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CHAPTER 5

Gouy phase of nonparaxial eigenmodes in a folded resonator

We study the effect of nonparaxiality in a folded resonator by accurate measurements of
the Gouy phase, as function of the mode number for mode numbers up to 1500. Our exper-
imental method is based upon tuning the resonator close to a frequency-degenerate point.
The Gouy phase shows a nonparaxial behavior that is much stronger in the folding-plane
than in the perpendicular plane. Agreement with ray-tracing simulations is established
and a link with aberration theory is made.

T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. A 21,
1689-1693 (2004).
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5. Gouy phase of nonparaxial eigenmodes in a folded resonator

5.1 Introduction
Our interest is in the spectrum of a folded (3-mirror) optical resonator; this is stimulated by
the fact that Dingjan et al. [55] have recently found a signature of wave chaos in such a res-
onator. Generally, to obtain wave chaos, a minimum requirement is that the wave equation
describing the system is nonseparable. This can be achieved by making the numerical aper-
ture of the resonator relatively large, i.e., going beyond the paraxial regime. Since in this
regime aberrations occur, it is natural to look for a connection between the basic concept of a
paraxial resonator, namely its Gouy phase, and optical aberration theory. In the present Chap-
ter, we make this connection by extending the concept of the Gouy phase, which is essentially
a paraxial concept, into the nonparaxial domain where optical aberrations form the more nat-
ural concept. Our approach is mainly experimental; it is based on accurate measurements of
the Gouy phase, being the diffraction-induced phase delay of a finite-diameter focused beam
as compared to a plane wave. By measuring this phase difference for transverse modes up
to very high mode numbers (beyond paraxiality), we can obtain quantitative information on
the optical aberrations in the cavity. In principle, a connection with standard lens aberration
theory can be made by realizing that the optical cavity (a folded one in our case) is equivalent
to a periodic lens guide [12]. However, this comparison is hampered by the fact that we deal
with a highly unusual series of lenses as shown in Fig. 5.8b below (periodic; relatively large
separations; strongly astigmatic elements), which does not appear in the literature on lens
aberrations.

In Section 5.2, we introduce the theory of the Gouy phase. The experiment is described
in Section 5.3 and the experimental results are discussed in Section 5.4. In Section 5.5,
we present ray-tracing calculations and compare them with the experimental results. The
results are explained using aberration theory in Section 5.6 and we summarize our work in
Section 5.7.

5.2 Gouy phase theory
The Gouy phase is an essential ray- and wave-property of optical resonators [12, 21, 46]; it
plays an important role in determining the position and slope of the intra-cavity rays and the
spectral properties of the modes. These modes can be chosen as Hermite-Gaussian eigen-
modes with eigenfrequencies

νq,nm =
c

2L

[
q+(m+n+1)

θ0

2π

]
, (5.1)

where θ0 is the Gouy phase, L the length of the cavity and q,n and m are the longitudinal and
transversal mode numbers, respectively. Throughout this Chapter, we choose n = 0 as we
excite in the experiment discussed below only a set of 1-dimensional modes. The longitudinal
mode spacing is called the free spectral range: ΔνFSR = c/2L. Frequency-degeneracy occurs
when the Gouy phase is equal to a rational fraction of 2π , θ0 = 2πK/N. In the ray picture,
N longitudinal round-trips are then needed before the ray returns on itself [21], and K is the
number of transverse “round-trips” an orbit makes before closing; in all our experiments, we
use a resonator configuration that yields K = 1. The frequency-degenerate eigenfrequencies
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Figure 5.1: The folded 3-mirror resonator and its orientation.

in the spectrum are thus

νq,m0 =
c

2LN
[Nq+(m+1)] , (5.2)

which implies that when we raise m by N and at the same time lower q by 1 that νq,m and
νq−1,m+N are the same. The spectrum collapses into N “clumps” of modes.

For the fundamental Gaussian mode, the Gouy phase θ0 is defined as the round-trip phase
delay ψ0 between this mode and a plane wave. Higher-order TEMm0 modes experience a
larger phase delay ψm as compared to the reference plane wave; in the paraxial regime, we
have simply ψm ≡ (m+1)θ0 [12]. In the nonparaxial regime, we can similarly define an m-
dependent Gouy phase θm via θm = (ψm−ψ0)/m. Any m-dependence of θm, i.e., any change
in Gouy phase as a function of the mode number, is equivalent to the presence of aberrations
with respect to paraxiality.

Next, we consider a folded 3-mirror resonator, with a folding angle of, e.g., 90◦, and a
spherical folding mirror (Fig. 5.1); note that when using a planar folding mirror, the folded 3-
mirror cavity is trivially equivalent with a two-mirror cavity. Already in the paraxial regime,
the effective power of the folding mirror in the xz-principal plane is different from the ef-
fective power in the y-principal plane. This trivial form of astigmatism causes that two Gouy
phases are needed to describe the resonator. The same degeneracy N requires different lengths
of the resonator in the xz-principal plane and the y-principal plane.

In the nonparaxial regime, the folding mirror affects the magnitude of the aberrations in
both planes of the folded resonator. The modes in the y-principal plane will hardly feel the
aberrations of the folding mirror. In contrast, the modes in the xz-principal plane, will undergo
the full effect of the aberrations introduced by the folding mirror; these will be stronger than
in the case of a two-mirror resonator.

Since we operate close to frequency-degeneracy, the Gouy phase θm for an arbitrary mode
m (integer multiple of N) can be written as

θm =
2π
N

+Δθm , (5.3)

where θm is the Gouy phase and Δθm parametrizes how close the spectrum is to degeneracy.
A generalization of Eq. 5.1, along the lines described above, using θm = (ψm−ψ0)/m, shows
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5. Gouy phase of nonparaxial eigenmodes in a folded resonator

that Δθm can experimentally be found from

Δθm =
2π

ΔνFSR

Δνm

m
, (5.4)

where m is the transverse mode number, Δνm is the frequency difference of the fundamental
mode and mode m, and ΔνFSR is the free spectral range.

5.3 Experiment
Our folded optical resonator (Fig. 5.1) consists of three highly reflective mirrors (nominal
specification R > 99.995%). The folding angle is 90◦, the radii of curvature of mirror M1 and
MF are 1 m, mirror M2 is planar, and all mirrors have a diameter of 2.5 cm. Fig. 5.2 shows the
complete experimental setup. The length of arm A2 is 1.2 cm, the length of arm A1 is variable.
We probe the transmission of the resonator with a beam at a wavelength of 532 nm, produced
by a frequency-doubled single-mode Nd:YAG laser. The beam is sent to the resonator via lens
L1, enters the cavity through mirror M1 (here the beam diameter is ∼ 0.5 mm) and excites
the Hermite-Gaussian modes of the cavity. The focal length of lens L1 equals distance A3,
so that the (dotted) beam is injected parallel to the optical axis, independent of the rotation-
angle of mirror M3. This allows us to vary Δr, the off-axis position of injection on mirror M1,
independent of the angle of injection. We inject in the xz-principal plane or in the y-principal
plane in order to excite only 1-dimensional TEMm0 or TEM0m modes. Exciting a limited set
of modes makes labelling of the modes easier and allows us to measure closer to degeneracy.
The spectrum is obtained from the spatially integrated throughput as a function of the cavity
length, by scanning the position of mirror M1 with a piezo-element. Judging from these
spectra, we estimate the finesse of the cavity as ∼ 5600 for low-order modes and ∼ 5000 for
high-order modes. This is considerably smaller than the value of the finesse allowed by the
mirror reflectivities (> 99.995%). We attribute this discrepancy mainly to scattering due to
polishing errors of the mirrors.

The length L of the cavity is varied by changing the length of arm A1; this length is
chosen such that the spectrum is almost N-fold degenerate resulting in N “clumps” of modes
(see Fig. 5.3). Fig. 5.4 shows a detail of the modes within the “fundamental” clump. The
mode number difference of subsequent modes is N. The transverse mode numbers of the
modes within this clump are thus labelled m = lN, where l = 0,1,2,etc.

The closeness to degeneracy is illustrated by the typical distance between subsequent
peaks ΔνN/ΔνFSR ≈ 1×10−3, where ΔνN is the distance between mode m = 0 and mode N
and ΔνFSR is a free spectral range. Higher-order modes are therefore still relatively close to
the m = 0 mode so that the effect of vibrations on the time scale of the piezo scan is limited
(we scan typically over ΔνFSR in ∼ 22 ms). Specifically, for a frequency range ΔνFSR/16 (m≈
500)), the measured vibration-induced fluctuations in Δν/ΔνFSR are of the order 3× 10−4.
This is acceptable as in our range of mode numbers (m up to 1500) the modes can still be
labelled uniquely, (3×10−4 < 1×10−3).

To find the Gouy phase as a function of mode number, a set of 15−25 spectra is measured
for increasing off-axis position of injection, Δr. Every time the off-axis distance of the beam
is increased, a different clump of peaks containing higher-order Hermite-Gaussian modes is
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Figure 5.2: Overview of the setup, where the mirrors M1, MF and M2 form the folded
resonator. A1, A2: lengths of resonator arms, PM: photomultiplier, L1, L2: lenses, B1,
B2: beamsplitters, M3, M4: mirrors. The solid line indicates the fixed beam which
excites the fundamental mode. The position of the other (dotted) beam on mirror M1
can be increased by rotating M3 to excite higher-order modes.

excited. Starting from the on-axis position, the position of injection is increased stepwise
such that the spectra of successive measurements overlap. Finally, a second beam is always
injected into the resonator to excite only the fundamental (m = 0) mode. The presence of
this reference mode, in the set of overlapping spectra, allows for a unique labelling up to
transverse mode numbers m ≈ 1500.

5.4 Experimental results
For every transverse mode m, the frequency difference Δνm is measured and this is trans-
formed to a round-trip Gouy phase by using Eq. 5.4. For several degenerate configurations
(N = 7, 8, and 9), the change of the Gouy phase as a function of the mode number has thus
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Figure 5.3: Spectrum for an almost 8-fold degenerate cavity configuration. The modes
collapse into 8 clumps of peaks. The two highest peaks are due to the fundamental
mode, which serves as a reference.
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Figure 5.4: Spectral detail of the fundamental mode and the nearest clump of peaks.
The almost 8-fold degeneracy makes the difference in mode number between two subse-
quent modes equal to 8. Δνm is the distance between the fundamental mode m = 0 and
mode m.
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Figure 5.5: Δθm vs. mode number m for various values of N. The upper three curves
are measured in the xz-principal plane, the lower ones in the y-principal plane. For easy
comparison all curves have been vertically shifted by an arbitrary amount to bring them
closer to each other; the N− indicates an originally negative valued Δθm.

been determined. Fig. 5.5 shows the measured value of Δθm/2π as a function of the trans-
verse mode number m. The three top curves show this dependence for displacements of the
injected beam in the xz-principal plane (for orientation see Fig. 5.1), at three different but
fixed cavity lengths, corresponding to degeneracy near N = 7, somewhat below 7 (denoted
7−) and near N = 8. The three bottom curves show this dependence for displacements in
the y-principal plane for N � 8,9−and 9. As only the change of Δθm with m is important, a
suitable vertical offset has been added to the various curves to allow better comparison.

The change of Δθm with m is a nonparaxial effect that corresponds with the onset of
aberrations. For N = 8 in the xz-principal plane, Δθm/2π increases with 0.7× 10−4 when
going from for low m-values to m ≈ 1200. In this region, Δθm/2π changes in the y-principal
plane with only 0.1×10−4. We thus find almost an order of magnitude stronger aberrations
in the xz-principal plane than in the y-principal plane. We attribute this key result to the fact
that modes in the y-principal plane will hardly feel the aberrations due to the folding mirror,
M2, in contrast to the modes in the xz-principal plane.

Varying the degree of degeneracy, N changes the position and angle of incidence at which
the rays hit the optical elements. On this basis, one could expect that the change of the Gouy
phase depends on N. More detailed inspection of Fig. 5.5 shows first of all that the Gouy
phase is practically independent of the odd/even nature of the number of hit points, N, on
the mirrors. Secondly, Δθm shows a strange wiggling for the lower-order mode numbers,
m = 0 up to 150. A likely explanation for this phenomenon is in the surface polishing errors
of the mirrors [56]. These imperfections are expected to affect the lower-order modes much
stronger than the higher-order ones, as the latter have larger transverse mode sizes and should
thus smooth out local errors in the shape of the mirrors.

In order to enable a comparison of the experiment with ray-tracing simulations (see Sec-
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Figure 5.6: The square root of the mode number vs. the off-axis distance of injection
on mirror M1.

tion 5.5), we have measured the relation between the dominantly excited mode number and
the off-axis injection distance. The experimental result for N = 8 is shown in Fig. 5.6, where
the negative/positive square roots of the mode numbers refer to injection on the right/left
side of the marker mode on mirror M1. The linear fit was used to determine both the slope
and the Δx = 0 point. Paraxial theory predicts that the mode number changes approximately
quadratically with the ratio of the off-axis distance and the waist of the fundamental Gaussian
mode w0: m ∼ (Δr/w0)2 [12]. The fitted curve shows that this paraxial dependence is not
yet violated in our folded cavity; this is in accordance with the results of Laabs [57] for a
two-mirror cavity.

5.5 Comparison with ray tracing
Since the Gouy phase is also a ray-optical property, it can be calculated by means of a ray-
tracing program. We did this for a ray that is injected parallel to the optical axis from a
certain off-axis distance Δr through the folded resonator, configured close to degeneracy N.
The positions of the ray on the first (injection) mirror are calculated exactly for n = 104

round-trips. As shown in Herriot et al. [21] the hit points xn on the mirror are given by

xn = Δr cos[nθ(Δr)] , (5.5)

where Δr is the off-axis distance of injection. This allows us to calculate the Gouy phase
θ(Δr) from the 104 points xn, with an accuracy of approximately 10−6 rad.

The results of calculations for an N = 8 and 9 three-mirror cavity are depicted in Fig. 5.7,
which displays Δθ/2π as a function of the off-axis distance of injection, Δr. The calculations
show that the Gouy phase is not a constant but increases with Δr. Furthermore, the Gouy
phase changes much stronger for increasing displacements in the xz-principal plane than in
the y-principal plane; we compare this now with the experimental results.
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Figure 5.7: Ray-tracing calculations of Δθ vs. the square of the off-axis distance (xz-
principal plane) of injection for N = 8 (triangles) and 9 (circles) and in the y-principal
plane for N = 9 (squares).

For injection in the xz-principal plane (Δr becomes Δx) the calculated slope Δθm/(Δx)2

for N = 8 is 1.97× 10−5 rad/mm2. To compare this to the experiment we take the linear
fit of the measured data for N = 8 (Fig. 5.5) which is converted from mode number to off-
axis distance of injection, using Fig. 5.6. This results in an experimental slope Δθm/(Δx)2 =
2.00×10−5 rad/mm2. The excellent agreement between theory and experiment validates our
mapping from ray to wave dynamics.

To put these numbers in perspective, we consider the specific case of injection at Δx =
5 mm, which excites a group of modes around mode number m = 1500. From the slope
given above, this produces a (nonparaxial) change of the Gouy phase Δθm by ∼ 5×10−4 rad
as compared to the paraxial values θ0. Although this number is small, it can be measured
relatively easily in our system because the shift in resonance frequency of a mode is propor-
tional to mΔθm ≈ 0.75 rad ≈ 0.12 ΔνFSR in the considered case. This is easily observable in
our high-finesse cavity.

For a better understanding of the strength of the aberrations in the folded resonator, we
have also studied a two-mirror cavity, both experimentally and theoretically. In this case, we
choose two mirror radii of 1 m and a cavity length L of ∼ 8 cm, which corresponds to a degen-
eracy near N = 8. Due to the absence of astigmatism, we observed a strong coupling between
the horizontal and vertical modes, which made the measurement less accurate. Experimental
results show that the change in Δθm/2π is less than 3×10−5 up to m ≈ 1000. The calculation
of the Gouy phase, which, in the present case, is more accurate than its measurement, shows
a small increase of the Gouy phase for increasing mode numbers. The slope of the calculated
Gouy phase as a function of the off-axis distance on the first mirror is 1.3×10−6 rad/mm2,
which is equivalent to Δθm/2π = 5×10−6 for m ≈ 1000.
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5. Gouy phase of nonparaxial eigenmodes in a folded resonator

5.6 Comparison with aberration theory

In a general optical system with a given object plane, the number of third-order aberrations
depends on the symmetry of the system and is at most 20 [58]. For a rotationally symmetric
system, like a cavity consisting of two spherical mirrors, the number of independent aberra-
tion coefficients is reduced to only 5, also known as the Seidel aberrations, being: spherical
aberration, coma, astigmatism, curvature of field and distortion (see a.o., [14]). An aberra-
tion can be expressed in two ways: as a deviation from a reference wave front in the exit
pupil (wave aberration) or as a displacement from the image point in the image plane (ray
aberration). A ray-aberration is the spatial derivative of the corresponding wave-aberration;
the wave aberrations are fourth-order and the ray-aberrations are third-order in the spatial
coordinates (see a.o. [59]). In the literature, an aberration is usually indicated by the order of
the ray-aberration.

The comparison of our experimental results with standard optical aberration theory is
hampered by the fact that aberrations in a round-trip cavity, or in the equivalent periodic lens
guide, are hardly discussed in the literature. Furthermore, our 3-mirror folded (not to be
confused with the terminology “folded/unfolded” in the context of equivalent periodic lens
guides [12]) resonator does not fall in the usual category of rotational symmetric systems, for
which the standard Seidel aberrations apply. In this largely unchartered territory, we will rely
on some general arguments, which are necessarily of a qualitative nature.

To link the observed nonparaxial behavior with aberration theory, we consider the two
principal planes of the equivalent lensguide, one that is orthogonal to the folded axis (Fig. 5.8a)
and one that contains the folded axis (Fig. 5.8b). In the former case (y-principal plane), the
mirror symmetry, demonstrated in Fig. 5.8a, makes that the lowest nonvanishing aberrations
are the usual third-order aberrations. In fact, we find the magnitude of the aberrations in the
y-principal plane of the folded resonator to be of the same order for the folded resonator as for
a regular two-mirror resonator. However, this symmetry is absent in the xz-principal plane.
Fig. 5.8b shows how the folding mirror can be represented in corresponding lens guide by
alternating forward- and backward-tilted lenses. The aberrations in the xz-principal plane are
therefore potentially much stronger as they also contain second-order terms [60, 61].

However, due to the periodic nature of our (round-trip) optical system, one can show,
that these second-order terms average out. To perform this averaging, we should add the
aberrations over consecutive round-trips, preferably by expressing them in special “scaled
variables” that are invariant under paraxial propagation [14]. For ray-aberrations, this rewrite
comprises a multiplication with oscillating terms of the form cos(nθ) and sin(nθ) (see Eq. 5.5).
This leads to the mentioned cancellation of second-order (ray-)aberrations. From the perspec-
tive of wave-aberrations, we have to add simply the folding-induced aberrations in the optical
wavefront. As the associated wave aberrations are third-order in the ray coordinates and as
these coordinates oscillate periodically, the odd-order wave aberrations are just as often pos-
itive as negative and will cancel as well. This leads us to the surprising conclusion that also
in the xz-principal plane we are left with the usual third-order (Seidel) aberrations. The mag-
nitude of these terms is observed to be about a factor 10 larger than in the y-principal plane
(cf. Fig. 5.7). This increased magnitude results from the lenses being tilted in the xz-principal
plane and is apparently caused by the off-axis aberrations of the individual lenses in Fig. 5.8b.

The observed linear dependence of Gouy phase on mode number, in the form θm � a +
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Figure 5.8: The equivalent lens guide of a folded 3-mirror resonator in the xz-principal
plane and the y-principal plane for two round-trips.

bm, is consistent with this effectively third-order of the ray aberrations. To appreciate this
statement, one should realize that the phase acquired by a transverse mode m (in comparison
to mode m = 0) is mθm, and that m depends quadratically on the off-axis distance Δr. This
means that the nonparaxial term bm corresponds to a phase change that scales with the fourth
power of Δr. Fourth-order changes in path length of the wave aberrations correspond to the
Seidel aberrations.

The magnitude of the individual Seidel-aberrations of the lens guide in Fig. 5.8 can not
be derived from our measurements or calculations. Only the sum of all Seidel coefficients
is obtained, as they all exhibit the same scaling with ray coordinates after repetitive passage
through the cavity. The magnitude of the unit of the aberrations is expressed as the phase shift
divided by the off-axis distance of injection squared, being, e.g., 2×10−5 rad/mm2 for N = 8.
We note that the observed increase in Gouy phase with the fourth-order off-axis distance is
consistent with the sign and scaling found by Hercher [19].

5.7 Conclusions

We have demonstrated a very accurate method to measure the Gouy phase as a function of
the mode number. For the folded three-mirror cavity, we found that the Gouy phase for the
modes in the xz-principal plane changes is much stronger than its y-plane counterpart. A
connection between the Gouy phase and aberration theory has been established. Effectively,
the aberrations of a folded resonator behave as the Seidel aberrations, in spite of the lack of
rotational symmetry. These results are supported by ray-tracing calculations; all calculations
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are in very good agreement with the measurements.
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