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Chapter 11
Prediction of arrhythmias in primary prevention ICD 
patients: resting versus exercise electrocardiogram
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Abstract
Ejection fraction and microvolt T-wave alternans (mTWA) lack specificity to predict 

sudden cardiac death in heart failure (HF). We compared resting ECG variables 

(QRS duration, lead-dependent T-amplitudes and exercise-ECG-derived TWA 

variables (amplitude in the 12 leads, in the orthogonal X,Y,Z leads and in the vector 

magnitude) of 56 HF patients with an implanted cardioverter-defibrillator: cases 

and matched controls with/without antiarrhythmic therapy for VT/VF during fol-

low up. Linear discriminant models, using resting and exercise ECG variables, were 

built in half of the study group, and were tested on the other half. QRS duration 

and TWA in lead Z discriminated best in the resting and exercise ECG, respectively, 

and had comparable diagnostic accuracy for VT/VF prediction.
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Introduction
Implantable cardioverter-defibrillator (ICD) is a therapeutic option in heart failure 

patients, who have an increased risk for arrhythmic sudden cardiac death. Usually, 

the elevated risk of lethal arrhythmias is attributed to a reduced left ventricular 

ejection fraction (LVEF)1. Unfortunately, this risk criterion lacks specificity and 

it leads to a large number needed to treat2, giving rise to unnecessary patient 

burden and to huge increases in the treatment cost. Therefore, continuing efforts 

are done to define extra, preferably noninvasive, predictors to better identify true 

candidates for ICD implantation for primary prevention. A potential predictor 

could be an increased QRS duration, that has been associated with sudden cardiac 

death3. Also, increased QT duration is associated with sudden cardiac death4. 

Furthermore, an increased spatial QRS-T angle has been associated with increased 

cardiac mortality risk in several studies5;6. Recently, we reported that a wide spatial 

QRS-T angle is a predictor for ICD therapy in primary prevention ICD patients7. 

Another potential predictor is the spatial ventricular gradient8 (the vectorial sum 

of the integrals of the X, Y and Z components of the heart vector over the QT 

interval. This integral represents the action potential morphology gradients in the 

heart9, as a consequence, any change in the gradient could be arrhythmogenic. 

In exercise ECG, the most promising candidate-predictor is microvolt T-wave 

alternans (mTWA) which is defined as every-other-beat changes in T wave mor-

phology10. However, again because of a lack of specificity11, more investigation is 

needed. As T-wave alternans is sometimes measured in all 12 leads12, sometimes 

only in the precordial13 or orthogonal14 leads or in the vector magnitude10, 

comparison of the results of these studies is impossible or very difficult, as the 

alternans phenomenon may be lead dependent. In this pilot study, we compared 

the predictive value of resting ECG variables and exercise ECG variables for ven-

tricular arrhythmias in a population of heart failure patients with ICD implanted for 

primary prevention. Secondly, we investigated if the predictive value of the T wave 

in the resting and exercise ECG is lead dependent.

Methods
We selected heart failure patients with an ICD for primary prevention of sudden 

cardiac death, in whom a resting 10 second standard 12-lead ECG was made prior 

to the exercise test, in whom the exercise test had sufficient technical quality, 
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and in whom the baseline heart rate before exercise and the final recovery heart 

rate were below 95 bpm. We performed a case-control study with 56 patients. 

Patients were defined as cases if they had antiarrhyhtmic therapy for VT/VF during 

follow-up. Subsequently, cases were matched with 28 control patients on age, sex, 

aetiology, LVEF, and NYHA class who had no VT/VF during follow-up. Then, the 

resting ECGs were analyzed with our research program LEADS15. In brief, LEADS 

removes baseline wander, deselects noisy beats and defines the QRS onset, J point 

and end T for calculation of the ECG variables in the averaged beat. The following 

resting ECG variables were calculated: QRS duration, QTc using Bazett correction, 

the T-amplitude in every of the 12 leads, spatial QRS-T angle, the spatial ventricular 

gradient magnitude and its orientation (azimuth and elevation).

Exercise ECGs were analyzed by the heart-rate adaptive filter method14 that results 

in a sinusoidal alternans signal. The exercise ECGs were analyzed in windows of 16 

beats with a time step of 2 seconds. Beats that were 10% larger than the averaged 

interbeat interval were rejected, and replaced by an averaged beat. Windows 

were rejected if >1 beat was replaced. Alternans was calculated in each of the 

12 standard ECG leads, mathematically synthesized orthogonal leads and in the 

Table 1. Group characteristics

group Cases Controls

Set Learning Test Learning Test

N 14 14 14 14

Sex(Male/Female) 10/4 12/2 10/4 12/2

Age (y) 60±13 60±12 56±11 59±11

Height (cm) 173±9 178±6 177±10 177±7

Weight (kg) 79±15 85±18 87±14 80±12

BMI(kg/m2) 26±4 27±5 28±3 26±3

Device (ICD/CRT-D) 7/7 6/8 7/7 6/8

Follow-up (years) 4.3±1.3 4.9±2.1 3.8±1.9 4.1±1.8

Ischemic etiology 10 11 9 12

NYHA class

I-II 9 12 12 10

III-IV 5 2 2 4

LVEF(%) 27±8 29±15 30±7 28±6

Data separated by a ± sign are mean ± SD. BMI = body mass index; NYHA = New York Heart Association; 
ICD = implantable cardioverter-defibrillator; CRT-D = cardiac resynchronization therapy with defibrillator; 
LVEF = left ventricular ejection fraction.
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vector magnitude. The T-wave alternans was finally defined for each lead and for 

the vector magnitude as the averaged alternans over the valid windows.

Then, the case and control patients were randomly divided in an equal-sized 

learning and test set of 14 patients. The group characteristics of the learning and 

test set are shown in Table 1.

Statistical analysis
Patient characteristics of the learning and test sets were compared, when appro-

priate, with the paired t-test or chi-square test. Receiver operating characteristic 

(ROC) analyses were made to visualize and quantize the univariate diagnostic 

performance of the resting and exercise ECG variables. Then, stepwise linear 

discriminant analysis was performed. The discriminant model was built using 

Wilks’ lambda method, with P<0.05 and P>0.10 as entry and removal criterion. 

Two models were built with the learning set: 1) the resting ECG variables, and 2) 

exercise ECG variables. The diagnostic performance of these models was tested on 

the test set. Finally, to get an impression of the model stability, a cross-validated 

 
Figure 1. ROCs of resting ECG variables.
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(leave-one out classification) discriminant analysis of the whole study group 

(N=56) was done. Analyses were done in PASW Statistics (SPSS), version 18.0 (PASW 

Statistics; SPSS Inc).

Results
General patients’ characteristics are given in Table 1 and were not statistically 

different between the learning and test sets within the case and control patients. 

Also, the resting and exercise ECG variables were not significantly different 

between the learning and test sets within the case and control patient groups (not 

shown).

To get an impression of the univariate predictive power for VT/VF, we made 

ROCs of the resting and exercise ECG variables, respectively (Figure 1-2). The ROC 

analyses showed that, in the resting ECG, QRS duration (area under the curve 

 Figure 2. ROCs of exercise ECG variables.
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(AUC) 0.790, P<0.001), QTc duration (AUC=0.070, P=0.002), T amplitude in lead V1 

(AUC=0.710, P=0.007), spatial QRS-T angle (AUC=0.698, P=0.01), T amplitude in 

lead V4 (AUC=0.670, P=0.03) and T amplitude in lead V2 (AUC=0.670, P=0.03) had 

significant discriminative power for VT/VF (Figure 1; Table 2). The ROC analyses of 

the exercise ECG variables showed that TWA in lead V3 (AUC 0.664, P=0.04), TWA 

in lead aVF (AUC 0.672, P=0.03), TWA in lead III (AUC 0.672, P=0.03), TWA in lead 

II (AUC 0.680, P=0.02), TWA in lead Y (AUC 0.684, P=0.02), TWA in lead aVL (AUC 

0.695, P=0.01), TWA in lead V1 (AUC 0.713, P=0.006, TWA in lead V2 (AUC 0.746, 

P=0.002), and TWA in lead Z (AUC 0.807, P<0.0001) had significant discriminative 

power for VT/VF (Figure 2; Table 3).

Linear discriminant analysis in the learning set using resting ECG variables yielded 

the best performance with the QRS duration; other additional variables could not 

improve this result. The resting ECG model was: D=0.039 x QRS duration – 4.63 

(D>0 predicts ventricular arrhythmia during follow-up (Table 4)). In the learning 

Table 2. ROC analyses of resting ECG variables

resting eCg variables auC P

QRS duration 0.790 <0.001

QTc duration 0.746 0.002

Tamp in lead V1 0.710 0.007

Spatial QRS-T angle 0.698 0.01

Tamp in lead V4 0.670 0.03

Tamp in lead V2 0.662 0.04

Tamp in lead V3 0.648 0.06

Tamp in lead aVR 0.624 0.11

Tamp in lead aVF 0.624 0.11

SVG azimuth 0.602 0.19

Tamp in lead V5 0.583 0.29

SVG elevation 0.574 0.34

Tamp in lead II 0.557 0.46

Tamp in lead I 0.557 0.46

Tamp in lead aVL 0.555 0.48

SVG magnitude 0.537 0.64

Tamp in lead III 0.509 0.91

Tamp in lead V6 0.505 0.95

AUC= area under the curve, Tamp = T amplitude. SVG = spatial ventricular gradient. Results are sorted by 
increasing AUCs.
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set, the diagnostic accuracy was 71%. When applied to the test set the perfor-

mance was similar (68%; Table 4).

Discriminant analysis in the learning set using exercise ECG variables yielded 

the best performance with the TWA in lead Z; other additional variables could 

not improve this result. The exercise ECG model was: D=0.11 x TWA in lead 

Table 3. ROC analyses of exercise ECG variables

exercise eCg variables auC P

TWA in lead Z 0.807 <0.001

V2 0.746 0.002

V1 0.713 0.006

aVL 0.695 0.01

Y 0.684 0.02

II 0.680 0.02

III 0.672 0.03

aVF 0.672 0.03

V3 0.664 0.04

X 0.644 0.06

aVR 0.633 0.09

Vector magnitude 0.631 0.09

V4 0.607 0.17

V5 0.604 0.18

I 0.588 0.26

V6 0.545 0.56

AUC= area under the curve, TWA= T-wave alternans. Results are sorted by increasing AUCs.

Table 4. Performance of resting ECG discriminant model

learning set
N=14

Case Control

VT/VF+ (D>0) 10 4 PPV 71%

VT/VF− (D≤0) 4 10 NPV 71%

Sensitivity 71% Specificity 71% Accuracy 71%

Test set
N=14

Case Control

VT/VF+ (D>0) 8 3 PPV 73%

VT/VF− (D≤0) 6 11 NPV 65%

Sensitivity 57% Specificity 79% Accuracy 68%

Model equation is D= 0.039*QRS duration – 4.63. If D>0, ventricular arrhythmia during follow-up is 
predicted (VT/VF+), while D≤0 predicts no arrhythmia (VT/VF−). PPV = positive predictive value; NPV = 
negative predictive value.
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Z – 1.77 (D>0 predicts ventricular arrhythmia during follow-up (Table 5)). In the 

learning set, the diagnostic accuracy was 71%, When applied to the test set the 

performance was similar (68%; Table 5). To get an impression of the stability of 

resting and exercise ECG discriminant models, leave-one-out classification (cross-

validated) discriminant analyses were done using the whole study group of 56 

patients: the resting ECG diagnostic accuracy was 75% and for the exercise ECG 

was 70%.

Discussion
In this pilot study, we have shown that the QRS duration in the resting ECG and 

lead Z alternans in the exercise ECG both have predictive power for ventricular 

arrhythmia. The derived models using QRS duration and lead Z TWA had similar 

diagnostic performance in the test set. Also, the cross validation analysis had 

comparable accuracy.

The remarkable differences in the AUC values of the T-wave amplitudes in the 

resting ECG (Figure 1) show clearly that the predictive value for VT/VF is lead 

dependent. The performance of the T-wave amplitude in some leads was quite 

good, however, QRS duration was superior (Figure 1; Table 2).

Table 5. Performance of discriminant models built using exercise ECG variables to predict ventricular 
arrhythmia in learning set and test set

learning set
N=14

Case Control

VT/VF+ (D>0) 8 2 PPV 80%

VT/VF− (D≤0) 6 12 NPV 67%

Sensitivity 57% Specificity 86% Accuracy 71%

Test set
N=14

Case Control

VT/VF+ (D>0) 7 2 PPV 78%

VT/VF− (D≤0) 7 12 NPV 63%

Sensitivity 50% Specificity 86% Accuracy 68%

Model equation is D= 0.11*TWA in lead Z – 1.77. If D>0, ventricular arrhythmia during follow-up is 
predicted (VT/VF+), while D≤0 predicts no arrhythmia (VT/VF−). PPV = positive predictive value; NPV = 
negative predictive value.



200

Similarly, for the exercise ECG, the discriminative power of TWA for VT/VF is lead 

dependent (Figure 2; Table 3). Alternans in lead Z was largest (Figure 2; Table 3), 

and appeared in the model. Of note, alternans in lead V2, which assumes, apart 

from an opposite sign, a similar direction as lead Z had comparable performance.

Conclusion
From this pilot study, we can conclude that the predictive values of the T-wave 

variables in the resting and exercise ECG models were lead dependent. The best 

resting ECG predictor is QRS duration and the best exercise ECG predictor is 

alternans in lead Z. Further studies are required to investigate why alternans in the 

Z direction is the best predictor.
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