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CHAPTER 4

Resonant trapping of scattered light in a degenerate
resonator

We demonstrate and discuss the formation of an intriguing interference fringe pattern
that is visible in stable resonators at resonator lengths corresponding to a higher-order
frequency-degeneracy. The optical trajectories that form these fringes are described for
arbitrary degeneracy; the fringes can be used to visualize and quantify imaging aberra-
tions of the cavity relative to a cavity consisting of ideal mirrors.

T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, Opt. Comm. 260,
365-371 (2006).
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4. Resonant trapping of scattered light in a degenerate resonator

4.1 Introduction

In textbooks [43, 44], two main types of interference rings are presented: rings of equal
inclination, visible in, e.g., a planar Fabry-Perot, and rings of equal thickness, often called
Newton rings. It is also known that under certain conditions a third type of interference rings
can be observed in the transmission pattern of a multi-transverse-mode Fabry-Perot cavity
with spherical mirrors [19,45,46]. For cavity lengths close to frequency-degeneracy rings are
observed that are formed by interference in closed optical paths and are resonantly trapped;
we dub these “rings of equal (multiple) round-trip path length”.

Such interferograms of Fabry-Perot cavities have already been demonstrated in the six-
ties [19, 45, 46], but only for special cases and generally only for plane-wave illumination.
Concentric cavities, which reproduce the optical field on a single round-trip, are discussed by
Arnaud [47]. Confocal cavities, which reproduce the field after two round-trips, are discussed
by, a.o., Hercher [19] and Bradley and Mitchell [45]. Cavities with other, more general, de-
generacies have, however, not been studied to our knowledge.

In this Chapter, we generalize the description of the interferograms for the confocal res-
onator to resonators, which reproduce the optical field after an arbitrary integer number of
round-trips (arbitrary degeneracy), including the effect of spherical aberration. We explain
the observed interference fringes with a similar approach as Bohr used to explain the discrete
levels in atomic systems [48]: we use a ray description to find the optical path (Fermat’s
principle) and impose the wave criterium that the N-fold round-trip path length should equal
a multiple wavelengths.

As an example, we have chosen (arbitrarily) a 6-fold degeneracy cavity. As compared
to the earlier work [19, 45, 46], where plane wave, i.e., wide-beam, illumination is used, we
use localized illumination with a narrow beam. Although we dominantly excite the TEM00-
mode, we still observe, surprisingly, weak interference fringes spread over the full mirror
aperture. This is due to scattering at the mirrors. This indirect illumination offers a crucial
advantage over wide-beam illumination as the resulting fringe pattern is stationary and hardly
sensitive to variations in the cavity length. We demonstrate how the fringe pattern can be used
to visualize and quantify the imaging aberrations of the cavity. In particular, we demonstrate
how the use of higher-order degeneracies allows one to increase the sensitivity for global
deformations, like astigmatism, up to accuracies of λ/1000.

In Section 4.2, we introduce the experiment and describe the formation of the fringe
pattern. A generalization of the ray description to arbitrary degeneracy is discussed in Sec-
tion 4.3. In Section 4.4, we present an application of the interference patterns for very accu-
rate measurement of cavity aberrations. We also give a quantitative description of the rela-
tion between the observed interference patterns and mirror deviations from the ideal spherical
form. In Section 4.5, we propose a potential application. We summarize our work in Sec-
tion 4.6.

4.2 Experimental setup and fringe formation

Our optical resonator (see Fig. 4.1) consists of two highly reflective mirrors (nominal specifi-
cation R > 99.8% and measured finesse F ≈ 1500) with a radius of curvature of 50 cm and a
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4.2 Experimental setup and fringe formation

diameter of 5 cm. We probe the resonator with a weakly focussed beam of 1.7 mm diameter
at a wavelength of 532 nm, produced by a frequency-doubled single-mode Nd:YAG laser,
which dominantly excites the TEM00-mode. We use a piezo element to scan (1 s period) the
cavity length over a few wavelengths and average over the cavity resonances. One mirror is
placed on a high-resolution mechanical translation stage to set the overall cavity length.

L

M1 M2

LASER
(532 nm)

CCD

y

x

Figure 4.1: A laserbeam is injected into a symmetric resonator of length L, comprising
mirrors M1 and M2 of equal radius R. The fringe pattern formed inside the resonator
is imaged by a lens onto a CCD-camera. The central ray is obscured to prevent over-
exposure of the CCD-camera.

As frequency-degeneracy plays a crucial role in our experiment, we will first explain
this concept on the basis of the Gouy phase. In a wave-optical description, the Gouy phase
θ0 is the round-trip phase delay between the fundamental Hermite Gaussian (HG)-mode as
compared to a reference plane wave; higher-order modes (TEMmn) experience a phase delay
of (m + n + 1)θ0 [12]. At frequency-degeneracy the Gouy phase is by definition a ratio-
nal fraction of 2π , θ0 = 2πK/N, with as extreme cases the planar (K = 0) and concentric
(K = N) cavities that operate at the edge of stability. In the ray-optical description, N is
the number of longitudinal round-trips that is needed before the ray returns on itself [49],
while K represents the number of transverse “oscillations” an orbit makes before closing.
For a symmetric cavity, the cavity length L, for which these degenerate points occur, follows
from L = R[1− cos(θ0/2)], where R is the radius of curvature of the mirrors. In this Chap-
ter, we (arbitrarily) chose the degeneracy K/N = 1/6, which corresponds to a cavity length
L = 6.7 cm at R = 50 cm. Contrary to the confocal and concentric cavities studied previ-
ously [19, 45, 46], our cavity is not at the border of the stability region but well inside [12].

The weak interference fringes, alluded to in Section 4.1, are only observed around fre-
quency-degenerate cavity lengths, where the eigenfrequencies of several eigenmodes overlap.
After blocking the on-axis injection beam with a thin obscuration behind the cavity this fringe
pattern is imaged by a lens onto a CCD-camera. A typical interference pattern, as observed
for a cavity length slightly longer than this cavity length, is shown in Fig. 4.2a. The fringes
are (almost) circular and the aperture of the mirror is clearly visible. Another pattern, typical
for cavities slightly shorter than exact degeneracy, is shown in Fig. 4.2b. We attribute the
fringes in both these patterns to light that is scattered at the (imperfect) mirror surface out of
the injected fundamental mode [50] and resonantly trapped inside the cavity for some specific
scattering angles, but not for others.

The advantage of the use of localized over wide-beam illumination is that the fringe pat-
tern is very robust against vibrations; large amounts of scattered light are generated only
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4. Resonant trapping of scattered light in a degenerate resonator

a. b.

Figure 4.2: (a) Interference pattern for a cavity tuned slightly longer (ε = 50 μm)
than an exact degeneracy of K/N = 1/6. The imaged mirror aperture is 5 cm. (b)
Interference pattern for a cavity tuned slightly shorter (ε = −80 μm) than an exact
degeneracy of K/N = 1/6.

when the cavity length corresponds exactly to a resonance of the fundamental mode. Piezo-
scanning of the cavity length leads then to a stroboscopic effect and offers a stationary time-
averaged interference pattern. This is contrary to the case of wide-beam illumination which
is much more sensitive to vibrations. In that case, there is resonant light present in the cavity
for every cavity length: sub-wavelength variations in the cavity length readily wash out the
interference pattern, as they lead to shifts of the interference pattern over full fringe distances.

Fig. 4.3 gives a clear demonstration of the buildup of the interference fringes in Fig. 4.2a
and b. For clarity, we injected at degeneracy slightly off-axis, which is indicated in Fig. 4.3
by the six bright spots. The piezo, which drives one mirror, is scanned very slowly (100 s
period), whereas Fig. 4.2a and b are the result of fast scanning through many resonances.
The slow scanning allows us to capture the interference patterns for a specific (almost fixed)
cavity length and helps us to visualize the build up of the interference fringes around a single
resonance.

Part of the light in the six hit points is scattered into elliptical periodic 2D-orbits (see
Fig. 4.3) for which only one scatter event is needed. The turning points or vertices of these
elliptical orbits form the interference fringes such as shown in Fig. 4.2a and b. The position
of the turning points, or equivalently the length of the long axis of the ellipses, is determined
by the condition for constructive interference. The total path length of a scatter orbit through
the resonator (see Fig. 4.4), of which the hit points on the mirrors are visible as elliptical
segments on the mirrors, then has to be a multiple of λ . The ellipses that form the next
interference fringe have a total path length which is one λ longer (outside Fig. 4.3). The
short axis of the ellipses is determined by the distance between the injection spots out of
which the light is scattered.

In the rest of this Chapter, we assume on-axis injection, which means that the six injection
spots, which were assumed before, now overlap and the scatter ellipses squeeze thus into
lines. The fringes are then formed by series of the vertices of in plane 1D-orbits. The number
of ellipses and the orientation of the ellipses is determined by the precise spatial distribution
of the scatter.
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Figure 4.3: (a) Observation and (b) schematic representation of the buildup of one
fringe (m = 1) on the mirror under slow-scan imaging. The 6 bright spots (numbered)
are a result of off-axis injection into a N = 6 degenerate cavity. The ellipses are formed
by light that is scattered out of the six hit points into periodic orbits. Only the ellipses
that interfere constructively after one round-trip (total path length equals λ ) are visible.
The turning points of the scatter ellipses are observed as the fringe (dotted circle), which
has a diameter of 1 cm.

Figure 4.4: Ray-trace of one periodic orbit through a two-mirror resonator with a
degeneracy of N = 6 forming a 2D-ellipse on the mirrors. The hit points of the slightly
off-axis injected beam on the mirrors are represented by crosses and the rays in the back
are dotted for clarity. The turning points of many of these ellipsis form a fringe in the
interference pattern.
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4. Resonant trapping of scattered light in a degenerate resonator

The buildup of the fringes out of elliptical orbits is confirmed by another experiment,
where we inserted from one side of the resonator a thin obscuration into the cavity. As shown
in Fig. 4.5, we observe not one but two shadows in the fringe pattern, one directly behind
the obscuration and the other symmetrically around the optical axis. The obscuration blocks
the light scattered out of the injection beam, and obscures a number of ellipses formed out of
scattered light. As an ellipse is mirror symmetric around the optical axis, the obscuration of
these ellipses appears in the interference fringe patters as two shadows.

Figure 4.5: Interference patterns at ε = +50 μm. The vertical shadow is the obscura-
tion outside the resonator blocking the injection beam. The two horizontal shadows are
due to a single obscuration inside the resonator.

4.3 Calculation of “average round-trip path length”
A description of the total round-trip path length in a cavity operating close to an arbitrary
frequency-degeneracy (including the spherical aberration), other than for the confocal and
concentric case, is missing in the literature. In this Section, we will present such expression.
We will use a perturbative approach, where we start with the well-known “ABCD-matrix”
formalism [12] and add the spherical aberration in a perturbative way by calculating the
length of a closed round-trip beyond the second-order expression. We will present a 1D
analysis, which properly describes the interference fringes, formed out of the 1D orbits.

For a symmetric two-mirror resonator, we assume that the hit points on the (ideal spher-
ical) mirrors are given by the paraxial form xn = ρ cos(nθ0 +φ0) [49], where θ0 = 2πK/N
is the Gouy phase, ρ is the maximum transverse displacement, and φ0 determines the phase
of the first hit point (the φ0 values on the two mirrors differ by θ0/2). We then calculate the
single transit path length Ln,n+1 between the mirror hit points xn and xn+1 up to fourth order
in these transverse displacement. Finally, we average over all xn values to obtain the average
path length

1
2N

Ltot(ρ) = (Lres + ε)−Bε
ρ2

R2 −A
ρ4

R3 , (4.1)
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4.3 Calculation of “average round-trip path length”

where ε = L−Lres is the length detuning away from exact 1/N-degeneracy and Lres = R[1−
cos(θ0/2)]. Note that by Fermat’s principle the round-trip path length of the physical ray
is approximately equal to the length of a nearby closed ray for which the hit points on the
mirrors are given by equation mentioned above. The detuning coefficient B and the spherical
aberration coefficient A are simple functions of the Gouy phase

A =
1+ cos(θ0/2)

32[1− cos(θ0/2)]
=

2R−Lres

32Lres
and (4.2)

B =
1
2

[
1

1− cos(θ0/2)

]
=

R
2Lres

. (4.3)

Both coefficients are always positive as Lres < 2R for stable resonators and the off-axis path
length Ltot(ρ) is thus always smaller than the on-axis path length Ltot(0). The term containing
B is the paraxial term (second order in ρ) and the term containing A is the nonparaxial term
(fourth order in ρ), which makes Ltot a nonparaxial expression.

The above expressions for A and B are only valid for degeneracies with N ≥ 3, for which
the cycle phase φ0 drops out of the averaging 〈Ln,n+1〉. For the confocal case (N = 2), the
round-trip path length does depend on the cycle phase φ0 [19, 46]. As a result, the “V-type”-
orbit has no ρ4-term whereas the “bowtie”-orbit has an A-coefficient that is twice the value of
Eq. 4.2, i.e., A = 1/16. For N = 2, our general result, Eq. 4.1, thus reduces to the N = 2 result
of Hercher [19] and Ramsay and Degnan [46], after substitution of the extreme transverse
displacements xm = ρ cos(π/4) = ρ/

√
2.

Fringes appear on the mirrors when the scattered light rays interfere constructively, i.e.,
when the round-trip path length Ltot equals a multiple of a wavelength nλ (n is an integer).
For ρ = 0, we find from Eq. 4.1 the on-axis interference condition: 2N(Lres + ε) = n0λ ,
which gives us for ρ �= 0

−2N

(
Bε

ρ2

R2 +A
ρ4

R3

)
= (n−n0)λ . (4.4)

Using m = n0 −n, the fringe radii for various ε can be calculated by rewriting Eq. 4.4

ρ2
m = R

B
2A

(
−ε ±

√
ε2 +mλ2R

A
B2

)
. (4.5)

For ε > 0, ρm has only one solution and only for m > 0. For ε < 0, Eq. 4.5 has one solution
for every m > 0 and maximally two solutions for m < 0. In the regime where ρ has two
solutions, two fringes in the interference pattern fulfill the same interference condition and
have the same total path length.

For our specific N = 6-configuration, we have calculated the fringe radii for m ∈ [−6,10]
on the interval ε ∈ [−0.15,0.17] mm using Eq. 4.5, indicated by the solid lines in Fig. 4.6.
For ε > 0, it is obvious that every m has only one solution and for ε < 0, m can have two
solutions. We also determined the fringe radii as a function of ε experimentally from inter-
ference patterns such as shown in Figs. 4.2a and 4.2b, represented by the dots in Fig. 4.6. The
excellent agreement of the calculations and measurements confirms our model.
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Figure 4.6: The fringe radius ρ as a function of the distance ε from exact 1/6-
degeneracy. The solid lines are the calculated fringe radii and the dots are the measured
fringe radii. There is no adjustable parameter except from a small scaling (1.14×) of the
vertical axis to correct for the sharp imaging outside the resonator due to defocussing
of the resonator. The numbers in the figure indicate the fringe numbers.

We noticed that the experimental fringes are imaged sharply in a plane behind the cavity
and not on the mirror where the theoretical fringe radii are calculated. The sharp imaging
outside the resonator occurs as the rays (of the physical path) do not fully coincide, due to
intrinsic defocussing of the resonator as described in Eq. 4.1; the fringes are localized where
the rays intersect, in our case outside the resonator. That a sharp image of the fringes is not
found in the center of the resonator but away from this point has already been mentioned by
Bradley et al. [45]. We corrected the fringe radii for the diffraction over this distance for a
proper comparison (see discussion around Fig. 4.7).

4.4 Aberrations

The transmission interferogram of a cavity composed of two nonspherical mirrors will ob-
viously deviate from that observed or calculated for a cavity with two spherical mirrors.
The difference between these interferograms is a sensitive measure for the differences be-
tween their mirror height profiles as all mirrors are hit N times, where N can be very large.
By comparing the observed interferogram with that expected for ideal spherical mirrors
(Eq. 4.1), one can easily deduce the position-dependent change in N-fold round-trip path
length ΔLtot[ρ cos(θ0/2),ρ sin(θ0/2)] via the criterium that for every extra fringe the total
path length changes by λ . The relation between this ΔLtot-profile and the actual height pro-
files hi(�r), by which the two mirrors deviate from their ideal spherical reference, is more
complicated due to the zigzag nature of the round-trip path. It involves a summation over all
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4.4 Aberrations

N hit points on each mirror and can be written as

ΔLtot(ρ cosϕ,ρ sinϕ) = 2
N

∑
n=1

h1(xn,yn)+h2(x′n,y
′
n)

≈ 2N
π

∫ ρ

−ρ

h(r cosϕ,r sinϕ)√
ρ2 − r2

dr . (4.6)

The integration in Eq. 4.6 remains 1-dimensional as the hit points of the ellipses on each
mirror lie on a straight line segment through the origin. This holds for excitation with the
fundamental HG-mode only.

The transition from a summation to an integration is valid when the degeneracy N, the
cavity finesse F , and the off-axis distance ρ are all sufficiently large to wash out the depen-
dence on the phase θ0/2 within the transverse oscillations; equivalent to the washing out of
the intermediate hit points on the ellipses. This is already the case for the ellipses forming
the first fringe (m = 1) at exact degeneracy (ε = 0) as shown in Fig. 4.3.

Eq. 4.6 gives the formal link between the combined mirror height profile h(�r) = h1(�r)+
h2(�r) and the deviation ΔLtot(�ρ), deduced by comparing the observed interferogram with that
expected for ideal spherical mirrors. The inversion of this equation is simple in a Taylor
expansion (see below). The integral form already provides for a few basic rules: (i) Only
the symmetric part of the function h(�r) survives the (symmetric) integration from r = −ρ
to ρ . Any local bump or dip positioned at ρ0 will show up both at r = ρ0 and at r = −ρ0
as the function Ltot(�ρ) is symmetric in ρ . (ii) The closed round-trip path length Ltot(ρ)
is sensitive only to height variations h(r) at |r| < ρ . The denominator shows that height
variations around |r| ≈ ρ have a large weighting factor, as these are the turning points of the
transverse oscillation. (iii) The sensitivity of Ltot(ρ) to local height variations h(r), depends
on the exact topography of these variations. This sensitivity is better than λ/2 as each mirror
is hit N times during a closed orbit. It is, however, generally smaller than λ/2N as the
integration corresponds to averaging over the full mirror. The λ/2N accuracy is reached only
for global mirror deformation that are noticeable all over the mirror surface. The effects of
global deformations are best evaluated through a Taylor expansion in position coordinates.

As a check on the validity of Eq. 4.6, we will compare two symmetric cavities, one with
spherical mirrors of radii R and the other with mirrors of radii R+ΔR. For this check, we note
that the difference ΔLtot in a N-fold round-trip length can be described by both the total path
length (Eq. 4.1) and the difference in height profile (Eq. 4.6). The mentioned deformation
from mirrors with a radius of curvature of R to R + ΔR is equivalent to a combined mirror
height profile h[r cos(φ),r sin(φ)] = −2× ΔR

2R2 r2. Substitution of Eq. 4.6 yields a path length

change 1
2N ΔLtot(ρ) = − ΔR

2R2 ρ2. Alternatively, we can interpret the difference in radii as an

extra detuning from the (now different) resonance length ε =−ΔR[1−cos(θ0/2)] =−ΔR
R Lres.

Substitution into Eq. 4.1 gives the same path length change as before, which concludes our
check.

The center and the outer region of Fig. 4.2b display almost circular fringes. In the inter-
mediate region (ρ ≈ 1.04 cm) the two patches below and above the injection beam originate
from the birth of a “fourth” fringe, counting from the center. The appearance on only the ver-
tical axis clearly demonstrates the presence of mirror astigmatism. The advantage of ε < 0 is
that the path length of the N-fold round-trip first increases and then decreases as a function
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4. Resonant trapping of scattered light in a degenerate resonator

of the radial distance ρ (see Fig. 4.5), which creates a pattern with a relatively large radial
fringe spacing.

To quantify the relation between the interference pattern and the astigmatism of the mir-
rors, we take a closer look at the labelling of the fringes. The radial dependence of the
round-trip path length makes the labelling of the fringes in the vertical direction of Fig. 4.2b,
for increasing radial distance: n = −1,−2,−3,−4,−4,−3,−2,−1,0,1, . . .. The patches of
light labelled with n = −4 are thus clamped between the two fringes n = −3.

The occurrence of these patches shows that, for a radial distance ρ = 1.70 cm off-axis,
the difference in the corresponding total round-trip path length is definitely less than two
fringes ( 1

2N (Ltot,x − Ltot,y) < 2λ/12). This results in a first estimate of the astigmatism of
ΔR/R < 6.1×10−4.

We can also determine the astigmatism of the mirrors from the closed inner fringes. The
ellipticity of the fringes indicates that the same Ltot is found for slightly different off-axis
distances ρ . In Fig. 4.2b the ellipticity of fringe n = −2 is demonstrated by the tangent
inner dotted circle. As the radii of the tangent inner and outer circles differ (6±2)% and the
radii of the fringes n = −2 and n = −3 differ by 30% we conclude that the astigmatism at
ρ ≈ 0.91 cm corresponds to a average height difference of [(6±2)/30]λ/2N = (9±3) nm
or a relative difference in radii of ΔR/R = (2.0±0.7)×10−4.

The best estimate for the astigmatism is found from a fit of the experimental fringe
positions in Fig. 4.7 by m = aρ4 − bρ2 similar to Eq. 4.1, where a = 2NA/λR3 and b =
2NBε/λR2. By taking the spherical aberration rotationally symmetric over the mirror we ob-
tain identical fit values ax = ay = 4.80×107. The fitted b is 2.61×104 and 2.87×104 in the x-
and the y-direction, respectively. From these fits we find that ΔR/R = (2.30±0.08)×10−4,
so that the radii of curvature differ by Rx −Ry = (115± 4) μm for R = 50 cm. This corre-
sponds to a height difference at ρ = 1.7 cm of (67±2) nm or an average height difference of
0.75×λ/12 fringe spacings.
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Figure 4.7: The fringe number as a function of the fringe radius. The upper and lower
curve correspond to cuts along the “long” and “short” symmetry axes of Fig. 4.2b.

It is easy to increase the number of fringes even further by going to a higher-order de-
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generacy. A relatively small change in the cavity length (6.70 to 6.28 cm) in fact suffices to
go from the K/N = 1/6 degeneracy to the mK/(mN + 1) = 5/31 and thereby increase the
number of fringes by roughly an integer factor m = 5. The resulting fringe pattern is shown
in Fig. 4.8, where the cavity is tuned ε ≈ −93 μm away from the degenerate point. The
number of fringes in Fig. 4.8 is indeed roughly 5 times as large as in Fig. 4.2 and immedi-
ately shows the enhanced sensitivity to average height variations, i.e., ΔL/N = λ/62 (an extra
fringe appears for every ∼ 9 nm average height variation!).

Figure 4.8: The interference pattern for a degeneracy of K/N = 5/31. Due to the
higher degeneracy more interference fringes are visible, with spacings corresponding
to λ/62 height variations.

For proper comparison of the simulated and measured fringe radii, as shown in Fig. 4.6,
we have to correct for the diffraction over the distance between the second mirror, where
the fringe radii are calculated, and the image-plane of the fringes (6 cm behind the cavity).
The comparison of the theoretical and experimental a fitted in Fig. 4.9 can be used for this
scaling. As a scales with 1/ρ4 (see Eq. 4.1), the magnification of the experimental fringe radii
as compared to the theoretical fringe radii (ρmeas/ρth) scales with (ath/ameas)1/4 = (7.97×
10−4/4.8× 10−4)1/4 = 1.14×. The spatial evolution of the fringe radii due to diffraction
inside and outside the resonator (Fig. 4.9) provides us with the same scaling: 1.15×.

Finally, we compared the results obtained with our new fringe method with an aberration
analysis with a commercially available standard phase-stepped Fizeau interferometer [51–53]
(Wyko 400) on which we tested two identical mirrors. The interferograms showed no sep-
arated fringes apart from the ones produced by defocus. The phase-stepping technique al-
lowed us to quantify the peak-to-peak height deviation of the individual mirrors, as compared
to the spherical reference mirror, to be less than 90 nm within the central aperture of radius
ρ = 1.5 cm. The astigmatism of each mirror was less than 40 nm peak value in this aperture.
Although the values for the astigmatism we found with our fringe method depend on the
mutual orientation of the mirrors, the order is comparable with values found with the Fizeau
interferometer [51–53].
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Figure 4.9: The measured and fitted radii of two fringes for various positions inside and
outside the resonator. The dashed-dotted lines represent the mirrors of the resonator.

4.5 Applications

The described multi-beam resonator method may be useful for the accurate inspection of the
global aberrations of single mode resonators. This may sound surprising, since the cavity
length and mirror radii of a single-transverse resonator are such that higher-order transverse
modes experience sizeable losses. To study the aberrations in these cavities, we propose to
greatly reduce the cavity length, so as to use them in the multi-transverse-mode regime. When
we then operate the cavity around a higher-order degenerate point with on-axis injection,
resonant trapping of scattered light should again produce interferograms like Fig. 4.2. In
essence, by greatly shortening the cavity length L and thus increasing the Fresnel number,
NF = a2/λL [12], where a is the mirror radius and λ the wavelength, we may visualize the
resonator aberrations.

An example of a single-mode resonator, where aberrations are a key issue, is the LIGO
interferometric gravitational wave detector. The mirrors used in these resonators have to meet
very stringent requirements (order λ/2000 for R = 7 km mirrors [7]). Currently, a null wave-
front interferometer is used to measure the aberrations of the mirrors. The disadvantage of
this method is the required stability for full aperture testing, and the limited aperture capabil-
ity, where the evolution of LIGO is toward mirrors with even larger radii [54]. Fabrication
of such surfaces is a difficult process and our multi-pass method could provide a rapid, full
surface scanning of such mirrors, although the limited Finesse of the LIGO interferometer
(F ∼ 210) is still a practical limitation of our method.

4.6 Concluding remarks

We have demonstrated and discussed the formation of fringes in the interference patterns ob-
servable around frequency-degenerate cavity lengths. These fringes are the vertices of light
that is scattered into closed orbits and resonantly trapped inside the resonator. From this
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4.A Calculation of the total path length

mechanism we have generalized the total round-trip path length for arbitrary 1/N degenerate
points. Finally, we have shown how the observed interference pattern can be used for visu-
alization and quantification of cavity aberrations, and possibly applied for testing the mirrors
used in gravitational wave detectors.

Appendix (unpublished material)

4.A Calculation of the total path length
In this Section, the derivation of the total path length in an arbitrary frequency-degenerate
cavity (N > 2) will be discussed in more detail. We start out calculating the length L of a
single pass ray, connecting the hit points on the mirrors P1 and P2, as shown in Fig. 4.10. We
normalize all (positions and) distances by the identical mirror radii R. The normalized on-
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Figure 4.10: Schematic representation of a ray with a length L connecting the hit points
P1 and P2 in a frequency-degenerate two-mirror resonator with a cavity length L0.

axis cavity length of the frequency-degenerate cavity is L0 = Lres/R = 1− cos(θ0/2), where
θ0 = 2πK/N is the round-trip Gouy phase. The (horizontal) distance between the hit points
on the mirror and the reference plane is denoted δ .

The length of the ray connecting P1 and P2 is given by

L =
√

(L0 −δ1 −δ2)2 +(x2 − x1)2 = (L0 −δ1 −δ2)

√
1+

(
x2 − x1

L0 −δ1 −δ2

)2

. (4.7)

In the paraxial limit (x1,x2 
 L0), Eq. 4.7 becomes

L ≈ (L0 −δ1 −δ2)+
(x2 − x1)2

2(L0 −δ1 −δ2)
− (x2 − x1)4

8(L0 −δ1 −δ2)3 . (4.8)

Using a Taylor expansion of δ1 and δ2 up to the fourth order, i.e.,

δ1,2 = 1−
√

1− x2
1,2 ≈

x2
1,2

2
+

x4
1,2

8
, (4.9)
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we find for Eq. 4.8

L ≈ L0 +
(x2 − x1)2

2L0
− x2

1 + x2
2

2
− x4

1 + x4
2

8
+

(x2 − x1)2(x2
1 + x2

2)
4L2

0
− (x2 − x1)4

8L3
0

. (4.10)

We will use this expression to calculate the total path length Ltot of a closed orbit in a
frequency-degenerate cavity. To do so, we decompose this orbit in 2N single passes via
Ltot = ∑2N−1

n=0 Ln,n+1 = 2N〈Ln,n+1〉. Using Eq. 4.10, the average path length 〈Ln,n+1〉 for a ray
connecting two hit points xn and xn+1 can be written as

〈Ln,n+1〉 ≈ L0 +
〈(xn+1 − xn)2〉

2L0
− 〈x2

n + x2
n+1〉

2
− 〈x4

n + x4
n+1〉

8

+
〈(xn+1 − xn)2(x2

n + x2
n+1)〉

4L2
0

− 〈(xn+1 − xn)4〉
8L3

0
. (4.11)

For xn, the unaberrated positions of the hit points are used, found from xn = ρ sin(nθ0/2+φ0).
The eventual extra phase factor φ0 determines the type of orbit, e.g., V-shaped or bow-tie. The
relation xn = ρ sin(nθ0/2+φ0) = ρ{exp [i(nθ0/2+φ0)]−exp [−i(nθ0/2+φ0)]}/2i helps us
to simplify Eq. 4.11. Furthermore we use the relation 〈exp[i(nθ0/2+φ0)]〉 = 0, which holds
in the case of frequency-degeneracy, where the values nθ0/2 are equally distributed over the
“unit circle” [0,2π〉. Cycle averages of other powers of xn and xn+1 are calculated by reex-
pressing products of exponents into sums of exponents with combined arguments followed
by a similar cycle average, e.g., 〈x2

n〉 = ρ2〈 1
2 + 1

2 exp[i(nθ0 +2φ0)]〉 = ρ2/2. We note that the
phase factor φ0 drops out of all these averages. This means that the total path length for an
arbitrary degeneracy (N > 2) is independent of the type of orbit. Application of both ideas on
the individual terms of Eq. 4.11 results in

〈(xn+1 − xn)2〉 = ρ2[1− cos(θ0/2)] , (4.12)

〈x2
n + x2

n+1〉 = ρ2 , (4.13)

〈x4
n + x4

n+1〉 = 3
4 ρ4 , (4.14)

〈(xn+1 − xn)2(x2
n + x2

n+1)〉 = ρ4{ 1
2 [cos(θ0/2)− 3

2 ]
2 − 1

8} , (4.15)

〈(xn+1 − xn)4〉 = 3
2 cos(θ0/2)2 −3cos(θ0/2)+ 3

2 . (4.16)

Substitution of Eqs. 4.12–4.16 into Eq. 4.11 finally results in Eq. 4.1, which reads

1
2N

Ltot(ρ) = (Lres + ε)−Bε
ρ2

R2 −A
ρ4

R3 , (4.17)

where

A =
1+ cos(θ0/2)

32 [1− cos(θ0/2)]
=

2R−Lres

32Lres
and (4.18)

B =
1
2

[
1

1− cos(θ0/2)

]
=

R
2Lres

. (4.19)

42



4.B Evolution of fringes around frequency-degeneracy

4.B Evolution of fringes around frequency-degeneracy
For a better understanding of Eq. 4.5, as depicted graphically for N = 6 in Fig. 4.6, we dis-
cuss here a number of corresponding fringe patterns on the mirror. The intensity profiles
for various distances ε away from the exact frequency-degenerate point N = 7 are shown in
Fig. 4.12. The cavity detuning ε is increased stepwise by 5 μm from ε = −55 to 20 μm.
To prevent redundancy, not all pictures out of this series are shown in Fig. 4.12. The astig-
matic axis are prominently visible in, a.o., images 1 and 4. The disappearance of the fringes
m = −2,−1, and 0 can be observed between the images 1− 2, 4− 5, and in the series of
9− 12, respectively. At these points, the transmitted power is redistributed over the mirror.
This is shown in Fig. 4.11, where we obscured the on-axis transmitted power and measured
the off-axis power as a function of ε . We observe increased transmission exactly at these
points, denoted 1,4, and 9. The radii of the disappearing fringes correspond to ∂Ltot/∂ρ = 0
found from Fermat’s principle (see Chapter 6). For those trajectories, the interference of the
scattered light is maximally constructive, and the light is “resonantly trapped”.
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Figure 4.11: The transmitted power outside the on-axis beam as a function of the cavity
detuning. The labelling corresponds to Fig. 4.12. Images 1, 4, and 9 show an increase
of the transmitted power (outside the optical axis), corresponding to the “birth” of the
fringes m = −2,−1 and 0, respectively. The length detuning from image 1 to 4 nicely
corresponds to the difference found in the simulations and measurements.
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Figure 4.12: Intensity profiles over the full mirror aperture (diameter 5 cm) around the
7-fold frequency-degeneracy point (N = 7) from ε =−55 (Image 1) to 20 μm (Image 12)
in steps of 5 μm (Images at ε = −45,−25,−15 μm and −15 μm are left out). Image 9
represents the fringe pattern at exact frequency-degeneracy (ε = 0) and shows the birth
of the m = 0-fringe. To prevent the pictures from overexposure the on-axis beam is
blocked.
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