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Melman: Yeah. I often doze off while I’m getting
an MRI.
Alex: Melman, you’re not getting an MRI!
Melman: CAT scan?
Alex: No! No CAT scan! It’s a zoo transfer!
Melman: ZOO TRANSFER?!

MADAGASCAR (2005)

C
ORONARY artery disease is a condition in which plaque builds up inside the coro-

nary arteries, causing disruption of the supply of oxygen-rich blood to the myo-
cardium. The prevalence, incidence, hospitalization rate and costs of this dis-
ease in the developed countries have steadily increased [1]. It has been a lead-

ing cause of death in Europe and North America, and it may even accelerate the pro-
gression of heart failure, and as such, it is responsible for 70% of congestive heart failure
cases [2].

Ischaemia is a condition of the heart when the supply of blood to the myocardium is
significantly reduced, mainly as the result of coronary artery disease. The imbalance in
supply and demand of oxygen in the circulation leads to functional sequelae known as the
ischaemic cascade. This starts with perfusion abnormalities, metabolic changes (silent
ischaemia), wall motion abnormalities, diastolic dysfunction, systolic dysfunction, angina
and ultimately infarction [3, 4]. As a result of chronic contractile dysfunction, myocardium
may turn into a hibernating state. Hibernating myocardium is an equilibrial condition
after prolonged subacute or chronic ischaemia in which metabolism and contractile func-
tion are reduced to match the blood supply. The hibernating myocardium is capable of
returning to normal or near-normal function after restoration of an adequate blood sup-
ply [5]. Hibernating myocardium thus suggests the presence of viable tissue, which may
gain functional improvement after treatment [6]. In the absence of a significant amount
of viable myocardium, restoring the blood flow is not beneficial anymore. Assessment
of dysfunctional but viable myocardium has become an important determinant in the
prognosis of ischaemic heart disease for long term survival.

A common treatment for restoring blood flow to the heart is coronary revasculari-
zation. Two common revascularization procedures are coronary artery bypass grafting
(CABG) and percutaneous coronary intervention (PCI). CABG restores blood flow of an
obstructive coronary artery by rerouting the artery with a new vessel. PCI is performed by
angioplasty, i.e., threading a balloon-tipped tube to be inflated, compressing the plaque
and dilating the narrowed coronary artery to improve the blood flow again, and then fol-
lowed by vascular stenting to keep the vessel open. Although overall survival has improved
due to these revascularization treatments, the result remains a partial success [7]. This
emphasizes the need for and the importance of an early and noninvasive diagnosis and
quantification of ischaemic heart disease.
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FIGURE 1.1: Resting (TOP) and dobutamine stress (BOTTOM) cine-MR images from the same
patient at a single MR acquisition session. An increase of dobutamine-induced wall thickening
is visible at the inferior region (the bottom arrows). This indicates a possible viable myocar-
dium. At the anteroseptal region (the top arrows), there is no increase of LV function from rest
to stress, which suggests non-viable tissue.

1.1 Imaging techniques for diagnosis of ischaemic heart disease

In the last few decades, an enormous amount of research has been carried out towards
imaging of ischaemic heart disease. Different image acquisition approaches have emerged,
either to detect the disease before symptoms occur, to assess the presence and the extent
of the disease in the symptomatic patient, or to monitor the disease progression over
time. Particularly for viability assessment, hibernating myocardium can be traced with
some imaging techniques, which can detect either the presence of myocardial tissue that
contracts if stimulated (wall motion analysis) or the persistence of metabolic activities
within the regions of dysfunctional myocardium (perfusion analysis).

Though head-to-head comparisons between imaging techniques have been performed
with respect to viability, no single test has been reported to have a perfect or nearly perfect
sensitivity and specificity [8]. An integrated use of different image acquisitions is therefore
needed in clinical decision making [8, 9]. In the following sections, clinical applicability of
different image modalities to assess ischaemic heart disease is briefly presented.

1.1.1 Magnetic resonance imaging (MRI)

MRI has a unique position in the management of ischaemic heart disease because it is
the only single image modality that allows visualization of all ischaemic events through
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different MR protocols [3]. In a single session, perfusion defects, resting cardiac function,
stress imaging and infarct images can be acquired with MRI [2, 4, 10]. Hence, MRI has the
potential to be implemented as a “one-stop shop” imaging modality for the diagnosis of
ischaemic heart disease.

1.1.1.1 Resting cine-MR images

Cine MR images are generally used in standard clinical practice for quantification of global
and regional LV functions, e.g., ejection fraction, stroke volume, wall thickening, and wall
thickness, because of its superb contrast delineation of myocardium with the blood pool,
right ventricle and other tissues. Cine MR imaging captures a full cardiac cycle in an
MR time sequence. Hence, cine MRI allows quantification of wall motion as well as end-
diastolic wall thickness (EDWT) and systolic wall thickening (SWT), which are key func-
tional parameters for quantifying ischemic heart disease.

1.1.1.2 Dobutamine stress MR (DSMR)

In the assessment of myocardial viability, the presence of contractile reserve is frequently
used to identify viable myocardium. Contractile reserve can be assessed by low dose
dobutamine injection prior to MR acquisition, which will produce cardiac stress MRI [2,
11]. Contractile reserve is shown by the increase of the dobutamine-induced systolic
function compared against the corresponding resting cine-MRI.

The diagnostic procedure with DSMR starts from visual wall motion scoring of myo-
cardial segments in resting MR. Four visual score levels are defined: normokinetic (nor-
mal), hypokinetic (reduced), dyskinetic (abnormal) and akinetic (no contraction). The
hypokinetic score may sometimes be divided into mild and severe hypokinetic. Subse-
quently, observers predict functional improvement in non normokinetic segments by com-
paring cine MR sequences between resting MR and DSMR. Figure 1.1 shows an example of
a comparison between resting and dobutamine-stress cine MRI. Observer experience in-
evitably affects the diagnostic quality of DSMR [12, 13]. Quantitatively, viable myocardium
can also be characterized by the preserved EDWT and SWT from rest to stress MR [14, 15].

1.1.1.3 MR perfusion

An MR perfusion study is performed by the injection of gadolinium pentaacetic acid (Gd-
DPTA) prior acquisition. The contrast agent enables full inspection of myocardial tissue
perfusion during the first-pass myocardial intensity enhancement (see Figure 1.2). First-
pass MR perfusion images are usually evaluated by an upslope analysis of myocardial
time-intensity curves.

Coronary artery disease can be assessed by the combination of rest and stress perfu-
sion studies [16, 17]. During stress, the blood flow through myocardium increases three-
to fourfold. The ratio of the maximum blood flow to the baseline, known as myocardial
perfusion reserve index (MPRI), has been used as an index of functional severity of a
coronary lesion [18].
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1.1.1.4 Contrast-enhanced MRI (CE-MRI)

FIGURE 1.3: An example of CE-MRI.

Following a rest MR perfusion study, the
amount of washed-out contrast agent inside
myocardium can be quantified. In an in-
farcted region, extracellular contrast agent
passively diffuses into the intercellular space
due to myocyte death. This accumulation
of contrast agent increases tissue-level con-
trast. Chronic infarcts are characterized
by the absence of living myocytes, which
widens interstitial space between collagen fi-
bres. This increases contrast agent concen-
tration that results in hyperenhancement [2].
Figure 1.3 shows an example of a contrast-
enhanced MRI in which hyperenhancement
is notably present at the anterior region of
the myocardium.

Typically, a contrast-enhanced MR ac-
quisition is performed 10–20 minutes after the intravenous introduction of the con-
trast agent and therefore CE-MRI is often referred to delayed-enhancement or late-
enhancement MRI. CE-MRI is effective in identifying the presence, location and extent of
acute and chronic myocardial infarction. Transmural extent has become the main metric
of infarct assessment in CE-MRI, because there is a strong correlation between infarct
transmurality and the infarct size [19].

Additionaly, CE-MRI allows prediction of functional improvement in ischaemia. Vi-
able and non-viable tissue can be distinguished by setting a threshold value on infarct
transmurality. However, it is still an open debate how to define this threshold value; some
define a transmural extent of less than 75% as viable [11, 20, 21], while others prefer a more
moderate 50% threshold value [22–24].

FIGURE 1.2: A sequence of first-pass MR perfusion images. The paramagnetic contrast agent
starts entering the right ventricle (LEFTMOST), fills the right ventricle and then left ventricle
before it leaves the ventricle completely (RIGHTMOST). Image courtesy of Vikas Gupta, LKEB,
LUMC, the Netherlands.
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1.1.2 Echocardiography

Echocardiography has gained much popularity for the assessment of ischaemic heart dis-
ease because it is a noninvasive low-cost imaging technique that is available in many clini-
cal scenarios. Echocardiographic imaging can also assess tissue viability through different
protocols [25, 26], i.e. dobutamine stress echocardiography, tissue doppler imaging and
myocardial contrast echocardiography.

Dobutamine stress echocardiography (DSE) assesses the functional response of the
heart at stress after the administration of low-dose dobutamine infusion. Viability is noted
in DSE by the improvement of ejection fraction from rest to stress, which is directly related
to the number of myocardial segments with contractile reserve [27]. Applying DSE in
patients with poor acoustic window however is still problematic. DSE suffers from low
interobserver and interinstitutional agreement due to different interpretations of stress
echocardiograms [28, 29]. Better standardization of visual assessment [30], which can be
assisted by an automated method [31], is needed to allow objective evaluation of viable
tissue with DSE.

Tissue Doppler imaging (TDI) is a color Doppler imaging technique which analyzes
point velocities, accelerations and Doppler signal strength in the myocardium instead
of in the blood pool [32]. Several efforts have been made to exploit TDI for viability as-
sessment, but inconsistent prediction of functional recovery from TDI parameters was
found [25]. From TDI, strain and strain rate imaging can be derived. Strain rate of scar
tissue deteriorates as the extent of infarct transmurality increases and this measurement
can improve the accuracy of TDI to assess viability [33]. The main drawback of TDI is
the continuum of velocity measurements that often produces false abnormal velocity of a
normal segment tethered by jeopardized neighboring segments.

Myocardial contrast echocardiography (MCE) is another echocardiographic imaging
protocol that measures cellular viability in myocardium. Myocardial necrosis is associated
with the loss of microvasculature, which can determine viable and non-viable tissue [34].

1.1.3 18F-fluorodeoxyglucose (FDG) PET imaging

Under normal resting conditions, free fatty acid (FFA) and glucose are two main energy
sources of cardiac metabolism. Under ischaemia, oxygen supply decreases which reduces
metabolism of FFA. Consequently, exogenous glucose becomes the primary metabolic
substrate for myocardium [35]. The increase of glucose uptake by myocardium is therefore
an important indicator for ischaemia.

Glucose metabolism in the organ system can be traced by the glucose analog 2-[F-
18]-2-deoxy-2-fluoro-D-glucose (FDG) uptake. Myocardial FDG uptake can be imaged
by using positron emission tomography (PET). For predicting LV functional improvement
after revascularization, FDG-PET has been regarded as the standard of reference for other
imaging techniques [36] However, its limited availability and high costs hamper its appli-
cation for daily clinical routine.

Cardiac FDG-PET images are relatively low resolution and lack anatomical detail. To
provide morphological information, FDG-PET imaging is sometimes combined with other
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imaging modalities, such as MR or CT images [37–41]. This approach requires a good
registration method to allow an accurate quantitative analysis.

1.1.4 Electrocardiographically-gated perfusion SPECT imaging

Electrocardiographically-gated SPECT (radionuclide perfusion imaging) is a tomographic
imaging technique with a radioisotope perfusion tracer. The acquisition is controlled
by electrocardiography (ECG) to generate full cardiac cycle of perfusion images [42, 43].
Three perfusion tracers: 99mTc-sestamibi, 99mTc-tetrofosmin and 201Ti (Thallium), are
routinely used in clinical practice. Standard myocardial perfusion SPECT can be per-
formed at rest or after pharmacologically induced stress. ECG-gated SPECT imaging pro-
vides several prognostic values for ischaemic heart disease, including myocardial viabil-
ity [44, 45] and disease monitoring following a revascularization procedure [46–48].

1.2 Computer-assisted diagnosis for ischaemia

The first articles of computerized methods for analyzing medical image data appeared
in the 1960s [49, 50], which marked the beginning of CAD development. Initially, a con-
siderable optimism was exalted that a computerized method could provide a complete
diagnosis. This expectation gradually abated over time. Instead of assigning the com-
puter the role of a diagnostician, CAD methods have gradually shifted towards computer-
generated diagnostic systems to support the physicians’ own assessment [51]. A modern
CAD method acts as a second reader that automatically highlights candidates of a lesion,
providing a second opinion to the first reader (radiologist/clinician).

The role of CAD as a second reader has been fostered for the detection of lesion, that
are prone to be missed by radiologists alone. That includes the detection of pulmonary
nodules in chest radiographic images [52–56], the detection of colorectal polyps from CT
colonographic images (virtual colonoscopy) [57–60], and the detection of breast cancer
from mammography in breast screening programs [61–63]. A large body of research has
been published in these fields, resulting in hundreds of proposed CAD methods with vary-
ing results [64, 65]. Common in these results was a substantial increase of sensitivity by
the CAD-supported assessment, although the increase varied with the experience of the
reader. The advent of CAD has helped radiologists to reduce their reading time [58, 66, 67]
and it has also decreased interobserver variability among readers [68, 69].

Also in other areas, several attempts have been made to develop a CAD system to
detect lesions or abnormalities. CAD was applied to identify suspected intracranial aneu-
rysms in MR angiographic images [70, 71], to detect pulmonary embolisms [72], to identify
arteriolar narrowing in fundus images [73], and mainly other tumor detection applica-
tions.

For cardiac applications, a simple computer-aided detection system cannot be ap-
plied because of the dynamic nature of the heart. A CAD system for heart disease must
be based on what is known as differential diagnosis [65], which is based on quantitative
differences between two reference points. Currently, CAD for ischaemic heart disease is
still in its infancy. Most of the proposed automated methods focused on presenting direct
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TABLE 1.1: Comparison of existing automated wall motion assessment methods.

Method Regional Modality Sample size

Douglass et. al. [90] LDA yes gated SPECT 31
Remme et. al. [91] SSM no cine MRI 13
Bosch et. al. [78] SSM yes (limited) DSE 64
Herz et. al. [92] PI yes 3D echo 1 (canine)
Ruiz Dominguez et. al. [93] PI yes echo 10
Caiani et. al. [94] TV yes cine MRI 18
Kachenoura et. al. [95] PI yes cine MRI 13
Lekadir et. al. [88] SSM yes cine MRI 40
Qazi et. al. [96] LDA no echo —
Leung et. al. [97] SSM yes DSE 129
Mansor et. al. [98] HMM yes DSE 44
Suinesiaputra et. al. [99, 100] SSM yes cine MRI 45

LDA = linear discriminant analysis, SSM = statistical shape model, PI = parametric image,

TV = threshold value, HMM = hidden markov model

raw quantification of global or regional LV function to the clinicians [74, 75]. Much effort
has been spent on the development of automated quantification of cardiac images, which
includes segmentation, registration and cardiac modeling [76, 77].

The first automated classification of wall motion abnormalities (WMA) by using sta-
tistical knowledge of myocardial contours was presented by Bosch et. al. [78]. This CAD
method utilized a statistical shape model (SSM) of endocardial contours, which was origi-
nally used for the segmentation of endocardial borders in echocardiograms [79]. A linear
correlation was found between diagnostic predictors (active appearance motion model
shape coefficients) with visual wall motion scores.

SSMs provide a morphometric analysis of biological shapes, which are characterized
by a set of correspondent anatomical, geometrical or mathematical landmark points [80].
When a set of shapes from the same group is used to build the model, statistical inferences
such as the mean shape and the modes of variation will only expose plausible shapes
according to that group. The key problem is that the model needs to be specific enough to
only generate representative examples. This is the underlying mechanism of Active Shape
Models (ASM) [81], an automated segmentation method which has gained popularity for
segmenting medical images in general [82, 83], and also for cardiac images [84–86].

SSMs require proper registration of training shapes to eliminate pose related variations
(translation, scale and rotation). Post registration, SSMs will contain residual variations
that only describe the true inter-subject differences. These variations should be small if all
training shapes are taken from the same group, e.g., non pathological subjects. Fitting an
SSM onto shapes from outside the model group may produce significantly large variations
and errors. This particular feature becomes the main ingredient of characterizing normal
and pathological shapes with SSMs [79, 87–89].

Parameterization of left ventricular (LV) motion appears to be a suitable approach
to model myocardial contraction for CAD of ischaemia. Aside from SSMs, other CAD

9



approaches have been proposed to parameterize LV motion. A finite element model was
introduced to parameterize wall motion [92]. A Hammer map projection was then applied
to map the three-dimensional LV wall into continuous values of ischaemic zones: normal,
hypokinesis, akinesis and dyskinesis. Finite element modeling was also combined with
SSMs to estimate the deformation of the heart to distinguish normal and patients [91].

Other automated WMA classification methods include outlier detection in SSMs by
inter-landmark distances [88], Hidden Markov Models [98], parametric imaging of wall
motion[93, 95], linear classifiers [90, 96], and threshold-based LV function indicators [94].
A comparison of existing CAD methods for ischaemic heart disease based on wall motion
analysis is given in Table 1.1.

1.3 Motivation and objectives

With the increasing prevalence and hospitalization rate of ischaemic heart disease, an
explosive growth of diagnostic imaging for ischaemia is ongoing. Clinical decision making
on revascularization procedures requires reliable viability assessment to assure long-term
patient survival and to elevate cost effectiveness of the therapy and treatment. As such,
the demand is increasing for a CAD method for ischaemic heart disease that supports cli-
nicians with an objective analysis of infarct severity, a viability assessment or a prediction
of potential functional improvement before performing revascularization.

The goal of this thesis was to explore novel mechanisms that can be used for CAD in
ischemic heart disease, particularly through wall motion analysis from cardiac MR images.
Existing diagnostic treatment of wall motion analysis from cardiac MR relies on visual wall
motion scoring, which suffers from inter- and intra-observer variability. To minimize this
variability, the automated method must contain essential knowledge on how the heart
contracts normally. This enables quantification of hypokinetic myocardial segments, de-
tection of segments with contractile reserve and prediction of functional improvement in
stress. As such, the objectives of this thesis are threefold:

1. To find a proper shape parameterization for myocardial contraction. The dynamic
nature of cardiac contraction must be represented in such a way that myocardial
shapes from healthy subjects in this representation differ from shapes from ischae-
mic patients.

2. Define good descriptors and classifiers that are capable of detecting, locating and
quantifying regional wall motion abnormalities (RWMA). Hence, locality is a key
factor for providing automated segmental analysis of wall motion.

3. Investigate the possibility of applying the automated RWMA method for predicting
regional functional improvement from rest to stress MR images.

1.4 Outline

This thesis is organized as follows.
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Chapter 1 lays out the background and motivation of this thesis and presents a survey of
current imaging techniques and CAD methods for ischaemic heart disease.

Chapter 2 describes a preliminary investigation on wall motion analysis to extract dense
velocity vector fields from tagged MR imaging by using multiscale optic flow. This
means velocity vectors from all pixels inside myocardium are automatically calcu-
lated over the full cardiac cycle. Quantitative validation is performed by comparing
the estimated velocity vector fields with velocity-encoded (VEC) MRI.

Chapter 3 presents an exploratory study to find a proper shape representation for myo-
cardial contraction. To model the dynamics of myocardial contraction in the static
representation of SSMs, shape vectors are defined by serially concatenating endo-
and epicardial contours at end-diastole (ED) with endo- and epicardial contours at
end-systole (ES). Shapes from both healthy subjects and patients are combined into
one SSM. Contractility patterns are extracted by using Principal Component Analy-
sis (PCA) and Independent Component Analysis (ICA), and a comparison between
the two decomposition methods is presented. In this chapter, the advantage of ICA
to extract local shape features is demonstrated.

Chapter 4 gives the first application of ICA to detect regional wall motion abnormality
(RWMA). Segments with abnormal wall motion are detected by the location of ab-
normal independent components (ICs) in myocardium. Qualitative evaluation of
RWMA on six infarct patients is presented by correlating the position of abnormal
ICs with hyperenhanced areas from the corresponding CE-MRI of the same patients.

Chapter 5: With the capability of ICA to detect RWMA for ischaemic patients as given in
Chapter 4, we explored the method’s potential use for predicting regional contractile
improvement. Qualitative comparison of RWMA at rest with RWMA at stress is
presented in this chapter. By comparing independent component coefficients from
rest to stress, the potential to detect myocardial contractile improvement from rest
to stress is investigated.

Chapter 6 represents the core of our CAD method for automated RWMA evaluation. The
methodological formulation to estimate RWMA probability density functions is re-
fined and improved by propagating the density functions from the independent
component domain to the shape domain. This allows a direct quantification of
RWMA at the landmark point level without the need to project a patient shape onto
the ICA model. Quantitative validation results from 45 patients with ischaemic heart
disease are also presented in this chapter.

Chapter 7: investigates of the possibility to automatically detect regional functional im-
provement when rest and stress cardiac MR data are combined. The statistical model
is slightly adapted to accommodate the comparison between rest and stress data
during the shapes alignment. A new evaluation of RWMA probability changes from
rest to stress is proposed. Correlation with infarct transmuralities from CE-MRI is
presented in this chapter.
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Chapter 8 summarizes the CAD development for ischaemic heart disease. Future di-
rections for building a computer-assisted cardiac ischaemia diagnosis method are
presented at the end of this chapter.
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