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3
EXTRACTION OF MYOCARDIAL CONTRACTILITY

PATTERNS FROM SHORT-AXIS MR IMAGES USING

INDEPENDENT COMPONENT ANALYSIS



Abstract

Regional wall motion analysis has been used in clinical routine to assess myocardial
disease, particularly in ischaemia. This disease can be distinguished from normals by
looking at the local abnormality of cardiac motion. In this chapter, the first result of a
feature extraction experiment using Independent Component Analysis (ICA) is presented,
where abnormal patterns of myocardial contraction from patients are recognizable and
distinguishable from normal subjects.

This chapter was adapted from:
A. Suinesiaputra, A. F. Frangi, M. Üzümcü, J. H. C. R. Reiber, and B. P. F. Lelieveldt. Extraction
of myocardial contractility patterns from short-axis MR images using independent component
analysis. In M. Sonka, I. A. Kakadiaris, and J. Kybic, editors, Computer Vision and Mathematical
Methods in Medical and Biomedical Image Analysis, volume 3117 of Lecture Notes in Computer
Science, pages 75–86. Springer, 2004.
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There are things we know that we know. There
are known unknowns. That is to say there are
things that we now know we don’t know. But
there are also unknown unknowns. There are
things we don’t know we don’t know.

NATO Press Conference, 6 June 2002
DONALD RUMSFELD

M
YOCARDIAL contractility is an important quantitative indicator for the diag-

nosis of myocardial diseases. This function can be visually examined and
quantified by using a cine MRI sequence. Two most important phases for
myocardial contraction are the end-diastole (ED), or the start of contrac-

tion, and the end-systole (ES), or the end of contraction.
Abnormal myocardial contraction is mainly caused by the occlusion of coronary arte-

ries. Coronary artery occlusion causes the imbalance of oxygen supply to the heart which
triggers the so-called ischaemic events starting from perfusion abnormalities, wall motion
abnormalities and finally myocardial infarction. Figure 3.1 shows two examples of MRI
images from a healthy volunteer and an infarct patient, both at ES phase. Note that the
inferior region (indicated by a white arrow) of the infarct patient does not contract. This
region has a small wall thickness value.

To extract myocardial contractility patterns, shape decomposition technique is ap-
plied through subspace analysis. Subspace analysis techniques have been used in many
areas, including appearance-based modeling and recognition. Principal Component Anal-
ysis (PCA) is the common subspace analysis for dimensionality reduction. Independent
Component Analysis (ICA) is another subspace analysis, which seeks statistically indepen-
dent components of the observed data. ICA is commonly used for blind source separation
of an observed signal.

In machine learning, both PCA and ICA can be used for feature extraction [1–3]. There
exists some literature showing a comparison between both methods with different results.
Moghaddam [4] shows no statistical differences between PCA and ICA. Draper et al. [5]
compared ICA and PCA for face recognition and reported that some ICA algorithms give
better performance than PCA, but some do not.

Regardless of these comparisons, PCA and ICA are both linear generative models, be-
cause every training shape can be approximated by a linear combination of the compo-
nents. An important difference between ICA and PCA lies in the shape variation. Inde-
pendent components from ICA create local shape variation, while principal components
from PCA give a global shape variation [6]. This indicates that ICA is more suitable for
extracting local shape features compared to PCA. Local feature extraction is a desirable
property specifically in this study.

In this chapter, an ICA-based local feature extraction method for the diagnosis of myo-
cardial disease is presented, especially for myocardial infarction. Section 3.1 describes
the myocardial shape model, the ICA method and a new sorting method for ICA modes.
Section 3.2 presents experimental results, followed by a discussion in Section 3.3.
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(a) healthy volunteer (b) infarct patient

FIGURE 3.1: MRI images of a healthy volunteer and an infarct patient at end-systole (the
final contraction phase in the cardiac cycle). White arrow points to the infarcted tissue of the
patient, where that myocardial region has a small contraction.

3.1 Methodology

3.1.1 ICA model

In this study, the observation data are left ventricular (LV) myocardial contours, manually
drawn from short-axis cardiac MR images at ED and ES phases. Samples for each obser-
vation are landmark points, defined by equal angular distance along each contour.

To model the contractility pattern between ED and ES, contours for each subject are
combined serially into one shape vector. A shape x ∈R2m is defined by m landmark points
from 4 contours together in the following order: endocardium (inner) contour at ED, epi-
cardium (outer) contour at ED, endocardium contour at ES and epicardium contour at ES.
Thus the shape analysis is performed on all concatenated contours together, preserving
the aspect ratio between ED and ES. This keeps the contractility patterns among different
subjects (shapes).

The shape vector x consists of m pairs of (x, y) coordinates of landmark points:

x = (
x1, y1, x2, y2, . . . , xm , ym

)T (3.1)

The mean shape x̄ from n shapes is defined by

x̄ = 1

n

n∑
i=1

xi (3.2)

Each observed data (shape) x can be generated by a linear combination of a compo-
nent matrix Φ ∈R2m×p . This linear generative model is formulated as follows

x ≈ x̄+Φb, (3.3)
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where x̄ is the mean shape and b ∈Rp is the component weighting vector.
In ICA, the basis of the subspace is sought to be statistically independent, with the

main assumption of the non-gaussian distribution of the observed data [7]. The resulting
subspace is non orthogonal and unordered. There is no closed form solution for ICA.
Several numerical algorithms to estimate ICA are available (see [8] for the survey of ICA
algorithms).

When applied to shape modeling, there is an important property of ICA in its modes.
As the number of computed independent components increases, the component gives
more localized shape variations. On the contrary, if the number of independent com-
ponents is too small, then the component gives global shape variation, much like PCA
modes. A shape variation in ICA has a general shape of a local bump, whereas the re-
mainder of the shape is unaffected (see Figure 3.2(a)). This is the difference between ICA
and PCA: PCA modes give global shape variations, distributed over the entire contour (see
Figure 3.2(b)). Üzümcü et. al. [6] have presented the comparison between PCA and ICA in
the modelling of cardiac shapes.

3.1.2 Geometry-based sorting for ICA modes

In subspace analysis, the number of selected components is usually less than the dimen-
sion of the observed data. This allows a lower dimensional representation that still covers
enough information of the observed data, either for description, detection or recognition.

Principal components are ordered from higher variance to the lowest, making it straight-
forward to select which and how many components to retain for further analysis; this is
however not the case in ICA. There is no natural sorting criteria for independent compo-
nents. One needs to define a sorting method for independent components that is suitable
for a specific application. Since ICA components are local, they can be sorted based on
their local position along the contour and this sorting criterion gives a more intuitive
interpretation of local shape variations.

Let i th mode x̂i be defined as the shape variation at the i th column of Φ:

x̂i = x̄+Φei (3.4)

where 1 ≤ i ≤ p and ei ∈ Rp is a vector that has element 1 at the i th position whereas the
rest are 0. Thus, x̂i describes the i th mode of shape variation.

To locate the position of each x̂i along a contour, a bank of Gaussian filters were ap-
plied and then followed by the normalized cross-correlation of each of the filters with a
distance vector of each mode x̂i . The i th mode distance vector di ∈ Rm+ is defined as
the distance of each landmark point in the shape variation xi to the mean shape. Each
element j of the i th distance vector is defined by

d( j )
i =

√√√√ 2 j∑
k=2 j−1

(
x̂(k)

i − x̄(k)
)2

, (3.5)

where j = 1,2, . . . ,m. The cross-correlation is performed only on a particular contour,
circularly. Thus there are four cross-correlation processes, because there are four contours
for each shape.
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(a) ICA mode (variation is at ED-epi)

(b) The first PCA mode

FIGURE 3.2: Examples of local shape variation from an ICA mode. As a comparison, the first
PCA mode is given. The mean shape is shown with dashed lines. The solid lines are modes of
shape variation.

The Gaussian filter giving the maximum cross-correlation for vector di is stored. The
center of this filter defines the position of the i-th component; the width of the Gaussian
filter represents the width of the component. Figure 3.3(a) shows an example of the cross-
correlation response from a component.

There is an extra advantage of using the normalized cross-correlation for sorting ICA
modes. Modes that consist of noise are automatically detected and thus can be elimi-
nated. Noise modes have a global wrinkled shape variation along the whole contour,
which correlates best with the widest Gaussian filter. Figure 3.3(b) shows an example of
the cross-correlation response for a noise component. After all modes have been cross-
correlated, positions of all modes are determined. Subsequently, ICA modes are sorted
based on position along the contour.
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(a) a component
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(b) a noise component

FIGURE 3.3: Example of maximum cross-correlation results from two components.

3.1.3 Cluster measurement metrics

To evaluate the cluster formation between normal and patient subjects, a number of q
components (q ≤ p) are selected from the weighting coefficient matrix b.

Let D = ∑c
i Di ⊂ Rq be a subset of the weighting coefficient matrix b, after q compo-

nents are selected. Let c be the number of classes. In this case, c = 2, because there are
only two classes, i.e. normals and patients.

The first measurement is called within-cluster scatter matrix, which measures the com-
pactness of a cluster. The within-cluster scatter matrix SW is defined as the sum of scatter
matrices for each group:

SW =
c∑

i=1

∑
x∈Di

(x−mi )(x−mi )T , (3.6)

where mi is the mean ("center of gravity") of the cluster i .
A scalar value representing the measurement of the compactness from this metric is

simply its trace. The trace of a scatter matrix accounts for the square of the scattering
radius, because it is actually the sum of the variances in each coordinate direction. This
scalar value is equal to the sum-of-squared error. Thus one seeks the minimum of this
value to get the best representation of a cluster. The compactness measurement JW can
be defined as follows

JW = tr[SW ] (3.7)

The second measurement is between-cluster scatter matrix measurement SB , which
represents how far clusters are separated. It is defined as follows

SB =
c∑

i=1
ni (mi −m)(mi −m)T , (3.8)
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where ni is the number of subject of the i th cluster and m is the total mean:

m = 1

n

∑
x∈D

x (3.9)

The scalar measurement value of the between-cluster scatter matrix is also its trace:

JB = tr[SB ] (3.10)

The within-cluster and between-cluster scatter matrices are mostly used to design
cluster validity indices for clustering methods [3]. In this study, these measurements are
used to compare the quality of the cluster representation given by PCA and ICA compo-
nents.

To visualize the cluster distribution, the Fisher discriminant line [3] is calculated and
coefficient values from the selected components are projected to the Fisher line. Fisher
linear discriminant accounts the ratio between the between-cluster and the within-cluster
matrix measurements and it is given by:

w = S−1
W (m1 +m2) , (3.11)

where w is a vector with the direction that maximizes the separation between the two
clusters m1 and m2.

3.2 Experimental results

Forty-two normal subjects and forty-seven patients suffering from myocardial infarction
were investigated. For each subject, endocardial and epicardial contours at ED and ES
phases from short-axis view MRI were drawn manually by experts.

All contours were resampled to 40 landmarks defined by equi-angular sampling, start-
ing from the intersection point between the lower right ventricular myocardium with the
left ventricular myocardium. The total number of landmark points for each shape were
160 points.

ICA calculation was performed by using the JADE algorithm [9], implemented in Mat-
lab (Matlab v7.0, The Mathworks, Natick, MA, USA). The number of ICA modes was se-
lected carefully to 40 in this study, that gives enough local shape variations for each of the
four contours. If the number is too small, then the shape variations become more global.
If the number is too large, then too many local shape variations may occur, which look like
noise components.

For the ICA mode sorting, 20 Gaussian filters were used, ranging from width 3 to 22.
Modes correlating with a Gaussian filter, which has width larger than 20 (half of a contour),
were considered to be noise. From the original 40 ICA modes, the sorting method retained
35 modes, thus eliminated 5 noise modes.

3.2.1 Weighting coefficient matrix

Figure 3.4(a) shows the weighting matrix b of the ICA model that is constructed from
shapes of normal subjects and infarct patients. The weighting coefficient matrix con-
tains values that are needed to generate each training shape. These coefficient values
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FIGURE 3.4: The weighting coefficient between normal subjects and infarct patients.

are different for each subject. Thus the weighting matrix b is the most important value for
classification purposes.

From Figure 3.4(a), the boundary between normal and patient subjects is clearly dis-
tuingishable in the endocardium at the ES phase. As a comparison, Figure 3.4(b) shows
the PCA model from the same data. With PCA, the difference between the two groups is
less pronounced. It is clearly visible only from the first component.

3.2.2 Mean cluster distance

To enable the comparison between PCA and ICA, the weighting coefficient matrices for
both models are normalized, such that ||b|| = 1. Hence weighting coefficient matrices for
PCA and ICA are both in the same unit.

The distance between means of normal and patient subjects for each component is
calculated using the mean cluster distance (MCD), as given by:

di = |mn,i −mp,i |, (3.12)

where i is an index of a component, mn,i and mp,i are the mean of the weighting coeffi-
cient values at the i -th component for normal and patient subjects respectively. Figure 3.5
shows the bar plot of the MCD of PCA and ICA for each mode.

A t-test experiment was conducted on each of independent and principal component
to see whether the two means from normal and patient coefficient values come from two
different clusters. The result is illustrated in Figure 3.5. From 35 selected independent
components, there are 27 components with each has statistically significant difference of
two means, while PCA only gives 1 component (the first principal component). The t-tests
were performed with 95% confidence interval.
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FIGURE 3.5: Mean cluster distance of each component from ICA and PCA. The results of t-test
experiment on each component are shown as dark gray for p < 0.05 and light gray bars for
p ≥ 0.05.

It is evident that independent components at ES-endo are among the highest MCD
value. Mean cluster distance of the first PCA mode is the highest among others, even
compared with ICA.

3.2.3 Cluster analysis

In this study, only an analysis of cluster properties are presented, but not yet a classi-
fication result. Clusters are defined by selecting all independent components from ICA
and principal components that covers 95% of total variance from PCA. This gives 35 ICA
components and 16 PCA components.

Table 3.1 shows the measurement results using (3.7) for the cluster compactness and
(3.10) for the cluster separation. Figure 3.6 shows result of the projected coefficient values
to their Fisher discriminant line.

PCA gives better compactness than ICA, but less separable (see Table 3.1). However
the projection to the Fisher discriminant line favors ICA (see Figure 3.6). There is only one
point of misclassification in ICA, if a threshold value is defined. However there are more
overlaps in the projection of principal components to the Fisher discriminant line.

TABLE 3.1: Cluster validity measurement results.

compactness separation
(JW ) (JB )

ICA 1.84 0.66
PCA 0.65 0.12
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normal
patient

normal
patient

ICA 

PCA 

FIGURE 3.6: Projection of independent components (above) and principal component (below)
to their Fisher discriminant line.

3.2.4 Separation degree

The MCD in (3.12) can be used to map the cluster separation for each component onto
the same information for each landmark points. This enables a more intuitive regional
interpretation of the differences between the two groups.

From the sorting of independent components, location and width of each component
are retrieved. Thus the corresponding Gaussian function for each component can be
generated and multiply it with its MCD, resulting a Gaussian mixture for each landmark
point. The sum of the Gaussian mixture is called separation degree. Figure 3.7(a) shows
the separation degree of the ICA model from normal and patient subjects. Figure 3.7(b)
also shows the same visualization, but a more intuitive way using the bullseye plot, where
the color denotes the separation degree.

Figure 3.7(b) corresponds with Figure 3.4(a), where the most important feature to dis-
tinguish between normal and patient is the endocardium at ES phase. The least important
features lie on the epicardium contour at ES phase, where there is a small separation
degree.
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FIGURE 3.7: The separation degree of the ICA model between normal subjects and infarct
patients.

3.3 Discussion

The potential of ICA in the computer-aided diagnosis of myocardial diseases has been
investigated. The first result indicates that the ICA method is a promising analysis tool to
extract local shape deformations from observed data. The sorting method of independent
components based on their position leads to an anatomically meaningful interpretation
for classification purposes. The weighting coefficient matrix from the ICA model can
clearly distinguish between the two different groups in the endo-contour at ES.

From the cluster analysis, projection of independent components to the Fisher dis-
criminant line gives better cluster representation than principal components. Given the
ability to classify globally and to extract local features, ICA is a powerful tool to detect and
to localize shape abnormalities, comparing favorably to PCA.

The experimental results revealed that most of the infarction area affects the endo-
cardium in the infero-lateral wall, because the data contains most patients who have in-
farction in the lateral and inferior regions. A few patients have infarction in the septum
area. From this study, the endocardium at end-systole phase is the most distinguishable
feature, because this is the part of myocardium having the most deformation process due
to contraction.
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The reason why classification was not performed in this experiment is that the pro-
blem of classifying a patient versus normal is a toy problem. In clinical routine, it is not
interesting to determine a subject as a patient. It is more important to detect if there is an
anomaly, to localize it and then to quantify the disease.

The number of computed independent components is a free parameter to choose. The
smaller the number is, the more global the independent components are for a shape vari-
ation. On the other hand, the shape variation becomes more localized if this parameter
is increased. Thus a method to find an optimal number of independent components is
needed. An analysis of how sensitive this parameter is to the diagnostic performance in
this case will be helpful to define the optimal value.

The next important clinical question for the diagnosis of myocardial infarction is at
which particular region of myocardium a patient has an infarction. This basically to local-
ize the local abnormality and to quantify the severity of the disease.
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