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8.0
General Discussion
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Migraine is an episodic neurovascular disorder that is characterized by severe headache, autonomic, 

and other neurological symptoms.1 The identification and characterization of migraine genes 

and molecular pathways will help increase our knowledge of migraine pathophysiology. As the 

identification of genetic susceptibility factors for complex disorders is particularly challenging, 

this thesis also focused on alternative approaches to improve our insight in the molecular 

mechanisms of migraine. These approaches range from genetic and functional studies of gene 

mutations in rare monogenic migraine subtypes (e.g., hemiplegic migraine and other disorders 

with a high migraine prevalence) to genetic studies in a Dutch genetically isolated population, 

and gene expression studies in transgenic migraine mouse models. 

8.1 Hemiplegic migraine: a monogenic form of migraine with aura 
Genetic studies in FHM: genes encode ion transporters

A successful approach to identify genes and unravel pathways for migraine has been the 

investigation of monogenic subtypes of the disease. The best example is Familial Hemiplegic 

Migraine (FHM), a rare form of migraine with aura. FHM can be considered a model for the 

common forms of migraine because the headache and aura features, apart from the hemiparesis, 

are identical2 and two-thirds of FHM patients have, in addition to attacks of FHM, also attacks of 

common non-hemiplegic migraine.3 Linkage studies in FHM families resulted in the identification 

of three FHM genes; CACNA1A (FHM1), ATP1A2 (FHM2) and SCN1A (FHM3). The fact that not all 

FHM families are linked to one of these three known FHM loci implies that there are additional 

FHM genes. 

The CACNA1A FHM1 gene encodes the α1 subunit of CaV2.1 channels.4 Until now, 28 different FHM1 

missense mutations have been described (figure 1). FHM1 mutations are associated with a broad 

spectrum of clinical features. Besides hemiplegic migraine, FHM1 patients can have cerebellar 

ataxia5-9 and/or epilepsy.10,11 FHM1 patients carrying the S218L mutation can have a particularly 

severe phenotype with attacks that can be triggered by mild head trauma and that in some cases 

may lead to fatal, cerebral edema and coma.12-15 In Chapter 2.1, we report on a monozygotic twin 

pair with a novel de novo CACNA1A V1696L mutation. This mutation causes an overlap syndrome 

between FHM and alternating hemiplegic of childhood (AHC), a severe neurological childhood 

disorder that shares several clinical features with FHM. This study provided the first evidence that 

a mutation in the CACNA1A gene can cause an AHC/FHM overlap syndrome. 
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Figure 1. Mutations in the α1 subunit of the voltage-gated CaV2.1 Ca2+ channel encoded by the FHM1 CACNA1A gene (Genbank 
Ac. nr. X99897). The protein is located in the plasma membrane and contains four repeated domains, each encompassing six 
transmembrane segments. Symbols: Circle with solid line = FHM, circle with dotted line = SHM. Asterisk = Mutation for which also 
SHM was reported, black circles mutation was tested for functional consequences, white circle mutation was not tested for functional 
consequences

The second FHM gene, ATP1A2 (FHM2) encodes the α2 subunit of sodium-potassium pumps.16 To 

date many mutations in the ATP1A2 gene have been described (Figure 2) and the vast majority is 

associated with pure FHM without additional clinical symptoms.16-20 However, some are associated 

with FHM and cerebellar problems21, benign familial neonatal convulsions (BFIC)22, epilepsy18,23, 

or permanent mental retardation.18,24 In Chapter 2.2 we present a novel ATP1A2 G855R mutation 

with functional consequences. Besides hemiplegic migraine, mutation carriers can also have 

febrile seizures. With this study, we further expanded the clinical spectrum associated with 

ATP1A2 mutations. Also non-hemiplegic migraine phenotypes were found to be associated to 

some ATP1A2 mutations, including basilar migraine25 and even common migraine26, although 

causality has not been established for all mutations by testing their functional consequences. 
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Figure 2. Mutations in the α2 subunit of the Na+,K+ ATPase encoded by the FHM2 ATP1A2 gene (Genbank Ac. nr. NM_000702). The 
protein is located in the plasma membrane and contains ten transmembrane segments. Symbols: Circle with solid line = FHM, circle 
with dotted line = SHM, circle with horizontal striped pattern = basilar-type migraine, circle with vertical striped pattern = common 
migraine. Asterisk = mutation for which also SHM was reported, black circles = mutation was tested for functional consequences, 
white circle = mutation was not tested for functional consequences.

Finally, the SCN1A (FHM3) gene encodes the α1 subunit of neuronal NaV1.1 voltage-gated 

sodium channels.27 The SCN1A gene is a well-known epilepsy gene with over 100 mutations 

that are associated with childhood epilepsy, i.e., severe myoclonic epilepsy of infancy (SMEI) or 

generalized epilepsy with febrile seizures (GEFS+).28,29 Only five FHM3 mutations (Figure 3) have 

been identified. First confirmation of SCN1A as a migraine gene is described in Chapter 2.3. The 

SCN1A L1649Q mutation was identified in a Caucasian North American FHM family with ‘pure’ 

FHM, without cerebellar signs or epilepsy symptoms. The third FHM3 mutation was identified in a 

FHM family in which three out of five carriers of the L263V mutation had generalized tonic-clonic 

epileptic attacks, occurring independently from their hemiplegic migraine attacks.30
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Figure 3. Mutations in the α1 subunit of the voltage-gated NaV1.1 Na+ channels encoded by the FHM3 SCN1A gene (Genbank Ac. nr. 
NM_006920). The protein is located in the plasma membrane and contains four repeated domains. Symbols: Black circles = mutation 
was tested for functional consequences, white circle = mutation was not tested for functional consequences.

Functional studies of FHM mutations

Functional consequences of FHM gene mutations have been studied in cellular and animal 

models. At the single channel level, FHM1 mutations were shown to cause opening of CaV2.1 

channels at more negative voltages and have an enhanced channel open probability, compared 

to normal channels.31-33 These gain-of-function consequences predict an increased calcium influx 

and increased neurotransmission. The generation and analysis of transgenic knock-in migraine 

mice with human pathogenic FHM1 mutations (i.e., FHM1 R192Q and FHM1 S218L mutant mice) 

revealed gain-of-function consequences of these mutations34,35; not only with respect to calcium 

influx, but also for spontaneous and evoked neurotransmission at the neuromuscular junction, a 

synapse in the peripheral nervous system where transmitter release is predominantly determined 

by CaV2.1 calcium channels. Most relevant for migraine pathophysiology, in both strains of mutant 

mice, the threshold for inducing a CSD was lowered and the propagation velocity of the CSD wave 

was increased. Whereas FHM1 R192Q migraine mice have no overt phenotype, FHM1 S218L mice 

exhibit cerebellar ataxia, seizure susceptibility, and head trauma induced brain edema as also 

seen in FHM1 S218L patients. These observations indicate that the FHM1 mutant mice are useful 

models to study the pathophysiology of migraine in vivo. Future studies have to reveal exactly 

how a lower activation threshold of mutated CaV2.1 calcium channels can lead to an episodic 

disease. One may envisage that only when the stimulus is strong (for instance with repetitive 

neuronal firing) and the threshold is temporarily lowered (for instance by hormonal changes), 

hyperexcitability of neurons in a susceptible brain leads to a cascade ending with a full-blown 

migraine attack. 
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The functional consequences of a large number of ATP1A2 mutations causing either FHM or SHM 

have been investigated in various in vitro assays. Many were shown to be dysfunctional as they 

– unlike wildtype - were not (or only partially) able to rescue cell survival in assays in which 

endogenous sodium potassium pumps were inactivated by the drug ouabain.36 In these assays, 

wildtype or mutant α2 Na+,K+- ATPase cDNAs were made insensitive to the ouabain challenge. More 

detailed functional studies revealed that FHM2 mutations G301R, T376M, L764P, W887R, R855R 

lead to non-functional proteins37,36,38,39 or sodium potassium pumps with partial activity with 

decreased (in the case of T345A and A606T) or increased (in the case of R689Q, M731T, R763H, 

and X1021R) affinity for potassium.40,41,38 For five FHM2 mutations (i.e., R383H, R689Q M731T, 

R763H, and R834Q) a reduced turn-over rate was shown. Since FHM2 mutations compromise 

pump function, Atp1a2 knockout mice may serve as a good model for FHM. However, Atp1a2 

knockout mice that lack the α2 subunit have a very severe phenotype and die immediately 

after birth because of their inability to take a first breath.42,43 Heterozygous mice are viable and 

exhibit enhanced fear and anxiety following conditioned fear stimuli.42 These mice have not been 

evaluated as potential migraine mouse models.

The functional consequences of three FHM3 mutations have been investigated.27,44 Whereas early 

functional studies of FHM3 mutations Q1489K and L1649Q revealed various gain-of-function effects 

when using a cardiac NaV1.5 cDNA as backbone for making the constructs27,44, more recent studies 

that investigated the consequences of these FHM3 mutations in the more appropriate NaV1.1 

protein revealed clear loss-of-function effects.45 The third FHM3 mutation L263V that in patients 

causes FHM and in the majority of carriers also generalized tonic-clonic epilepsy, essentially had 

gain-of-function effects.45 It was hypothesized that loss of sodium channel activity primarily 

disturbs the functioning of inhibitory neurons, where the NaV1.1 normally are expressed46,47, 

whereas gain of activity has a predominant effect on excitatory neurons. Interestingly, when 

overexpressed in neurons, depending on the test paradigm, the Q1489K mutation seemed to 

have functional consequences fitting either with hyperexcitability or hypoexcitability (i.e., self-

limiting hyperexcitability capacity)48, but this has not been tested in knock-in mice.  

8.2 How do FHM mutations cause disease?
Can the molecular genetic findings of the three FHM genes (CACNA1A, ATP1A2 and SCN1A) be 

integrated into a common pathway? More specifically, can we link the functional consequences 

of the three genes to for instance an increased propensity for CSD? Mutant CaV2.1 calcium 

channels from FHM1 R192Q and S218L knock-in mice predict increased glutamate release in 

the cerebellar cortex and thereby can easier induce, maintain, and propagate CSD; this is in 

line with the observed decreased threshold for CSD in knock-in mice.34,35 FHM2 mutations in 
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the sodium-potassium pump predict in vivo reduced glial uptake of K+ and glutamate from the 

synaptic cleft. FHM3 mutations in the NaV1.1 sodium channel predict in vivo hyperexcitability 

of excitatory neurons. Therefore, the consequence of FHM1, FHM2, and FHM3 mutations all seem 

to cause increased levels of glutamate and K+ in the synaptic cleft and thereby facilitate CSD 

(Figure 4). The increased propensity for CSD could well explain the aura, but, it remains to be 

established whether this also would result in a more readily activated trigeminovascular system 

with structures in the brainstem from which the headache originates. 

 

Figure 4. Schematic representation of a glutamatergic sysnapse and the proteins encoded by the three FHM genes and the SLC1A3 
gene (adapted from Barret et al. 2008). NaV1.1 channels (encoded by SCN1A) are essential for the generation and propagation of action 
potentials. In response to an action potential, calcium enters the cell via CaV2.1 channels (encoded by CACNA1A) and glutamate will be 
released by vesicles into the synaptic cleft. Potassium in the synaptic cleft is removed in part by the action of the Na+/K+-ATPase (encoded 
by ATP1A2) which is located at the surface of glial cells (astrocytes). Removing extracellular K+ generates a Na+ gradient, which drives 
uptake of glutamate from the cleft by transporters, for example, EAAT1 (encoded by SLC1A3). Energy is required and achieved by glucose 
utilization after uptake from blood vessels. Gain-of-function mutations in CaV2.1 and loss-of-function mutations in the ATPase, NaV1.1 
and EAAT1 will each lead to of increased general excitability.

8.3 Do FHM genes play a role in SHM?
Not all hemiplegic migraine patients are part of FHM families. So-called sporadic hemiplegic 

migraine (SHM) patients do exist, and exhibit clinical symptoms that are very similar to those 

of familial cases.49 For instance, SHM - like FHM - patients can have attacks of common migraine 

that are not associated with hemiparesis. Also the prevalence of familial and sporadic hemiplegic 

migraine in the population is similar; both are rare with a prevalence of approximately 0.01%.50 
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Therefore, an interesting question is whether FHM genes also play a role in SHM? Previously, only 

one study addressed that question, and investigated the involvement of the CACNA1A gene in 

27 SHM patients; two CACNA1A mutations were identified.51 Chapter 3 of this thesis describes a 

study that reports a systematic mutation screen of all three FHM genes in 39 clinic-based ‘pure’ 

SHM patients without cerebellar signs or epilepsy. About 15% of our SHM patients had mutations 

in FHM genes; predominantly in the ATP1A2 gene. SHM could not be explained by mutations in 

known FHM genes in the majority of patients. The frequency of mutations was even lower in 

a Danish population-based study.52 In one hundred SHM patients only 8 sequence variants in 

CACNA1A and ATP1A2, of which only 2 were considered pathogenic, were identified; no functional 

studies were performed to proof causality. This indicates a difference between Dutch and Danish 

patients, diagnosis, and/or mutation detection methodology. Regardless, these genetic studies 

indicate that (i) SHM belongs to the genetic migraine spectrum, and that (ii) other genetic factors 

likely play a role in SHM. Future research must show whether these patients have a mutation in 

yet undiscovered hemiplegic migraine genes, or whether they have an unfavorable combination 

of low-risk gene variants present in a single patient. 

8.4 Is it possible to translate genetic results from HM to common migraine?
As the main clinical symptoms of headache and aura are similar in FHM and common migraine, 

it is thought that they may share a common pathophysiology.3 Several studies have investigated 

the role of FHM1 and FHM2 loci in the common forms of migraine. These studies led to conflicting 

results with some evidence in favor of the hypothesis53-55,26, while others find no evidence for 

their involvement in common migraine.56-58 Some of the studies hypothesized that mutations 

found in FHM may cause common migraine, while it is more likely that ‘milder’, less penetrant, 

DNA variants are involved. A recent comprehensive study, including some 2800 migraine patients 

from various European countries, tested whether common DNA variants in ion transport genes are 

involved in common migraine.59 Over 5,000 SNPs in 155 ion transport genes (including the three 

FHM genes) were studied, but none of the original significant SNPs (66 SNPs in 12 genes) was 

significant across all four replication cohorts. From this study it seems that common variants in 

ion transport genes do not play a major role in susceptibility for common migraine. Rare variants 

or variants with a very small effect size would not have been detected with this study design.

8.5 Genetic studies in other disorders in which migraine is prevalent 
Another approach to identify genes and pathways for complex disorders is to study disorders 

that are comorbid with that particular genetically complex disease. Migraine can be part of 

the clinical spectrum of certain monogenic disorders. A good example is Cerebral Autosomal 

Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) (for recent 

review see Stam et al)60. CADASIL is caused by mutations in the NOTCH3 gene, which encodes the 
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Notch3 receptor that plays a key role in vascular smooth muscle cell function in small arteries 

and arterioles of the brain.61 Up to one-third of CADASIL patients suffers from migraine with 

aura, where migraine often is the presenting clinical symptom.62 The link with MA and not the 

more frequent MO, suggests that increased susceptibility for CSD is somehow caused by NOTCH3 

mutations. This hypothesis is strengthened by the fact that transgenic Notch3 mice have a decreased 

threshold for CSD.63 A second example is Retinal Vasculopathy with Cerebral Leukodystrophy 

(RVCL) that is caused by mutations in the TREX1 gene that encodes the major mammalian 3’-5’ 

DNA exonuclease (Chapter 5.1). RVCL originally was described in three families under different 

disease names; cerebroretinal vasculopathy (CRV), hereditary vascular retinopathy (HVR), and 

hereditary endotheliopathy, retinopathy, nephropathy and stroke (HERNS).64-67 RVCL is primarily 

characterized by progressive blindness due to vascular retinopathy and can be associated with 

a wide range of systemic and cerebral symptoms, including cerebral infarcts and white matter 

hyperintensities, vascular dementia, liver and kidney dysfunction, Raynaud’s phenomenon, 

and migraine. Particularly in a Dutch RVCL family, migraine and Raynaud’s phenomenon are 

prominent.66 Comorbidity of migraine with CADASIL and RVCL indicates that cerebral or meningeal 

vasculopathy and vascular dysfunction may play a role in migraine.68 TREX1 mutations were also 

identified in other vascular and immune-related disorders, such as Systemic Lupus Erythomatosus 

(SLE) and Familial Chilblain Lupus (FCL).69,70 Chapter 5.2 describes a TREX1 mutation screen in 

60 patients with neuropsychiatric SLE (NPSLE), with and without white matter hyperintensities 

(WMH). We identified the first gene mutation in a NPSLE patient with WHM. Interestingly, this 

patient also has severe migrainous headache, which is known to be common in SLE patients.71  

Another pathway that is important in migraine pathophysiology is the ‘neuronal hyperexcitability 

pathway’. Depression and epilepsy are two genetic disorders in which neuronal hyperexcitability 

is thought to play a role. It is consistently found that migraine patients have an increased risk 

for migraine and epilepsy. This relation is bi-directional, meaning that patients with depression 

or epilepsy also have an increased risk for migraine.72-77 This reinforces the hypothesis that 

overlapping pathways play a role in migraine and epilepsy and in migraine and depression. 

For instance co-occurrence of epilepsy and migraine was reported for several FHM mutation 

carriers.22,11,78,21,79 Recent genetic research points to yet another gene that seems to fit perfectly 

into the FHM pathway of cortical hyperexcitabiltiy: the SLC1A3 gene that encodes EAAT1, a 

glutamate transporter that is located on astrocytes (Figure 4). A P290R mutation in this gene was 

shown to cause severe episodic ataxia and progressive ataxia, seizures, alternating hemiplegia, 

and migraine headache.80 Mutant EAAT1 showed severely reduced glutamate uptake. In Chapter 4, 

we describe a novel C186S EAAT1 mutation in a patient with episodic ataxia. Functional studies 

showed a modest but significant reduction of glutamate uptake, which is in line with the milder 
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phenotype. Because of the known relation between ataxia and hemiplegia with FHM1 mutations, 

the finding of SLC1A3 mutations causing both ataxia and hemiplegia has potential relevance for 

FHM as well.    

8.6 Linkage studies in common migraine 
A major genetic strategy to identify migraine susceptibility genes has been classical linkage 

analysis that aims to find linked chromosomal loci using a family-based approach. Over the 

years, a number of chromosomal loci (Table 1) have been identified using either migraine without 

or with aura patients diagnosed according to the International Headache Criteria (i.e., IHS 

diagnosis).1 However, with a few exceptions, replication of initial findings was unsuccessful. One 

of the most promising migraine susceptibility loci resides on chromosome 4; initial linkage to 

chromosome 4q24 in Finnish MA families81 was replicated in an Icelandic sample of MO patients.82 

Although the Finnish and Icelandic migraine loci are not identical, but seem to overlap, it is 

yet unclear whether they harbor different migraine susceptibility genes. Lack of success with 

the linkage approach probably is due to the high prevalence of migraine making it difficult to 

ascertain “clean” pedigrees for linkage where migraine genes from spouses do not interfere with 

the analysis. 

Table 1 Summary of relevant linkage results performed for migraine using the International Headache Classification (IHC) classifica-
tion guidelines.

Chromosomal locus	Phenotype	 Genotyping method	 Reference

1q31 	 MA, MA/MO*	 Regional microsatellite markers	 Lea et al. 2002

4q21	 MO	 Genome-wide scan	 Bjornsson et al. 2003

4q24	 MA	 Genome-wide scan	 Wessman et al. 2002

6p12.2-p21.1	 MA/MO	 Genome-wide scan	 Carlsson et al. 2002

10q22-q23 	 MA	 Genome-wide scan	 Anttila et al. 2008

11q24	 MA	 Genome-wide scan	 Cader et al. 2003

14q21.2-q22.3	 MO	 Genome-wide scan	 Soragna et al. 2003

15q11-q13	 MA	 Regional microsatellite markers	 Russo et al. 2005

19p13	 MA	 Regional microsatellite markers	 Jones et al. 2001

Xq25-q28	 MA/MO	 Regional microsatellite markers	 Nyholt et al. 1998; 2000

MO = migraine without aura; MA = migraine without aura; *Only suggestive linkage for MA/MO combined.
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In the last few years, linkage studies made use of alternative phenotyping approaches that are 

based either on individual migraine traits in “trait component analysis (TCA)” or that use a 

combination of clinical migraine features in “latent class analysis (LCA)”. Whereas TCA is rather 

straightforward, LCA involves a complex statistical empirical clustering approach based on factor 

analysis that combines the information of several migraine symptoms.83,84 The classification 

reflects disease severity and does not specifically separate MO from MA. In principle, TCA and to a 

certain degree LCA, reflects the underlying processes in migraine pathophysiology as they utilize 

the questionnaire-based information in a more optimal manner, compared to the dichotomous 

IHS end diagnosis.85 It can be expected that by using TCA, the clinical heterogeneity will be 

reduced, since traits better reflect the biological pathways that are influenced by specific genetic 

variations. Several migraine loci were identified using this alternative phenotyping strategy (see 

Table 2).

Table 2 Summary of linkage results performed for migraine grouped for phenotyping methods Latent Class Analysis (LCA) and Trait 
Components Analysis (TCA).

Chromosomal  	 Phenotypic trait (analysis method)*	 Reference
locus

4q24	� Age at onset, photophobia, phonophobia, photo- and 	 Anttila et al. 2006 

phonophobia, pain intensity, unilaterality, pulsation,  

nausea and vomiting (TCA)	

5q21 	 Pulsation (LCA)	 Nyholt et al. 2005

10q22-q23 	 Migrainous headache (LCA)	 Anttila et al. 2008

10q22-q23 	� Unilaterality, pulsation, pain intensity, 	 Anttila et al. 2008 

nausea/vomiting, photophobia, phonophobia (TCA)	

17p13 	 Pulsation (TCA)	 Anttila et al. 2006

IHS = International Headache Society; LCA = Latent Class Analysis; TCA = Trait Component Analysis. *Order based on level of signifi-
cance (most significant trait mentioned first).

8.7 Candidate gene association studies
In common disorders, such as migraine, many common genetic factors (present in more than 1–5% 

of the population) are thought to play a role in disease susceptibility. This phenomenon is known 

as the ‘common disease, common variant’ hypothesis. A frequently used strategy to identify 

these common gene variants for common disorders are case-control association studies.86-89 These 
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studies test for significant differences in allele frequencies between cases and controls. Many 

candidate gene association studies have been performed in migraine research; mainly of genes 

involved in the serotonin and dopamine pathways - but also in other genes with an already 

suspected function in migraine pathophysiology. Unfortunately, the majority of the associations 

could not be replicated, suggesting that many of the original findings may in fact represent false 

positive findings (for review see De Vries et al)90. Studies often contained rather low numbers of 

cases and controls; the ones that used 275 cases and controls or more are summarized in Table 

3. A positive exception is a recent study that analyzed several SNPs in ten different genes from 

the dopamine system in over 600 MA cases and controls using a two-step design and showed a 

positive association with single SNPs in DBH, DRD2 and the SLC6A3 genes, also after multiple 

testing.91 Functional consequences of any of these associated SNPs are still unknown. 

 

Another promising association finding seems to be with the 5’,10’-methylenetetrahydrofolate 

reductase (MTHFR) gene. MTHFR is a key enzyme in folate and homocysteine metabolism.92 Most 

studies found an association of the T-allele of the MTHFR C677T polymorphism with migraine 93-

98, although negative findings have been reported as well.99,100 The T-allele results in moderately 

increased levels of homocysteine that may cause migraine through a vascular endothelium 

dysfunction effect, but evidence for this hypothesis is still lacking. Recently, also two meta-

analyses were reported for MTHFR and migraine.101,102 Both studies revealed that the T-allele is 

associated with MA, but not with migraine without aura or migraine overall. However when the 

results in one of the meta-analyse were stratified for ethnicity, the results were driven by studies 

in non-Caucasian populations.102 

8.8 Genome wide association studies
In recent years, high-throughput genotyping techniques developed rapidly allowing extensive 

genotyping in large cohorts for Genome Wide Association Studies (GWAS) became feasible. In 

contrast to hypothesis-driven candidate gene-based association studies, GWAS do not require 

prior knowledge about the disease mechanism. In Chapter 6, GWA studies in migraine are 

described. The first GWAS was conducted for the migraine subtype MA by the International 

Headache Consortium (Chapter 6.1). The initial study cohort contained a total of 2,748 clinic-

based European MA cases, of which 655 cases were of Dutch origin and were collected via the 

LUMINA (Leiden University Migraine Neuro Analysis) initiative.103 The most significantly associated 

SNP (P-value 5.1 x 10-9) is located on chromosome 8q22.1 and could be replicated in several 

independent migraine cohorts.104 Interestingly, the associated allele of this SNP was significantly 

correlated with expression levels of the adjacent AEG-1 gene. AEG-1 is expressed on astrocytes and 
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downregulates EAAT2, which is an important glutamate transporter in the brain that is important 

for glutamate from synaptic cleft.105 The AEG-1 gene seems to perfectly fit into the ‘glutamate 

pathway’ that is seen in FHM and common migraine.

For Chapter 6.2 we initially performed a GWAS for migraine in the Erasmus Rucphen Family (ERF) 

population, and subsequently this data was included in the first meta-analysis for migraine. 

The ERF population is a well-studied Dutch genetically isolated population, which resides in 

the Southwest of the Netherlands and consists of roughly 3,000 descendants of a relatively 

small numbers of founders in the mid 18th century. The main advantage of genetic studies in 

genetically isolated populations is that these populations are more homogeneous due to their 

relatively small number of founders that underwent rapid population expansion (i.e., genetic 

drift).106 In our GWA study none of the in total approximately 2.5 million SNPs reached genome-

wide significance (i.e., a P-value < 5.0 x 10-8). However, several SNPs in genes that seem relevant 

to migraine pathophysiology showed nearly significant association with migraine. Subsequently a 

meta-analysis was performed using the GWAS data of six population-based cohorts from the Dutch 

Icelandic (DICE) consortium, including the ERF cohort. For only one SNP a P-value below 10-4 was 

obtained in both the GWA in ERF and the meta-analysis study. The best SNP in the meta-analysis 

was located in the neuronal growth factor receptor gene (NGFR), which is a good candidate gene 

for migraine, due to is relevance to pain perception. Future replication and/or functional studies 

must reveal their true relevance to migraine pathophysiology. 

The most significant SNP from the clinic-based GWAS did not show a signal in the ERF GWAS 

and in the meta-analysis of the population-based migraine cohorts. This might be due to the 

difference between population-based and clinic-based migraine patients. Perhaps this specific 

SNP has an effect on disease severity. Furthermore, previous studies for other disorders also 

showed that often different GWAS for the same disease do not yield the same peaks107, which 

could be due to clinical heterogeneity between the samples.
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8.9 Gene expression studies in knock-in migraine mouse models 
The availability of transgenic FHM1 knock-in mouse models34,35, gave opportunities to investigate 

gene expression profiles in brain tissues. The difference in severity of clinical features in patients 

with the R192Q (pure FHM) and the S218L mutation (FHM with cerebellar ataxia, epilepsy and 

increased susceptibility to head trauma induced brain edema) is reflected in the mouse models 

with the same FHM1 mutations. The fact that the more ‘severe’ mouse model also exhibits more 

profound changes in neuronal calcium influx, (cortical) neurotransmission, and susceptibility to 

CSD warrants an in-depth molecular analysis of the consequences of both mutations on gene 

expression profiles. Therefore, in Chapter 7 of this thesis, we performed a first gene expression 

study in both transgenic mouse models to investigate whether the observed hyperexcitabiliy might 

be associated with changes in gene expression levels under basal (i.e., untriggered) conditions. To 

this end, the occipital cortex (i.e., the origin of the CSD) and the cerebellum (i.e., the origin of 

the ataxia) were investigated. Gene expression levels in the occipital cortex were notably similar 

in cortices of mutant and wildtype mice. However, gene expression in the cerebellum of S218L 

mice was somewhat different from that in wildtype and R192Q mice. Several of the differentially 

expressed genes in the cerebellum of S218L mice could be related to neurotransmission and more 

specifically to ataxia, which is a prominent feature in patients and mice with this mutation. As 

an example, the gene with the highest fold change, tyrosine hydroxylase (Th), which could be 

confirmed at the protein level, had already been implicated in ataxia of several natural mouse 

Cacna1a models (i.e. Rolling Nagoya108, Tottering109, and Leaner.110 Perhaps additional microarray 

experiments using migraine-relevant triggers are needed before gene expression profiles are more 

pronounced and can be combined with GWAS and/or exome-genome sequencing to prioritize findings.

8.10 Future perspectives
This thesis focused mainly on the identification and characterization of migraine gene mutations 

and pathways. Three FHM genes have been identified. The genetic spectrum of FHM mutations and 

their associated clinical features have been investigated in this thesis. Not all FHM families can be 

explained by mutations in known FHM genes, so additional FHM genes must exist. It is interesting 

to assess whether novel FHM genes will fit in the same pathway as the known FHM genes, or 

whether they will highlight additional pathways with relevance to migraine pathophysiology. 

With the availability of ‘Next Generation Sequencing’ technology, which allows high-throughput 

sequencing of either desired regions of the genome, all exons of the genome (the so-called exome), 

or the entire genome, these  FHM genes will probably soon be identified. First successes in gene 

identification for monogenic disorders using this exome strategy were published.111 



General Discussion 8

195

For common migraine, clinical and genetic heterogeneity make the identification of susceptibility 

genes even more difficult than gene discovery in FHM. The diagnosis of migraine is mainly based 

on questionnaires and (sometimes) interviewing the patients. Unfortunately, a more objective 

method of diagnosing patients, such as biochemical testing in blood (or cerebrospinal fluid or 

urine) is currently not available. Systematic studies to identify such reliable biomarkers are dearly 

needed as they will help defining more homogeneous groups of patients for genetic studies. 

Ideally, biomarker information should somehow be combined with other endophenotyping 

approaches such as previously discussed LCA and TCA. Particularly TCA seems to reduce clinical 

heterogeneity. Endophenotyping likely will increase the power of the genetic analyses. Also 

because, as was shown for several other complex disorders such as Attention-Deficit/Hyperactivity 

Disorder (ADHD) and schizophrenia, the heritability of the individual traits may be higher than 

of the syndrome as a whole (i.e., combination of traits).112,113 One appealing strategy to decrease 

heterogeneity in migraine is to take co-morbidity with other diseases into account. A recent 

study in ERF indicated that migraine and depression may share, at least to some extent, genetic 

factors.77 By stratifying for depression, gene discovery in migraine may become (a little) easier. At 

the moment, most investments in migraine genetics go into GWAS. For many complex disorders, 

GWAS already led to successes.114-116 The coming two years will be very exciting as additional 

GWAS are currently being performed for migraine. Still, most gene variants identified with GWAS 

have a low relative risk (RR) of often 1.1 - 1.3 and seem to explain only a small proportion of 

disease heritability. Therefore, it is now being questioned whether GWAS will contribute much 

to understanding the majority of the genetic load. The question at hand is where the majority 

of the genetic burden is and how to increase our understanding in migraine mechanisms. Is it in 

epistasis or copy number variation? Can pathway analyses on GWA data increase our insight117,118? 

Or is most of the genetic load carried in large number of allelic variants that combine a very low 

allele frequency with a reasonably high relative risk? As this genetic variation (usually) is not 

captured in current GWAS, other approaches (i.e., large-scale deep sequencing) are needed. Also 

for this approach, the technology is available. The next few years will have to show what this 

new technology can bring for migraine. In conclusion, although the last decade has produced 

major advances in our knowledge of migraine pathophysiology, the best perhaps is yet to come. It 

will require a true multidisciplinary approach to harvest this knowledge and translate it to novel 

treatment options to help migraine patients. 
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