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Abstract

Purpose Quantification of osteolysis is crucial for monitoring treatment effects in
preclinical research and should be based on µCT data rather than conventional two
dimensional radiographs to obtain optimal accuracy. However, data assessment is
greatly complicated in the case of three dimensional data. This paper presents an
automated method to follow osteolytic lesions quantitatively and visually over time
in whole-body µCT data of mice.
Procedures This novel approach is based on a previously published approach to
coarsely locate user-defined structures of interest in the data and present them in
a standardized manner (Baiker et al., Med Image Anal 14:723–737, 2010; Kok et
al., IEEE Trand Vis Comput Graph 16:1396–1404, 2010). Here, we extend this
framework by presenting a highly accurate way to automatically measure the volumes
of individual bones and demonstrate the technique by following the effect of osteolysis
in the tibia of a mouse over time. Besides presenting quantitative results, we also
give a visualization of the measured volume to be able to investigate the performance
of the method qualitatively. In addition, we describe an approach to measure and
visualize cortical bone thickness, which allows assessing local effects of osteolysis and
bone remodeling. The presented techniques are fully automated and therefore allow
obtaining objective results, which are independent of human observer performance
variations. In addition, the time typically required to analyze whole-body data is
greatly reduced.
Results Evaluation of the approaches was performed using µCT follow-up datasets
of 15 mice (n = 15), with induced bone metastases in the right tibia. All animals were
scanned three times: at baseline, after 3 and 7 weeks. For each dataset, our method
was used to locate the tibia and measure the bone volume. To assess the performance
of the automated method, bone volume measurements were also done by two human
experts. A quantitative comparison of the results of the automated method with
the human observers showed that there is a high correlation between the observers
(r = 0.9996), between the first observer and the presented method (r = 0.9939),
and also between the second observer and the presented method (r = 0.9937). In
addition, Bland-Altman plots revealed excellent agreement between the observers
and the automated method (inter-observer bone volume variability, 0.59 ± 0.64%;
Obs1 vs. Auto, 0.26±2.53% and Obs2 vs. Auto, −0.33±2.61%). Statistical analysis
yielded no significant difference (p = 0.10) between the manual and the automated
bone measurements and thus the method yields optimum results. This could also be
confirmed visually, based on the graphical representations of the bone volumes. The
performance of the bone thickness measurements was assessed qualitatively.
Conclusions We come to the conclusion that the presented method allows to mea-
sure and visualize local bone volume and thickness in longitudinal data in an accurate
and robust manner, proving that the automated tool is a fast and user friendly al-
ternative to manual analysis.
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Introduction

Breast cancer metastasizes preferentially to bone. Post mortem evaluation revealed
that 70% of patients who died of breast cancer had bone metastases present in the
skeleton.1 Bone metastases cause severe morbidity in living patients such as bone
pain, fracture, hypercalcemia, and nerve compression.2,3 As a result, quantification
of osteolytic lesion size is pivotal in preclinical research of metastatic bone disease and
treatment evaluation in small animal models. Osteolysis is currently quantified using
two dimensional (2D) radiographs.4,5 The scoring of these radiographs is performed
manually by drawing a region of interest (ROI) around the lesion and measuring
the bone area. The problem with this procedure is that lesions may be projected
on top of each other and will therefore be underestimated when quantified, due to
the flattening of the three dimensional (3D) structure.6 The same may happen for
lesions on the side of bone. Furthermore, performing the analysis manually is prone to
observer bias. µCT datasets provide spatial information, suitable for measurements
of various bone parameters such as bone volume, bone thickness, and bone mineral
density. These measurements are potentially more informative than the radiographic
analyses. Also, µCT enables the researcher to study the overall bone structure.

The use of µCT for quantitative measurements is not without difficulties. The
shape and position of a volume of interest (VOI, the 3D counterpart of a ROI in
2D) in a 3D dataset greatly influence the measurement results. Therefore, it is
crucial that the selection of a VOI is reproducible and not affected by the scan
orientation or the observer who performs the procedure. We previously published
a manual approach for the normalized selection of a region of interest in complex
shapes (Chapter 2).6 This manual approach provides good and reproducible results
but is very time-consuming and requires well trained observers.

The comparison of whole-body datasets from longitudinal studies is even more
difficult. Variation in posture of the animal during scans taken at different scan dates
makes it nearly impossible to spot subtle disease induced differences between scans.7

We previously published an approach to automatically align the skeletons of an-
imals that were scanned at different points in time. The method can handle large
postural differences between animals and as a result, specifically designed holders
that are sometimes used to coarsely align animals8 are not required. In addition,
the user can select individual bones and generate side-by-side visualizations of these
bones from multiple longitudinal datasets (Figure 3.1). Such normalized visual-
izations greatly facilitate detailed qualitative assessment of structures in multiple
complex and large datasets.9

Here we describe an addition to this method, which enables the user to perform
automated quantitative measurements of bone volume and thickness alongside the
visual output. For evaluation, we applied the method to segment the femur and
the tibia / fibula in whole-body follow-up µCT datasets and measured the bone vol-
ume and cortical thickness at three points in time: baseline, 3 and 7 weeks. To test
whether this approach could be used to quantify biologically relevant changes in bone
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Figure 3.1: An overview of our previously published approach to coarsely locate user-defined
structures of interest in follow-up whole-body data7 and present them in a stan-
dardized manner.9 (a) The skeleton of an atlas is registered (aligned) to µCT data ac-
quired at N time points T0 . . . TN . (b) An example of the registration result for one dataset.
(c) Based on the registration result, we can determine volumes of interest (VOIs) around
individual bones. The VOIs are shown as yellow boxes. (d) Based on the VOIs, the data
can be put in a standardized layout using Articulated Planar Reformation (APR).9 (e) The
advantage of the standardized layout is, is that the same structures in datasets from different
time points (T0 . . . TN) can be visualized side-by-side, greatly facilitating data comparison.
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volume, breast cancer cells were injected into the right tibia after the baseline scan.
The left tibia remained untreated and served as a reference. The results of the auto-
mated measurements are compared with manual measurements of two experts. We
show that the automated segmentation and volume measurements perform equally
accurate and reproducible as manual segmentation and volume measurements.

In summary, the goals of this work are to:

• Automate the task of measuring the volume of a user-defined bone in whole-
body in vivo µCT data and demonstrate the method by measuring the bone
volume of the proximal tibia / fibula at several points in time

• Compare the automated measurements with two human observers and show
that the results are not significantly different

• Present a way to assess the measurement quality visually, by providing proper
visualization

• Present a method to assess effects of osteolysis and bone remodeling locally
(site-specific bone loss or gain) by automatically measuring and visualizing
cortical bone thickness

Materials & methods

Animals

Fifteen (n = 15) female nude mice (BALB/c nu/nu, 6 weeks old) were acquired from
Charles River (Charles River, L’Arbresle, France), housed in individually ventilated
cages, food and water were provided ad libitum. Surgical procedures and µCT imag-
ing were performed under injection anesthesia (100mg/kg ketamine + 12.5mg/kg
xylazine). Animals were sacrificed by cervical dislocation at the end of the experi-
mental period. Animal experiments were approved by the local committee for animal
health, ethics and research of Leiden University Medical Center.

Cell lines & culture conditions

The cell line MDA-231-B/Luc+ (hereafter MDA-BO2), a bone-seeking and luciferase-
expressing subclone from the human breast cancer MDA-MB-231,10,11 was cultured
in DMEM (Invitrogen, Carlsbad, CA, USA) containing 4.5g glucose/l supplemented
with 10% fetal calf serum (FCS) (Lonza, Basel, Switzerland), 100 units/ml penicillin,
50µg/ml streptomycin (Invitrogen), and 800µg/ml geneticin/G418 (Invitrogen). The
cells were monthly checked for mycoplasma infection by PCR. The cells were donated
by G. van der Pluijm (Leiden University Medical Center, Leiden, The Netherlands).
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Experimental setup

MDA-BO2 cells were injected into the right tibiae as described previously.11 In brief,
two holes were drilled through the bone cortex of the right tibia with a 25-gauge
needle (25G 5/8, BD MicroFine, Becton Dickinson, Franklin Lakes, NJ, USA) and
bone marrow was flushed out. Subsequently, 250,000 MDA-BO2 cells per 10 µl PBS
were injected into the right tibiae of the animals. µCT scans were made before the
tumor cell inoculation (T0) in supine position, 3 weeks after tumor cell inoculation
(T1) in prone position, and 7 weeks after tumor cell inoculation (T2) in supine
position. The animals were scanned with arbitrary limb position.

µCT data acquisition

µCT scans were made using a SkyScan 1076 µCT scanner (SkyScan, Kontich, Bel-
gium) using a source voltage and current set to 50kV and 200µA, respectively, with
an X-ray source rotation step size of 1.5◦ over a trajectory of 180◦. Reconstructions
were made using the nRecon V1.6.2.0 software (SkyScan) with a beam hardening
correction set to 10%, a ring artifact correction set to 10, and the dynamic range set
to −1, 000− 4, 000 Hounsfield units. The datasets were reconstructed with voxel size
36.5 × 36.5 × 36.5µm3. Neither cardiac nor respiratory gating was used.

Manual segmentation of the tibia / fibula

To assess the performance of the automated tibia volume measurements, two field
experts were asked to segment the proximal part of the right tibia. To be able to
use the data at full resolution, this was not based on the whole-body dataset but on
a sub-volume, corresponding to the right tibia, which was automatically determined
following the procedure in Figure 3.1. An example of such a sub-volume is shown
in Figure 3.2. Starting with this sub-volume, the experts were asked to segment the
proximal part of the tibia / fibula, i.e., the part between the knee and the location
where tibia and fibula separate. The manual segmentation was performed using a
tool that was developed in-house with MeVisLab V1.6 (MeVis Medical Solutions AG,
Bremen, Germany) as described in Chapter 2.6

After segmentation, the number of bone voxels was determined using a threshold
value to separate bone from background. To determine the optimum threshold for
the in vivo datasets, the tibia of one of the animals was scanned ex vivo with high
resolution (9.125 × 9.125 × 9.125µm3) after the follow-up experiment. Subsequently,
the tibial bone volume was measured. To find the optimum threshold, for segmen-
tation of bone from the background in the low-resolution data, the threshold was
set such that the volume of the tibia of the same mouse in the low resolution data
was the same as the volume of the tibia in the high resolution data. This thresh-
old was kept constant for segmentation of all datasets. The result was a volume
dataset with the same size as the initial sub-volume with voxels labeled as relevant
bone, i.e., the proximal tibia / fibula, and background (including irrelevant bone).
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Figure 3.2: Example of an automatically determined sub-volume, including the right tibia.
The bone surface is shown together with the corresponding sub-volume.

Therefore, the bone volume of the proximal tibia / fibula could be determined by
multiplying the total amount of bone voxels with the voxel volume, i.e., in our case
amount of voxels × (36.5 × 36.5 × 36.5)µm3. To be able to assess the quality of
the segmentation visually, we provided a surface representation of the manually seg-
mented sub-volume. The tibia / fibula bone volume served as the reference for the
automated method presented in the next subchapter.

Automated segmentation of the tibia / fibula

An automated method should yield results that are as similar as possible to the re-
sults a human observer would obtain. Therefore, it should be designed such that it
mimics the manual procedure as much as possible. Just as for the manual segmenta-
tion, presented in the previous subchapter, the automated segmentation was based
on a sub-volume as shown in Figure 3.2 and the goal was to segment the proximal
part of the tibia / fibula. First, a center-line was determined that runs through the
center of the femur, the knee and the center of the tibia, based on the registration of
the skeleton atlas to the µCT data. To this end, we defined 21 bone center locations
(10 in the femur, 11 in the tibia) in the atlas. Subsequently, if the atlas bones are
registered to the data (Figure 3.1b), these atlas bone center locations are approxi-
mately in the bone centers of the femur and the tibia in the µCT data (the bone
center locations do only have to be defined once for the atlas). Subsequently, a bone
center-line was derived using cubic B-spline fitting through the bone centers. Next,
the volume was segmented into bone and background using global thresholding with
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Figure 3.3: Demonstration of how the bone thickness D is determined automatically if osteo-
lytic lesions are present. The slices from the µCT sub-volume that are orthogonal to
the center-line, with an overlay of the voxels labeled “bone” (blue net), are shown. Along
the bone center-line (orange stars), grey-value profiles are taken in axial direction at evenly
spaced locations along the center-line. The location close to the knee (left) and the locations
halfway between the knee and the tibia / fibula separation (middle) and close to the tibia
/ fibula separation (right) are shown. Points on the inner boundaries are indicated by red
stars, corresponding points on the outer boundaries by green stars. The black arrows indicate
the directions, along which the grey value profiles for the bone thickness measurement are
derived. An example of a profile path is shown in red (middle). The inset shows an example
of a grey-value profile in blue and its gradient values in green (dx symbolizes a mathematical
derivation). The bone boundaries can be found where the gradients are maximum (red stars
in the inset) and the bone thickness D is the distance between the boundaries.

the same threshold as was used for the manual segmentation (see previous subsec-
tion). Following the bone center-line from the knee towards the distal part of the
tibia, the separation of the tibia and the fibula was determined using a hierarchi-
cal clustering technique with single linkage12 that determined the number of bone
clusters at regular spaced locations along the center-line. The Euclidean distance
between points was chosen as the dissimilarity measure. The transition from two
clusters (tibia and fibula) to one cluster identified the location of bone separation.
Figure 3.3 (right) shows a slice, perpendicular to the center-line, which is close to
this point (tibia = large spot, fibula = small spot).

Separation of the tibia / fibula from the femur was done in a slightly different
way as compared with the manual procedure because it is very difficult to automat-
ically determine a flat separation plane within the knee. Therefore, we chose to rely
on a classifier that automatically separates all voxels labeled as “bone” (i.e., after
thresholding) into the two classes “femur” and “tibia / fibula”. The classifier was
trained using volumetric (tetrahedral) meshes of the femur and tibia atlas after reg-
istration (Figure 3.1b). Each node location of the meshes was weighted with a 3D
Gaussian probability density function with width h (Parzen kernel density estima-
tion12). Subsequently, all individual probability densities were summed up, yielding
a bone-dependent posterior probability density value within the entire data volume.



Automated VOI Selection and Volume Measurements 49

A voxel labeled as “bone” can thus be identified as “femur” or “tibia / fibula”, de-
pending on its location in the volume, depending on which of the two classes has the
highest posterior probability at that location. The parameter h was optimized using
a leave-one-out test, based on the available datasets. Finally, the bone volume of
the proximal tibia / fibula could be derived by counting the bone voxels classified as
“tibia / fibula” along the center-line, up to the tibia / fibula separation determined
before and multiplying the total amount of bone voxels with the voxel volume. To
assess the quality of the automated segmentation visually, we provided a surface
representation of the result.

Automated segmentation of the femur

As a proof of concept that the automated segmentation method can be applied to
other skeletal elements besides the tibia as well, we demonstrate an automated seg-
mentation of the femur. The femur is connected proximally to the pelvis and distally
to the tibia. Following the procedure given in the “Automated Segmentation of the
tibia / fibula” section, the tibia was separated from the femur in a first step. Second,
volumetric meshes of the atlas femur and the atlas pelvis after skeleton registration
were used to derive a 3D posterior probability density function for these bones and
to determine the separation of pelvis and femur, following the same procedure as
described in the “Automated Segmentation of the tibia / fibula” section. The kernel
width h was identical to the one used for the separation of the tibia and the femur.
To assess the reproducibility of the volume measurements, the volume of the left
femur of three animals was measured at all points in time and compared with the
volume of the right femur over time. In addition, the bones were segmented manually
to assess measurement accuracy. To ensure that the influence of the induced cancer
cells had a minimal effect on the femur bone volume, we chose three animals where
osteolysis had only slightly progressed over time.

Automated bone thickness measurements and visualization

Accurate knowledge of local bone thickness enables to follow the progress of osteolysis
and bone remodeling over time. Therefore, a method is required to measure bone
thickness in 3D and to relate the measurement to the exact location on the bone.
Above that, the method should be able to handle severe structural changes over time,
induced by osteolysis.

There are mainly two approaches described in the literature to assess bone thick-
ness in volumetric data: volume-based methods and surface (feature)-based meth-
ods.13 These are focusing mainly on measuring trabecular bone and the approaches
generally take the entire image domain into account. The advantage is that struc-
tures with very different shape can be analyzed. Although the approaches could be
used for measuring cortical bone as well, the tube-like shape of long-bones enables
another approach. Since the registration of the skeleton atlas to the data yields a
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coarse segmentation of the skeleton, we can map a bone center-line, defined in the
atlas femur and tibia, to the femur and tibia in the data. Subsequently, we can
employ a technique similar to that presented in Van der Geest et al.,14 where the
authors measure the diameter and wall thickness of blood vessels in magnetic reso-
nance angiography and computed tomography angiography, based on slices that are
orthogonal to the vessel center-line. The great advantage of relying on a center-line
is that it is possible to determine exactly at which locations along the center-line the
thickness should be measured. The main difference between analyzing vessels and
potentially osteolytic bone is that vessels are continuous structures while bone can
be highly fractured and contain holes.

The methods for trabecular thickness measurement generally take the entire im-
age domain into account, which can be very time-consuming especially for large
volumes or surfaces with a great amount of vertices. The proposed approach enables
to greatly reduce computational burden. Above that, being able to define the thick-
ness measurement based on a center-line allows to sample certain areas more densely
than others, yielding more accurate measurements.

To determine the cortical bone thickness of the tibia automatically, we relied on
the bone center-line presented in the previous section and the sub-volume according to
Figure 3.2. At regularly spaced locations, following the center-line in distal direction,
grey-value profiles were extracted in axial direction, starting from the center-line and
progressing outwards. In total, 360 profiles were taken per location, with 1◦ angle
difference between them, thus covering an entire circle, oriented orthogonal to the
center-line. Since the center-line lies in an area with low intensity (bone marrow), the
grey-value profile will consist of low values at the beginning, high values, when the
bone is crossed and again low values outside the bone (muscle tissue). An example
of such a profile is given in Figure 3.3 (middle). Subsequently, the inner boundary of
the bone can be determined, using the highest positive gradient of the profile. Doing
this for all 360 profiles yielded 360 points that are located at the inner boundary of
the bone. However, since the center-line may not always lie exactly in the center
these points are usually not evenly distributed along the boundary. Therefore, we
applied an additional resampling step so that the points had a minimum distance
of one voxel. Examples of resulting inner boundaries are shown in Figure 3.3 (red
stars). Next, again grey-value profiles were taken, but this time orthogonal to the
inner boundary of the bone, starting inside the bone and progressing outwards. An
example path of such a profile is shown as a red line in Figure 3.3 (middle). Finally,
the bone thickness D could be determined using the highest positive and the highest
negative gradient of the profile, demarcating the inner and the outer boundary of the
bone. This is demonstrated in the inset in Figure 3.3 (middle). Hence, our definition
of bone thickness is the distance from the inner boundary to the outer boundary of
the cortex, orthogonal to the inner boundary.

The bone thickness measurements can be uniquely related to the location on the
bone, where they were derived. To be able to assess the bone thickness locally and
still have the anatomical context information available, we present a visualization
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that is based on a surface representation of all bone in the sub-volume (Figure 3.2).
To each location on the bone surface, we linked the corresponding bone thickness
and assigned a value-dependent color. The result is a surface representation of the
bone, on which the color indicates the bone thickness.

The automated segmentations and bone thickness measurements and visualiza-
tions were performed using Matlab 2010b (The Mathworks, Natick, USA).

Quantitative analysis of measurement results

To assess how similar the results of the automated method and the human experts
are, Bland-Altman15 plots as well as Pearson’s correlation coefficients are presented.
To investigate in detail the influence of the time point (i.e., baseline, first, and second
follow-up), the bone (i.e., healthy and pathologic), and the observer (i.e., automated,
observer 1, and observer 2) on the bone volume measurement, we performed a statis-
tical analysis using a three-way repeated measures analysis of variance (ANOVA),16

with the bone volume as the dependent variable and observers, bone (i.e., healthy
and pathologic), and time point as the independent variables (3 × 2 × 3 levels). A
repeated measure design requires the variances of the differences between levels to
be equal. Therefore, Mauchly’s sphericity test should be non-significant if we are
to assume that the condition of sphericity has been met. If the results of the test
indicated that the assumption of sphericity was violated, the degrees of freedom were
corrected using Greenhouse-Geisser estimates of sphericity.16 To identify significant
differences between group means for main and interaction effects, a Tukey honest
significant difference (HSD) post hoc test was used. Effects were considered to be
significant if p < 0.05. The statistical analysis was performed using Statistica 8.0
(StatSoft, Tulsa, USA).

Results

To be able to assess the accuracy of a manual and an automated segmentation of the
proximal tibia / fibula, surface visualizations are generated after the measurements.
Examples are shown in Figure 3.4.

The results of the correlation tests are shown in the top row of Figure 3.5 and the
measurement agreements are presented in the bottom row of Figure 3.5. To assess
possible influence of the time point on the agreement, the data are shown for each
time point individually (see legends).

Mauchly’s test indicated a violation of the sphericity assumption and therefore
degrees of freedom were corrected using Greenhouse-Geisser estimates of sphericity
(see Table 3.1). The results show that there are significant differences in measured
bone volume for the main effect Time, F (1.39, 16.73) = 28.80 (p < 0.001), as well
as the interaction effects Method × Time, F (1.63, 19.59) = 16.71, (p < 0.001), and
Bone × Time, F (1.08, 12.93) = 12.75 (p < 0.05). The Tukey HSD post hoc tests
revealed a significant difference in bone volume between T0 and T1 (p < 0.001) as
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Figure 3.4: Manual and automated segmentation. Bone surface visualization after manual seg-
mentation of the proximal tibia / fibula (left). Bone surface visualization after automated
segmentation of the proximal tibia / fibula (right; blue femur, red proximal tibia / fibula,
green distal tibia / fibula). The circles highlight differences between the segmentations.
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Figure 3.5: Correlation and agreement between human observers and the automated method.
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tomated method (top row). Obs1 vs. Obs2, Auto vs. Obs2 and Auto vs. Obs1 are shown.
The blue line represents a linear best fit, defined by the function in the legend. The Pearson
correlation r, based on the data (red), is also shown in the legend. Bland-Altman plots rep-
resenting the measurement agreement between the two human observers and the automated
method (bottom row). The black lines indicate the grand means (line) ± 1.96 times the
standard deviation (broken line), which are 0.06 ± 0.12, 0.03 ± 0.43 and −0.03 ± 0.44mm3,
respectively. The arrows indicate the measurement with maximum disagreement between
the observers. To assess, if the agreement is dependent on the time point when the data was
acquired, these are shown in different colors (red circles baseline or T0, black diamonds T1,
blue stars T2). Note that the values in the legends are the means ±1 times the standard
deviation.
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well as T0 and T2 (p < 0.001). There was no significant difference between T1 and
T2 (p > 0.05).

For the Bone × Time interaction effect (Figure 3.6, top left), relevant significant
effects were present for healthy vs. pathologic bone at T2 (p < 0.001), but not at
T0 and T1 (both p > 0.05). For the Method × Time interaction effect (Figure
3.6, top right), relevant significant effects were present for Obs1 vs. Auto and Obs2
vs. Auto at T0 (p < 0.05 and p < 0.001) but not for Obs1 vs. Obs2 at T0 (p > 0.05).
Furthermore there were significant effects for Obs1 vs. Auto and Obs2 vs. Auto at
T2 (p < 0.001 and p < 0.05) but not for Obs1 vs. Obs2 at T2 (p > 0.05). There were
no significant effects at T1.

The results of the comparison of the difference in bone volume between healthy
and pathologic bone for six different mice are given in Figure 3.6 (middle and bottom
rows).

The results of the femur segmentation and subsequent volume measurements
are shown in Figure 3.7. The average volume of the right and the left femur was
0.89 ± 0.64% when measured manually and 0.83 ± 0.53% when measured automati-
cally. To see if there is a significant difference between the human observer and the
automated method, a similar statistical analysis as presented in the “Quantitative
Analysis of Measurement Results” section was performed, this time including one hu-
man observer instead of two. Mauchly’s test indicated no violation of the sphericity
assumption (p > 0.05). The results show that the main effect method is significant
F (1, 2) = 92.894, p < 0.05, and the mean difference between the automated and the
manual method is 2.15 ± 0.75%. This means that the automated method results in
lower measured volumes than the manual method.

A comparison of the development of the bone thickness over time for a healthy
and a pathologic bone are given in Figure 4.4 by means of bone surface visualizations,
where color indicates the bone thickness.

Discussion

In this article, we described a fully automated approach to analyze skeletal changes
in rodent whole-body µCT scans. The automated approach is capable to (1) align
scans of the same animal, taken at different time points; (2) automatically segment a
sub-volume (VOI) in these scans; (3) measure the bone volume; (4) measure cortical
thickness; and (5) visualize it by means of assigning thickness-dependent colors. In
addition, the user can visually check the segmentation performance using 3D bone
surface representations and can generate normalized sections of identical sectioning
planes in longitudinal scans for side-by-side comparison.

Conventional analysis of radiographs involves identifying osteolytic lesions man-
ually. The procedure of manually drawing a region of interest is prone to observer
bias and small changes in thickness or multiple lesions projected on top of each other
are easily overlooked.6 Manual analysis of µCT data is a better alternative, but is
very labor intensive (Chapter 2).6
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Figure 3.6: Mean volumes of the tibia. Mean bone volume (mm3) over time for the pathologic
(Path) and the healthy (Heal) bones, respectively (top row), Bone × Time interaction (left)
and bone volume over time for the two human observers (Obs1, Obs2) and the automated
method (Auto), Observer × Time interaction (right). The results are based on including
all mice. Error bars indicate 95% confidence intervals. Mean bone volume (mm3) and the
standard deviation of the healthy (Heal) and pathologic (Path) bones for six different mice
(a–f) over time, averaging the measurements of the automated method and the two human
observers (middle and bottom rows).
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Figure 3.8: Bone thickness maps. Comparison of the bone thickness development over time for a
healthy and a pathologic bone. Bone surface representations are shown. The colors indicate
the bone thickness at each location on the bone. The bone marrow was partially flushed
out of the bone during the intra-osseous inoculation used to induce bone metastases. This
partial bone marrow ablation leads to a local increase in bone volume preceding cancer-
induced osteolysis.6 The arrow indicates this local increase in bone thickness around the
site of early osteolysis. Note that the measurements at the distal end of the femur and the
proximal end of the tibia are not meaningful because at these locations, a substantial amount
of trabecular bone is present. However, bone thickness measurements are only meaningful
for cortical bone.
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An automated method for µCT analysis has several advantages over manual anal-
ysis. The risk of non-objectivity and inter-observer variability is greatly reduced by
minimizing the active manual input of the researcher. Only an automated approach
can be purely objective and handle every dataset in exactly the same manner. Addi-
tionally, an automated analysis method is much faster than any manual procedure.
Thus, by automating the analysis, a relatively larger number of scans can be evalu-
ated, compared to a human observer

Researchers want to know exactly how quantified data is generated and tend to
dislike automated black-box approaches. To enable the researcher to check every
step along the way, the automated method generates visualizations of the segmented
volume. These visualizations can be evaluated after the analysis is complete. The
automatic segmentation can be overruled manually or some datasets can be excluded
from further analysis. Moreover, the cortical thickness maps enable the researcher to
directly pinpoint where structural changes of the cortical bone occurred. This way,
the cortical thickness maps help identify areas of interest in the original scan data
and in other modalities such as histological sections. The assessment of trabecular
bone is not possible with the proposed method because the relatively low resolution
of the in vivo data (36.5×36.5×36.5µm3) renders measuring the trabecular thickness
accurately very difficult.17

We validated the presented automated method by comparing it to the “best avail-
able” method, namely manual bone segmentation and bone volume measurements.
Therefore, we acquired datasets of 15 mice (n = 15) with induced bone metastases
in the tibia at three points in time. The volume measurement results show that
there is an excellent correlation between the human observers and the automated
method: rObs1Obs2 = 0.9996, rAutoObs2 = 0.9939, and rAutoObs1 = 0.9937. The
Bland-Altman plots (Figure 3.5, bottom row) based on all data indicate excellent
agreement among the two human observers (inter-observer variability) as well as the
observers and the automated method. There is no obvious relation between the dif-
ference and the mean. Residual disagreement can therefore be explained by the bias
and the deviation, which is very low in all cases, namely 0.59± 0.64%, 0.26± 2.53%,
and −0.33 ± 2.61%, respectively. The residual errors are the result of mainly two
factors that may influence the measurement outcome: the registration accuracy, and
subsequently the segmentation accuracy, and the chosen threshold to separate bone
from the background. The registration accuracy has the largest influence on the
result and therefore, improving the accuracy would require a modification of the reg-
istration method. Special attention should be paid to the robustness of potential
methods with respect to bone resorption. The thresholding procedure also influences
the measured volume because both values are inversely related, i.e., if the threshold
value increases, the volume decreases and vice versa. We chose a global threshold
since the resolution of the in vivo data does not allow reliable segmentation of the
trabecular bone17 but methods including local thresholds may be more accurate, if
data resolution increases.

Ideally, the automated measurements are identical to the manual measurements.
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The ANOVA revealed no significant difference between observers (Method, p = 0.10).
This means that the automated method is performing equally well as the two human
observers. However, the low p value indicates that significant interaction effects may
be present. It appears that there is some dependency of the performance of the
automated method on the time point since the automated method is significantly
different from the human observers at T0 and T2. Visual inspection of Figure 3.6 (top
right) suggests overestimation of the volume at T0 and underestimation of the volume
at T2. There is no significant difference at T1. This is supported by the Bland-
Altman plots (Figure 3.5, bottom row) in which the mean difference in measurement
is close to zero at T1. However, these differences are borderline and probably due to
the very small variation between the human observers.

The bone volumes of pathologic bones were significantly decreased compared to
the healthy bones at T2 (Figure 3.6, top left). There are no significant differences at
T0 and T1. There are two explanations why there is no volume decrease at earlier
time points. Firstly, the bone marrow is partially flushed out of the bone during the
intra osseous injection of tumor cells. This partial bone marrow ablation has profound
anabolic effects on local bone turnover. Bone formation induced by bone marrow
ablation reaches a maximum of 1 week after the intervention. After this initial
week, the bone volume normalizes gradually over time as the bone recovers from the
procedure, a process that can take weeks.18,19 Secondly, starting osteolytic lesions
around the tumor create weak areas in the bone. The mechanical stress on other
healthy parts of the bone will increase due to these weak areas. Both the anabolic
effects due to the partial bone marrow ablation and due to the increased mechanical
stress result in a local increase of bone volume alongside osteolytic lesions. Combined,
these anabolic and osteolytic processes influence the volume measurements as can be
seen in Figure 3.6 (middle and bottom rows, a–d and f). The cortical thickness maps
provide an excellent tool to see exactly where the volume changes occur in relation
to the osteolytic lesion site (Figure 4.4).

The presented segmentation method is not restricted to the tibia, but can be ap-
plied to any bone of the skeleton in whole-body µCT scans, as long as it is contained
in the MOBY mouse atlas.7,9,20 We are currently implementing the volume measure-
ments of every segmented skeletal element using the same principle. We segmented
the femur as preliminary proof of concept. Several conclusions can be drawn from
the results in Figure 3.7. The volumes of the right and the left femur are very similar
for the manual and the automated measurement, meaning that measuring the femur
is highly reproducible. The automated method, however, underestimates the volume
compared the manual method. This underestimation is to be expected since the fe-
mur included in the MOBY mouse atlas does not include the femoral head and neck.
Therefore the segmentation result “cuts” the femoral neck approximately in the mid-
dle and the amount of underestimated volume thus corresponds to the volume of the
femoral head and part of the femoral neck. Note that this is a systematic error and
only leads to inaccurate results if the femoral head and neck are of particular interest
within a study. The same type of measurement error may occur for other bones as
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well, since most of the bones in the MOBY atlas are simplified versions of the real
bone shape. However, as is the case for the femur, this should not lead to problems
because the error is systematic. In the cases where higher segmentation accuracies
are required in a particular part of the bone that is simplified, another animal model
with more details could be employed. One should however bear in mind that using
simplified bone shapes has the advantage that the influence of, e.g., differences in
strain or animal size can be minimized by leaving out the fine details.

The increased radiation dose of µCT compared with radiographs has always been
a major concern limiting its use in cancer research. This is not a problem anymore
as modern µCT scanners can perform whole-body scans in less than a minute.21 The
delivered radiation dose during these scans is well below a dose that would affect
tumor growth, even during longitudinal follow-up studies.21–23

All datasets used in this article have been generated with a standard scanning
protocol using the Skyscan 1076 µCT. However, the described methods can be per-
formed on any other whole-body µCT dataset acquired on a different machine and
with a different protocol. Other scans might require an adjustment of threshold
values and the initial scan resolution will always be a limiting factor during further
analysis.

Finally, we want to stress that the described method is general and can be applied
to others species as well. The only prerequisite is that an anatomical skeleton atlas
is available for the animal of interest.

Conclusion

We suggested a new µCT analysis paradigm based on the combined approach of pre-
viously published methods for animal posture correction, normalized visualization
of follow-up data, and the quantification and visualizations discussed in this paper.
Together, this results in a fast and automated workflow, in which the user can easily
compare whole-body µCT scans on the whole-body level, zoom in to the level of a
single bone or bone segment of choice, and gain qualitative and quantitative data
of that segment. The animals can be scanned in any posture. Normalized and in-
teractive side-by-side visualizations of the exact same section of skeletal elements at
different time points can be generated from longitudinal scans in which one animal
is scanned multiple times over time. The detailed side-by-side visualizations greatly
help the researcher to identify changes in the skeleton. The researcher can then iden-
tify and zoom in on the bone or bone segment of interest and automatically generate
quantitative volumetric data alongside visualizations of the segmented volume and
visualizations of the cortical thickness of that specific skeletal element. This new
workflow greatly reduces analysis time, aids the handling of complicated scan data
and improves the overall qualitative and quantitative assessment of µCT scans. The
method was validated by quantification of osteolytic effects over time in the tibia but
can easily be adapted to other bones of the skeleton. In addition, the approach can
be used for other species as well, given that an animal skeleton atlas exists for that
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animal.
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