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Chapter 7

Abstract

In patients with irreparable rotator cuff tears, lost elevation moments are compensated for
by increased deltoid activation. Concomitant proximal directed destabilizing forces at the
glenohumeral joint are suggested to be compensated for by ‘out-of-phase’ adductor acti-
vation, preserving glenohumeral stability. Aim of this study was to demonstrate causality
between moment compensating deltoid activation and stability compensating ‘out-of-phase’
adductor muscle activation.

A differential arm loading with the samen magnitude forces applied at small and large
moment arms relative to the glenohumeral joint was employed to excite deltoid activation,
without externally affecting the force balance. Musculoskeletal modeling was applied to
analyze the protocol in terms of muscle forces and glenohumeral (in)stability. The protocol
was applied experimentally using electromyography (EMG) to assess muscle activation of
healthy controls and cuff tear patients.

Both modeling and experiments demonstrated increased deltoid activation with increased
moment loading, which was higher in patients compared to controls. Model simulation of
cuff tears demonstrated glenohumeral instability and related ‘out-of-phase’ adductor muscle
activation which was also found experimentally in patients when compared to controls.

Through differential moment loading, the assumed causal relation between increased del-
toid activation and compensatory adductor muscle activation in cuff tear patients could be
demonstrated. ‘Out-of-phase’ adductor activation in patients was attributed to glenohumeral
instability. The experimental moment loading protocol discerned patients with cuff tears from

controls based on their compensatory muscle activations.
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Compensatory muscle activation

7.1 Introduction

Arm mobility requires muscle forces to generate joint moments whilst preserving gleno-
humeral stability. Arm elevation moments are mainly generated by the deltoids and arm de-
pression moments by the latissimus dorsi, teres major and pectoralis major, all muscles with
large moment arms (Kuechle et al., 1997). Glenohumeral stability is controlled for by the
rotator cuff muscles (Ackland and Pandy, 2009; Poppen and Walker, 1976). Because of their
short moment arms and perpendicular orientation to the glenoid, the rotator cuff muscles can
generate compressive joint-forces with relatively small moments, providing glenohumeral

stability by directing the resultant force vector through the glenoid fossa.

Tears of the rotator cuff result in lost stabilizing forces and abduction moment loss. The
deltoids seem to compensate for the lost abduction moments, resulting in an increased prox-
imally directed force component on the humeral head (Liu et al., 1997). This jeopardizes
glenohumeral stability by proximal rotation of the resultant force vector outside the glenoid
fossa (Parsons et al., 2002; McCully et al., 2006; Steenbrink et al., 2006 and 2009a). In
patients with irreparable cuff tears, adductor muscle activation of the pectoralis major, latis-
simus dorsi and/or teres major was observed during arm elevation tasks (de Groot et al.,
2006; Steenbrink et al., 2006). This unexpected activation is adverse, or ‘out-of-phase’, with
respect to the muscle moment arm for adduction. Such ‘out-of-phase’ adductor muscle activ-
ity was also observed in cuff tear model simulations using a musculoskeletal shoulder model
with a constraint stable glenohumeral joint (Steenbrink et al 2009a). We hypothesized that
glenohumeral stability during arm elevation tasks was preserved by ‘out-of-phase’ adductor
muscle activation. ‘Out-of-phase’ adductor muscle activation seems to be mechanically re-

lated to increased deltoid activity.

Glenohumeral joint stability is a common factor between increased deltoid activity (Mc-
Cully et al., 2007) and adverse adductor activity (de Groot et al., 2006; Steenbrink et al.,
2006; Steenbrink et al., 2009c). However, experimental recording of glenohumeral stabil-
ity requires additional recording techniques (e.g. Deutsch et al 1996, Graichen et al. 2005,
Nagels 2008), or can be derived by musculoskeletal shoulder model simulation (Steenbrink
et al., 2009a).

The prime goal of this study is to experimentally demonstrate the causal relation be-
tween increased deltoid activation and ‘out-of-phase’ adductor activation in patients with a
glenohumeral cuff tear, accordingly demonstrating the role of compensatory muscle forces
in glenohumeral stability. This is accomplished by applying a differential arm loading with
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Chapter 7

constant forces at small and large moment arms relative to the glenohumeral joint while the
external force balance is not affected. Each individual adductor muscle previously demon-
strated ‘out-of-phase’ adductor activation (de Groot et al., 2006, Steenbrink et al., 2006). A
secondary goal of this study is to demonstrate by model simulation the potential of each of

these individual adductor muscles to compensate for glenohumeral instability.

7.2 Methods

The mechanical response to the changing moment loading was studied by three different
conditions and the combination of model simulation and an experiment. A seven-level in-
cremented elevation moment loading simulation (Fig. 7.1/I) was applied in order to control
for the (non-)linearity of the mechanical response to gradual increased loading. A reduced
two-level (differential) elevation moment loading (Fig. 7.1/II) was applied both in simulation
and experiment in order quantify the response of the deltoid muscle and to create contrast
between patients and controls. The combination of arm elevation and arm depression loading
(Fig. 7.1/1II) was required to demonstrate adverse ‘out-of phase’ activation of the adductors
observed in patients, relative to the favorable and normal ‘in-phase’ activation in controls
(Steenbrink et al., 2009c). A normalized relative ratio of ‘in-phase’ over ‘out-of-phase’ ac-
tivation, the activation ratio, was introduced to be able to parameterize this observation and
to be able to compare muscle forces obtained from model simulation and electromyography

obtained during the experiments.

7.2.1 Model simulations

The mechanical response to increased moment loading was studied using the Delft Shoulder
and Elbow Model (DSEM, van der Helm, 1994; Veeger et al., 1997). The model contains
139 muscle elements and calculates muscle forces required in order to meeting mechanical
equilibrium in the specified position and loading condition by means of load sharing using a
compound energy related cost function (Praagman et al., 2006). The force per muscle was
obtained by summation of representative muscle-element forces. The resultant (total) force
working on the humerus should be fully countered by the glenoid joint reaction force for
glenohumeral stability.

Kinematic input for the model was equal to previous studies (Steenbrink et al., 2009a;

Steenbrink et al., 2009b). The humerus position, defined according to the International Soci-
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Compensatory muscle activation

ety of Biomechanics standards (Wu et al., 2005) was: plane of elevation Yh:yh = 79°, eleva-
tion Xh:-Bh = 46° and axial rotationYh’:yh2 = 31°. A healthy condition (’control model”) and
a combined supraspinatus-infraspinatus cuff tear condition (’patient model’) were simulated.

Seven-level incremented elevation moment loading

The arm was externally loaded with a constant, vertical, downward force of 25N. The force
was longitudinal and equally distributed over the humerus from proximal to distal of the
glenohumeral joint (Fig. 7.1/1; 1 to 7), resulting in seven different moments but with constant

external forces. The resultant external glenohumeral moment ranged from 0.9 to 7.2Nm.

Two-level elevation moment loading

Only the two extreme loads of 0.9 and 7.2Nm were used to compare the mechanical responses
of the deltoids for the patients and controls (Fig. 7.1/I; 1 and 2).

Combined two-level elevation and depression moment loading

In combination with the two-level elevation moment loading, an additional opposite load-
ing was required (Fig 7.1/III; 3 and 4) to determine the dimensionless activation ratio. The
activation ratio illustrated the functional contrast for abduction and adduction (for calcula-
tions see 7.2.4, outcome parameters) and allowed the comparison between simulated muscle
forces and experimental EMG. To average morphological and physiological variance be-
tween model and subjects, between subjects and within subjects, not a single force at both
arm locations was applied, but seven forces at each location distributed over a range of 90°,

all perpendicular to the humerus.

Compensatory adductor hierarchy

In order to demonstrate the potential of each individual adductor muscle to compensate for
glenohumeral instability, the hierarchical redundancy of adductor function was simulated, by
applying models in which the active adductor muscles were sequentially eliminated. The
“patient model’ with the combined supraspinate-infraspinate tear was initially extended with
a full subscapularis and the biceps longum tear in order to provoke the other adductor with

larger moment arms to become active (Hansen et al., 2008; Steenbrink et al., 2009a).

85



Chapter 7

7.2.2 Experiments

Ten healthy controls (6 male, 4 female; age 28+3years) with no known history of shoulder
injury were compared to ten patients (7 male, 3 female; age 59 +9 years) with a MRI proven
rotator cuff tear of at least supraspinatus and infraspinatus. The study was approved by the
institutional medical ethics committee, and all subjects gave written informed consent.
Subjects were positions resembling model input (see 7.2.1, model simulations) with their
injured (patients) or dominant (controls) arm fully supported in a splint (Fig. 7.1/II). The
splint was connected to a 6DOF-force transducer (A)(AMTI-300, Advanced Mechanical
Technology, Inc., Watertown MA, USA) using a Cardan joint (B)(3 free rotational degrees of
freedom (DOF)), allowing for a 20cm shift of the force application point along the humerus
to realize a moment change with relatively small and large moment arms, with respect to the
glenohumeral center of rotation. The force transducer was mounted on a low friction rail
(C)(1 free translational DOF). Subjects exerted arm forces against the two remaining, fixed
DOF’s perpendicular to the upper arm, controlled for magnitude and direction using target
areas on a computer screen (D). A force driven cursor was to be held within the target area
for two seconds. Simultaneously with each loading condition, surface EMG was recorded for

the deltoid, pectoralis major, latissimus dorsi and teres major.

Two-level elevation moment loading

The targets were distributed in a range of 90 degrees (see paragraph 7.2.1.2 and 7.2.1.3),
randomly represented in seven upward directions at two levels, provoking small and large arm
elevation moments (downward external forces) similar to the model simulations (paragraph
7.2.1.2).

Two-level elevation and depression moment loading

To determine activation ratios (paragraph 7.2.1.3) seven downward directed targets, provok-

ing arm depression moments, at two levels were added.

7.2.3 Signal analysis

Surface EMG was recorded for each 2-second isometric force task (DelSys, Bagnoli-16,
Boston MA, USA, analog filter: 20Hz High pass, 450Hz Low pass, 10mm electrode length,
inter-electrode distance of 10mm). Between trials rest periods (minimally five seconds) were
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Compensatory muscle activation

Figure 7.1: Impression of loading conditions.

I: model; 1 to 7 indicate incrementing moment loading conditions.

II: model and experimental; 2 differential moment loading conditions (1 and 2). Subjects’
arms were supported with a splint connected to a force transducer (A) using a Cardan joint
(B), in combination with an axial rotation axis, allowing for a 20cm shift of the force ap-
plication point. The force transducer was placed onto a rail (C). Exerted arm forces were
visualized on a screen (D).

III: model and experimental: downward (1 and 2) and upward (3 and 4) loading.

imposed to avoid fatigue. Sample rate of analog filtered EMG and force data was 1000Hz.
A 2 seconds ’in target’ full-wave rectified (r) and integrated (I: 3rd order recursive Low Pass
Butterworth at 10Hz) r/[EMG was averaged. Rest level rIEMG was subtracted from each
target value. One single muscle activation level for the upwards and one for the downwards

force tasks were calculated by averaging the seven net target I EMG’s.

7.2.4 QOutcome parameters

Model muscle activation (estimated force) was compared with experimental muscle activa-
tion (rlEMG). For each of the simulated seven-level incremented elevation moment loading
condition deltoid and adductor muscle forces were calculated. For the two-level differential
loading the change of deltoid activation (force and r/EMG) and activation ratios were calcu-
lated. Deltoid activation increase in response to increased loading was expressed as the per-
centage of deltoid activation at relative small moment loading. The activation ratio (Eq. 7.1)
indicates the ratio for muscle of ‘in-phase’ activation (A’?, the expected attribution accord-
ing to the muscles positive moment arm for ab-adduction) reduced with the ‘out-of-phase’
activation (A" the non-expected attribution according to the muscles positive moment arm)

over the summed ‘in-phase’ and ‘out-of-phase’ activation.
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1P opP
AR _ Amuscle _Amuscle [_1 < AR < 1] (7.1)
muscle — AIP AOP > muscle > .
muscle + muscle

Where A’? is ‘in-phase’ activation; A9 is ‘out-of-phase’ activation; muscle is the deltoids
(DE), teres minor (TMn)(only available in simulation), pectoralis major (PMj), latissimus
dorsi (LD) or teres major (TMj). The moment arms (or potential moment vectors) in the
DSEM were used to define the directions of ‘in-phase’ and ‘out-of-phase’ activation for each
muscle (van der Helm, 1994; Veeger and van der Helm, 2007; Steenbrink et al., 2009a). The
experimentally obtained activation ratios for the adductors were lumped in order to express
the combined adductors effort. AR4p thus comprehends the averaged activation ratio of

pectoralis major, latissimus dorsi and teres major.

7.2.5 Statistics

The net-change of deltoid activation from small to large moment loading between controls
and patients was compared using a Student’s t-test. Activation ratios for small and large
glenohumeral moment loading between patients and controls were compared using a General
Linear Model ANOVA with repeated measures. The statistical model comprised the effects
of moment loading (within) and group (patients vs. control; between factor). All tests were
performed using SPSS 16.0 (SPSS Inc, Chicago, IL) with an alpha of 5%.

7.3 Results

7.3.1 Model simulations
Seven-level incremented elevation moment loading

The seven-level incrementing elevation moment loading coincided with a proportional (lin-
ear) increase in estimated deltoid force (Fig. 7.2). In the patient model with cuff tears, deltoid
forces exceeded the forces observed in the control model. The deltoid force increase in the
patient model was accompanied by a proportional increase of teres minor adductor force (Fig.
7.2).
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Figure 7.2: Response of simulated abductor (deltoid; black line) and adductor (teres minor;

gray dotted line) muscle forces in response to changing moment loading for patients (unfilled
marks) and controls (filled marks).

89



Chapter 7

Two-level elevation moment loading

The two-level elevation moment loading consequently showed the maximum contrast of in-
creased deltoid forces when comparing the patient model with the control model (Table 7.1).
In the patient model, glenohumeral joint instability in a postero-superior direction was ob-

served in case of downward external forces at both small and large moment loading.

Combined arm elevation and depression loading

In the control model, positive deltoid and teres minor activation ratios indicated predomi-
nant deltoid activity at downward-, teres minor activity at upward external arm loading. The
pectoralis major activation ratio decreased from ARpys; = 0.41 to 0.29, from small to large
moment loading. In the patient model, small moment loading resulted in a negative pec-
toralis major activation ratio, ARpyj = -0.23, which decreased at increased loading, ARpys; =
0.40. The teres minor activation ratio was small but positive at small loading, AR7s, = 0.11,
meaning that teres minor was active during external upward loading, but also during exter-
nal downward loading, though slightly smaller. The teres minor activation ratio reduced to
AR7pp, = 0.05 at large moment loading (Fig. 7.3).

Compensatory adductor hierarchy

The patient model comprising fully torn (excluded) supraspinatus and infraspinatus and ad-
ditional subscapularis and biceps longum elimination, resulted in pronounced ‘out-of-phase’
activation ratios for the pectoralis major and teres minor at large moment loading: ARpy; =
-0.25 and ARty = -0.17 (Fig. 7.4). Subsequent elimination of the active pectoralis major
resulted in ‘out-of-phase’ activation of the latissimus dorsi with an activation ratio of ARy p =
0.28 at small, to a negative AR;p = -0.15 at large moment loading. Subsequent exclusion of
the latissimus dorsi resulted in an activation ratio for the teres major of AR7js; = 0.44 at small
moment loading and AR7j; = 0.09 at large moment loading. Simulation of these *massive’
muscle tears showed the pectoralis major, latissimus dorsi and teres major to be redundant in
that order, to stabilizing the glenohumeral joint The teres minor was crucial elimination did

not result in a simulation solution with a mechanical stable glenohumeral joint.
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Figure 7.3: Activation ratios for the simulated patient and control model at 25N arm loading
at small and large moment arms. In both models glenohumeral stability was constraint.
Squares: deltoids; circles: teres minor; downward triangles: pectoralis major.
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Table 7.1: Deltoid forces estimation (N) in simulation of control and patient during a 25N
abduction loading at a small or large glenohumeral moment arm. The patient is simulated
with complete supraspinatus and infraspinatus cuff lesion. The force response of deltoid
on increased glenohumeral moment loading is expressed as a percentage of deltoid force in
the small glenohumeral moment loading. c: in patient simulations the constraint for gleno-
humeral stability was active

Moment arm Small Large Response
Control 69N 154N 226%
Patient’ 30N 212N 688%

7.3.2 Experiments
Two-level elevation moment loading

From small to large glenohumeral moment loading with downward external forces, the av-
erage deltoid r/EMG amplitude increased by 35% (SD 22%) in controls. Patients showed a
significant additional deltoid »/EMG amplitude increase with 57% (SD 26%) (Table 7.2).

Two-level elevation and depression moment loading

Deltoid activation ratios of controls and patients did not differ at small (p = 0.73) nor at large
(p =0.39) moment loading. At small moment loading, combined pectoralis major, latissimus
dorsi and teres major adductor muscle activation ratio (AR4p) in patients was AR4p = 0.15
(SD 0.25) and did not differ from controls: AR4p = 0.39 (SD 0.25). At large moment loading
however, the activation ratio in patients, AR4p = -0.06 (SD 0.17), was significantly lower
compared to controls, ARsp = 0.49 (SD 0.22).

7.4 Discussion

In this study we demonstrated the mechanical relationship between increased deltoid activa-
tion and glenohumeral stability compensating ‘out-of-phase’ adductor muscle activation in
cuff tear patients. In both controls and patients, deltoid forces proportionally increased with
glenohumeral moment loading. Patients needed additional deltoid forces to compensate for
lost rotator cuff abductor forces. This concept of deltoid compensation for lost cuff abduction
function (Sharkey et al., 1994) is supported by cadaver experiments (Parsons et al., 2002), our
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Figure 7.4: Activation ratios of adductor muscles for three simulated patient models at 25N
arm loading at small and large moment arms. Glenohumeral stability was constraint.

A: full cuff tearing (exclusion) of supraspinatus, infraspinatus, subscapularis and biceps
longum;

B: previous condition (A) with additional pectoralis tear exclusion (crossed out);

C: previous condition (B) with additional latissimus dorsi exclusion.

circles: teres minor; downward triangles: pectoralis major; diamant: lattisimus dorsi; upward
triangles: teres major.
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Table 7.2: Deltoid r/EMG response on increased moment loading in Controls (N=10) and
Patients (N=10), expressed as a percentage of r/EMG at small moment loading.

Response (%)
Subject Control Patient
1 119 178
2 160 141
3 167 180
4 108 129
5 140 195
6 153 133
7 154 123
8 112 160
9 117 185
10 121 149
Mean 135% 157%
SD 22% 26%

previous model study (Steenbrink et al., 2009a) and experimental nerve block studies (Mc-

Cully et al., 2006). The deltoids can predominantly be defined as a moment generator.

Model simulations showed increased deltoid forces in cuff tear conditions leading to
glenohumeral instability, which required adductor activation. The increased deltoid acti-
vation have previously been shown to result in enlarged cranial directed destabilizing forces
on the humeral head (Steenbrink et al 2009a), causing proximal migration (Graichen et al.,
2000) and (painful) subacromial tissue impingement (Keener et al., 2009; Soifer et al., 1996).

Increased deltoid activation in absence of suprasinatus and infraspinatus forces resulted in
‘out-of-phase’ adductor activity under external downward loading conditions, both in patient
model simulation and patient experiments, in contrast to controls. Compensatory muscle
activations does not seem to be age specific and therefore age-matched groups are not re-
quired (Steenbrink et al., 2009b). Introduction of the activation ratio allowed comparison
between simulated muscle forces and experimentally obtained rIEMG’s. Based on this ac-
tivation ratio, patients could be retrospectively discriminated from controls based on their
muscle activation. This study experimentally provokes the glenohumeral stability compen-
sating mechanism in patients with irreparable cuff lesions. In concordance with the concept

of the compromised mobility-stability interaction (de Groot et al., 2006; Steenbrink et al.,
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Figure 7.5: Average experimental activation ratios and standard deviations of the deltoid
anterior part (abductor) and the combined adductor muscles (pectoralis major, latissimus
dorsi and teres major) recorded for ten patients (black) and ten controls (grey) at 25N arm
loading at small and large moment arms. Significant differences (p = .05) are indicated (*).
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2006; Steenbrink et al., 2009a; Steenbrink et al., 2009a) the adductor co-activation may be
an important factor in explaining the limitations in arm mobility observed in cuff tear patients
(Iannotti et al., 1996; Steenbrink et al., 2009).

Glenohumeral instability in patients with cuff tears was observed in the DSEM, but was
not measured directly in our experiments. Proximal migration was however shown by pa-
tient radiographs (Deutsch et al., 1996) and the magnitude of migration was task-related
(Hinterwimmer et al., 2003). The decreased activation ratios recorded in patients illustrated
‘out-of-phase’ adductor muscle activation, and coincided with simulation outcome, as the re-
sponse to decreased glenohumeral stability. This phenomenon is a convincing argument for a
compensatory muscle activation strategy in cuff tear patients. The future challenge is to find a
quantitative relationship between proximal migration in patients with cuff lesions (Graichen
et al., 1999; Nagels et al., 2008) and the amount of ‘out-of-phase’ adductor muscle activa-
tion. This would gap the bridge between the observed *out-of-phase’ adductor activation and

glenohumeral instability.

In model studies of cuff tear simulation, ‘out-of-phase’ teres minor and pectoralis ma-
jor activations were observed, whereas ‘out-of-phase’ activations of pectoralis major, latis-
simus dorsi and teres major were observed experimentally in patients. These observations
are not mutually exclusive. In our experiments teres minor */EMG was not determined be-
cause of the need for rather intricate fine wire electrodes and we therefore cannot exclude
‘out-of-phase’ teres minor activation in the experiment. Previous simulation results showed
the teres minor to be indispensable for glenohumeral stability compensation in patients with
supraspinatus and infraspinatus tears (Steenbrink et al., 2009a). Patients may have ‘out-of-
phase’ teres minor activation next to the observed ‘out-of-phase’ activation of larger adductor
muscles. An affected teres minor, possibly due to fatty infiltration (van de Sande et al., 2005),

may lead to increased proximal migration of the humeral head.

In the model, a load sharing criterion is applied which reduces redundant muscle activa-
tion by means of minimization of energy related costs (Praagman et al., 2006) thus prohibit-
ing ’costly/ineffective co-contraction, other than strictly necessary to preserve glenohumeral
stability. The simulated adductor muscle elimination showed the potential redundancy of
adductor muscles to compensate for cranial instability, but with a mechanical hierarchy of
primarily teres minor/pectoralis major, followed by the latissimus dorsi and eventually the
teres major. This proved that all adductor muscles indeed have a potential for stability com-
pensation by ‘out-of-phase’ activation. Patients apply different combinations of adductor

‘out-of-phase’ contractions which may indicate either a more severely affected cuff condi-

96
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tion than diagnosed, or different strategies for muscle force distribution than dictated by an
optimal energy criterion. Variability may also be due to anatomical and physiological differ-
ences, pathology of muscles (i.e. fatty degeneration) or neuromuscular coordination skills.
Exclusion of these factors requires further research.

7.5 Conclusion

In patients suffering irreparable rotator cuff tears, the assumed causal relation between mo-
ment compensating deltoid activation and stability compensating ‘out-of-phase’ adductor ac-
tivation was established. Increased moment loading provoked additional deltoid forces, com-
pensating for lost cuff abduction moments and enclosed provoked adductor activity both in
cuff tear simulation and experimentally in patients. The observed ‘out-of-phase’ adductor
activation is required for glenohumeral stability. In shoulder interventions and evaluations

‘out-of-phase’ adductor activation is an indicator of glenohumeral instability.
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