
Imperfect Fabry-Perot resonators
Klaassen, T.

Citation
Klaassen, T. (2006, November 23). Imperfect Fabry-Perot resonators. Casimir PhD Series.
Retrieved from https://hdl.handle.net/1887/4988
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4988
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4988


CHAPTER 9

Combining a stable and an unstable resonator

We investigate a two-mirror resonator comprising two multi-mode cavities that are in-
trinsically coupled. The key element of this system is a mirror with a combined convex
inner part and a concave shell. Tuning of the cavity length allows us to study the coupling
inside a stable-unstable cavity combination as well as inside a stable-stable combination.
The former configuration is expected to show the onset of chaos.
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9. Combining a stable and an unstable resonator

9.1 Introduction

In this Chapter, we present a preliminary experimental investigation of a novel type of open
optical resonator that may show chaos. Wave chaos has been demonstrated in the microwave
regime in closed billiards in 1990 [91]. In the optical regime, wave chaos is very hard to
obtain with closed resonators since omnidirectional perfectly reflective coatings (as metals
are in the microwave domain) do not exist. Furthermore, such closed resonators would be
hard to access and adjust. On the contrary, a standard open resonator consisting of two high-
reflectivity laser mirrors does not suffer from these problems, but such a configuration does
not normally lead to chaos.

Two requirements have to be fulfilled for chaotic behavior in a resonator, be it closed
or open. First, optical paths in a resonator have to be exponentially sensitive to the initial
conditions and, secondly, the light has to be confined inside the cavity for a sufficiently long
time, to produce mixing. A two-mirror unstable resonator offers the exponential sensitivity,
but the rays escape the cavity after only a few round-trips so that mixing does not occur. A
two-mirror stable resonator can confine the light, but is an imaging systems that does not
possess the exponential sensitivity. To combine the “best of both worlds”, we have designed
the composite mirror shown on the right-hand sides of the two cavities shown in Fig. 9.2,
below. This special composite mirror has a convex center and a concave outer part; it will
also be denoted as a “bifocal” mirror as it contains two radii of curvature and thus two foci.
While the unstable inner cavity provides the exponential sensitivity, the outer cavity collects
the light leaving the unstable cavity and injects it back into the inner cavity, thus fulfilling the
mixing requirement.

Numerical simulations help us to determine the proper configuration which might show
chaos. Wave chaos for our configuration can, however, not be shown numerically, as in prac-
tice the wave equation can only be solved for small systems with a typical dimension a and
wavenumber k, where ka < 150 [92, 93]. The experimental cavity, presented in this Chapter,
corresponds to ka ∼ 8000. Although our experiment deals with waves, the demonstration of
ray chaos is important as ray chaos is a requirement for wave chaos, i.e., when a resonator
does not exhibit ray chaos, wave chaos will not occur either [42]. The presence of ray chaos
in an open optical 2D-resonator has been predicted by Aiello et al. [79] based on calculations
of the Lyapunov exponent. The Lyapunov exponent [94] is a measure for the exponential
sensitivity to the initial conditions; it characterizes the mean rate of exponential divergence
between two nearby orbits. The strip-resonator proposed by Aiello et al., shown in Fig. 9.1,
is a stable symmetrical two-mirror cavity in which a third two-side convex mirror is placed
in the middle. For practical reasons this configuration has been slightly modified; the convex
part has been combined with the concave outer mirror.

The most promising configuration to observe chaos does not only show a high Lyapunov
exponent, but also a sufficient confinement of the rays inside the resonator. To allow suffi-
cient time for chaos to develop, the ray should stay inside the resonator longer than the time
associated with the Lyapunov exponent; τLyapunov < τescape. Numerical simulations of the
2D cavity have been performed [95] for various cavity lengths and radii of curvature of the
bifocal mirror. The most promising configuration, which will be introduced in Section 9.2,
shows that it takes on average 1.5 round-trips [95] to show exponential divergence. The time
a ray stays inside the resonator τescape is determined by the transmission loss due to the finite
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9.1 Introduction

Figure 9.1: Two-mirror cavity in which a third two-side convex mirror is placed in the
middle. The inner mirror in combination with one of the outer mirrors forms an unstable
resonator, whereas the combination of both outer mirrors forms a stable resonator.

reflectivity of the mirrors and the escape or diffraction loss due to the finite transverse dimen-
sions of the mirrors. The former is simply determined by the quality of the mirror coating,
and will be discussed below. The latter is primarily determined by the aspect ratio of the
resonator. Numerical simulations show that a square configuration (L ∼ 2b) minimizes the
escape of rays caused by the open nature of our cavity. Due to the ray character of the sim-
ulations only relative dimensions L/b are important. In contrast, when the wave character of
light is taken into account, the absolute dimensions become important via the Fresnel number
b2/λL, where b is the radius of the mirror, λ the wavelength, and L the cavity length.

The key characteristic of wave chaos is the repulsion between eigenfrequencies. To
demonstrate this experimentally, it is necessary that resonances in the spectrum can be re-
solved, i.e., the spectral width of a resonance should be small as compared to the average
mode spacing, being the free spectral range divided by the number of modes. For confined
modes, the spectral width is expressed by the cavity finesse F = π/(1−R), which is fully
determined by the reflectivity of the mirrors R. The number of “confined” modes in a stable
resonator scales with the cavity dimensions and approximately equals the Fresnel number
NF = b2/λL. The eigenmodes can thus only be resolved when the Fresnel number is smaller
than the finesse, which is realistically about 1000. This means that for a square cavity con-
figuration and λ = 800 nm, the typical dimensions of the cavity should be in the order of
2b ≈ L ≈ 1 mm.

The simulations provide only a simplified picture of reality. First of all, a realistic res-
onator is 3D and not 2D, as is assumed in the numerical simulations. In our experimental
3D-system, for instance, many (corkscrew-like) orbits exist that do not hit the dimple, i.e.,
the convex central part of the bifocal mirror, at all. This means that in 3D the average num-
ber of round-trips needed to develop chaos will increase, as compared to the 2D-simulations.
Furthermore, the experiment deals with waves, whereas interference effects are not taken
into account in the numerical simulation. Therefore, although ray-simulations give us some
insight, only an experiment can be conclusive on the existence of chaos.

To place our experiment in a broader historical perspective, we mention here some other
experiments. One of the first experiments to describe the coupling of two resonators, is the
coupling of two maritime clocks by Christian Huygens in 1662 [96]. He found that two
nearby pendulum clocks swung with exactly the same frequency and 180 degrees out of
phase. When he disturbed one pendulum the anti-phase state was restored within half an

83



9. Combining a stable and an unstable resonator

hour. This simple experiment shows the essence of coupled systems. Examples are also
found in the optical domain, e.g., in ring-laser gyroscopes. In an ideal ring-laser, the two
oppositely travelling waves are supposed to be uncoupled. Rotation of the resonator lets both
waves experience a different path length and consequently different resonance frequency.
This effect is known as the Sagnac-effect. If the intra-cavity light, however, experiences
some backscattering (due to surface roughness and/or Fresnel reflection), coupling of the
oppositely propagating waves is introduced [97] and the standing waves dominate at small
rotation velocities. Also in optical systems with an active medium coupling can play a role.
In dual VCSELs, two monolithic cavities are grown on top of each other and share a common
mirror [98]. The degree of coupling is now determined by the quality of the transmission of
the common mirror. Dual wavelength emission is generally observed.

In the system presented in this Chapter, both cavities are passive. Another difference as
compared to other systems is the instability of the inner cavity. This accounts for the large
coupling strength of both cavities. An uncoupled unstable resonator normally favors the
lowest order modes, which is the least lossy, and operates (effectively) as a “single” mode-
resonator. In our system the unstable resonator is, however, coupled to a stable resonator,
which also supports the higher-order modes in the unstable cavity. Our system is thus a
coupled multi-mode system, which makes it a very rich and intriguing system.

The general structure of this Chapter is as follows. In Section 9.2, the production method
of the mirrors is discussed and both cavity configurations are introduced. A simple ray-
tracing simulation of the cavity configurations, as presented in Section 9.3, pinpoints the
most promising regimes. The experimental setup is discussed in Section 9.4. The rest of the
Chapter is devoted to a study of the minimum requirements needed for chaos to be fulfilled.
Questions that we will address experimentally are:

“Can we couple the inner and outer cavity?”,
“How long does the light stay inside the cavity?”,
“How often is the dimple hit?” and,
“Can the spectral resonances be resolved?”.

These questions are answered on the basis of the two main methods at our disposal; spec-
tral and spatial analysis. In Section 9.5, the experiments based on spectral information are
introduced, while Section 9.6 presents and discusses the spatial intensity distributions on the
mirror. All results are discussed in Section 9.7 and recommendations are made.

9.2 Substrates, mirrors and cavity configurations

The substrate for the composite mirror, with its concave outer part and convex inner part,
can not be manufactured by traditional (polishing) methods. Diamond machining [67] does
offer the possibility to produce such bifocal substrates, though. The substrates for the mir-
rors used in the experiment are made out of calcium fluoride (CaF2). Calcium fluoride is a
crystal widely used for optical substrates, e.g., for lenses in lithography systems, as it has a
high transmission at UV-wavelength, even below 175 nm [70]. The prime advantage of this
material is that it chips very fine during the fabrication procedure so a low surface roughness
(σRMS ∼ 2 nm) can be achieved. Its melting temperature (1630 K) is much higher than the
temperature reached during the high reflectivity coating process (∼ 400 K); this implies that
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9.2 Substrates, mirrors and cavity configurations

the surface figure is maintained. Finally, it is transparent at 800 nm, which is the wavelength
used in our experiment.

Two different pieces have been produced by TNO [31] according to our design; a concave
and a bifocal one. The mirror substrates have been diamond machined with a chisel and the
grooves on the substrate have a period ranging from 10− 25 μm. The concave mirror sub-
strate has radii of curvature R = 14 mm and a nominal mirror radius b = 1 mm (see Fig. 9.2).
The bifocal substrate has a radius of curvature R = 14 and r = −3 mm and a nominal mir-
ror radius b = 1 mm and a = 100 μm, for the outer and inner part, respectively. Inspection
of the composite mirror by an interferometer (WYKO-400) shows that the transition zone
from the inner to the outer part is smaller than 15 μm and that the transition is smooth (step
height< λ/20). We note that the inner and outer part of the composite mirror are automat-
ically aligned and do not show tilt, as spheres always have a radius in common. For easy
handling, the substrates have an outer radius of 3 mm, where the outer part with a radius
r ranging from 1 to 3 mm, is machined conically to prevent this part from scattering light
back into the resonator. Each diamond machined substrate, bifocal and simply concave, is
mounted in a metal ring with an outer radius of 0.5 and 1 inch, respectively. We also possess a
flat CaF2-substrate with a diameter of 1 inch, which is not diamond machined but traditionally
polished. All substrates are coated in the same coating run, with a stack of 12×2 = 24 layers
of alternating Ta2O5 (refractive index 2.04) and SiO2 (refractive index 1.46). The measured
transmission of the mirrors after coating is 8×10−4.

I. II.

R b

a r

L

R

Figure 9.2: Two cavity configurations, with an identical composite mirror on the right-
hand side. The dimensions of the composite mirror are R = 14 mm, r = −3 mm, a =
100 μm, and b=1 mm. The left-hand mirror is either (I) concave with a radius of
curvature R = 14 mm or (II) flat.

Fig. 9.2 shows the two different cavity configurations that we have used; the dimple
mirror in combination with the concave mirror (denoted in this Chapter as configuration I)
and the dimple mirror in combination with the flat mirror (denoted as configuration II). The
(radially) outer part of configuration I forms a resonator which is stable for all cavity lengths
L < 2R = 28 mm. The stability of the inner cavity depends on the cavity length in a more
complicated way and can be found from 0 ≤ g1g2 ≤ 1 [12], where gi = 1−L/Ri. Solving
this equation for configuration I, where R1 = R = 14 mm and R2 = r = −3 mm, we find that
the inner cavity is only stable for 11 < L < 14 mm and thus unstable for L < 11 mm and
L > 14 mm. This configuration has the advantage that we can explore the transition from a
stable to an unstable inner resonator. Furthermore, we note that the magnification (equivalent
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9. Combining a stable and an unstable resonator

to the transverse mode stretching per round-trip) is limited to M = 4.7 for cavity lengths
L < 11 mm (see Tab. 9.1).

When we replace the concave mirror by the flat one, we obtain configuration II which is
equivalent to the geometry discussed by Aiello et al. [79]. It combines an outer part, which is
stable for cavity lengths L < R = 14 mm, and an inner part, which is always unstable. Note
that the magnification is already M = 3 for a cavity length of only L = 1 mm and increases
with the cavity length, as shown in Tab. 9.2.

9.3 Ray-tracing the bifocal resonator
Extensive ray tracing simulations in ref. [95] have shown that ray-chaos is most likely found
for L ∼ 2b. In combination with the extra requirements for wave chaos, this condition be-
comes L ∼ 2b � 1 mm [95]. In this Thesis a much simpler simulation is used to show how
long the ray stays inside the resonator and how often the dimple is hit. The ray-tracing sim-
ulation, based on ABCD-matrix multiplication, calculates the path through the cavity for a
given input position and injection angle on the bifocal mirror. A ray which hits the outer part
of the mirror (R = 14 mm) experiences another ABCD-matrix than a ray that hits the inner
part of the mirror (r = −3 mm).

To be able to perform some statistics, the path through the resonator is calculated for 51
input positions, equally spaced over the dimple (thus ranging from 0 to 100 μm), and 41
different angles (ranging from -0.01 to 0.01 rad) for every input position. These numbers are
close to typical experimental values. The total number of injected rays is thus 2091. The
number of round-trips is limited to 8000 (which would be equivalent to the unrealistically
large cavity finesse F = 2π ×8000 ≈ 50000). From these data we calculate, for both config-
uration I and II, the probability distribution of the number of round-trips before escape from
the resonator and of the number of dimple hits.

9.3.1 Configuration I
An overview of the simulations performed on a cavity I-configuration is shown in Tab. 9.1. It
shows that outside the stable regime of the inner cavity, we hardly find stable orbits, except
for the shorter cavity lengths. Only for very short cavity lengths, e.g., L = 1 mm, most
orbits stay inside the resonator for the maximized number of 8000 round-trips. This is also
shown in more detail in Fig. 9.3a, where a probability distribution shows the number of rays
vs. the number of round-trips before escape. The rays escaping earlier (less than 8000 round-
trips) produce a (roughly) flat probability distribution. For the same cavity length, the average
number of dimple hits is also substantial, 1548 out of 6694. The broad probability distribution
shown in Fig. 9.3b indicates a variety of different orbits.

For L = 12 mm, the inner cavity of configuration I is stable and a ray remains on average
inside the resonator for 4903 round-trips. We have to be careful with this number as rays can
remain in the stable inner cavity without coupling to the outer cavity. Taking a closer look at
the distribution of the number of round-trips a ray remains inside the cavity, we find that 60 %
of the rays stay inside the resonator for all 8000 round-trips and that the other 40 % leave the
cavity only after a few hits. The same division holds for the average number of dimple hits;
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9.3 Ray-tracing the bifocal resonator

L [mm] average # of round-trips average # of dimple hits N M
1 6694 1548 8.3 2.6
2 1571 241 5.8 3.4
6 390 81 3.3 4.6

10 112 30 2.5 2.6
12 4903 4898 2.2 stable
15 80 12 1.9 -3.4

Table 9.1: For six different lengths of a configuration I cavity, we have calculated
both the average number of round-trips per ray before escape and the average number
of dimple hits per ray. A total of 41× 51 = 2091 different rays are traced through
a configuration I-resonator, each over 8000 round-trips or less if the ray escapes at
earlier time. The inner cavity is stable for 11 < L < 14 mm. The numbers N and
M are the degeneracy (= 2π/Gouy phase) and the magnification of the inner cavity,
respectively.

60 % of the rays hit the dimple every round-trip, whereas 40 % hit the dimple only a few
times. This confirms our statement that most rays stay inside the stable inner cavity and that
most other rays are lost. The stable inner cavity will not show chaos as a stable resonator is
not exponentially sensitive to the initial conditions.

# number of dimple hits# of cavity roundtrips

#
o
f
in

je
c
te

d
ra

y
s

0 4000 8000 0 40002000

0

1500 250

0

a. b.

Figure 9.3: Ray-tracing statistics for a configuration I resonator at a length of L =
1 mm with two concave mirrors (R = 14 mm), of which one has a central dimple (r =
−3 mm). The two probability distributions show the number of rays (out of 2091) vs.
(a) the number of round-trips before escaping and (b) the number of dimple hits.

9.3.2 Configuration II

The statistics performed on configuration II is shown in Tab. 9.2. We again find that only
for a very short cavity length a typical ray remains inside the cavity for a long time as well
as a substantial number of dimple hits. Fig. 9.4 shows that for L = 1 mm only a fraction of
the injected rays remain in the cavity for the full 8000 round-trips. Only for shorter cavity
lengths, e.g., L = 0.5 mm, almost all rays remain inside the cavity.
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9. Combining a stable and an unstable resonator

L [mm] average # of round-trips average # of dimple hits N M
0.5 7163 1477 16.5 2.2

1 2946 625 11.6 3.0
2 152 47 8.1 4.4
6 31 13 4.4 9.9

Table 9.2: For four different cavity lengths of configuration II, we calculated both the
average number of round-trips per ray before escape and the number of dimple hits per
ray. A total of 41× 51 = 2091 rays are traced through a configuration II-resonator,
each over 8000 round-trips or less if the ray escapes at earlier time. The numbers N
and M are the degeneracy (=2π/Gouy phase) and the magnifications of the inner cavity,
respectively.
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Figure 9.4: Ray-tracing statistics for a configuration II-resonator at the cavity lengths
L = 1 mm (upper figures) and L = 0.5 mm (lower figures). The probability distributions
show the number of rays (out of 2091) vs. the number of round-trips before escaping
(a) and (c) and vs. the number of dimple hits (b) and (d).
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9.4 The experimental setup
The two mirrors forming the cavity are mounted in stable top-actuated mounts (New Focus
9774 and 9775). A tunable Titanium Sapphire ring laser (Coherent 899-01), which is driven
by a diode-pumped laser (Coherent Verdi) and operates at a wavelength of λ = 800 nm,
is used to inject our cavity. A lens ( f = 10 cm) in front of the cavity mode-matches the
input beam to the lowest-order mode of the cavity. The cavity length is scanned with a
piezo-element to obtain the transmission spectrum. Besides the spectral information also the
intensity profile on the back-mirror is monitored with a CCD-camera behind the cavity.

For accurate tuning of the relative cavity length one mirror is placed on a translation stage
(PI M-521). The absolute cavity length is found by using frequency-degenerate points of the
stable cavity (see Chapter 5). These special points can be recognized easily, both spectrally
and in the intensity profile on the mirror, as follows. At these N-fold frequency-degenerate
points, spectral resonances overlap and form N clumps of modes, each spaced at ΔνFSR/N,
where ΔνFSR is the free spectral range. Furthermore, for off-axis injection at an angle N spots
appear in the intensity profile on the mirror. As every N-fold frequency-degenerate point
belongs to a unique cavity length (for the given radii of curvature of the mirrors), the absolute
cavity length can be determined very accurately, up to a few μm.

9.5 Fabry-Perot spectra

9.5.1 Coupling the inner and outer cavity
Coupling of the inner and the outer cavity is needed to reinject light into the unstable inner
cavity, where chaos can develop. To check if coupling is feasible, we operate a configuration
I-cavity in the transition from a stable to an unstable inner cavity and measure its transmission
spectra. We operate the cavity around a length of L = 14 mm, where both inner and outer
cavity are close to 2-fold frequency-degeneracy (N ∼ 2). The injected beam is mode-matched
to and injected in the fundamental mode of the inner cavity.

We start out with a cavity length slightly shorter than L = 14 mm, where the inner cavity
is thus still dominantly stable. The spectrum at this position, shown in Fig. 9.5a, contains a
small bias and some sharp resonances. The sharp resonances represent stable modes living
in the inner cavity. This is confirmed by the intensity profile on the mirror where the power
is dominantly localized on the dimple. The bias in the spectrum indicates the onset of the
unstable regime.

Figures 9.5b-d show how the spectrum changes if we increase the cavity length such that
the inner cavity becomes unstable. Let us discuss this sequence.

The first remark is that the closer we get to instability of the inner cavity the lower be-
comes the number of sharp resonances in the spectrum. We can explain this as higher order
modes become unstable first and only the lower order modes remain.

A second remark concerns the two broad “clumps” per free spectral range, which become
more pronounced the closer we come to instability. This is a clear demonstration of the
increased coupling to the outer cavity. The two clumps actually consist out of many modes
in the almost frequency-degenerate (N = 2) outer cavity; the even (n+m)-modes are located
in one clump and the odd modes in the other.
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Figure 9.5: Spectra in the transition from a stable to an unstable inner configuration II-
cavity. In figure (a) the cavity is operated at L = 14 mm. The cavity length is increased
stepwise in consecutive figures to: (b) ΔL = 0.11 mm, (c) ΔL = 0.24 mm and (d) ΔL =
0.4 mm.

As a third remark, we want to stress that the bias becomes more dominant for a more
unstable inner cavity. The bias indicates the presence of many spectrally broad modes, which
can no longer be resolved. The origin of this spectral broadening could lie in the fact that
these modes presumably encounter more losses, possibly due to the physical transition from
the convex to the concave part of the mirror. On the other hand, this does not seem very
likely as interferograms indicate that the transition is smooth. Another reason might be that
the phases acquired by light in the inner and outer cavity are different so that they interfere
destructively when they recombine.

At L = 14.4 mm, we are clearly in the regime where we inject in the inner cavity and
couple to the outer cavity, since we dominantly excite modes in the outer cavity. This is
confirmed by the intensity distribution on the mirror, which is now no longer localized on the
dimple but also spread over the outer cavity. We conclude that we are able to couple the inner
with the outer cavity, but are unable to spectrally resolve the excited modes.

9.5.2 Cavity finesse, average throughput and the number of hit points
It takes time for chaos to develop and a sufficient number of hits on the mirror, especially
on the dimple, is needed. The number of hit points on the mirror can be deduced from
the cavity finesse. However, as shown in the previous Section, for some configurations the
resonances in the spectrum cannot be resolved and the number of hit points still remains
unknown. Especially for this regime, we introduce here a new method to derive the average
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9.5 Fabry-Perot spectra

number of hit points from the “spectrally-averaged” throughput. To test this method, we will
first determine the number of hit points of an uncoupled inner resonator. Next, we will study
an uncoupled outer cavity of which the spectral resonances can be resolved. Finally, the new
method will be applied to a resonator of which the inner and outer cavity are coupled and the
resonances cannot be resolved. The first experiment is performed on a configuration I-cavity,
whereas the second and third experiment are performed on a configuration II-cavity.

In the first experiment, we inject a stable inner resonator with a beam mode-matched to the
lowest order mode. The configuration I-cavity is operated at a cavity length L = 13 mm. The
intensity profiles of the modes on the dimple are nice Hermite-Gaussian-modes, as expected
for a stable resonator. During alignment of the cavity, the finesse was found to be very
sensitive to the exact injection on and alignment of the mirrors. This we also observed in
Chapter 7 and is possibly caused by the periodic structure of the roughness on the surface of
the substrate. After optimizing the injection, a cavity finesse F = 670 is found. This makes
the number of hit points on each mirror F/2π = 107.

In the second experiment, we consider an uncoupled stable outer cavity. We operate a
configuration II-cavity at a cavity length L = 6.6 mm, which is close to the 4-fold frequency-
degenerate point (N ∼ 4). Off-axis injection at a proper angle excites a corkscrew-like ring-
mode, which does not hit the dimple, but retraces its path in the outer cavity. These ring-
modes (in the outer cavity) have a finesse of F = 650, making the number of hit points on
each mirror F/2π = 105. All resonances can be resolved and have the same spectral width,
which indicates that the modes experience identical losses.

We use this second spectrum to demonstrate the validity of our alternative method (see
also Section 2.3) to determine the number of hit points. The measured average spectral
throughput through one mirror (= average power in a FSR divided by the transmitted power
behind first mirror) is 9.4 %. The rest of the light is transmitted by the opposite mirror
(∼ 10 %) or scattered out of the resonator (∼ 80 %). We also know that for every hit
on a mirror only 8× 10−4 of the incident power is transmitted. It thus takes on average
9.4× 10−2/8× 10−4 = 120 hits per mirror before the light has leaked out. As this is com-
parable to the value F/2π = 105 obtained earlier, we conclude that the spectrally-averaged
throughput provides us with the correct number of hit points and forms an alternative method
for the number of hit points deduced from the cavity finesse.

To demonstrate that this new method can be of great benefit in situations where not all
spectral resonances can be resolved, we perform a third experiment. We now inject light
in a resonator with an unstable inner cavity, for which we chose a configuration II-cavity
operated at a cavity length L = 6.6 mm. The unstable inner cavity magnifies the input beam
and spreads the light over the outer cavity. The inner and outer cavity are now coupled but
not all trajectories experience identical losses. This is reflected in the spectrum, which shows
an offset, where the resonances cannot be resolved, and on top of that some sharp resolvable
resonances. The highest measured cavity finesse of a sharp resonance is F = 400, suggesting
that the number of hit points on each mirror is F/2π = 65 (for these modes). Application of
our alternative method also reveals information about the modes in the spectral offset, which
cannot be resolved in the spectrum. From the measured average spectral throughput of 1.1 %,
we deduce an average number of hit points on a single mirror of only 1.1×10−2/8×10−4 =
14. The “average” mode thus hits the mirror a factor 4−5 times less than the modes of which
we can measure the cavity finesse directly. This shows once more that the various modes
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9. Combining a stable and an unstable resonator

experience different losses in a coupled resonator.
In the light of chaos, not only the number of hit points on the outer mirror but also the

number of hits on the dimple is important. The ratio between the two is linked to the Gouy
phase θ0 of the outer cavity. The relation between the (integer) number of round-trips N
(equivalent to the number of hit points on one mirror before the ray retraces its tracks) and
the Gouy phase is given by N = 2π/θ0. For the above configuration the Gouy phase is
θ0 = 1.14, and thus not a true fraction of 2π , but, naively speaking, the number of hit points
on one mirror before the ray comes close to its initial position is 2π/θ0 ≈ 5−6. So if a ray is
bounced out of the inner cavity into the outer cavity it takes roughly 5−6 mirror hits before
the ray is again injected into the inner cavity. For a total number of hit points of typically 14,
the dimple will be hit only 2−3 times.

We conclude by stating that our new method, based on a measurement of the average
spectral throughput, reveals important information about the number of hit points for modes
that cannot be spectrally resolved. We find that the average number of hit points on the mirror
in the regime where the inner and outer cavity are coupled is typically only 14. The number
of hit points on the dimple is even smaller (2−3 hits), and is very likely too small for chaos
to develop.

9.5.3 Position of the injection beam

To check the influence of the position of the injection beam on the cavity dynamics we inject
on various (off-axis) positions in one transverse plane. We did so for both a stable and an
unstable inner cavity, and monitored both the spectrum and the intensity distribution on the
back mirror.

Unstable inner cavity

We operate the configuration II-cavity at a cavity length L = 2 mm, for which the outer cavity
is close to an 8-fold frequency-degenerate point (N = 8) and the inner cavity is unstable.
For injection in the outer cavity at Δx = 0.56 mm relative to the mirror center, 8 clumps of
modes are observed in the spectrum shown in Fig. 9.6a. The origin of these clumps lies in
the fact that the spectrum is dominated by the frequency-degenerate outer cavity (N = 8). On
the mirror, we indeed observe an ellipse of bright hit points in the outer cavity, bypassing
the convex inner part. As the modes are degenerate, individual modes within each clump
cannot be spectrally resolved and the cavity finesse cannot be determined. However, from
the average spectral throughput we can deduce that the average number of hit points on one
mirror for a typical mode is 70.

When we inject closer to the dimple, at Δx = 0.38 mm, we observe an elliptic ring-
structure around the dimple. Fig. 9.6b shows the spectrum in which we still observe 8 clumps
of modes, but the clumps are now broader and contain more structure. In each clump there is
one sharp dominant resonance on the right side and many more modes with roughly identical
peak transmission. The dimple clearly influences the modes in the outer cavity and partly
breaks the degeneracy of the modes. The finesse of the sharp resonances is still F = 670,
and the number of hit points on the mirror for this mode is thus F/2π = 107. The number of
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9.5 Fabry-Perot spectra
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Figure 9.6: Spectra for various positions of injection into a configuration II-cavity. The
resonator is operated at a cavity length of L = 2 mm, where the inner cavity is unstable.
The outer cavity is close to 8-fold frequency-degeneracy. The outer cavity is injected
(a) Δx = 0.56 mm from the center of the mirror, (b) Δx = 0.38 mm, (c) Δx = 0.30 mm,
and (d) Δx = 0 mm, respectively.

mirror hits found from the average spectral throughput is 60. The discrepancy between these
two numbers shows that some modes are more lossy than others.

Injection at Δx = 0.30 mm from the center of the mirror shows again a ring-structure
around the dimple. Groups of modes are still observed in the spectrum Fig. 9.6c. In each
clump we can now easily distinguish 4− 6 equally spaced modes. Taking a closer look at
some of these resonances we observe a splitting of the modes. This might indicate that also
other resonances are still degenerate and consists out of more modes. The finesse of such
sharp resonances is F = 620, and the number of hit points on the mirror for these modes is
thus F/2π = 100. The average number of hits on the mirror derived from the spectrally-
average throughput is 50.

For on-axis injection of the inner cavity, at Δx = 0, the intensity distribution on the mirror
shows that light is spread over both the inner and outer resonator, with a darker fringe in
between. We observe an offset in the spectrum (Fig. 9.6d) with some finer structure on top of
it. Most excited modes can not be resolved. The few sharp resonances in the spectrum that
can be resolve yield F/2π ≈ 50. The average number of hit points, found from the average
transmitted power in the spectrum, is 28. As we are close to an 8-fold frequency-degeneracy,
the number of hit points N in the outer cavity needed before a ray is reinjected into the inner
cavity is N = 8. For a total number of hit points on the mirror of 28, the dimple is hit only
3−4 times.

In summary, we have observed that already for injection at Δx = 0.38 mm away from
the center of the cavity the influence of the inner cavity is felt; the losses increase and the
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9. Combining a stable and an unstable resonator

frequency-degeneracy in the spectrum is broken. As soon as a dominant part of the injected
light hits the unstable inner cavity, resonances in the spectra are hard to resolve, which makes
it difficult to deduce information from the spectrum. The number of dimple hits is again 3−4.

Stable inner cavity

Next, the influence of the position of injection on the cavity dynamics is investigated for a
cavity with both a stable inner and outer cavity. The configuration I-cavity is operated at a
cavity length of L = 12 mm, where the inner cavity is close to a 4-fold frequency-degeneracy
(N = 4).

First, we inject just outside the dimple and observe two bright spots on the left and right
side of the dimple and a vague background. The spectrum for this position of injection
(Fig. 9.7a) shows an offset and on top of that a quasi-periodic structure (∼ 20-fold). When
we inject on the dimple (Fig. 9.7b), the offset in the spectrum has disappeared and instead
we observe 4 clumps of resonances in the spectrum, which indicate the 4-fold frequency-
degeneracy of the inner cavity. The intensity profile on the mirror is indeed localized on the
dimple and the light is thus confined to the stable inner resonator.

Injection on the other side of the dimple results in a spectrum with an offset and on top
of that a 7-fold periodic structure, see Fig. 9.7c. On the mirror, we now observe 12 hit points
on the concave part of the mirror and some hit points on the convex part, which cannot be
pinpointed exactly, due to a limited imaging resolution. This intensity information (> 12 hit
points) combined with the 7-fold structure in the spectrum indicates that the number of lon-
gitudinal round-trips that are needed before the ray returns on itself equals N = 14 [21]. This
means that there must be (14−12) = 2 hits on the convex part of the mirror. The number of
transverse “round-trips” K the orbit makes before closing cannot be deduced directly from our
experimental observations. We know, however, that K should be an even integer to comply
with the 7-fold spectral structure. A calculation of the overall Gouy phase θoverall = 2πK/N
sheds more light on this problem.

The overall Gouy phase depends on the number of hits on the inner and outer part of
the bifocal mirror and is the weighted sum of the Gouy phase of the inner and outer cavity,
which is in our case θoverall = θin/7 + (6θout)/7. The Gouy phase of the inner cavity is
roughly θin = 2π/4 = 1.57, whereas the Gouy phase of the outer cavity θout = 2.95 for
the corresponding cavity length. This results in an overall Gouy phase θoverall = 2.75. The
calculated overall Gouy phase should thus be equal to 2πK/14, which means that K = 6.

The existence of this K/N = 6/14-point is surprising. For a cavity without dimple and
a specific cavity length, one Gouy phase determines all cavity dynamics and K/N = 6/14
and K/N = 3/7 describe identical physics. The description of frequency-degenerate points
in a bifocal cavity is, however, more complicated. For one specific Gouy phase (e.g., θ0 =
2π3/7), the sequence of hit points on both cavities can be different, which is expressed by
K/N = 6/14 and K/N = 3/7. It is important to note that the orbit described by K/N = 6/14
cannot be described by two K/N = 3/7-orbits.

We conclude that for a coupled stable inner and outer cavity, an offset appears in the spec-
trum filled with modes that cannot be resolved. Also for coupled stable cavities, frequency-
degenerate points exist, but the Gouy phase does not uniquely define the trajectory.
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Figure 9.7: Spectra for various positions of injection of a configuration I-cavity. The
cavity is operated at a cavity length of L = 12 mm, where the stable inner cavity is
close to 4-fold frequency-degeneracy. The position of injection as compared to the
mirror center Δx is for (a) Δx = −0.12 mm, (b) Δx = 0 mm, and (c) ΔL = 0.17 mm,
respectively. Note the (quasi-periodic) structure in both (a) and (c), where the rays hit
both the inner and outer cavity.

9.6 Transmission patterns

9.6.1 Speckle patterns

Important information can also be obtained from the transmission profiles. When we inject
the unstable inner cavity, the light spreads out over the convex and concave part of the bifocal
mirror. Close to frequency-degeneracy of the outer cavity, circular structures dominate the
speckled pattern as shown in Fig. 9.8a. These circular structures are the Hercher fringes
introduced in Chapter 4. We will concentrate, however, on the nondegenerate case as shown
in Fig. 9.8b. The patterns can be observed best for fixed cavity length, i.e., when the scanning
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9. Combining a stable and an unstable resonator

of the cavity length is stopped.

Figure 9.8: Intensity profiles on the mirror of a configuration I-cavity for a fixed cavity
length (no scanning) (a) operated at L = 14.3 mm, where the outer cavity is close to
2-fold frequency-degeneracy (N ≈ 2) and (b) away from a frequency-degenerate point
at L = 17.3 mm. Close to frequency-degeneracy Hercher-fringes dominate the speckle
pattern.

We encounter the speckled patterns not only for short cavity lengths, but also for the
longer ones. On first sight, the patterns appear to be random, but a closer look shows rota-
tional symmetry. Such intensity profiles with a rotational symmetry were also observed for
a similar, but uncoupled system, introduced in Chapter 8. We have demonstrated there that
Laguerre-Gaussian (LG) eigenmodes form the natural basis of the uncoupled system. Sim-
ilar speckled patterns were observed and associated with a (coupled) superposition of many
excited LG-modes. The patterns in the coupled system, presented in this Chapter, have the
same flavor.

The randomness and structure of the speckles in the patterns imply that many unperturbed
LG-modes are involved. The speckle size or, equivalently, the spatial period can be attributed
to the highest-order mode m involved. The connection between mode number m involved and
the size of the speckles Λm is m = (4w/Λm)2 [12] with w the waist of the fundamental mode.
The typical size (FWHM) or correlation length of a speckle in the pattern is measured to be
20− 50 μm. For w = 40 μm we thus find that the highest-order mode involved has a mode
number m = 10 to 60.

A polarizer behind the resonator gives more insight into the speckle patterns. The trans-
mission axis parallel to the input polarization results in a typical speckle pattern as shown in
Fig. 9.9a. We observe again some rotational symmetry in the patterns. Rotation of the output
polarizer over 90◦ (transmission axis perpendicular to the input polarization) shows, to our
surprise, that light is still transmitted through the polarizer. Obviously, the resonator changes
the polarization of the light and acts as a depolarizer. Fig. 9.9b, with crossed polarizers, is
different from Fig. 9.9a; the light is spread more homogeneously over the mirror and structure
of the speckles is more grainy.

The difference in intensity distributions for both polarizations can be analyzed more quan-
titatively by averaging over many intensity realizations in a free spectral range. The compar-
ison is then easier as we are less sensitive to vibrations that change the cavity length on a
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Figure 9.9: Intensity profiles on the mirror behind a polarizer with its transmission axis
(a) parallel and (b) perpendicular to the input polarization. The configuration II-cavity
is operated in between two frequency-degenerate points at a cavity length L = 1.8 mm.
The images correspond to an area of 1×1 mm2 on the composite mirror. The dimple is
overexposed.

sub-wavelength scale over time. Disadvantage of this method is that the speckles are aver-
aged out and that we loose intensity information on smaller length scales. We achieve the
averaging by scanning the resonator with a piezo over a few wavelengths. Cross-sections of
these averaged intensity patterns are shown in Fig. 9.10. The intensity is highest in the center
of the dimple, where we inject, and decreases closer to the edges of the mirror. This decrease
is strongest for the parallel case. The distribution for polarization perpendicular to the input
polarization is more uniform. The ratio of these two polarized intensities decreases from 200
in the center to ∼ 70 at ρ = 0.5 mm. 2D-images of the intensity distributions show that the
total (area-integrated) transmitted power is 75 times stronger for the polarization parallel to
the input polarization than for the perpendicular polarization. This ratio is also found from
the spectra of both polarizations.

9.7 Discussion and recommendations
In this Chapter, we have presented a preliminary experimental investigation of a novel type
of open optical resonator. This resonator has been shown to be able to couple the inner and
outer cavity. The number of hit points in the inner (unstable) cavity was found to be limited
to typically only 3−4. For chaos to develop in our 3D-cavity more hits are probably needed.

Rays that remain solely within either the stable inner or outer cavity were observed to do
so during about 60−110 round-trips. This number is large enough to distinguish individual
modes in the optical spectrum. In the coupled regime, where chaos might develop, the number
of hit points, however, decreases drastically and resonances in the spectrum become hard to
resolve. This makes it difficult to perform the statistics that is needed to show the presence of
chaos in our experiment. The reason for the observed broadening might be that light in the
inner and outer cavity acquire a different phase and interferes destructively.

Our first recommendation concerns the coupling of the inner and the outer cavity, which
is up to now relatively modest. For coupled systems, it is obvious that the phase plays a
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Figure 9.10: Cross-sections of intensity profiles averaged over many realizations in a
free spectral range. The upper and lower curve represent the intensity distributions ob-
served behind a polarizer oriented parallel and perpendicular to the input polarization,
respectively. The configuration II-cavity is operated at a length of L = 1.8 mm. The two
dotted-dashed lines indicate the position of the dimple, ρ ranging from -0.1 to 0.1 mm.

crucial role [12]. As our system is a coupled transverse multi-mode system, many phases are
involved. To adapt the phase of the inner cavity to the outer cavity, we propose a bifocal mir-
ror of which the dimple can be axially displaced on a sub-wavelength scale. Proper matching
of the optical phases in the inner and outer cavity might increase the coupling between the
two cavities.

Our second recommendation concerns the presence of corkscrew-like (ring)modes that
live solely in the outer cavity. Although these modes do not contribute to chaos, they are still
present in the spectrum and make it harder to resolve individual resonances. An azimuthal
obscuration inside the outer cavity will block these ring-modes much more than the wanted
2D-modes that hit the dimple and contribute to chaos. With such an obscuration, the spectrum
should contain less resonances but relatively more resonances that might demonstrate chaotic
behavior. The proposed obscuration will also break the rotation symmetry of our cavity; a
symmetry that could frustrate some types of chaos.
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