. (6.12)

It is obvious that Uy is independent from Uj for (k # 1), and its density function can be
defined as

1 uk)
= — — . 6.13
fu (ug) |(Pk|fWk((Pk (6.13)

Substitute (6.9) with (6.13) yields

N
6.14
Jotu) = 10 |N p K ( orh 619

The density function of the sum of two independent random variables Uy and Uj is
given by the convolution of fy, (ux) and fy, (u;) [35]. By introducing another M auxiliary
random variables

= Ul
Yo=Y1+U>
(6.15)
Ypy-1=Ypy-2+Upm-1
Yv=Yy-1+Up,
the joint density function of Y in (6.11) can be recursively solved as follows
= fr, (ym)

= foM (Ym = ym-1) [yar Ym-1) dym-1

= ff o v = ym=1) fuy, Ym-1— ym-2)
(6.16)

s (YM=2) dym—2dym—1
:f"‘foM(yM_nyl)fUM—l(nyl - YM-2)
...fU] (J/1) d_)/l dnyZdnyl

:fUM*fUM—l *"‘*fUl‘

Equation (6.16) defines the density function of an element of a shape vector. It is given as
the series of convolutions of M density functions { fu, (u,-)} in (6.14), which are defined for
each element IC.
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FIGURE 6.6: An example of an automatic RWMA detection on a patient dataset. The septal
(label A and B) and the inferior (arrow) regions show reduced wall motion. (a) Raw patient
contours (as vectors from ED to ES) projected on the patient’s MR image at ED. (b) Coefficient
values for the same patient (solid line) after projection onto the ICA model, superimposed on
the model parameter distributions. Each column shows one distribution of an independent
component. The values in the greyscale bar indicate probability values of a healthy wall mo-
tion. Two components (label A and B) are specially noted that have the two lowest probability
values. (c) The detection result. Dark areas indicate abnormal wall motion based on the
estimated density functions (6.15) on each landmark point. (d) Shape variations from the
first IC (label A) and the 19th IC (label B), both of which show local shape variations (dashed
line is the mean shape, and solid lines are +3 times standard deviation of the component’s
coefficients). The lines crossing myocardium indicate the first landmark points at endo and
epicardial contours.
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An example of how the density function propagation works is shown in Figure 6.6,
which uses the mid-ventricular ICA model. The input contours are shown in Figure 6.6(a)
as vectors from ED to ES contours that represent the myocardial contraction. The de-
tection result is given in Figure 6.6(c), which is shown as probability values of having an
abnormal shape at each landmark point. Note also how hypokinetic motion in the inferior
region (the small arrow in Figure 6.6(a)) points to regions with high probability values of
being abnormal (the small arrow in Figure 6.6(c)).

In Figure 6.6(b), two independent components (the 1st and the 19th ICs), which have
the largest deviations of coefficient values from the model coefficient values, were labeled
as A and B, respectively. When the ICA modes of variations from these two ICs are in-
spected (see Figure 6.6(d)), the local shape variations correlate with regions with abnormal
motion. The first IC (label A) detects a reverse contraction motion in the septal region,
while the 19th IC (label B) detects small wall thickening in the upper part of the septum.

6.3 Experimental Results

6.3.1 Data description and preprocessing

TABLE 6.1: Patient and Control Groups Statistics.

Patients Controls
Samples 45 44
Males/females 42/3 33/11

Ejection fraction (%) | 36.30+10.7 | 61.99+6.4
Stroke volume (ml) 75.57+19.6 | 94.94+21.5

Myocardial contours of short-axis MR images were collected from two groups: a con-
trol group for model training and a patient group for classification testing. The control
group consists of healthy volunteers, whereas the patient group consists of patients suffer-
ing from chronic coronary artery disease, with a depressed LV function. Baseline statistics
of both groups are shown in Table 6.1, which also shows that ejection fraction and stroke
volume is significantly different between the two groups.

MR images were acquired by 1.5T Gyroscan ACS-NT MRI scanner (Philips Medical
Systems, Best, The Netherlands) and only short-axis view datasets were used that cover
the LV from apex to base. End-diastole (ED) and end-systole (ES) phases from basal, mid-
ventricular and apical levels were selected. Epi- and endocardial contours were manually
drawn by an expert.

Visual wall motion scores (VWMS) for the patient group were performed for each seg-
ment by an experienced cardiologist on a 5-point scale: normokinetic, mild-hypokinetic,
severe-hypokinetic, akinetic and dyskinetic. During the scoring process, cine-MRI view-
ing of the short-axis views was used and the observer was blinded to the result of the
proposed method. VWMS was performed on 6 segments at the basal level, 6 segments
at the mid-ventricular level, and 4 segments at the apical level. To determine the segment
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TABLE 6.2: RWMA validations using WT (top) and VWMS (bottom) as reference

Validation using WT as a reference (WT benchmarking)

ICA-based Method VWMS
acc. (%) [ sens. (%) | spec. (%) acc. (%) | sens. (%) | spec. (%)
base 69.63 76.92 66.67 66.67 69.23 65.62
middle 89.63 85.48 90.87 76.30 56.45 82.21
apex 72.78 72.97 72.73 63.33 54.05 65.73
Validation using VWMS as a reference (VWMS benchmarking)
ICA-based Method WT
acc. (%) [ sens. (%) [ spec. (%) acc. (%) [ sens. (%) [ spec. (%)
base 63.70 60.83 66.00 70.00 65.83 73.33
middle 67.41 65.12 69.50 68.52 60.47 75.89
apex 66.67 59.42 71.17 62.22 60.87 63.06

Each percentage value was computed with all segments included after determining the optimal cut-
off boundary value.

locations, the American Heart Association (AHA) standard for myocardial segmentation
was adopted [1]. Wall thickening (WT) was calculated by using dedicated quantitative
MR measurement software MR Analytical Software System (MASS v5.0, Medis, Leiden, the
Netherlands) [36]). WT is defined in term of percentage systolic thickening, calculated per
landmark point as defined by

W Wes— ¥

ed  100%, (6.17)
Wed

where wes and weq are myocardial wall thickness (the distance from endocardial and
epicardial contours) at end systolic and end diastolic respectively.

For ICA modeling, landmarks were defined by equi-angular sampling of epi- and en-
docardial contours from the center of myocardium. The number of landmarks per seg-
ment was set to 10, producing 60 landmarks per contour for basal and middle slices and
40 for apical slices. To ensure point-to-point correspondence between subjects, a fixed
anatomical reference point was defined at the intersection between the left and right
ventricle at the inferior region. The ICA model was calculated with FastICA algorithm [16],
implemented in Matlab (Matlab v6.5, The Mathworks, Natick, MA, USA). The non-linear
objective function parameter in FastICA was g(y) = 3y? and the symmetric orthogonal-
ization parameter was used.

6.3.2 Validation Method

As described before, VWMS is sensitive to high subjectivity and variability [2, 3]. Therefore,
to enable an objective performance assesment of the proposed method, two validations
were performed by establishing two types of benchmarking. The first one is by selecting
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FIGURE 6.7: The performance of the ICA-based method compared with VWMS from the WT
benchmarking.
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FIGURE 6.8: The performance of the ICA-based method compared with WT from the VWMS
benchmarking.

WT as a point of reference to compare the ICA-based method with VWMS (WT bench-
marking) and the second one is by selecting VWMS as another point of reference to com-
pare the ICA-based method with WT (VWMS benchmarking). In the WT benchmarking,
a threshold value of 10% was determined as the boundary between normal and reduced
WT [37]. In the VWMS benchmarking, the classification boundary is converted into binary
values: 0 for normokinetic region and 1 for other dyskinetic regions.

To evaluate the performance of the diagnostic methods in both benchmarking tests,
receiver operating characteristics (ROC) curves were used. ROC graph is a standard graph-
ical tool to visually compare different classification methods [38]. The optimal cut-off
value to define classification boundary can also be estimated by using ROC curve, which
is defined by minimizing (1 —sensitivity)? + (1 —specificity)?. The optimal cut-off value was
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then used to calculate the performance of a method in terms of accuracy, sensitivity and
specificity, as given by
Tp+ T, T T
acc= — N N, spec = —N, sens = —P, (6.18)
+ N p
where Tp and Ty are true positive (the number of segments that are correctly identified
as abnormal) and true negative (the number of segments that are correctly identified as
normal) values, respectively. The total number of abnormal (positive) and normal (neg-
ative) segments are P and N. The ROC package developed by [39] was used to generate
ROC graphs.

6.3.3 Classification performance

Five examples of the automated detection result are presented in Figure 6.9, side-by-side
with the corresponding MR image sequences. Corresponding RWMA areas (white ar-
rows) are found in the same place with the estimated abnormal wall motion from the
automated method. Table 6.2 shows the classification performance using the WT and
the VWMS benchmarking tests. Compared to VWMS in the WT benchmarking, accuracy
of the ICA-based method is significantly higher. This is also the case for sensitivity and
specificity measurements. The highest performance was achieved in the mid-ventricular
slice model with the average of almost 89.6% for accuracy, 85.5% of sensitivity and 90.9%
of specificity. During the VWMS benchmarking, the ICA-based method performance is
comparable with WT.

ROC curves from each ventricular slice level are given in Figure 6.7 and Figure 6.8.
In all cases, the area under ROC curves of the proposed method are larger than VWMS,
indicating that the ICA-based method gives a higher performance. The area under ROC
curve of the ICA-based method for the basal slice is slightly smaller than WT, while it
is slightly larger for the apical slice. Interestingly, the area under the ROC curve of the
proposed method for the mid-ventricular slice is almost the equal with WT, but this does
not imply that the results of both methods are equal (see Section 6.3.5).

6.3.4 Disagreement with visual wall motion score

A common disagreement between the ICA-based method with VWMS lies in the extend of
abnormal landmark points that cross segment boundaries. Observers score on segments,
instead of points. Boundaries between segments can be visually repositioned according
to the observer’s interpertation while looking at the cine images. Therefore it is often the
case that the automated method detected abnormal points only in a partial myocardial
segment as pointed by arrows in Figure 6.10(a). The false positive result in Figure 6.10(a)
belongs to the same abnormal motion of the inferior segment marked by VWMS. The
visual score assigned the abnormal motion only to one segment, while the automated
method detected all the abnormal points preserving the wall motion continuity.

Another problem of the proposed method in the current study is the lack of full cardiac
cycle information in the shapes that are defined only by ED and ES phases. In a few cases,
as one given in Figure 6.10(b), the observer detected a wall motion peculiarity from the
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FIGURE 6.9: Five automated detection results compared to the associated myocardial motion
taken from MR image sequences (four frames from End-Diastole to End-Systole). Dark color in
the rightmost column indicates high probability of having an abnormal motion. White arrows
in the End-Systole images show corresponding RWMA areas with the automated detection.
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Input contours Detection result VWMS

110 120 130 40 150 160 110 120 130 40 160

140 160

(a) Automated method detects abnormal regions in areas pointed by arrows, while VWMS scores normal
segments.

Input contours Detection result

120 120 140

(b) Automated method detects normal regions in the area pointed by an arrow while VWMS scores
abnormal segment, because input contours in that area look normal according to the model.

FIGURE 6.10: Examples of disagreement between the automated method with VWMS. The
visual scores are graded per segment (dark grey=abnormal, white=normal). Intensity of dark
areas in the detection result figures denote probability values of having an abnormal motion.

cine images, while the automated method detected normal contraction because shapes at
ES looks normal according to the statistics of the model. The arrow in Figure 6.10(b) shows
a good ED to ES contraction. In this case, the automated method missed the abnormal
wall motion because it did not include the information of the contour positions between
ED and ES phases.

6.3.5 Disagreement with wall thickening

ROC curves of the ICA-based method and wall thickening during the VWMS benchmark-
ing in Figure 6.8 show high degree of similar performances. The main reason is that
statistical shapes in the ICA-based method was constructed from ED and ES contours,
which are the same phases to define the wall thickening value (see (6.17)). However there
are substantial differences between the ICA-based method and wall thickening results.

88



Input contours Detection result Wall thickening

100 110 120 130 100 110 120 130 100 110 120 130

(a) Automated method detects abnormal motion in the area pointed by an arrow, while WT measures high
thickening.

Input contours Detection result Wall thickening

120 140 160 100 120 140 160 100 120 140

(b) Automated method shows normal motion in the area pointed by an arrow due to rotational motion,
but WT measures low wall thickening value in that area.

FIGURE 6.11: Examples of disagreement between the automated method with wall thickening
measurements. Wall thickening values range from +100% to —100%, as defined in (6.17).
Intensity of dark areas in the detection result figures denote probability values of having an
abnormal motion.

WT measurement does not consider geometry of the contours. It only subtracts myo-
cardial thickness from ES to ED, regardless whether the contraction movement performs
in an unusual way. An example of this case is shown in Figure 6.11(a), where the myocar-
dium at the anteroseptal region (pointed by an arrow) is moving towards the right ventri-
cle. It means that the myocardium at that region is dilating instead of contracting. The
ICA-based method however is still capable to detect this kind of movement as abnormal
This shows that the statistical model does not merely imitate wall thickening, but it also
includes wall motion information implicitly.

As the statistical model contains wall motion, the automated method sometimes de-
tects regions with low thickening as normal, because the contraction shape is still normal
according to the model. Figure 6.11(b) shows this case of disagreement. The myocardial
region pointed by an arrow in Figure 6.11(b) shows rotational movement while contracting
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FIGURE 6.12: Comparisons between the ICA-based detection method with the direct landmark
density estimation using a bivariate normal (2D Gaussian) density model. Both ROC curves
were calculated from mid-ventricular slice level.

with low wall thickening.

6.3.6 Comparison with direct landmark density estimation

The proposed method starts off by modeling statistics of training shapes with ICA. The
estimated density functions in the IC domain are then propagated into the shape domain
(6.16), resulting a density function for each landmark point. Having density functions at
the level of landmark points may raise some issues over the benefit of using ICA modeling
instead of directly estimating probability density functions at each landmark point, e.g. by
using a bivariate normal distribution model, which would reduce the complexity.

In this study, ICA is particularly used as a feature extraction to model the shape of myo-
cardial contraction. The contraction shape at one landmark is not only determined by the
distribution of that particular landmark, but is also affected by its neighbors. The closer
the neighbor landmark, the higher its contribution. Density functions for each landmark
point have been calculated based on all independent components, which means that all
other point distributions contribute to estimating it. This is different from direct land-
mark point density estimation which only estimates a distribution model of a particular
landmark point without considering its spatial context.

To perform a comparison between ICA and direct landmark density estimation, two
bivariate density functions were estimated directly at each landmark point [40]: one with
a gaussian function and the other with a non-parametric kernel density function. Only the
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mid-ventricular slice level was used because the contraction motion is most pronounced
in this level. All the three methods received the same input points, which are the landmark
points from End-Systole contours after unit contraction (see Figure 6.2(b)). Hence, they
only differ in how the probability density functions are estimated.

Figure 6.12(a) and Figure 6.12(b) show the ROC curves of the three methods during
the WT and VWMS benchmarking tests, respectively. The ROC curves show that the ICA-
based method gives much better performance compared to the direct landmark density
estimations, especially in Figure 6.12(b). This proves that direct landmark density estima-
tion is not enough to capture motion contraction, and that modeling landmarks in their
shape context is thus necessary. ICA was chosen because it gives local shape variation and
it allows the propagation of the density functions to the shape domain.

6.4 Discussion

6.4.1 Method performance

From both benchmarking tests, the mid-ventricular slice level gives the highest perfor-
mance (almost 90% in WT benchmarking and 67% in VWMS benchmarking). This is
due to fact that wall motion in the mid-ventricular level is well defined and more stable
compared with basal and apical levels; thus regional wall motion abnormalities can be
well separated from the control group.

In the basal level, there are large shape variations in the septal region due to the close
proximity of the valve opening which gives a lower accuracy for abnormal motion in that
region. This conforms with the lowest accuracy outcome in the basal level compared with
the other levels in both benchmarking tests. In the apical level, the ICA-based method is
still capable to detect abnormal motion (73% and 67%). However, the method’s sensitivity
reduced significantly (59% in VWMS benchmarking).

6.4.2 Study limitations

Both the ICA model and the RWMA detection method are sensitive to the quality of the
myocardial contours. To construct a good ICA model, high quality myocardial contours
are required. This requires a low inter- and intraobserver variation in the contours (if
they are manually drawn), or a low segmentation error (if the contours are segmented
automatically). This issue is not specific to the proposed method, but it is inherent to any
quantitative regional LV function measurement.

In the present study, a binary classification between normal and abnormal motion
is proposed. Classification of a specific type of abnormal motion, i.e. hypokinetic, aki-
netic and dyskinetic, are not presented yet. As yet, the method therefore only serves as a
computer-aided tool to draw the clinician’s attention to the suspected abnormal motion
areas in the myocardium; staging of the wall motion abnormality may still be performed
visually.

The current automated method works by modeling contractility patterns for each ven-
tricular slice level. Therefore the method does not capture the three dimensional heart
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motion. It is natural to extend the ICA model into 3D but we decided to model 2D car-
diac contraction based on two reasons. During visual scoring, observers assess RWMA
by looking at planar motion on multi-slice cine-MR sequences. Therefore by modeling
multi-slice 2D ICA model, VWMS is emulated. Another reason is the dimensionality pro-
blem. Increasing the shape dimensionality also increases the necessary amount of train-
ing shapes required to generate a representative model.

The main benefit of the proposed method over previously described work on auto-
matic wall motion classification (Bosch et al. [9], Mitchell et al. [7] and Remme et al. [41]
studies) is that the method does not only distinguish between normals and patients, but
also localizes the anomalies. Furthermore, the model is trained on normal subjects, there-
fore it is not biased towards a specific pathology, and can be deployed to other disease
processes that manifest themselves in regional contraction anomalies.

6.4.3 Clinical utility

The accuracy of the automated method in comparison with visual observers’ scores ranges
from 63.70%—67.41%. This disagreement still hinders the application of the proposed
method in clinical routines. Even VWMS is often difficult to be applied in clinical settings
due to high intra- and interobserver variations [2, 3]. Hoffmann et al. study [3] found that
the accuracy of RWMA assessment from cine MRI from three independent observers is
62%, 55% and 86%. In the current validation, only one observer performed the scoring.
To make a better quantitative validation, it may therefore be needed to set a consensus
reading from more than one independent observer.

Nonetheless, there is still room for improving the proposed method to reach the agree-
ment with visual observers. The most prominent difference between visual observers with
the automated method is the temporal resolution. This problem has been addressed in
Section 6.3.4. There are two possibilities to enhance the statistical model with respect to
this problem. First is to include more shapes taken from in between ED and ES frames.
Interpolation might be needed in this case, because the number of images per one car-
diac cycle is different between subjects. Second is to enhance point correspondences
between time frames. In the current implementation, there is no particular verification
of point correspondences between ED and ES. This solution can improve the statistical
model particularly in basal slice where valve opening causes a lot of shape variations in
the septum.

6.5 Conclusion

A statistical model-based method to automatically detect RWMA in cardiac MR short-axis
views of the myocardium has been presented. The model can capture the myocardial
contractility pattern in a framework where all shapes contract from the same shape. This
leads to a direct statistical analysis of the contraction by eliminating the shape variations
at the ED phase. Furthermore, the automated process does not depend on a specific
segmentation algorithm to produce the diagnostic results. The idea behind this approach
is to construct a full pipeline of automated cardiac MRI analysis from segmentation to
diagnosis, aimed to help clinicians in their daily routines.
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Modeling by ICA proved very suitable in this study, because ICA produces local shape
variations that are needed by the detection method to locate RWMA segments. The statis-
tical independence property of ICA gives a benefit of an easy derivation of local probability
density functions from the component domain to the shape domain.

The validation showed an almost similar performance compared to WT during the
VWMS benchmarking, and a higher accuracy performance than VWMS during the WT
benchmarking. Two advantages of this method over VWMS are (1) given myocardial con-
tours, the detection method is automatic, and (2) the method does not require a special-
ized rater, as VWMS does, to arrive to a clinically meaningful interpretation.

Having a reference of normal cardiac contraction has another advantage. The same
model can be used for follow-up studies, for instance the stress MR study or post-operative
MR, to investigate whether the same patient exhibits improvement in the cardiac func-
tion towards the normal behavior reference. This opens the path towards an automated vi-
ability assessment, an important diagnosis in the clinical routines. With the same concept
of detecting RWMA regions, viability can be analyzed from stress MR studies by comparing
RWMA regions in the corresponding rest MR studies. The functional improvement can be
detected by measuring the direction of the patient’s coefficient value from rest to stress. A
pilot study to assess functional improvement has been presented in [42], as well as linking
this method with an automated segmentation of cardiac MR images [43, 44], enabling a
full pipeline of automated cardiac MR image analysis.
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