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CHAPTER 3

Transverse mode coupling in an optical resonator

Small-angle scattering due to mirror surface roughness is shown to couple the optical
modes and deform the transmission spectra in a frequency-degenerate optical cavity. A
simple model based on a random scattering matrix clearly visualizes the mixing and
avoided crossings between multiple transverse modes. These effects are only visible in
the frequency-domain spectra; cavity ring-down experiments are unaffected by changes
in the spatial coherence as they just probe the intra-cavity photon lifetime.

T. Klaassen, J. de Jong, M. P. van Exter, and J. P. Woerdman, Opt. Lett. 30, 1959-1961
(2005).
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3. Transverse mode coupling in an optical resonator

3.1 Introduction

Optical resonators are used in many experiments; they provide for high resolution in opti-
cal interferometry and for field enhancement in QED experiments [4]. At specific “magic”
resonator lengths many transverse modes of the resonator have the same eigenfrequencies
[12, 21]. Such frequency-degenerate resonators have been suggested as a tool to enhance
the efficiency of removing entropy from atoms (cooling) in a resonator [36] and to observe
cavity-enhanced spontaneous emission at optical wavelengths [37].

Although loss due to scattering by mirrors is well-known for optical cavities [16, 22],
the special role of frequency-degeneracy in scattering is only touched upon in the litera-
ture [38] and no systematic study has been performed. In this Chapter, we demonstrate that
at frequency-degeneracy it is the amplitude scattering instead of the intensity scattering that
matters and show that the observed difference between time and frequency-domain measure-
ments around frequency-degeneracy is caused by mode-mixing of many transverse modes.
The coupling (due to surface roughness of the mirrors) changes the eigenmodes and eigen-
frequencies, which no longer coincide at frequency-degeneracy. This results in an inhomo-
geneous broadening of the measured resonances.

3.2 The experiment

In our experiment, a laser beam at fixed wavelength (λ = 532 nm) is injected into a sym-
metric stable (Fabry-Perot) cavity to match its TEM00 mode. The cavity is constructed
with two nominally identical highly reflective mirrors (specified reflectivity > 99.8%), hav-
ing a radius of curvature of R = 50 cm and a diameter of D = 5 cm. We operate the
cavity close to a frequency-degenerate point, where the eigenfrequencies of the Hermite-
Gaussian (HG) eigenmodes separate into N groups of almost frequency-degenerate modes.
At frequency-degeneracy, the Gouy phase θ0, being the round-trip phase delay between the
fundamental HG mode as compared to a reference plane wave, is by definition a rational
fraction of 2π: θ0 = 2π/N, the paraxial phase delay of higher-order modes (TEMmn) be-
ing (m + n + 1)θ0 [12]. In a ray picture of a frequency-degenerate resonator, the ray path
closes itself after N (equal to the number of hit points on each mirror) round-trips inside
the resonator [21]. For stability reasons, we avoided the popular confocal (N = 2) configu-
ration [12]. By way of example, we restrict the discussion to N = 4, this corresponds to a
cavity length L = 14.6 cm at R = 50 cm.

We measure transmission spectra by scanning the cavity length L over a few wavelengths
with a piezo element. From these spectra we deduce the cavity finesse F as the ratio between
the free spectral range c/(2L) = 1.03 GHz and the (FWHM) width of the dominant trans-
mission resonance. Fig. 3.1 shows the finesse as a function of the cavity length, which can
be accurately adjusted with a translation stage. Note, how the finesse drops from 1300 to
600 around frequency-degeneracy over a range (FWHM) of δ = ΔL/R = 4.3× 10−4. This
range corresponds to a frequency difference Δν = 0.78 MHz between consecutive classes of
transverse modes (Δ(m + n) = N = 4). The inset shows that the resonance width more than
doubles and that the corresponding peak transmission is reduced to below 50% for spectra at
δ = 0 as compared to δ = −1×10−3.
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Figure 3.1: Relative spectral width of cavity resonances, expressed as the finesse F,
measured as a function of the normalized cavity length δ , for a resonator with (dashed)
and without (solid) a centered intra-cavity pinhole. The inset shows two typical spectra
measured at δ = 0 (solid) and δ = −1×10−3 (dashed).

We attribute the observed drop in finesse to mode coupling induced by scattering at the
(imperfect) mirrors. A proof of this statement is given by the dashed curve in Fig. 3.1, which
shows the measured finesse for the same cavity with a pinhole centered in the middle of
the cavity; this finesse is constant over the full range. The intra-cavity pinhole (diameter
1 mm; waist of TEM00 mode 0.17 mm) basically converts our multi-transverse-mode system
into a single-mode system, by increasing the losses of the higher-order transverse modes and
reducing the mode coupling. It thereby removes the mode mixing that caused the finesse
reduction and makes the system essentially single transverse mode.

The cavity finesse can also be determined with a cavity ring-down experiment, which
measures the intra-cavity photon lifetime after switching-off the optical injection [39, 40].
We have performed this experiment (without intra-cavity pinhole) with a sufficiently large
detector over the same detuning range and found absolutely no differences at or away from
degeneracy. From the measured lifetime of τ ≈ 0.35 μs, we obtained a constant value of
F ≈ 2200 over the full range (we do not have an explanation why this value is different from
the value F = 1300 mentioned above).

Cavity ring-down experiments are insensitive to the power distribution over the transverse
modes unless one uses an (extra-cavity) pinhole in front of the optical detector [39, 40]. By
passing only a fraction of the amplitude mode profiles, the transmitted power can then reveal
beatings between transverse modes that are only orthogonal over their full profile. Using this
configuration at the degenerate cavity length (N = 4), we experimentally observed that the
decay becomes nonexponential and, depending on the position of the detector pinhole, can
be either faster or slower than the decay observed without pinhole. The obvious conclusion
is that we observe the decay and beating of several (nondegenerate) transverse modes that are
simultaneously excited by an injection profile that was matched to just a single TEM00 mode.

Theoretically, the optical field at any plane in the resonator can be described by separating
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3. Transverse mode coupling in an optical resonator

it in transverse spatial eigenmodes j and amplitudes that change in time

E(x, t) = ∑
j

a j(t)u j(x) . (3.1)

This evolution is trivial if we assume that all modes have equal loss rates Γ, as should be the
case for low-order transverse modes and large mirrors. In a cavity ring-down experiment the
spatially integrated intensity decays then with a rate 2Γ. In a spectral measurement, where
one scans either the laser frequency or the precise cavity length, a large-area detector will
measure

Pout(ω) ∝ ∑
j
|a j(ω)|2 ∝ ∑

j

∣∣∣∫ Ein(x) ·u∗j(x)dx
∣∣∣2

(ω −ω j)2 +Γ2 , (3.2)

where the numerator quantifies the spatial overlap between the injected field Ein(x) and the
eigenmodes and the denominator quantifies the corresponding spectral overlap.

The key argument we want to make is that the shape of the eigenmodes u j(x) can be quite
different from the usual (HG) shape in a cavity that operates close to frequency-degeneracy.
The reason is that even a small amount of scattering at the mirrors can lead to dramatic
changes in the modal profile if it can resonantly perturb the mode profile over and over again
on consecutive round-trips. A similar phenomenon is known in quantum mechanics, where
energy-degenerate perturbation theory is quite different from nondegenerate perturbation the-
ory, which gives second-order expressions that explode at degeneracy as they are inversely
proportional to the energy differences between the unperturbed modes.

3.3 Simulations
To find the true eigenmodes in a perturbed cavity we use the observation that the optical
field inside a cavity can be described by a Schrödinger-type equation [41]. We take the
simplest form of coupling, which is found in many physical systems, and model it with a
random matrix c of the GOE class [42]. In the basis of the unperturbed HG-modes, the
matrix equation for the eigenfrequencies ω j and eigenmodes u j of the coupled system is thus

ω ju j = Mu j =

⎛
⎜⎜⎜⎝

c00 c01 c02 . . .
c10 ε + c11 c12 . . .
c20 c21 2ε + c22 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠u j , (3.3)

where ε is the frequency detuning away from degeneracy. The coupling matrix c is random
but fixed for each realization of the system, with coefficients that are normalized via their
statistical variance 〈c2

i j〉 = 1. Energy conservation is assured via ci j = c†
ji and is physically

motivated by the observation that the scattering due to mild surface roughness produces so-
called conservative coupling [41]. The amplitudes of the HG modes evolve via the same
matrix M as in Eq. 3.3.

For simplicity, we have reduced the transverse dimensionality from 2 to 1, by group-
ing HGnm-modes with the same n + m value and unperturbed eigenfrequency into families
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j = (n + m)/N, and assume equal coupling between these families. On the one hand, the
coupling amplitudes between the individual modes will decrease with increasing mode num-
ber difference, as small-angle scattering due to gradual variations of the mirror height profile
generally dominates over large-angle scattering [29]. On the other hand, the coupling be-
tween mode families will increase with mode number as the number of modes per family
also increases. For simplicity again, these counter-acting phenomena are assumed to balance.

The white curves in Fig. 3.2a show the calculated eigenfrequencies as a function of the
detuning ε for 10 eigenmodes. Far from degeneracy, the on-diagonal elements of M dom-
inate the dynamics, the eigenmodes closely resemble the HG-modes with equally-spaced
eigenfrequencies jε . Around degeneracy, mode mixing occurs and the eigenvalues exhibit
a “10-mode” avoided crossing, with “level repulsion driven chaos” [42] as central at ε = 0.
Whereas the white curves show the eigenfrequencies of all modes, the underlying picture is
sensitive to the overlap with the injection mode, making some (lower-order) modes visible
around degeneracy, whereas others are barely excited. Fig. 3.2a has been obtained by assum-
ing a damping rate Γ = 1 to produce finite spectral widths and a realistic injection profile
Ein(x) that is matched to the fundamental HG mode. Note how the almost single-mode exci-
tation away from degeneracy unavoidably decomposes into many (modified) eigenmodes at
degeneracy.

Fig. 3.2b shows a composite plot of the measured transmission curves as a function of
the normalized cavity length δ , which can be transformed into a frequency detuning via
dε/dδ ≈ Nc/[2πLsin(θ0/2)] = 1.84 GHz. We dominantly excite the TEM00; the intensity
ratio of the TEM04 and TEM00 is only 5%. Note that close to frequency-degeneracy δ = 0
the peak transmission reduces and the resonance broadens due to mode-mixing, as shown
previously in Fig. 3.1. The results of our model are in nice agreement with the measurements.

For a qualitative comparison between the mirror surface roughness and the mode cou-
pling, we note that the amplitude of the roughness is directly proportional to the coupling
amplitude ci j between modes. The spatial frequency of the roughness determines the scat-
tering angle or equivalently the TEMmn-mode to which the scatter couples; the system is
particularly sensitive to spatial frequencies in the order of the inverse beam size (0.17 mm).
A rough estimate of the scatter amplitude ci j is given by the ratio of the locking range over
the free spectral range, being 8× 10−4 (roughly equal to the scaling between Fig. 3.2a and
b). Away from frequency-degeneracy the system feels only the scatter intensity which is less
than 10−6 per mode.

From a general perspective, the time and frequency domain measurements of the cavity fi-
nesse provide information that is similar to the T1 (population decay) and T2 (dephasing) time
measured in coherent spectroscopy, respectively. The time-domain ring-down experiment
only measures intensity decay rates and is thus equivalent to a T1-measurement. The mea-
surement in the frequency domain is phase sensitive and thus equivalent to a T2-measurement.

The level repulsion phenomena described in this Chapter, which we also observed for
several sets of other mirrors, give our system the flavor of a chaotic system [42]. This is not
really surprising when we think of the (imperfect) mirror as a deterministic random scatterer.
Although the experiments show level repulsion qualitatively, we cannot prove chaos to its full
extent.

In conclusion, we have demonstrated mode coupling in a passive resonator. The cou-
pling changes the eigenmodes and eigenfrequencies, which no longer coincide at frequency-
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Figure 3.2: False color (white=high and black=low) plot of the cavity transmission as
a function of the normalized frequency detuning (horizontally) and frequency (vertical);
vertical cuts represent transmission spectra at fixed cavity length. Both (a) simulations
and (b) experimental data show how mode coupling leads to a spectral broadening and
a reduction in peak transmission around the frequency-degenerate point ε = δ = 0.
Both effects result from level repulsion and mode mixing.
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3.A Shape of the eigenmodes

degeneracy. This results in an inhomogeneous broadening of the measured resonance and
explains the difference between the finesse measured in the time and frequency domain. A
coupled-mode model correctly describes the observed behavior. These effects cannot be ob-
served by cavity ring-down experiments; this should serve as a warning to experimentalists.

We gratefully acknowledge R. Sapienza for early work on this topic. This work is part of
the research program of the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM).

Appendix (unpublished material)
In this appendix, we discuss in more detail a number of topics, that were only touched upon
in the previous Sections. First, we visualize how the shape of the mode changes due to mode
coupling. Then, we estimate the number of modes involved in the coupling. As the “coupled”
basis is unknown, we project it onto the standard eigenmodes in the “uncoupled” basis, i.e.,
the Hermite-Gaussian (HG) modes. Finally, the nonexponential decay observed in certain
cavity ring-down experiments is highlighted.

3.A Shape of the eigenmodes
We have mentioned that mode coupling also changes the shape of the eigenmodes. To quan-
tify this statement, we have measured intensity profiles of modes behind the scanning res-
onator with an intensified CCD-camera (ICCD). The frequency-degenerate resonator (N = 4)
is injected again with a beam mode-matched to the fundamental mode. When the resonator
scans through a resonance in the spectrum, the ICCD-camera is triggered to image the inten-
sity profiles. The advantage of the ICCD-camera is that the gatewidth (∼shuttertime) is only
30 ns, very small as compared to the resonance width (FWHM) of ∼ 10 μs. This means that
we can visualize the mode profiles for a fixed cavity length.

The intensity profiles are measured at frequency-degeneracy (δ = 0) and away from
frequency-degeneracy (δ = 0.6× 10−3) in a symmetric cavity with R = 50 cm. Fig. 3.3a
shows the profile away from frequency-degeneracy. We observe a nice HG00 intensity pro-
file that we expect as only the lowest-order mode is excited and no higher-order modes are
available. Fig. 3.3b shows the mode profile at frequency-degeneracy. There is still strong
intensity in the center, but the mode profile is now highly distorted and shows a honeycomb-
like or speckled structure. Also outside the region, shown in Fig. 3.3b, the intensity profile
is different from Fig. 3.3a. At frequency-degeneracy, scattered light is present much fur-
ther outside the on-axis region even up to 10 times the waist. This shows that light is also
weakly coupled to many, many higher-order modes up to a mode number m ∼ 102 = 100.
We conclude that the light dominantly couples to the lower-order modes, but also somewhat
to higher-order modes as long intensity tales are present far away from the intensity center.

3.B The number of modes involved
Now that we have demonstrated the change of the shape of the eigenmodes, and roughly know
the distribution of the scattered light over the (coupled) modes, the question remains how
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3. Transverse mode coupling in an optical resonator

Figure 3.3: Intensity profiles on the mirror of a resonator tuned (a) away from degen-
eracy and (b) at degeneracy. In both situations the cavity is injected with an (identical)
input beam that is mode-matched to the fundamental mode. Away from degeneracy,
we observe the fundamental Hermite-Gaussian eigenmode, whereas at degeneracy the
modeprofile is totally different as the mode coupling has defined a new set of resonator
eigenmodes. The dimensions of both images are 0.45×0.45 mm2.

many modes are involved in the coupling process. An answer to this question can be found
in both the spatial and spectral domain. Measurements in the spatial domain reveal the mode
number of the highest-order mode involved in the coupling process. Spectral measurements,
on the other hand, help us to find the effective number of modes involved. The effective
number of modes is a good measure for the number of lower-order modes involved, as light
is dominantly scattered to these lower-order modes.

3.B.1 Spatial domain

In the spatial domain, the highest HG-mode that participates in the coupling can be found
in two ways. First of all, it can be deduced from the spatial structure in the mode profile
shown in Fig. 3.3b. The highest spatial frequency can be attributed to the highest-order mode
involved. Siegman [12] states that the spatial period Λm of mode number m and the mode
number m are related via Λm ≈ 4w/

√
m, with w the waist of the fundamental mode. An

intersection of the intensity profile shows that the lowest spatial period is Λ ≈ 31 μm, which
corresponds to a mode number of m = 480 for a waist of w = 170 μm. Taking into account
the 4-fold frequency-degeneracy, which means that at resonance only one out of four modes
is excited, we estimate for the total number of coupled modes ∼ 480/4 = 120.

As an alternative method to determine the highest-order coupled mode, we insert an on-
axis diaphragm inside the resonator. The opening of the diaphragm is increased until the
intensity profile on the mirror does not change anymore. For this setting, all modes pass
apparently the diaphragm. The diameter of the diaphragm 2a is a direct measure for the mode
size. The corresponding mode m number is found from m ≈ (a/w)2 [12]. Experimentally,
we find that for a diameter of the diaphragm of 6 mm (and higher) the spatial period remains
constant. Combined with w = 170× 10−4 μm, the highest-order mode has a mode number
m ∼ 310. This is roughly in agreement with the measurement based on the spatial period.
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3.C Cavity ring-down and mode beating

3.B.2 Spectral domain

The number of modes involved in the coupling process can also be estimated from the exper-
imental cavity transmission shown in Fig. 3.2. More specifically, we use the width of the dip
in frequency detuning Δδ (horizontal scale) in combination with the broadening of the nor-
malized spectral difference Δν/1.84 GHz (vertical scale). This estimate from the experiment
is based on, and validated by, the numerical simulation. For clarity, we note that in the ex-
perimental spectra Δδ and Δν/1.84 GHz indicate the frequency detuning and the normalized
spectral difference, whereas in the numerical simulation Δε and Δω are used.

The theoretical description centered around Eq. 3.3 is based on the assumption that all
modes contribute equally to the mode coupling at ε = 0. For increasing ε , higher-order
modes will contribute less, and modes no longer contribute if Nε � c. For small c values,
only the two lowest-order modes (TEM4 and TEM0) couple. The width of the dip in fre-
quency detuning Δε thus scales linearly with the scatter amplitude c. The broadening of the
normalized spectra at ε = 0 is determined by the eigenvalue of a N ×N-matrix. Assuming
equal scatter amplitudes c, Δω scales with

√
Nc instead of c.

The number of modes involved can thus be found experimentally from the ratio of Δν/1.84
GHz and Δδ squared (

Δν/1.84 GHz
Δδ

)2

=
(√

Nc
c

)2

= N . (3.4)

From Fig. 3.2b we deduce that Δν/1.84 GHz= 8.8×10−4 and Δδ = 3.1×10−4, which results
in N = 8. The assumption that all modes contribute equally shows that light is scattered
effectively to 8 lower-order resonant modes.

We conclude from the measurements in the spatial domain that the light is coupled to
75−120 modes, and that the highest-order mode involved has a mode number m = 310−480.
The coupling to the higher-order modes is, however, very weak. Spectral measurement show
that light is dominantly coupled to the 8 lowest-order modes present.

3.C Cavity ring-down and mode beating

To further clarify the nonexponential decay and the mode beating in cavity ring-down at
frequency-degeneracy, mentioned in Section 3.2, we demonstrate additional experimental
results and introduce some theory [12]. The total field of two modes with eigenfrequencies
ω1 and ω2 is obviously given by

E(x, t) = u1(x)e−iω1t +u2(x)e−iω2t , (3.5)

where u1(x) and u2(x) are the spatial transverse patterns of the modes. The intensity signal
that this field will produce at the detector with transverse dimension A is

I(t) =
∫

A
|E(x, t)|2dx = I1 + I2 + I12 cos[(ω1 −ω2)t] , (3.6)
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3. Transverse mode coupling in an optical resonator

where I1 and I2 are just dc-currents and I12 is the beat frequency term, ω1 −ω2 being the beat
frequency between the modes. The beat frequency term I12 equals

I12 =
∫

A
u∗1(x) ·u2(x)dx

{
= 0 if A > mode size
�= 0 if A < mode size

.

This integral cancels out to zero if the detector area A is bigger than the area spanned by the
two modes, which have orthogonal modeprofiles. If the detector area A is smaller than the size
of the modes, the modal overlap does not integrate to zero and beating occurs. The value (and
sign) of I12 depends strongly on the size and position of the aperture in the output. Next, we
will show this experimentally, for a ring-down experiment observed with a “bucket”-detector
(A > mode size) and a “point”-detector (A < mode size) .

Away from frequency-degeneracy (δ = 0.6× 10−3), the ring-down curves in Fig. 3.4a
are observed to be independent of the size of the detector. In the absence of coupling only
a single mode is excited. At frequency-degeneracy, however, multiple modes will be excited
with slightly different ω’s. Observation of the ring-down signal with a “bucket”-detector still
shows that the beating term cancels. For a “point”-detector, either on- or off-axis, the beating
causes a nonexponential decay due to the level-repulsion caused by the mode coupling; this
is shown in Fig. 3.4b. The decay can be faster or slower than the exponential decay, and
depends on both position and size of the aperture. The reason that we observe less than one
full oscillation must be that the frequency difference ν1 − ν2 is substantially smaller than
1/τ ≈ 3 MHz.
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Figure 3.4: (a) Ring-down curves of a resonator tuned δ = 0.6 × 10−3 away from
the (K/N = 1/4) frequency-degeneracy, as observed with a detector with an effective
diameter of 8 mm (black) and 1 mm (grey). The ring-down curves for the “bucket”- and
the “point”-detector are identical. The fitted decay time τ = 3.1×10−7 s corresponds
to a finesse F= 1970± 50. (b) Ring-down curves at exact degeneracy (K/N = 1/4)
for a “bucket”-detector (solid black), an on-axis “point”-detector (grey) and an off-
axis “point”-detector (at x = 0.75 mm) (wiggly dotted). The ring-down curve for the
“bucket”-detector shows an exponential decay, whereas the curves for the “point”-
detectors show a nonexponential decay, indicating mode beating. The measurement of
the off-axis “point”-detector is very noisy because of the low power.
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