1

INTRODUCTION
Melman: Yeah. I often doze off while I’m getting an MRI.
Alex: Melman, you’re not getting an MRI!
Melman: CAT scan?
Alex: No! No CAT scan! It’s a zoo transfer!
Melman: ZOO TRANSFER?!

MADAGASCAR (2005)

Coronary artery disease is a condition in which plaque builds up inside the coronary arteries, causing disruption of the supply of oxygen-rich blood to the myocardium. The prevalence, incidence, hospitalization rate and costs of this disease in the developed countries have steadily increased [1]. It has been a leading cause of death in Europe and North America, and it may even accelerate the progression of heart failure, and as such, it is responsible for 70% of congestive heart failure cases [2].

Ischaemia is a condition of the heart when the supply of blood to the myocardium is significantly reduced, mainly as the result of coronary artery disease. The imbalance in supply and demand of oxygen in the circulation leads to functional sequelae known as the ischaemic cascade. This starts with perfusion abnormalities, metabolic changes (silent ischaemia), wall motion abnormalities, diastolic dysfunction, systolic dysfunction, angina and ultimately infarction [3, 4]. As a result of chronic contractile dysfunction, myocardium may turn into a hibernating state. Hibernating myocardium is an equilirbial condition after prolonged subacute or chronic ischaemia in which metabolism and contractile function are reduced to match the blood supply. The hibernating myocardium is capable of returning to normal or near-normal function after restoration of an adequate blood supply [5]. Hibernating myocardium thus suggests the presence of viable tissue, which may gain functional improvement after treatment [6]. In the absence of a significant amount of viable myocardium, restoring the blood flow is not beneficial anymore. Assessment of dysfunctional but viable myocardium has become an important determinant in the prognosis of ischaemic heart disease for long term survival.

A common treatment for restoring blood flow to the heart is coronary revascularization. Two common revascularization procedures are coronary artery bypass grafting (CABG) and percutaneous coronary intervention (PCI). CABG restores blood flow of an obstructive coronary artery by rerouting the artery with a new vessel. PCI is performed by angioplasty, i.e., threading a balloon-tipped tube to be inflated, compressing the plaque and dilating the narrowed coronary artery to improve the blood flow again, and then followed by vascular stenting to keep the vessel open. Although overall survival has improved due to these revascularization treatments, the result remains a partial success [7]. This emphasizes the need for and the importance of an early and noninvasive diagnosis and quantification of ischaemic heart disease.
FIGURE 1.1: Resting (Top) and dobutamine stress (Bottom) cine-MR images from the same patient at a single MR acquisition session. An increase of dobutamine-induced wall thickening is visible at the inferior region (the bottom arrows). This indicates a possible viable myocardium. At the anteroseptal region (the top arrows), there is no increase of LV function from rest to stress, which suggests non-viable tissue.

1.1 Imaging techniques for diagnosis of ischaemic heart disease

In the last few decades, an enormous amount of research has been carried out towards imaging of ischaemic heart disease. Different image acquisition approaches have emerged, either to detect the disease before symptoms occur, to assess the presence and the extent of the disease in the symptomatic patient, or to monitor the disease progression over time. Particularly for viability assessment, hibernating myocardium can be traced with some imaging techniques, which can detect either the presence of myocardial tissue that contracts if stimulated (wall motion analysis) or the persistence of metabolic activities within the regions of dysfunctional myocardium (perfusion analysis).

Though head-to-head comparisons between imaging techniques have been performed with respect to viability, no single test has been reported to have a perfect or nearly perfect sensitivity and specificity [8]. An integrated use of different image acquisitions is therefore needed in clinical decision making [8, 9]. In the following sections, clinical applicability of different image modalities to assess ischaemic heart disease is briefly presented.

1.1.1 Magnetic resonance imaging (MRI)

MRI has a unique position in the management of ischaemic heart disease because it is the only single image modality that allows visualization of all ischaemic events through
different MR protocols [3]. In a single session, perfusion defects, resting cardiac function, stress imaging and infarct images can be acquired with MRI [2, 4, 10]. Hence, MRI has the potential to be implemented as a "one-stop shop" imaging modality for the diagnosis of ischaemic heart disease.

1.1.1.1 Resting cine-MR images

Cine MR images are generally used in standard clinical practice for quantification of global and regional LV functions, e.g., ejection fraction, stroke volume, wall thickening, and wall thickness, because of its superb contrast delineation of myocardium with the blood pool, right ventricle and other tissues. Cine MR imaging captures a full cardiac cycle in an MR time sequence. Hence, cine MRI allows quantification of wall motion as well as end-diastolic wall thickness (EDWT) and systolic wall thickening (SWT), which are key functional parameters for quantifying ischemic heart disease.

1.1.1.2 Dobutamine stress MR (DSMR)

In the assessment of myocardial viability, the presence of contractile reserve is frequently used to identify viable myocardium. Contractile reserve can be assessed by low dose dobutamine injection prior to MR acquisition, which will produce cardiac stress MRI [2, 11]. Contractile reserve is shown by the increase of the dobutamine-induced systolic function compared against the corresponding resting cine-MRI.

The diagnostic procedure with DSMR starts from visual wall motion scoring of myocardial segments in resting MR. Four visual score levels are defined: normokinetic (normal), hypokinetic (reduced), dyskinetic (abnormal) and akinetic (no contraction). The hypokinetic score may sometimes be divided into mild and severe hypokinetic. Subsequently, observers predict functional improvement in non normokinetic segments by comparing cine MR sequences between resting MR and DSMR. Figure 1.1 shows an example of a comparison between resting and dobutamine-stress cine MRI. Observer experience inevitably affects the diagnostic quality of DSMR [12, 13]. Quantitatively, viable myocardium can also be characterized by the preserved EDWT and SWT from rest to stress MR [14, 15].

1.1.1.3 MR perfusion

An MR perfusion study is performed by the injection of gadolinium pentaacetic acid (Gd-DPTA) prior acquisition. The contrast agent enables full inspection of myocardial tissue perfusion during the first-pass myocardial intensity enhancement (see Figure 1.2). First-pass MR perfusion images are usually evaluated by an upslope analysis of myocardial time-intensity curves.

Coronary artery disease can be assessed by the combination of rest and stress perfusion studies [16, 17]. During stress, the blood flow through myocardium increases three- to fourfold. The ratio of the maximum blood flow to the baseline, known as myocardial perfusion reserve index (MPRI), has been used as an index of functional severity of a coronary lesion [18].
1.1.1.4 Contrast-enhanced MRI (CE-MRI)

Following a rest MR perfusion study, the amount of washed-out contrast agent inside myocardium can be quantified. In an infarcted region, extracellular contrast agent passively diffuses into the intercellular space due to myocyte death. This accumulation of contrast agent increases tissue-level contrast. Chronic infarcts are characterized by the absence of living myocytes, which widens interstitial space between collagen fibres. This increases contrast agent concentration that results in hyperenhancement [2]. Figure 1.3 shows an example of a contrast-enhanced MRI in which hyperenhancement is notably present at the anterior region of the myocardium.

Typically, a contrast-enhanced MR acquisition is performed 10–20 minutes after the intravenous introduction of the contrast agent and therefore CE-MRI is often referred to delayed-enhancement or late-enhancement MRI. CE-MRI is effective in identifying the presence, location and extent of acute and chronic myocardial infarction. Transmural extent has become the main metric of infarct assessment in CE-MRI, because there is a strong correlation between infarct transmurality and the infarct size [19].

Additionaly, CE-MRI allows prediction of functional improvement in ischaemia. Viable and non-viable tissue can be distinguished by setting a threshold value on infarct transmurality. However, it is still an open debate how to define this threshold value; some define a transmural extent of less than 75% as viable [11, 20, 21], while others prefer a more moderate 50% threshold value [22–24].
1.1.2 Echocardiography

Echocardiography has gained much popularity for the assessment of ischaemic heart disease because it is a noninvasive low-cost imaging technique that is available in many clinical scenarios. Echocardiographic imaging can also assess tissue viability through different protocols \cite{25, 26}, i.e. dobutamine stress echocardiography, tissue doppler imaging and myocardial contrast echocardiography.

Dobutamine stress echocardiography (DSE) assesses the functional response of the heart at stress after the administration of low-dose dobutamine infusion. Viability is noted in DSE by the improvement of ejection fraction from rest to stress, which is directly related to the number of myocardial segments with contractile reserve \cite{27}. Applying DSE in patients with poor acoustic window however is still problematic. DSE suffers from low interobserver and interinstitutional agreement due to different interpretations of stress echocardiograms \cite{28, 29}. Better standardization of visual assessment \cite{30}, which can be assisted by an automated method \cite{31}, is needed to allow objective evaluation of viable tissue with DSE.

Tissue Doppler imaging (TDI) is a color Doppler imaging technique which analyzes point velocities, accelerations and Doppler signal strength in the myocardium instead of in the blood pool \cite{32}. Several efforts have been made to exploit TDI for viability assessment, but inconsistent prediction of functional recovery from TDI parameters was found \cite{25}. From TDI, strain and strain rate imaging can be derived. Strain rate of scar tissue deteriorates as the extent of infarct transmurality increases and this measurement can improve the accuracy of TDI to assess viability \cite{33}. The main drawback of TDI is the continuum of velocity measurements that often produces false abnormal velocity of a normal segment tethered by jeopardized neighboring segments.

Myocardial contrast echocardiography (MCE) is another echocardiographic imaging protocol that measures cellular viability in myocardium. Myocardial necrosis is associated with the loss of microvasculature, which can determine viable and non-viable tissue \cite{34}.

1.1.3 18F-fluorodeoxyglucose (FDG) PET imaging

Under normal resting conditions, free fatty acid (FFA) and glucose are two main energy sources of cardiac metabolism. Under ischaemia, oxygen supply decreases which reduces metabolism of FFA. Consequently, exogenous glucose becomes the primary metabolic substrate for myocardium \cite{35}. The increase of glucose uptake by myocardium is therefore an important indicator for ischaemia.

Glucose metabolism in the organ system can be traced by the glucose analog 2-[18F]-2-deoxy-2-fluoro-D-glucose (FDG) uptake. Myocardial FDG uptake can be imaged by using positron emission tomography (PET). For predicting LV functional improvement after revascularization, FDG-PET has been regarded as the standard of reference for other imaging techniques \cite{36} However, its limited availability and high costs hamper its application for daily clinical routine.

Cardiac FDG-PET images are relatively low resolution and lack anatomical detail. To provide morphological information, FDG-PET imaging is sometimes combined with other
imaging modalities, such as MR or CT images [37–41]. This approach requires a good registration method to allow an accurate quantitative analysis.

1.1.4 Electrocardiographically-gated perfusion SPECT imaging

Electrocardiographically-gated SPECT (radionuclide perfusion imaging) is a tomographic imaging technique with a radioisotope perfusion tracer. The acquisition is controlled by electrocardiography (ECG) to generate full cardiac cycle of perfusion images [42, 43]. Three perfusion tracers: 99mTc-sestamibi, 99mTc-tetrofosmin and 201Tl (Thallium), are routinely used in clinical practice. Standard myocardial perfusion SPECT can be performed at rest or after pharmacologically induced stress. ECG-gated SPECT imaging provides several prognostic values for ischaemic heart disease, including myocardial viability [44, 45] and disease monitoring following a revascularization procedure [46–48].

1.2 Computer-assisted diagnosis for ischaemia

The first articles of computerized methods for analyzing medical image data appeared in the 1960s [49, 50], which marked the beginning of CAD development. Initially, a considerable optimism was exalted that a computerized method could provide a complete diagnosis. This expectation gradually abated over time. Instead of assigning the computer the role of a diagnostician, CAD methods have gradually shifted towards computer-generated diagnostic systems to support the physicians’ own assessment [51]. A modern CAD method acts as a second reader that automatically highlights candidates of a lesion, providing a second opinion to the first reader (radiologist/clinician).

The role of CAD as a second reader has been fostered for the detection of lesion, that are prone to be missed by radiologists alone. That includes the detection of pulmonary nodules in chest radiographic images [52–56], the detection of colorectal polyps from CT colonographic images (virtual colonoscopy) [57–60], and the detection of breast cancer from mammography in breast screening programs [61–63]. A large body of research has been published in these fields, resulting in hundreds of proposed CAD methods with varying results [64, 65]. Common in these results was a substantial increase of sensitivity by the CAD-supported assessment, although the increase varied with the experience of the reader. The advent of CAD has helped radiologists to reduce their reading time [58, 66, 67] and it has also decreased interobserver variability among readers [68, 69].

Also in other areas, several attempts have been made to develop a CAD system to detect lesions or abnormalities. CAD was applied to identify suspected intracranial aneurysms in MR angiographic images [70, 71], to detect pulmonary embolisms [72], to identify arteriolar narrowing in fundus images [73], and mainly other tumor detection applications.

For cardiac applications, a simple computer-aided detection system cannot be applied because of the dynamic nature of the heart. A CAD system for heart disease must be based on what is known as differential diagnosis [65], which is based on quantitative differences between two reference points. Currently, CAD for ischaemic heart disease is still in its infancy. Most of the proposed automated methods focused on presenting direct
TABLE 1.1: Comparison of existing automated wall motion assessment methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Regional</th>
<th>Modality</th>
<th>Sample size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglass et. al. [90]</td>
<td>LDA</td>
<td>yes</td>
<td>gated SPECT</td>
</tr>
<tr>
<td>Remme et. al. [91]</td>
<td>SSM</td>
<td>no</td>
<td>cine MRI</td>
</tr>
<tr>
<td>Bosch et. al. [78]</td>
<td>SSM</td>
<td>yes (limited)</td>
<td>DSE</td>
</tr>
<tr>
<td>Herz et. al. [92]</td>
<td>PI</td>
<td>yes</td>
<td>3D echo</td>
</tr>
<tr>
<td>Ruiz Dominguez et. al. [93]</td>
<td>PI</td>
<td>yes</td>
<td>echo</td>
</tr>
<tr>
<td>Caiani et. al. [94]</td>
<td>TV</td>
<td>yes</td>
<td>cine MRI</td>
</tr>
<tr>
<td>Kachenoura et. al. [95]</td>
<td>PI</td>
<td>yes</td>
<td>cine MRI</td>
</tr>
<tr>
<td>Lekadir et. al. [88]</td>
<td>SSM</td>
<td>yes</td>
<td>cine MRI</td>
</tr>
<tr>
<td>Qazi et. al. [96]</td>
<td>LDA</td>
<td>no</td>
<td>echo</td>
</tr>
<tr>
<td>Leung et. al. [97]</td>
<td>SSM</td>
<td>yes</td>
<td>DSE</td>
</tr>
<tr>
<td>Mansor et. al. [98]</td>
<td>HMM</td>
<td>yes</td>
<td>DSE</td>
</tr>
<tr>
<td>Suinesiaputra et. al. [99, 100]</td>
<td>SSM</td>
<td>yes</td>
<td>cine MRI</td>
</tr>
</tbody>
</table>

LDA = linear discriminant analysis, SSM = statistical shape model, PI = parametric image, TV = threshold value, HMM = hidden markov model

raw quantification of global or regional LV function to the clinicians [74, 75]. Much effort has been spent on the development of automated quantification of cardiac images, which includes segmentation, registration and cardiac modeling [76, 77].

The first automated classification of wall motion abnormalities (WMA) by using statistical knowledge of myocardial contours was presented by Bosch et. al. [78]. This CAD method utilized a statistical shape model (SSM) of endocardial contours, which was originally used for the segmentation of endocardial borders in echocardiograms [79]. A linear correlation was found between diagnostic predictors (active appearance motion model shape coefficients) with visual wall motion scores.

SSMs provide a morphometric analysis of biological shapes, which are characterized by a set of correspondent anatomical, geometrical or mathematical landmark points [80]. When a set of shapes from the same group is used to build the model, statistical inferences such as the mean shape and the modes of variation will only expose plausible shapes according to that group. The key problem is that the model needs to be specific enough to only generate representative examples. This is the underlying mechanism of Active Shape Models (ASM) [81], an automated segmentation method which has gained popularity for segmenting medical images in general [82, 83], and also for cardiac images [84–86].

SSMs require proper registration of training shapes to eliminate pose related variations (translation, scale and rotation). Post registration, SSMs will contain residual variations that only describe the true inter-subject differences. These variations should be small if all training shapes are taken from the same group, e.g., non pathological subjects. Fitting an SSM onto shapes from outside the model group may produce significantly large variations and errors. This particular feature becomes the main ingredient of characterizing normal and pathological shapes with SSMs [79, 87–89].

Parameterization of left ventricular (LV) motion appears to be a suitable approach to model myocardial contraction for CAD of ischaemia. Aside from SSMs, other CAD
approaches have been proposed to parameterize LV motion. A finite element model was introduced to parameterize wall motion [92]. A Hammer map projection was then applied to map the three-dimensional LV wall into continuous values of ischaemic zones: normal, hypokinesis, akinesis and dyskinesis. Finite element modeling was also combined with SSMs to estimate the deformation of the heart to distinguish normal and patients [91].

Other automated WMA classification methods include outlier detection in SSMs by inter-landmark distances [88], Hidden Markov Models [98], parametric imaging of wall motion [93, 95], linear classifiers [90, 96], and threshold-based LV function indicators [94]. A comparison of existing CAD methods for ischaemic heart disease based on wall motion analysis is given in Table 1.1.

1.3 Motivation and objectives

With the increasing prevalence and hospitalization rate of ischaemic heart disease, an explosive growth of diagnostic imaging for ischaemia is ongoing. Clinical decision making on revascularization procedures requires reliable viability assessment to assure long-term patient survival and to elevate cost effectiveness of the therapy and treatment. As such, the demand is increasing for a CAD method for ischaemic heart disease that supports clinicians with an objective analysis of infarct severity, a viability assessment or a prediction of potential functional improvement before performing revascularization.

The goal of this thesis was to explore novel mechanisms that can be used for CAD in ischemic heart disease, particularly through wall motion analysis from cardiac MR images. Existing diagnostic treatment of wall motion analysis from cardiac MR relies on visual wall motion scoring, which suffers from inter- and intra-observer variability. To minimize this variability, the automated method must contain essential knowledge on how the heart contracts normally. This enables quantification of hypokinetic myocardial segments, detection of segments with contractile reserve and prediction of functional improvement in stress. As such, the objectives of this thesis are threefold:

1. To find a proper shape parameterization for myocardial contraction. The dynamic nature of cardiac contraction must be represented in such a way that myocardial shapes from healthy subjects in this representation differ from shapes from ischaemic patients.

2. Define good descriptors and classifiers that are capable of detecting, locating and quantifying regional wall motion abnormalities (RWMA). Hence, locality is a key factor for providing automated segmental analysis of wall motion.

3. Investigate the possibility of applying the automated RWMA method for predicting regional functional improvement from rest to stress MR images.

1.4 Outline

This thesis is organized as follows.
Chapter 1 lays out the background and motivation of this thesis and presents a survey of current imaging techniques and CAD methods for ischaemic heart disease.

Chapter 2 describes a preliminary investigation on wall motion analysis to extract dense velocity vector fields from tagged MR imaging by using multiscale optic flow. This means velocity vectors from all pixels inside myocardium are automatically calculated over the full cardiac cycle. Quantitative validation is performed by comparing the estimated velocity vector fields with velocity-encoded (VEC) MRI.

Chapter 3 presents an exploratory study to find a proper shape representation for myocardial contraction. To model the dynamics of myocardial contraction in the static representation of SSMs, shape vectors are defined by serially concatenating endo- and epicardial contours at end-diastole (ED) with endo- and epicardial contours at end-systole (ES). Shapes from both healthy subjects and patients are combined into one SSM. Contractility patterns are extracted by using Principal Component Analysis (PCA) and Independent Component Analysis (ICA), and a comparison between the two decomposition methods is presented. In this chapter, the advantage of ICA to extract local shape features is demonstrated.

Chapter 4 gives the first application of ICA to detect regional wall motion abnormality (RWMA). Segments with abnormal wall motion are detected by the location of abnormal independent components (ICs) in myocardium. Qualitative evaluation of RWMA on six infarct patients is presented by correlating the position of abnormal ICs with hyperenhanced areas from the corresponding CE-MRI of the same patients.

Chapter 5: With the capability of ICA to detect RWMA for ischaemic patients as given in Chapter 4, we explored the method’s potential use for predicting regional contractile improvement. Qualitative comparison of RWMA at rest with RWMA at stress is presented in this chapter. By comparing independent component coefficients from rest to stress, the potential to detect myocardial contractile improvement from rest to stress is investigated.

Chapter 6 represents the core of our CAD method for automated RWMA evaluation. The methodological formulation to estimate RWMA probability density functions is refined and improved by propagating the density functions from the independent component domain to the shape domain. This allows a direct quantification of RWMA at the landmark point level without the need to project a patient shape onto the ICA model. Quantitative validation results from 45 patients with ischaemic heart disease are also presented in this chapter.

Chapter 7: investigates of the possibility to automatically detect regional functional improvement when rest and stress cardiac MR data are combined. The statistical model is slightly adapted to accommodate the comparison between rest and stress data during the shapes alignment. A new evaluation of RWMA probability changes from rest to stress is proposed. Correlation with infarct transmuralities from CE-MRI is presented in this chapter.
Chapter 8 summarizes the CAD development for ischaemic heart disease. Future directions for building a computer-assisted cardiac ischaemia diagnosis method are presented at the end of this chapter.

1.5 References

