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Abstract

Background
In an attempt to study the importance of T-wave feature selection for T-wave 

alternans (TWA) analysis, we compared the alternans in two vectorcardiographic 

variables: maximal T-loop vector (MaxT) and the T-loop vector integral (Ti).

Methods
We analyzed TWA in the 72 standard 12-lead ECGs comprised in the Physionet TWA 

Challenge Database with our research ECG/VCG processing program LEADS. We 

computed TWA by taking the absolute differences of the even and odd averaged 

beat values of Ti and MaxT (MaxT-TWA and Ti-TWA); also percentual alternans 

(%MaxT-TWA and %Ti-TWA) was computed. Finally, we computed both the Pearson 

and Kendall tau-b correlation coefficients between the MaxT-TWA and Ti-TWA, and 

between %MaxT-TWA and %Ti-TWA.

Results
All correlation coefficients differed significantly (P<0.01) from zero, but were 

relatively low (R=0.333-0.663).

Conclusion
We conclude that T-wave features contain only in part common information; the 

selection of the T-wave feature in which TWA is computed deserves more atten-

tion.
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Introduction
Since the first report of (visible) T-wave alternans (TWA) by Hering in 19081, this 

phenomenon was observed in various patient populations2-5. It became appar-

ent that visible TWA was a harbinger of serious arrhythmias2. Adam et al. found 

that invisible microvolt TWA in patients was related to visible TWA, and thus a 

promising tool for identifying high risk patients for ventricular arrhythmias6. 

Subsequently, multiple clinical/experimental studies confirmed the relevance of 

microvolt TWA as a marker of vulnerability to ventricular arrhythmias6-12.

The electrocardiographic phenomenon of TWA is caused by alternans in cellular 

repolarization properties, where lower alternans amplitudes may be caused by 

generalized fluctuations in the heart, while larger alternans amplitudes are pos-

sibly caused by increased and alternating contrasts in regional (e.g., apical-basal) 

repolarization properties13.

In developing microvolt TWA analysis algorithms, much attention has been spent 

to the methods needed to reliably extract the every-other-beat alternation in the 

selected T-wave feature amidst fluctuations with other periodicity and amidst 

noise. Amongst others, spectral methods, complex demodulation, correlation, 

Karhunen-Loève transform, Capon filtering, periodicity transform, statistical tests, 

moving average, and Laplacian Likelihood Ratio methods are used14.

Relatively less research was done to the T-wave feature in which the alternans 

should be measured. In most studies, the utilized T-wave feature (e.g., normalized 

aggregated TWA energy per sample15, (un)normalized aggregated T-wave ampli-

tude difference per sample11;16, the T-wave area alternans per 10 ms bin17, and the 

maximal absolute difference within the ST-T region18) is presented without explicit 

motivation. Such motivation could be found in the linkage of the T-wave feature to 

the underlying repolarization alternans phenomenon at the cellular level.

We hypothesized that the selection of a T-wave feature is essential for the relative 

position of a given subject when ECGs of a group of persons are ranked according 

to their TWA magnitude. When this view is correct, the selected T-wave feature is 

essential for the value of TWA analysis for individual risk assessment. To address 

our hypothesis, we compared the alternans in the T-loop vector integral and in 

the maximal T-loop vector magnitude. Computer simulations and animal studies 
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have shown that these vectorcardiographic variables are indexes for repolarization 

heterogeneity19;20.

Methods

Study population
We analyzed the 72 standard 12-lead ECGs in the PhysioNet/Computers in Cardiol-

ogy Challenge 2008 database (the remaining 28 recordings had 2 or 3 unspecified 

leads only, which rendered them unsuitable for vectorcardiographic analysis). 

The 72 ECGs recordings were sampled at 500 Hz and had a 16 bit resolution over 

a ± 32 mV range. The ECGs were recorded from patients with transient ischemia, 

ventricular tachyarrhythmias, myocardial infarctions, and other risk factors for sud-

den cardiac death, as well as in healthy controls. Also, synthetic cases were added 

with calibrated amounts of T-wave alternans. Whether or not the ECG was real or 

synthesized and what was the individual diagnosis was blinded. Each record was 

approximately two minutes in duration.

ECG processing
We analyzed the first 30 seconds of each ECG recordings with our research ECG/

VCG processing program LEADS (Leiden ECG Analysis & Decomposition Software) 

[21]. Based on morphology comparison, interval criteria and noise estimation 

techniques, LEADS makes a selection of beats for subsequent averaging, rejecting 

beats of ectopic origin and rejecting noise beats. For the purpose of TWA analysis, 

LEADS processed all recordings twice (first the odd beats and then the even beats 

in the selection, see Figures 1 and 2).

After averaging, LEADS synthesizes, from the averaged beat (Figure 2), a vector-

cardiogram (VCG, Figures 3 and 4) by applying the inverse Dower matrix22. LEADS 

computes multiple variables in the averaged beat, among which are the T-loop 

vector integral (Ti, in mV·ms) and the maximal T-loop vector magnitude (MaxT, in 

µV). For each ECG, the absolute differences between the “odd” and “even” values 

of Ti and of MaxT were taken as Ti-TWA and as MaxT-TWA, respectively. We also 

computed the percentual alternans, %Ti-TWA and %MaxT-TWA, by dividing Ti-TWA 
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and MaxT-TWA by the average of the T-loop vector integral, and by the average of 

the maximal T-loop vector of the even and odd beats, respectively.

Statistics
Statistical analysis was done with the Statistical Package for the Social Sciences 

Program (SPSS version 14.0, Chicago, Illinois). Data were expressed as mean ± SD 

and range. Both Pearson and Kendall tau-b correlation coefficients were computed 

between Ti-TWA and MaxT-TWA and between %Ti-TWA and %MaxT-TWA. P-values 

<0.05 were considered significant.
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Figure 1. Beat selection (subject #34). 
Here, even beats are selected (green) 
and odd beats are rejected (red) for 
subsequent averaging.
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Results
All 72 ECGs were successfully processed by LEADS. The descriptive statistics of 

MaxT-TWA, Ti-TWA, %MaxT-TWA and %Ti-TWA are given in Table 1. Pearson’s 

correlation coefficients between MaxT-TWA and Ti-TWA (Figure 5) and between 

%MaxT-TWA and %Ti-TWA (Figure 6) were 0.634 and 0.663, respectively. Both 

correlations differed significantly (P<0.01) from zero.

The Kendall tau-b correlation coefficients between MaxT-TWA and Ti-TWA and 

between %MaxT-TWA and %Ti-TWA were 0.333 and 0.422, respectively. Both 

correlations differed significantly (P<0.01) from zero.
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Table 1. Descriptive statistics of the TWA variables.

Variable Mean SD Min Max

MaxT-TWA (µV) 14.73 17.94 0.07 80.25

Ti-TWA (mV·ms) 1.95 2.77 0.04 16.26

%MaxT-TWA 2.08 2.48 0.01 10.36

%Ti-TWA 2.77 3.59 0.11 14.66
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Figure 5. Scatterplot of Ti-TWA 
and MaxT-TWA. Continuous 
and dashed lines: linear least-
squares regression line with 95% 
confidence intervals. R= Pearson’s 
correlation coefficient.
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legend of Figure 4.
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Discussion
In our study, we demonstrated that two T-wave features related to heterogeneity 

of the repolarization, yield TWA results that are significantly linearly related. 

However, the correlation coefficients are relatively low: only less than half of the 

variance in one variable can be explained by the other variable.

It can be seen in Figures 5 and 6 that a relatively large part of the subjects in this 

database has TWA values that are small and not too much different from each 

other. This means that the ranking order in this population will be extremely 

sensitive for small measurement errors. This explains why the Kendall tau-b cor-

relation coefficients are much lower than the Pearson correlation coefficients. It is, 

therefore, possibly not reasonable to draw conclusions as to differences in ranking 

in this study population.

It appears from our data that even when the linear correlation coefficients are 

taken, the correlations between MaxT-TWA and Ti-TWA and between %MaxT-TWA 

and %Ti-TWA are significant, but relatively low, and less than half of the variability 

in one variable is explained by the variability in the other variable. Obviously, these 

variables yield strongly different TWA assessments, and this must have consider-

able impact on the predictive value of these variables in a clinical population at 

risk. Either the statistical performance of one variable will be much lower than the 

other, or the variables may have comparable performance but identify another 

type of high-risk patient. As our data show, TWA normalization (computation of 

percentual TWA) does not help to resolve this issue.

Conclusion
In conclusion, T-wave features contain only in part common information; the selec-

tion of the T-wave feature in which TWA is computed deserves more attention.
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