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CHAPTER 8

Laguerre-Gaussian modes in a bifocal resonator

We investigate the eigenmodes of a cavity, composed of two mirrors, one of which is a
bifocal mirror. As the bifocal mirror is rotationally symmetric, it favors a different mode
family than traditional stable cavities based upon two monofocal mirrors. A numerical
simulation based on an effective index is presented for a better understanding of the opti-
cal properties of this system.
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8. Laguerre-Gaussian modes in a bifocal resonator

8.1 Introduction

In ideal cavities with a rotationally-symmetric quadratic index (or gain) profile, there is con-
siderable degeneracy and the eigenmodes combine to frequency-degenerate classes. Within
each of these classes one is free to choose as basis either all Hermite-Gaussian (HGmn) modes
with fixed n + m or all Laguerre-Gaussian (LGl p) modes with fixed 2p + |l| [12, 74]. Here,
m and n indicate the two transverse mode numbers, whereas l and p are the azimuthal and
radial mode numbers, respectively. In practical resonators, any small deviation will lead to a
preference of one basis over the other. The HG-modes are preferred if the rotational symme-
try is broken, and x- and y-axes can be distinguished [12]. The LG-modes are preferred if the
rotational symmetry is maintained, but the index profile is nonquadratic [75].

As an interesting example, a Vertical Cavity Surface Emitting Laser (VCSEL) [76,77] can
show both cylindrical (LG) and rectangular (HG) modes in one system. The preferred mode-
family is now determined by both the physical shape of the cavity and the gain profile in the
amplifying medium. The tuning parameter to alter this profile is the injection current; the
mode profiles are generally rectangular for low injection currents, but become cylindrical for
high injection currents, where thermal lensing and carrier distribution play a more prominent
role.

However, in almost any passive resonator the observable eigenmodes are the HG rather
than the LG-modes as the rotational symmetry is apparently broken more strongly, by, e.g.,
astigmatism, than the effective quadratic guiding corresponding to the focussing action of the
mirrors [78]. In this Chapter, we will report on a stable cavity in which LG-modes are pre-
ferred. Our system is a composite cavity comprising mirrors that are rotationally symmetric,
but the height profile consists of two piecewise quadratic parts and is thus nonquadratic as
a whole. The system, described in this Chapter, is a first trial in a series of experiments to
demonstrate chaos in a open optical resonator; it is equivalent to the geometry discussed by
Aiello et al. [79] and in Chapter 9 of this thesis.

This Chapter is organized as follows: After introducing the setup, we will report and dis-
cuss the measured mode profiles. These profiles will be compared with standard (analytic)
LG-modes that exist in paraxial resonators based upon mirrors with a single radius of curva-
ture. A model, based on the concept of an effective index, will be introduced to investigate
numerically the effect of the composite height profile. We will finish this Chapter with a
concluding discussion.

8.2 Setup

The resonator contains a flat and a composite mirror, as shown in Fig. 8.1. Both substrates
have been made out of calcium fluoride (CaF2) and have been coated in the same run. The
measured transmission of the mirrors used in this experiment is T = 5×10−5 at a wavelength
of λ = 800 nm. The composite substrate has been diamond-machined. As the composite mir-
ror comprises a convex center (also denoted as “dimple”) and a concave annulus, it creates
two resonators: a (radially) outer part, which is stable for cavity lengths L < R = 14 mm, and
a (radially) inner part, which is always unstable. The dimple, in combination with the flat
mirror, forms an unstable resonator and acts, in analogy with quantum mechanics, as a rota-
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tionally symmetric potential barrier, surrounded by a ditto potential well. This rotational sym-
metry combined with the nonquadratic (composite) mirror profile imposes LG-eigenmodes.

R b

a r

L

a. b.

Figure 8.1: (a) Our cavity configuration, operated at L = 13.88 mm, comprises a flat
mirror and a bifocal mirror. The dimensions of the bifocal mirror are R = 14 mm,
r = −3 mm, a = 100 μm, and b = 1 mm. (b) Sketch of the bifocal mirror, where
the concave and convex inner part form the mirror. The conical outer part makes the
handling of the mirror easier and prevents light to be scattered back into the cavity.

In order to measure the profiles of the cavity eigenmodes, we use a f = 10 cm lens to
inject a beam with a waist that is similar to the lowest-order mode of the outer cavity, off-
axis under an angle with respect to the optical axis. This is to excite efficiently modes in
the stable outer cavity. In order to measure the mode profiles on the bifocal mirror, a lens
images the intensity profiles on a CCD-camera with linear intensity response (Apogee Alta
U1) behind the cavity. The sub-wavelength control of the cavity length, which is needed to
observe individual mode profiles, is obtained with a piezo-element. The cavity is typically
operated at cavity lengths L = 13.5−13.9 mm, close to the instability point L = R = 14 mm.
The absolute cavity length is calibrated with respect to the 3-fold frequency-degeneracy point
(L = 10.50 mm). Such a frequency-degenerate point is easy to recognize spectrally and helps
to pinpoint the cavity length accurately (few μm).

8.3 Experimental results
As discussed above, in ordinary resonators HG-modes are observed due to the almost un-
avoidable breaking of the rotational symmetry. We have checked this with a cavity identical
to that described above, but without the central convex part. For operation under identical
conditions this cavity favors indeed HG-modes. In contrast, the resonator of Fig. 8.1 shows
a strong preference for the bifocal-mirror LG-modes. The preference for this mode-family
originates apparently from the presence of the rotationally symmetric dimple on the compos-
ite mirror.

If we tune the cavity length to L = 13.88 mm, i.e., close to instability of the outer cavity,
we observe individual modes on the bifocal mirror with a clear rotational symmetry (see
Fig. 8.2). The angle and position of injection in this experiment are fixed, and the cavity
length is only changed within a free spectral range using the piezo-element. For each radial
mode number p, ranging from 1 to 7, we observe LG-modes with various l-numbers. Note
the intriguing smaller copies of the outer patterns, which will be discussed below.
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8. Laguerre-Gaussian modes in a bifocal resonator

The mode profiles, as shown in Fig. 8.2, can be resolved individually and are dominantly
observed in a whole range of cavity lengths L = 13.5− 13.9 mm close to the instability of
the outer cavity. For shorter cavity lengths, e.g., L = 7.5 mm, the rotational symmetry is still
present in the intensity profiles; at this length, we do, however, no longer observe individual
modes, as many modes are excited at the same time. The reason seems to be that for shorter
cavity lengths, the number of available modes is much higher than for larger cavity lengths
close to instability. This is related to the size of the waist of the fundamental mode on the outer
part of the bifocal mirror, which is w0 = 177 μm for L = 13.8 mm, but only w0 = 62 μm for
L = 7.5 mm. This means that the number of modes that fits inside the aperture of the mirror
(2b = 2 mm in Fig. 8.1) is (177/62)2 = 8 times lower close to instability than for the shorter
cavity length.

a. b.

c. d.

Figure 8.2: Measured intensity profiles of modes on the bifocal mirror for “fixed cavity
length” within a free spectral range. The half-symmetric resonator (R = 14 mm) is
operated close to instability at a cavity length of L = 13.88 mm. The modes shown are
(a) LG7,0, (b) LG7,1, (c) LG9,2, and (d) LG12,3. The area shown is 1.7×1.7 mm2 on the
bifocal mirror. Note the smaller copy of the intensity profile inside.

An interesting feature of all experimental mode patterns is that inside the outer mode
profile an identical but smaller copy of itself is observed. This inner pattern turns out to
be a ghost-image. It results from a combined reflection on the concave side of the imaging
lens behind the cavity (typical reflection R = 1−4 %) and the flat back-mirror of the cavity
(R ≈ 100 %). Imaging with a CCD directly behind the back-mirror of the cavity, i.e., without
imaging lens, did not show this copy. The rotationally-averaged intensity profiles shown in
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Fig. 8.3 confirm this explanation. At first sight, it might seem strange that the inner image is
roughly as intense (50−100 %) as the main image, whereas the expected power reflection is
only 1−4 %. The radius of the inner patterns is, however, about five times smaller than the
original patterns, which means that the reflected power is concentrated in a 25 times smaller
area. Combined with the intensity as compared to the main image, this corresponds to a
power reflection of 2−4 %, as expected.

8.4 Analytic LG-modes and comparison with experiment
For comparison of the experimental mode profiles with theory, we will now formally in-
troduce the LG-modes [74]. These are solutions of the paraxial wave equation for a stable
resonator comprising mirrors with a single radius of curvature (the central dimple will be
taken into account in the next Section). The LG-mode profiles in radial coordinates are

El p(r,φ) = E0ρ lLl p(ρ2)e−ρ2/2eilφ , (8.1)

where l and p are the azimuthal and radial mode numbers, and ρ ≡ √
2r/w0 is the dimen-

sionless transverse position. For the fundamental mode we have E00(ρ) = E0 exp(−ρ2/2) =
E0 exp(−r2/w2

0), where w0 is the waist of the fundamental mode. The Laguerre polynomials
Ll p are simple expressions, for p = 0 to 2 they yield

Ll0(ρ2) = 1 , (8.2)

Ll1(ρ2) = l +1−ρ2 , (8.3)

Ll2(ρ2) = 1
2 (l +1)(l +2)− (l +2)ρ2 + 1

2 ρ4 . (8.4)

Higher-order Laguerre polynomials can be found in mathematical handbooks [80].
The LG7,1 and LG12,3 modes derived from Eq. 8.1 are shown in Fig. 8.3a and c. The

images of the calculated modes agree nicely with the measured intensity profiles shown in
Fig. 8.2b and d. A more quantitative description and comparison can be made using a rota-
tionally averaged intensity distribution, which is shown in Fig. 8.3b and d for both measured
and calculated intensity profiles.

The measured intensity profiles are scaled such that the position of the minimum after the
first lobe coincides with the corresponding zero in the calculated intensity profile. This scal-
ing can also be used to pinpoint the waist of the fundamental mode and the exact cavity length.
More specifically, the point ρ = 1 in the calculated profile corresponds to a radial distance
r = 125 μm in the measured intensity profile, which results in the waist of the fundamental
mode w0 =

√
2r/ρ = 177 μm. This waist corresponds to a cavity length of L = 13.8 mm [12],

which is in nice agreement with the cavity length determined previously.

8.5 Numerical calculation of modes in a bifocal resonator
Although the description of the standard LG-modes seems to be sufficient to qualitatively
describe the experimental mode profiles, we still want to introduce here a model that can also
take into account the presence of the dimple. This allows us to describe the influence of the
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Figure 8.3: Calculated intensity profiles of the (a) LG7,1 and (c) LG12,3 modes. The
accompanying calculated (dot-dashed lines) and measured (solid lines) rotationally-
averaged intensity profiles are shown in (b) and (d). Note the inner copy of the measured
intensity profiles. The vertical dotted lines indicate the classical turning points of the
modal ray. ρ is the dimensionless transverse position.

dimple more quantitatively and offers more insight. Additionally, this model allows us to
investigate the influence of spherical aberration on the mode profiles; by spherical aberration
we mean the deviation of the actual wavefront from a spherical reference wavefront that
solely depends on the position of a hit point on the mirror [14].

The transverse modes of the field in the resonator are dictated by the rotational symmetry
of the cavity. This restricts the forward propagating electric field to cylindrical coordinates

El p(ρ,φ ,z, t) = ψl p(ρ,z)ei(kzz−ωt)eilφ , (8.5)

where ψ(ρ,z) is the slowly varying amplitude of the electric field, kz the component of the
wave vector in the propagation direction, ω the optical frequency, l the angular mode number,
and ρ =

√
2r/w0 is again the dimensionless transverse position.

The so-called effective-index model [81–83] assumes that the (transverse) waveguiding,
by either a transverse variation of the electric permittivity ε or, effectively, by a mirror curva-
ture, can be distributed over the length of the cavity and averaged over the axial coordinate.
Although this model is strictly valid only if the transverse profile of the field does not change
significantly during a full round-trip, we are confident that it will retain its essential features
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also beyond this limitation by a simple rescaling in terms of an effective cavity length and an
average field.

In the most simple version of the effective index model, the electric permittivity ε is
assumed to have the form ε = ε(ρ) = n(ρ)2 and consequently the amplitude of the field
becomes independent of z and yields ψl p(ρ,z) ∼ hl p(ρ). Application of the effective-index
model to a plano-concave resonator means (in more physical terms) that the resonator is
reduced to a planar cavity with a built-in radially varying effective index of the form

n(ρ) = n0

(
1− ρ2w2

0
4RL

)
, (8.6)

with R the radius of curvature of the mirror. As stated by Hadley [82]; “the effective-index
profile is determined by local changes in the Fabry-Perot resonance frequency (for rays that
simply travel parallel to, but displaced from, the (z-)symmetry axis)”.

Based on Eqs. 8.5 and 8.6, we can rewrite the scalar wave equation for a (slowly varying)
amplitude of the field into a Schrödinger-type equation

(∇2
ρ −ρ2)hl p(ρ) = −2ω̃hl p(ρ) , (8.7)

where

�2
ρ =

∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

+
1

ρ2
∂ 2

∂φ 2 , (8.8)

is the rescaled transverse Laplacian, ω̃ = Δω/ωG = l + 2p + 1 a dimensionless eigenfre-
quency, Δω is the detuning as compared to an on-axis plane wave and ωG = (c/2L)θ0 is the

natural frequency spacing, where θ0 is the Gouy phase. The term 1
ρ2

∂ 2

∂φ2 =−l2/ρ2 in Eq. 8.8

acts as a centrifugal potential, which forces the radial profile hl p(ρ) outwards for higher l.
We solve Eq. 8.7 with the so-called shooting method [84], where the integration proceeds

from ρ = ρ1 = 0.8, being the transition from the convex to the concave part of our bifocal
mirror, to ρ = ρ2, a position beyond the spatial extent of the mode. We start from h = 0
and ∂h(ρ)/∂ρ = 1 and proceed stepwise to the edge using ∂ 2h(ρ)/∂ρ2 from Eq. 8.7. This
iterative process is performed for 2000 consecutive transverse positions ρ . Doing so for
various values of ω̃ for a given l, we find ω̃ that minimizes the field h at ρ2 best.

For a more quantitative study of the influence of the dimple on the modes, we have in-
cluded the dimple (radius ρ = 0.8) in our model, replacing ρ2 in Eq. 8.7 by R/rρ2 = −4ρ2,
for ρ < 0.8. After including the dimple in our model, we can start the integration closer to
the center on the dimple. We did so for modes with small l-values, like l = 2, as these rel-
atively compact modes have the larger spatial extent that overlaps with the dimple and will
be affected most. The effect of the dimple is, however, small; the eigenvalue ω̃ and the po-
sition of the maximum change roughly 1 %, and the rising flank of the lobe in the intensity
profile shows only a tiny bending point (not shown). The standard analytic LG-modes are
thus sufficient to describe our measurements, as the centrifugal term (Eq. 8.8) in Eq. 8.7 still
dominates over the potential arising from the dimple structure.

A first remark we want to make is the textbook [85] result that the classical turning points
of the mode profiles can be found from Eq. 8.7 by solving ρ2 + l2/ρ2−2ω̃ = 0, which results
in ρ2 = ω̃ ±√

ω̃2 − l2. These points are indicated in Fig. 8.3 for both LG7,1 and LG12,3, and
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8. Laguerre-Gaussian modes in a bifocal resonator

coincide with the bending points on the flanks of the first and the last lobes in the intensity
profiles.

The second remark is that the model offers the possibility to investigate the effect of
aberrations on the mode profiles. As an example, we study spherical aberration, expanding
the mirror height profile Δz beyond the quadratic term. Consequently, a fourth order term
−αρ4 has to be added to Eq. 8.7, where α indicates the strength of the aberration and equals
α = 1/(8kR)

√
L/R (see Chapter 4). On second thought, not only the mirror height profile

Δz, but also the intra cavity angles, i.e., the transverse momentum of the ray kz, should be
expanded (see Chapter 6). The extra term in Eq. 8.7 is −β∇4

ρ . The operator formalism of
Visser et al. [62], discussed in Chapter 6, shows that β = (2R/L)α and 〈∇4

ρ〉 = 〈ρ4〉. As
a consequence, the second (momentum related) contribution to the spherical aberration is
2R/L larger than the one originating from the mirror height profile. The importance of the
fourth-order term in the Taylor expansion has been discussed in several other papers that go
beyond the paraxial regime [65, 66].

As a quantitative example, we study the strength of spherical aberration for our config-
uration, i.e., α = 1.1× 10−6. Taking into account the momentum related contribution, the
strength of the spherical aberration becomes α +β = α(1+2R/L) ≈ 3α = 3.3×10−6. This
number is so small that even far off-axis, close to the edge of the mirror (ρ = 8), Eq. 8.7 is
still dominated by the quadratic term ρ2. The influence of spherical aberration on the mode
profiles can thus be neglected.

8.6 Concluding discussion
In our system, the profile of the mirror is nonquadratic due to the presence of the central
dimple. The dimple is needed to break the quadratic profile of the mirror, but is hardly visible
in the mode profile. If we would have destroyed the quadratic profile in any other way, e.g., by
drilling a hole in the mirror, we probably would have observed almost identical LG-modes.
The latter situation is roughly similar to a potential barrier of infinite height. The approximate
mode profiles can be found from the effective-index model starting the integration just outside
the dimple.

The discussed preference for a rectangular or cylindrical mode family is not limited to
cavities but holds for waveguides [86] as well. To motivate this statement we mention that
fibers with an elliptical core prefer a mode family similar to the Hermite-Gaussian (HG)
modes in optical resonators [87], whereas fibers with a circular core favor a rotationally sym-
metric mode family [88]. The stepped (refractive) index of a circular core breaks in fact the
quadratic guiding profile so strongly that the mode-profiles are influenced correspondingly
and are quite different from the LG-modes. These modes are called LP-modes [89, 90].

In conclusion, we have demonstrated a passive resonator in which LG-modes are pre-
ferred, due to the rotational symmetric and nonquadratic profile of the mirror. The inten-
sity profiles on the mirror nicely agree with standard (analytic) LG-modes, showing that the
dimple does not yet influence the mode profiles noticeably. This we have checked with an
effective-index model, which is also used to demonstrate that the effect of spherical aberration
on the mode profiles is still negligible under our operating conditions.
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