
Imperfect Fabry-Perot resonators
Klaassen, T.

Citation
Klaassen, T. (2006, November 23). Imperfect Fabry-Perot resonators. Casimir PhD Series.
Retrieved from https://hdl.handle.net/1887/4988
 
Version: Corrected Publisher’s Version

License: Licence agreement concerning inclusion of doctoral thesis in the
Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4988
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4988


CHAPTER 6

Connection between wave and ray approach of cavity
aberrations

We connect the wave and ray description of spherical aberration in a cavity. The link we
use is Fermat’s principle in a frequency-degenerate cavity. In the ray picture, we consider
periodically closed orbits beyond the paraxial limit and calculate the reduction in cavity
length that is needed to compensate for the additional (nonparaxial) fourth-order terms.
In the wave picture, we derive and discuss explicit expressions for the nonparaxial contri-
bution to the Gouy phase. This Chapter combines and compares results from Chapter 4
and 5.
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6. Connection between wave and ray approach of cavity aberrations

6.1 Introduction

The first analysis of frequency-degenerate Fabry-Perot cavity was based on a ray description.
This analysis involved a calculation of the total path length Ltot(ρ) of a closed orbit as a func-
tion of transverse amplitude ρ of the ray. Pioneering work was done by Hercher [19], Bradley
and Mitchell [45], Arnaud [47], and Ramsay and Degnan [46]. We have generalized this anal-
ysis from the confocal resonator, K/N = 1/2, to an arbitrary K/N frequency-degeneracy, in
Chapter 4.

Only recently, Visser et al. used a different approach based on wave optics. In their
calculation, they benefited from the analogy between the paraxial wave-equation and the
Schrödinger equation, using a quantum mechanical operator description for the evolution of
the field profile [62]. Spherical aberration was included via a fourth-order term related to
the mirror height profile. In this Chapter, we will extend this wave approach by including
another term that was previously overlooked. In many cases this extra term, which is also
fourth-order and related to the transverse momentum of the ray, dominates.

The challenge to connect the above ray and wave description has not yet been accom-
plished. We will do so in this Chapter. The key to success is the application of Fermat’s
principle in a frequency-degenerate cavity. For rays, this principle states that the realized
closed orbit is the one that extremizes the total path length, making dLtot(ρ)/dρ = 0. To pre-
serve the closed orbit beyond paraxiality, the cavity length should be reduced for increased
transverse displacement. For waves, a similar requirement of “complete recovery after N
round-trips” imposes frequency-degeneracy of the cavity eigenmodes. More precisely, it re-
quires that the Gouy phase of the contributing modes differs by multiples of 2π/N. We will
derive an expression for the nonparaxial contribution to the Gouy phase and show that higher-
order modes (again) require a reduction in cavity length to maintain the phase relation of the
superposition after N round-trips. The comparison between the ray and wave result, finally
provides for the necessary link between both pictures.

In Section 6.2, we review the ray description of Chapter 4 and use it in order to calcu-
late the mentioned reduction in cavity length. In Section 6.3, we extend the standard wave
description beyond the paraxial regime. We briefly review the wave description introduced
in [62], and extend it by including the nonparaxial contribution of the transverse momen-
tum of the ray. In Section 6.4, we compare the results from the ray and wave description
by relating the transverse ray displacement to the mode number. We end with a concluding
discussion in Section 6.5.

6.2 Ray description of spherical aberration

The general idea of this Section is as follows. We assume a closed orbit inside a symmetric
two-mirror resonator with spherical aberration operated close to a 1/N frequency-degenerate
cavity length. We stretch the closed orbit without changing the position of the hit points on
the mirrors. Obviously, the angles of reflection on the mirror have to change to preserve
the closed orbit. The only physical trajectories, where the angle of incidence on the mirrors
equals the angle of reflection, are found by Fermat’s principal.

First, we review the ray description of the total path length of a closed orbit as presented
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6.2 Ray description of spherical aberration

in Chapter 4. The central concept in this ray description is the average path length of a
closed orbit, where the nth hit point at one mirror is given by xn = ρ sin(nθ0 +φ0) [49] with
ρ the transverse amplitude, θ0 the round-trip Gouy phase, and φ0 an additional phase that
determines the type of orbit (with extreme cases: the V-shaped and the bow-tie orbit). This
total path length is (see Eq. 4.1 in Chapter 4)

1
2N

Ltot(ρ) = L−B(L−Lres)
ρ2

R2 −A
ρ4

R3 , (6.1)

where L is the on-axis cavity length and Lres = R[1− cos(θ0/2)] is the paraxial resonance
length (at ρ ≈ 0) for exact 1/N-degeneracy. For (N ≥ 3) the spherical aberration coefficient
A and the detuning coefficient B are (see Eqs. 4.2 and 4.3 in Chapter 4)

A =
1+ cos(θ0/2)

32 [1− cos(θ0/2)]
=

2R−Lres

32Lres
and (6.2)

B =
1
2

[
1

1− cos(θ0/2)

]
=

R
2Lres

. (6.3)

Equation 6.1 describes the average length of a mathematically closed orbit, but this orbit does
not necessarily fulfill the physical requirements of reflection angles. Special orbits are the
ones that also fulfill the latter requirement, which is most compactly formulated via Fermat’s
principle dLtot(ρ)/dρ = 0. Taking the derivative of Eq. 6.1 and setting dLtot(ρ)/dρ = 0 we
obtain

ΔL ≡ L−Lres = −2A
B

ρ2

R
= − z2

0
2RL

ρ2

R
, (6.4)

where z0 = 1
2 k0w2

0 = k0γ2
0 = 1

2

√
2RL−L2 is the Rayleigh-range, k0 is the wavevector, and w0

and γ0 are two different measures for the fundamental beam waist. As both coefficients A and
B in Eq. 6.4 are positive for stable resonators (L < 2R), off-axis (nonparaxial) rays require a
cavity length reduction to satisfy Fermat’s principle.

For completeness, we note that the above expressions for A and B do not hold for N = 2.
For N = 2, the two extreme orbits, the V-shaped and a bow-tie orbit, have different coefficients
A and B. This can easily be understood as the maximum transverse deviations xn are ρ and
ρ/

√
2 for the V-shaped (φ0 = 0) and the bow-tie (φ0 = θ0/4) orbit, respectively. Furthermore,

the V-shaped orbit does not show spherical aberration, i.e., A = 0, as the incident ray at the
off-axis hit points is normal to the mirror surface. Hercher’s result for the bow-tie orbit is

1
2N

Ltot(xn) = L− (L−Lres)
x2

n

R2 − x4
n

4R3 , (6.5)

where xn = ρ/
√

2 is the maximum transverse deviation and ρ being the transverse amplitude.
For N = 2 there is also an exact solution of the form [63]

Ltot(α) = 4R

[
2− 1

cos(α/2)

]
, (6.6)

where α is the angle of the diagonal ray in the bow-tie. The cavity length reduction, predicted
by this exact solution is ΔL = −Rα2/8. As α ≈ 2xn/R in a confocal resonator, this result is
consistent with the restriction dLtot(xn)/dxn = 0, which yields ΔL = −x2

n/(2R) when applied
to Eq. 6.5.
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6. Connection between wave and ray approach of cavity aberrations

6.3 Wave description of spherical aberration

The paraxial description of a symmetric two-mirror resonator of length L with mirror curva-
tures R (see Fig. 6.1) is centered around the concept of the round-trip Gouy phase

θ0(L) = 2arccos(1−L/R) . (6.7)

Changes in the cavity length will modify this (paraxial) Gouy phase via the derivative

dθ0(L)/dL =
2√

L(2R−L)
=

1
z0

. (6.8)

In a 1D (planar) description of the cavity field, the phase delay of the m-th order Hermite-
Gauss mode as compared to a plane wave is

Ψm = (m+ 1
2 )θ0 . (6.9)

�z

L

�
x

Figure 6.1: Sketch of a symmetric two-mirror cavity of length L comprising two mirrors
with radius of curvature R. The mirror curvature is characterized by the height profile
Δz. The closed orbit is threefold frequency-degenerate (N = 3). The slope of the rays is
characterized by the angle α .

For larger beam displacements, i.e., higher-order modes, an additional nonparaxial term
contributes to the Gouy phase. Roughly speaking, the phase delay of m-th order Hermite-
Gauss mode as compared to a plane wave can be separated in a linear and nonlinear contri-
bution of the form (see Chapter 5)

Ψm ≡ Ψlin. +Ψnonlin. ≈ am+bm2 , (6.10)

where a = θ0(L) is the paraxial Gouy phase.
The nonparaxial term in Eq. 6.10 is a measure for the aberrations. It shows that a change

in cavity length is needed to maintain frequency-degeneracy for higher-order modes also in
the nonparaxial wave description. When the derivative (Ψm+1 −Ψm−1)/2 = a+2bm is fixed
to a multiple of 2π/N, degeneracy is fulfilled. The derivative a + 2bm remains constant for
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6.3 Wave description of spherical aberration

a higher-order mode m by lowering a (b is a higher-order correction). Using a = θ0(L) =
θ0(L0)+ [dθ0(L)/dL]ΔL, we thus obtain

ΔL =
−2bm

dθ0(L)/dL
= −2bmz0 . (6.11)

We find again that the cavity length has to be reduced to maintain frequency-degeneracy
within a set of higher-order modes. In the next Subsections, we will derive an explicit ex-
pression for b > 0 in terms of R and L, to further quantify this length reduction.

6.3.1 Effect of mirror shape (x4-term)
Visser et al. [62] have given a wave description of two-mirror resonators, based on the mirror
profile Δz(x) shown in Fig. 6.1. Their description is essentially based on the expansion of the
mirror profile Δz(x) beyond the paraxial quadratic terms as

Δz = R−
√

R2 − x2 ≈ x2

2R
+

x4

8R3 , (6.12)

where the fourth-order term acts as small perturbation. This term, describing the spherical
aberration of the mirror, acts as the following perturbation on the potential in a Schrödinger-
type equation

Veff(x) =
1

16kR
(1−g2)

x4

γ4 , (6.13)

where g ≡ 1 − L/R (see Eq. (37) of Visser et al. [62]). For a fixed cavity length L, the
perturbation slightly shifts the frequency of a mode with mode number m.

The (in-plane) 1D-version of Eq. (50) in Visser et al. [62] predicts a round-trip phase
delay of

Ψm = Ψlin. +Ψnonlin. ≈ 2arccos

(
1− L

R

)
(m+ 1

2 )+
L

2kR(2R−L)
(

3
2 m2 + 3

2 m+ 3
4

)
, (6.14)

where the first terms combine Eqs. 6.7 and 6.9, and the second term quantifies the nonlinear
contribution to the round-trip phase delay via

Ψnonlin. ≈ bxm2 =
3L

4kR(2R−L)
m2 , (6.15)

assuming m2 � (m + 1
2 ). Note that we have included a subscript x to bx to distinguish this

mirror-based contribution from the momentum-based contribution bp discussed in the next
Subsection.

6.3.2 Effect of slope in rays (p4-term)
The above description was based on a Taylor-expansion of the mirror height profile only. A
more complete description is obtained if we also account for the higher-order terms in the
Taylor-expansion of the transverse momentum

kz = k0 cos(α) =
√

k2
0 − p2 ≈ k0 −

(
p2

2k0
+

p4

8k3
0

)
, (6.16)
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6. Connection between wave and ray approach of cavity aberrations

where p = k0 sin(α) is the transverse momentum of the ray at angle α . The quadratic term
in the expansion corresponds to the paraxial wavevector. The fourth-order term gives rise to
an additional nonparaxial contribution. The perturbation on the potential associated with this
contribution is [64]

Weff(p) =
1

4kL
1−g
1+g

γ4 p4 . (6.17)

Straightforward calculus shows that the bp coefficient derived for this momentum-based term
is larger than the bx coefficient derived above by a factor 2R/L, making

b = bx +bp =
3L

4kR(2R−L)

(
1+

2R
L

)
. (6.18)

The existence of a p4-term on top of a x4-term is also touched upon in Section 8.5, where
an analysis based on the effective index method gives exactly the same ratio (2R/L) between
these two terms. The importance of the fourth-order term in the Taylor-expansion of the
momentum has been discussed in several other papers that go beyond the paraxial regime [65,
66].

6.4 Comparison of wave and ray description

In the two previous Sections, we have used both the ray and wave description to calculate the
reduction in cavity length that is needed to retain frequency-degeneracy beyond the paraxial
regime, i.e., for large transverse amplitudes ρ , c.q., modes with large mode number m. In the
ray description, we obtained Eq. 6.4, which reads

ΔL = −2A
B

ρ2

R
= − z2

0
2RL

ρ2

R
. (6.19)

In the wave description, we obtained Eq. 6.11, which reads

ΔL = −2bmz0 =
−3L(2R+L)

8kRz0
m . (6.20)

In order to compare these calculated length reductions ΔL, we need to relate the squared
displacement amplitude ρ2 to the mode number m. This relation is ρ2 = 2mγ2 [12], where
the waist at the mirror is γ2 = γ2

0 [1+(z/z0)2] = γ2
0 [LR/(2z2

0)]. Substitution of this relation in
Eq. 6.19 yields

ΔL = − z2
0

2RL
ρ2

R
= − z0

2kR
m . (6.21)

A quantitative comparison of Eqs. 6.20 and 6.21 shows that the required length reductions
are different for the ray and wave description. For a general cavity length

ΔLray

ΔLwave
=

2R−L
3(2R+L)

. (6.22)
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6.5 Concluding discussion

Only in the short cavity limit L � R, Eq. 6.20 becomes comparable to Eq. 6.21. In this limit,
the ray result Eq. 6.20 yields

ΔL =
−3z0

2kR
m . (6.23)

In the short cavity limit, the ray and wave description of spherical aberration are thus identical
except for a prefactor.

6.5 Concluding discussion
To shed light on the difference between the ray and the wave descriptions of cavity aberra-
tions, we have tried to determine their validity experimentally. Unfortunately, this attempt
failed for two reasons. First of all, the relation between the measured phase delay θm and
mode number m was not strictly linear, as was predicted by theory and demonstrated experi-
mentally for a folded three-mirror resonator (see Ch. 5). Secondly, and more important, the
relation depended strongly on the alignment of the cavity and the injection of the beam. Ap-
parently, the mirror surface is nonspherical and contributes additional aberrations on top of
the ones calculated in this Chapter.

In conclusion, we have presented an extension of the wave description of spherical aber-
ration, introducing a term that was previously overlooked. Furthermore, we have tried to
reconcile results from the ray model presented in Chapter 4 and wave models presented in
Chapter 5 and ref. [62]. We could link both models using the cavity length reduction needed
to preserve frequency-degeneracy beyond paraxiality. This attempt was successful only in
the short cavity limit. This somewhat surprising result is not yet fully understood.
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