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Chapter 3

Abstract

For isometric tasks, shoulder muscle forces are assumed to scale linearly with the external

arm load magnitude, i.e. muscle force ratios are constant. Inverse dynamic modeling gen-

erally predicts such linear scaling behavior, with a critical role for the arbitrary load sharing

criteria, i.e. the “cost function”. We tested the linearity of the relation between external load

magnitude exerted on the humerus and shoulder muscle activation.

Six isometric force levels ranging from 17% to 100% of maximal arm force were exerted

in 24 directions in a plane perpendicular to the longitudinal axis of the humeres. The direc-

tion of maximum muscle activation (EMG), the experimentally observed so called principal

action (PA), was determined for each force magnitude in twelve healthy subjects. This ex-

periment was also simulated with the Delft Shoulder and Elbow Model (DSEM) using two

cost functions: 1) minimizing muscle stress and 2) a compound, energy related cost func-

tion. Principal Action, both experimental (PAexp) and simulated (PAsim), was expected not to

change with arm forces magnitudes.

PAexp of the trapezius pars descendens, deltoideus pars medialis and teres major changed

substantially as a function of external force magnitude, indicating external load dependency

of shoulder muscle activation. In DSEM simulations, using the stress cost function, small

non linearities in the muscle force-external load dependency were observed, originating from

gravitational forces working on clavicular and scapular bone masses. More pronounced non-

linearities were introduced by using the compound energy related cost function, but no simi-

larity was observed between PAexp and PAsim.
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Arm load magnitude vs. muscle activation

3.1 Introduction

Individual muscle forces change with armload direction. This load direction dependency

was used to study muscle coordination in healthy subjects (Arwert et al., 1997; de Groot

et al., 2004; Flanders and Soechting, 1990; Laursen et al., 1998; Meskers et al., 2004) and

subjects with shoulder pathologies (de Groot et al., 2006; Steenbrink et al., 2006). The prin-

cipal action (PA), which comprehends load direction dependent electromyography (EMG)

parameters (de Groot et al., 2004; Laursen et al., 1998), is used as a descriptive parameter for

muscle coordination. In practice, repeated measurements are performed before and after an

intervention, while maximum force around the shoulder may be altered by these intervention,

e.g. by pain reduction or muscle tendon transfers (Steenbrink et al., 2006). In the comparison

of these experiments we assume that muscle forces scale linearly with external force mag-

nitude. External forces could differ considerably in pre-post measurements (de Groot et al.,

2006; Steenbrink et al., 2006) and inter-individually (de Groot et al., 2004; Meskers et al.,

2004). So linearity is a pre-requisite, or should be predictable if muscle contraction patterns

are to be compared under these relatively different loading conditions. In the jaw, linear scal-

ing of muscle activity (EMG) and external load was indeed demonstrated (Blanksma et al.,

1992; van Eijden et al., 1993). Non-linear muscle activation scaling with external arm load

was however reported in the upper extremity (Happee and van der Helm, 1995).

In shoulder inverse dynamic modeling linearity is generally assumed and incorporated in

the load sharing criteria that are needed to mathematically solve the redundancy problem in

order to reach a unique muscle activation pattern (de Groot, 1998; Dul et al., 1984; Happee

and van der Helm, 1995; Happee, 1994; Tsirakos et al., 1997). Praagman et al. (2006)

introduced an energy related criteria with linear and non-linear terms, weighted by morpho-

logical parameters as fiber length and muscle mass. This criteria turned out to fit best with

non-linear in vivo obtained muscle energy expenditure around the elbow using Near Infrared

Spectroscopy. They stated that most cost functions are chosen rather arbitrary, mainly due to

the fact that validation is difficult since muscle force cannot be measured accurately in-vivo.

The EMG based principal action method offers an alternative method to compare in vivo

with simulated muscle activation, in order to interpret the experimental results and to predict

possible load dependencies of shoulder muscles activation patterns in future studies (de Groot

et al., 2004; de Groot, 1998).

In the present study we experimentally test the assumption that relative shoulder muscle

forces do not change with armload magnitude. The experiment was numerical simulated,
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Chapter 3

using the Delft Shoulder and Elbow Model (DSEM) with both a linear and an energy related

cost function (Praagman et al., 2006; van der Helm, 1994). We used the principal action, i.e.

the direction of maximum muscle activation assessed by either EMG (experiment) or force

(simulation), resp. PAexp and PAsim, as a parameter for muscle coordination.

3.2 Methods

3.2.1 Subjects

Twelve healthy subjects (five female; three left handed) with a mean age of 26 (SD 2.9 years)

took part in the study. The local medical ethical committee granted permission and all sub-

jects gave informed consent.

3.2.2 Experimental set-up

Subjects were seated with the dominant arm in a splint with the elbow in 90◦ of flexion (Fig.

3.1). The setup allowed for static, isometric contractions of shoulder muscles while loading

the arm with a force of different magnitudes in different directions in a plane perpendicular

to the humerus (de Groot et al., 2004; de Groot, 1998; Meskers et al., 2004). The humeral

plane of elevation was approximately 60◦ rotated externally from the para-sagittal plane and

the humerus was 60◦ abducted. The forearm was 45◦ externally rotated relative to the hor-

izontal (see Fig. 3.1). The objective of the setup was to record only forces perpendicular

to the longitudinal axis of the humerus. In rest, the arm was fully supported by means of a

weight and pulley system to compensate for all gravitational forces and moments (de Groot

et al., 2004; Meskers et al., 2004). The arm splint was attached to a 6DOF force transducer

(AMTI-300, Advanced Mechanical Technology, Inc., Watertown MA, USA) by means of a

low friction ball and a socket joint. The transducer was mounted on a low friction rail in line

with the humerus. This construction allowed for movement of the arm along 4 degrees of

freedom (three rotations and a translation), while translation along the axes perpendicular to

the humerus long arm were constrained. These forces controlled the position of a cursor on

a computer screen placed in front of the subjects (de Groot et al., 2004; Meskers et al., 2004)

(Fig. 3.1).

EMG activity of twelve shoulder muscles was recorded (Table 3.1), and off-line post pro-

cessed (de Groot et al., 2004; Meskers et al., 2004). Nine shoulder muscles were recorded

with the use of bipolar silver bar surface electrodes (DelSys, Bagnoli-16, Boston MA, USA,
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Arm load magnitude vs. muscle activation

Figure 3.1: Experimental setup (left panel) and visual feedback (right panel); the subject
had his arm in a splint, which is connected to a force transducers. Subjects are required to
bring the arm force driven cursor (light grey small dot, centered in middle) into the target
area (larger dark grey dot, upper left quadrant). The force, perpendicular to the longitudinal
axis of the humerus, was recorded with a 6-dof force transducer (AMTI). The target indicated
force direction (n=24) and force magnitude, i.e. radius (n=6), resulting in 144 combinations.

analog filter: 20Hz High pass, 450Hz Low pass, 10mm electrode length, inter-electrode dis-

tance of 10mm). Sample rate of analog filtered EMG and force data was 1000Hz. Before

placement of the electrodes the skin was abraded, cleaned and a skin preparation gel (Skin

Pure, Nihon Kohden) was used. The EMG of the three rotator-cuff muscles was recorded by

means of bi-polar wire electrodes (Table 3.1). The wires were made of Teflon coated stainless

steel with bare tips of 2mm length and were inserted with a sharp hollow needle. The elec-

trode tips were bent in a sharp angle, so that after withdrawal of the needles, the wires would

remain in situ. The wires for the subscapularis were inserted with a curved needle underneath

the medial border of the scapula (Kadaba et al., 1992). Before insertion of the needles, the

skin was anaesthetized with a 5% lidocaine solution. The needles for the subscapularis and

infraspinatus were inserted until the scapular bone was touched.

3.2.3 Protocol

In the experimental set-up the force task existed of moving a cursor, driven by the forces

exerted perpendicular to the longitudinal axis of the upper arm on the force transducer, into

a target area (Fig. 3.1). Size of the target area was a predetermined area with a range of

3 times standard deviation (SD), determined from measurements on two subjects. Before
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Table 3.1: Experimentally recorded shoulder muscles, localization of the electrodes and type
of applied electrodes (similar to (de Groot et al., 2004, Meskers et al., 2004)) for comparison).

Muscle Position Electrode Type 
Supraspinatus 2/3 line trigonum spinae-angulus acromialis 2 cm above spinal ridge Wire 

Infraspinatus 10cm below insertion site supraspinatus Wire 

Subscapularis Halfway line angulus inferior trigonum spinae, underneath margo 
medialis 

Wire 

Trapezius 
(pars descendens) 

2/3 on the line 7th cervical vertebratrigonum spinae  
Surface 

Trapezius 
(pars ascendens) 

Between the trigonum spinae and the eight thoracic dorsal spine, 
well above the caudal muscle ridge 

Surface 

Deltoid 
(pars anterior) 

Middle of muscle belly, deltoideus anterior Surface 

Deltoid 
(pars medialis) 

Middle of muscle belly, deltoideus medial Surface 

Deltoid 
(pars posterior) 

Middle of muscle belly, deltoideus posterior Surface 

Serratus (anterior) 6th head below angulus inferior scapulae Surface 

Teres major Middle of muscle belly Surface 

Pectoralis major 
(pars clavicularis) 

Middle of muscle belly, pectoralis major clavicular part Surface 

Latisimuss dorsi 6cm below angulus inferior scapulae Surface 

the experiment started the subjects maximum force target magnitude (Fmax) that could be

maintained in all 24 directions was determined. Subsequently, six force levels were applied

equidistantly, covering a range from 17% to 100% of Fmax. The force driven cursor was

to be held within the target area for two seconds while the target randomly indicated 24

directions (angle) at 6 force magnitudes (radius), resulting in 144 combinations. Between the

trials ample rest of at least five seconds was given in order to avoid too much fatigue effects.

Subsequently the principal action at each force task could be determined off-line (de Groot

et al., 2004; Meskers et al., 2004).

3.2.4 Data post-processing

EMG recordings were full-wave rectified and filtered for visual inspection (3rd order recur-

sive Low Pass Butterworth at 10Hz). The 2 seconds “in target” full-wave rectified EMG

was averaged and rest level EMG was subtracted. For each of 6 force levels, the averaged
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rectified EMG was normalized with respect to the maximum EMG for the appropriate force

level. Subsequently, a parameterized least squares curve was estimated through the 24 EMG

values to obtain one direction of maximal EMG activity or Principal Action (PAexp) for every

muscle at force level (de Groot et al., 2004). Outliers and inaccurate estimations of the PAexp

were selected and removed by two investigators when consensus was achieved.

3.2.5 Statistical analysis

EMG data were collected for n= 12 subjects, nm = 12 muscles, 24 force directions and n f = 6

force levels. We tested the H0-hypothesis that muscle coordination did not change under

different load magnitudes i.e. PAexp of each muscle over the 6 force levels was constant. For

each individual muscle a regression line, describing the principal action of that muscle as a

function of force magnitude, was estimated. Subsequently the slope coefficient of this line

(β ) was tested not to differ from zero.

3.2.6 Model simulations

The experiment was simulated by inverse dynamic numeric modeling using the Delft Shoul-

der and Elbow Model (DSEM) (van der Helm, 1994). Kinematical input (arm position) was

determined using 3D kinematical recording of one subject mounted in the experimental set-

up using an electromagnetic tracking device (Meskers et al., 1998b). The ISG standardization

protocol for the upper extremity including regression based GH-estimation (Meskers et al.,

1998a; Wu et al., 2005) was used. A pointer was used to digitize 14 bony-landmarks with

respect to sensors mounted on the thorax, the acromion (Karduna et al., 2001), the upper arm

and the forearm. The subjects arm with the sensors attached was positioned into the splint

and subsequently the position was recorded. All DSEM simulations were performed using

this single position and an external force applied at the elbow in 24 directions at 6 force levels

of the models Fmax, exactly simulating the experiment. In order to simulate the weight com-

pensation on the arm in the experiments, gravity working on the humerus in the model was

set to zero. By means of inverse dynamic simulation, muscle forces required to satisfy both

the mechanical force-and moment equilibrium were calculated. Two different load sharing

criteria were applied: a stress cost function, i.e. minimization of summed squared muscle

stresses, and a compound linear and quadratic energy cost function (Praagman et al., 2006).

Based on the estimated muscle forces the Principal Actions for the muscles in the DSEM

were calculated (PAsim)(de Groot et al., 2004; de Groot, 1998).
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Table 3.2: Average Principal Action PAexp (SD) for 6 relative force levels and n = 12 sub-
jects. Outliers were excluded resulting in different numbers of observations (N).

 
 
Muscle 

Mean PA ± SD (deg) 

17 (%-Fmax) 33 (%-Fmax) 50 (%-Fmax) 67 (%-Fmax) 83 (%-Fmax) 100 (%-Fmax) 
Supraspinatus  35.03 

(50.89) 
N=8 

15.98 
(32.11) 
N=9 

35.91 
(56.29) 
N=11 

43.03 
(56.00) 
N=9 

42.14 
(58.23) 
N=9 

41.18 
(50.35) 
N=10 

Infraspinatus  6.12 
(44.32) 
N=8 

20.95 
(24.74) 
N=9 

17.81 
(30.65) 
N=11 

15.97 
(25.75) 
N=11 

20.56 
(24.23) 
N=12 

22.62 
(28.02) 
N=12 

Subscapularis  164.15 
(71.34) 
N=8 

147.63 
(84.12) 
N=9 

146.26 
(76.61) 
N=10 

152.36 
(79.62) 
N=10 

149.84 
(75.11) 
N=11 

154.10 
(87.99) 
N=10 

Trapezius 
descendens 

16.05 
(34.53) 
N=9 

11.68 
(35.73) 
N=11 

22.62 
(29.69) 
N=12 

30.90 
(32.77) 
N=12 

36.00 
(28.99) 
N=12 

44.79 
(26.82) 
N=12 

Trapezius 
ascendens 

93.70 
(82.84) 
N=9 

56.7 
(54.82) 
N=11 

79.76 
(74.74) 
N=12 

84.57 
(55.73) 
N=12 

65.51 
(46.30) 
N=12 

80.73 
(69.66) 
N=12 

Deltoid  
anterior 

6.46 
(49.70) 
N=8 

-14.87 
(7.76) 
N=10 

-19.09 
(12.93) 
N=12 

-6.41 
(16.20) 
N=12 

-6.75 
(18.27) 
N=12 

-1.99 
(25.04) 
N=12 

Deltoid 
medialis 

60.05 
(23.95) 
N=10 

62.93 
(21.73) 
N=11 

67.83 
(22.44) 
N=12 

68.71 
(21.99) 
N=12 

68.95 
(18.89) 
N=12 

73.02 
(19.82) 
N=12 

Deltoid 
posterior 

92.52 
(16.44) 
N=9 

89.23 
(14.24) 
N=10 

91.17 
(9.14) 
N=11 

91.23 
(9.80) 
N=11 

91.82 
(16.58) 
N=11 

93.54 
(11.97) 
N=11 

Serratus 
anterior 

300.52 
(59.69) 
N=5 

300.76 
(49.82) 
N=9 

306.48 
(63.58) 
N=12 

319.67 
(68.83) 
N=12 

316.23 
(68.49) 
N=12 

313.61 
(61.88) 
N=12 

Teres major 218.81 
(54.20) 
N=8 

203.97 
(69.23) 
N=12 

201.64 
(66.61) 
N=12 

175.08 
(57.08) 
N=12 

178.56 
(56.70) 
N=12 

172.62 
(57.39) 
N=12 

Pectoralis 
major clav. 

265.81 
(49.34) 
N=12 

292.98 
(26.85) 
N=11 

277.37 
(27.30) 
N=12 

255.15 
(67.93) 
N=12 

253.37 
(63.18) 
N=12 

250.19 
(66.34) 
N=12 

Latissimus 
dorsi 

158.71 
(38.52) 
N=7 

153.80 
(18.34) 
N=10 

151.68 
(25.00) 
N=10 

137.14 
(18.38) 
N=11 

155.69 
(43.95) 
N=10 

146.44 
(22.45) 
N=9 
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Table 3.3: Linear regression slope parameters for the PAexp to external load and their p
values. Positive values represent a clock-wise shift of the PAexp.

Muscle Linear component PAexp (
�

) P 
Supraspinatus  0.1995 .181 
Infraspinatus  0.1362 .515 
Subscapularis  0.1897 .322 
Trapezius descendens  0.3857 .005* 
Trapezius ascendens -0.0283 .619 
Deltoid anterior  0.1172 .156 
Deltoid medialis  0.1436 .004* 
Deltoid posterior  0.0222 .405 
Derratus anterior  0.2143 .400 
Teres major -1.0804 .001* 
Pectoralis major clav. -0.3543 .230 
Latissimus dorsi -0.1204 .286 

* Significant differences at p < 0.05.

3.3 Results

The average maximum force performed within the study population was 65 Newton (SD =

22.3). PAexp for all muscles and loading conditions, as well as the number of observations

after exclusion of outliers, is presented in Table 3.2. The trapezius descendens, deltoid me-

dialis and teres major showed a significant shift of PAexp as a function of external load. The

maximum observed effect (teres major) of external loading on PAexp was −1.08◦ per % of

Fmax. The PAexp dependency was described by a linear regression model (Table 3.3).

In Figure 3.2 changes in principal action with respect to principal action at the first force

level (principal action at 17% of Fmax = 0◦) are presented. PAexp are shown (circles), together

with PAsim, obtained using both a quadratic stress cost function (upward-pointing triangles)

and a compound energy cost function (downward-pointing triangles). DSEM simulations

with a quadratic stress cost function showed very small but noticeable non-linear scaling.

In our model, we simulated gravity compensation of the humerus, but the observed non-

linearities could still be introduced by gravity working on the clavicle and scapular bone,

which was obviously not controlled for in the in vivo experiments. To make this effect more

clearly visible, we performed model simulations including only one force direction, i.e. a

force acting downwards on the arm, with two different magnitudes, i.e. 10N and 20N. We

subsequently compared estimated muscle forces in a model with gravity working on the clav-
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Table 3.4: By DSEM simulations estimated muscle forces using the stress cost criteria, with-
out (Fg-) and with (Fg+) taking mass of clavicula (0.156 kg) and scapula (0.705 kg)(van der
Helm, 1994; Veeger et al., 1997) into account at a vertical downwards directed external load
of 10 and 20 Newton respectively. Note that without gravity muscle forces scale linear (exact
duplication of estimated muscle force with twice the external load), while non-linearities are
introduced with gravity.

 
 
Muscle 

Muscle forces (N) 

Fg- Fg+ 

10N 20N 10N 20N 
Supraspinatus 1.72 3.44 1.70 3.32 
Infraspinatus 23.81 47.62 24.69 48.66 
Subscapularis 10.67 21.34 10.47 21.10 
Trapezius descendens 8.06 16.12 13.21 21.48 
Trapezius ascendens 2.71 5.42 3.41 6.04 
Deltoid anterior 12.95 25.90 13.09 26.07 
Deltoid posterior 0.87 1.74 2.08 3.17 
Serratus anterior 15.53 31.06 19.42 34.80 
Teres major 0 0 0 0 
Pectoralis major clav. 10.28 20.56 11.93 22.50 
Latissimus dorsi 0 0 0 0 

icle and scapular bone masses, and a model without. Indeed, we found non-linear external

load dependence introduced in the first model in contrast to the simulation with full gravity

compensation (Table 3.4). The compound “energy cost function” appeared to result in a non-

linear relation between PAsim and external load, but except for the supraspinatus no similarity

was observed between PAexp and PAsim (Fig. 3.2).

3.4 Discussion

Activation of three shoulder muscles appeared to be load dependent. This has consequences

for the interpretation of muscle contraction patterns as measured in patients with shoulder

disorders before and after intervention. In current shoulder model simulations (DSEM), non-

linearities in the muscle force-external load relationships were not found using a quadratic

stress cost function except when gravitational forces working on the clavicular and scapular

bones were incorporated. More pronounced non-linearities were introduced using a com-

pound energy related cost function, however not leading to a better resemblance of PAexp to

PAsim.
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Figure 3.2: Changes in principal action with respect to the pricipal action at the first force
level (principal action at 17% of Fmax = 0◦); PAexp (circles) and PAsim with bone masses of the
scapula and clavicle (stress cost function: upward-pointing triangles; energy cost function:
downward-pointing triangles). PAexp shows significant non linear relation to external loading
for the trapezius descendens, deltoid anterior and teres major. PAsim with the energy cost
function and in lesser degree the stress cost function show a non-linear relation with external
loading. PAsim of deltoid medialis is lacking because the deltoids in the DSEM are divided in
a clavicular part (presented with the deltoid anterior) and a scapular part (presented with the
deltoid posterior).
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3.4.1 Comparison with previous research

Only a few studies assessed load dependency of muscles in vivo. In a previous study by

Meskers et al., external load dependency of shoulder muscle activation was found during a

similar multi directional task using a similar EMG processing method (Meskers, 1998). In

that study, clockwise shifts of deltoideus pars medialis (60◦) and counter clockwise shifts of

the serratus anterior (6◦) and latissimus dorsi (20◦) were found. However in contrast to the

present study: 1) fixed force levels were used without normalizing, meaning that subjects

were measured at different percentages of Fmax; 2) the external loads and force angles were

not applied in randomized order, which might introduce muscle activation dependent recruit-

ment bias and fatigue effects at the higher load tasks; 3) the positioning of the subjects in the

present study was slightly different, i.e. the elevation angle was 15◦ lower.

Recruitment of muscles as a function of external load was studied on jaw muscles using

a similar technique of relating EMG activity to increasing external forces (Blanksma et al.,

1992; van Eijden et al., 1993). With increasing external forces, linear EMG-external force

relationships where found for each jaw muscle (part). It was concluded that an increase in

activity is achieved by the same, simultaneous increase in excitation activity. This would con-

sequently imply a load independent principal action direction. Praagman et al. (2006) also

reported linear scaling of muscle forces with external loading around the elbow by means

of biomechanical model simulation using DSEM and muscle energy expenditure using Near

Infrared Spectroscopy. Possible explanations of the discrepancy of the present study with pre-

vious work are that with 24 force directions in a full circle around the humerus, the resolution

in the present study was considerable higher than in aforementioned studies.

3.4.2 Clinical consequences

In clinical settings, data are not acquired at different magnitudes of external force but at

(near) maximum MVC (de Groot et al., 2006; Steenbrink et al., 2006). Thus influences

of external loading, cross-talk and principal action estimation accuracy were presumed to

be minimal. The maximum force a patient can exert will generally change as a result of

therapeutic interventions. In patients it is therefore recommended to acquire Principal Action

data at equal percentages of their Fmax.

The maximum effect of external loading on the principal action will not exceed 1.08◦ per

percentage of MVC or Newton, resulting in 16◦ principal action shift for an external force

change of 15N for the teres major. In pre-and post-intervention comparisons this is in the
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range of the inter-subject standard deviation and is substantially less than e.g. observed in

patients with massive cuff tears where shifts for teres major increased 75◦ (de Groot et al.,

2006; Steenbrink et al., 2006). These large principal action changes observed in patients

cannot be explained by external force dependency but are obviously pathology dependent.

3.4.3 DSEM: load sharing criteria

The applied load-sharing functions either constrain or introduce non-linear scaling. The

quadratic stress minimization allows synergy between agonist muscles more than linear crite-

rions (Happee, 1994). The energy-related cost function with a linear and quadratic component

was previously shown to lead to more realistic predictions of muscle activation (Praagman

et al., 2006) for elbow-forearm external force tasks. Simulating the present experiment with

the compound energy related criterion indeed predicted a non-linear external load-dependent

muscle contraction, resulting in a better PAexp to PAsim resemblance for the supraspinatus

and, at least for the contour also for the deltoid anterior. However, there was no resemblance

for the remaining majority of muscles, implying that model simulations do not predict the

observed effects in the experiment. In vivo we might apply alternative control strategies that

are not caught adequately by the mechanical modeling and force distribution criteria. Addi-

tionally, force magnitude and direction induced changes of clavicle and scapula orientation

may not be neglected, and should thus experimentally be controlled for, or incorporated in

the simulations.

3.4.4 DSEM: gravitational loads

Introduction of gravitational forces resulted in non-linear muscle force-external load relations

when the stress cost function was used, especially for the low loading conditions. Gravita-

tion generates constant joint-torques that requires constant muscle force compensation. This

baseline muscle loading interacts with the linear increasing external component, resulting in

a non-linear appearance. Where bone masses will not be much of a factor, muscle masses

probably will. Muscle masses and the application point of gravitational forces on the dif-

ferent muscle volumes are presently not adequately incorporated in the DSEM. Variations in

the gravity forces - external load ratio could explain differences of the present findings with

respect to the previous studies to some extent (Apreleva et al., 2000; Blanksma et al., 1992;

Meskers, 1998; Praagman et al., 2006; van Eijden et al., 1993). It is recommended to take

gravitational forces into account in model simulations, especially when the direction of the
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external force does not coincide with the direction of the vertical gravitational forces and the

moment arms of external force directions are changing.

3.4.5 Possible error sources in the experiment

The validity of the EMG model as used in the present study is extensively discussed (de Groot

et al., 2004; Meskers et al., 2004). When external force is increased, the signal over noise ratio

will increase which will lead to optimal estimates of PAexp. Therefore PAexp estimations at

low forces have reduced accuracy. However, it is unlikely that this phenomenon explains the

present findings as shifts of principal action are not limited to the lower loading conditions.

Influence of cross-talk might also be external load dependent. However, the principal

action is estimated at the peak of muscle activation and therefore the principal action method

as such can be considered relatively insensitive to cross talk, even at the lower external loads.

During the experiments the gross position of the subjects was kept constant and special

care was taken that subjects could not cheat to be able to meet the higher external forces.

Small scapula positional changes could however not be ruled out and because external load

direction dependent scapular positions were previously observed (de Groot et al., 2006), these

changes are likely to increase with increasing external load magnitude influencing muscle

moment arms around the acromioclavicular, sternoclavicular and glenohumeral joints, which

affect the principal action direction. To what extent principal actions change as a function of

scapular position changes requires further research.
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