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CHAPTER 2

Characterization of scattering in an optical resonator

Roughness-induced scattering affects the performance of a resonator. We study the scat-
tering of a single mirror first, and compare this result with the losses of a resonator,
comprising two mirrors. Besides some standard tools to characterize the losses, a new
method based on the spectrally averaged transmission is introduced.
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2. Characterization of scattering in an optical resonator

2.1 Introduction

Fabry-Perot resonators in textbooks are assumed to have ideal, lossless and perfectly smooth
mirrors; however, those used in experiments are often far from ideal and have deformations
on various length scales. In Bennett et al. [18], three regimes of deformations are defined
based on the size of the roughness features (denoted between brackets): surface roughness
(< 0.1 mm), producing light scattering, waviness (0.1− 10 mm) contributing to the small
angle scattering, and surface figure (> 10 mm) or deviations from the ideal geometrical shape,
deforming the modes in the resonator. All three types of roughness can drastically affect the
behavior of the resonator dynamics as will be pointed out in the following Chapters of this
thesis. In this Chapter, we will focus on scatter. In Chapter 4, 5, and 6 we will consider
surface figure.

The surface quality of mirrors is of crucial importance in a field like cavity QED [4] and
applications such as ring-laser gyroscopes and gravitational wave detectors, like LIGO [7],
VIRGO [8] and TAMA [9]. For all these fields and applications, the roughness-induced
scatter limits the ultimate performance. Specifically, in cavity QED-experiments the coupling
between field and atom gets worse [22], whereas for ring-laser gyroscopes the scatter couples
the propagating and counter-propagating modes and thus lowers the sensitivity [23]. Light
scattered out of the lowest order mode of a gravitational wave detector reduces the fringe
contrast and thus the performance [24–27]. State-of-the-art mirrors with ditto coatings have a
loss (both absorption and scatter) in the order of 10−6 per reflection and a surface roughness
(RMS) of 0.1 nm [22, 26, 28].

In this Chapter, we will visualize and demonstrate the amount and distribution of the
scatter in a resonator. The mirrors used in these experiments have a diameter of 5 cm, and a
radius of curvature R = 50 cm. The measured transmittance of the mirror is T = 4.1×10−4 at
the central reflecting wavelength of 532 nm. The substrate and multilayer coating have a very
small absorption loss as compared to the scatter loss; this absorption loss will be neglected
(see e.g., [22]). The mirrors described in this Chapter are typical for those used in most
experiments of this thesis.

In Section 2.2, the losses of a single mirror are characterized, while Section 2.3 and
Section 2.4 discuss the effect of loss in a two-mirror Fabry-Perot cavity. Whereas most loss-
measurements performed on a Fabry-Perot are based on the observed resonance linewidth,
we will show that similar information can be obtained from a new method that is based on a
measurement of the spectrally-averaged transmission. This method turns out to be simple and
accurate. Conceptually, the most logical way to measure the spectrally averaged transmission
is to use incoherent illumination, e.g., by using a LED: this measurement has been performed
first. Then we demonstrate that the average transmission 〈T (φ)〉 (φ is round-trip phase) of a
coherently illuminated resonator gives identical results. Section 2.4 describes the resonator
losses as found from the, widely used, finesse and cavity ring-down. We conclude with a
comparison and discussion of the various methods in Section 2.5.
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2.2 Single-mirror scattering

2.2 Single-mirror scattering

The amount and distribution of the roughness-induced scatter of a single mirror can be visu-
alized and quantified with a setup as shown in Fig. 2.1. A CW-single-frequency-laser (IN-
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Figure 2.1: Overview of the setup for measuring the scatter of a single mirror, M. The
mirror is illuminated by light diffracted on a pinhole P. The dotted arrows indicate
light scattered at the mirror under an angle θs. The distances between pinhole and
mirror (PM) and mirror and image of the pinhole (MB) are 36 cm and 81 cm, respec-
tively. The angle between both arms ∠PMB is 12◦. The image is blocked, B, to prevent
overexposure of the CCD.

NOLIGHT Prometheus) at a wavelength λ = 532 nm illuminates a pinhole P with a diameter
of 200 μm. The pinhole is imaged by the concave mirror under study. In the image plane of
the pinhole, the image is blocked to prevent the linear CCD-camera (Apogee Alta U1) from
overexposure by the on-axis beam. As the sensitive area of the CCD is only 6.9×4.1 mm2,
we use a patchwork of images on several lateral positions, to obtain the scattering profile over
a larger angular range. This results in an image as shown in Fig. 2.2. The center shows the
obscuration blocking the on-axis beam; the speckles in the picture result from light scattered
out of the on-axis beam due to roughness on the mirror surface. The effect of scatter is clearly
visible although the intensity in the central spot and the scattered light differ by 7−8 orders
of magnitude. The speckles in Fig. 2.2 result from interferences of the spatially-coherent
contributions from different parts of the mirror. Taking a closer look at the speckles, we see
the rotational symmetry of the scatter pattern. Furthermore, it turns out that all speckles have
roughly the same size, but what determines this size? To answer this question we have to
consider that the speckle is Fourier-related to the illuminated area on the mirror and that this
area is again (inversely) Fourier related to the pinhole. This means that the speckles are in a
way just scaled and randomly displaced images of the pinhole. Statistics on the size of the
speckles do indeed show that the speckles have approximately the size of the pinhole scaled
by the imaging-magnification.
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Figure 2.2: Figure consisting out of 25 CCD images of the scatter from a single mirror.
In the center an obscuration blocks the direct beam. The speckles are formed by scatter
due to surface roughness of the mirror.

The speckle pattern is not caused or influenced by edge-diffraction of the mirror as the
diameter of the spot (Airy-disk) on the mirror (at L1 = 36 cm away from the pinhole) is small
(1.22λL1/D ≈ 2 mm) as compared to the size of the mirror. Furthermore, the spot on the
mirror is also small as compared to the relevant dimensions of Fig. 2.2, so we can neglect the
finite size of the illuminated area and treat it approximately as a point scatterer in our analysis
of the angle dependence of the scatter.

The standard way to quantify the distribution and the total amount of scatter of a mirror is
expressed by the so-called Bidirectional Reflectance Distribution Function (BRDF) and the
Total Integrated Scatter (TIS) [18, 29], respectively. The BRDF is defined as

BRDF =
1
P0

dP
dΩcosθs

, (2.1)

where dP is the optical power scattered into a projected solid angle dΩcosθs, θs is the scat-
tering angle, and P0 is the incident energy from the surface. The cosθs-term is a correction
to adjust the illuminated area on the mirror to its apparent size when viewed from the scat-
ter direction. When the BRDF is integrated over the solid angle, where θs ranges from 0 to
π/2 and φ from 0 to 2π , the TIS is found. A correction for the cosθ -term is made in this
integration. The connection between the TIS and the RMS surface roughness σ , is given
by [29]

TIS =
(4πσ

λ

)2
, (2.2)

assuming that the light is normally incident on the surface. As the scatter was observed to be
nicely rotational symmetric, we can use data from one radial direction only. To calculate the
BRDF over a larger angular range than found in Fig. 2.2 some additional images were made.
To limit the fluctuations in the offset (to ∼ 10 units on the 216 scale of the 16 bit camera)
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2.2 Single-mirror scattering

we average on every position over 10 images. Furthermore, to get rid of the speckles, the
image is averaged over many vertical pixel lines. The resulting BRDF is shown in Fig. 2.3,
where θs ranges from 0.14◦ to 7.6◦. The black line fits the calculated data with BRDF=
0.036× θ−1.33

s . Mirror surfaces which can be described by such a simple power law are
named fractal surfaces [29, 30]. Now that we know the distribution of the scatter, we can
also calculate the TIS, by integration of the BRDF as found from the fit. The resulting TIS
is 1.6× 10−3, half of which lies within the θs-range of 0− 20◦. So, for every bounce on
the mirrors, a fraction 1.6×10−3 of the light is scattered out of the specular direction. This
estimate is of course not very accurate as it is found via extrapolation outside the measured
θs-range.
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Figure 2.3: The BRDF for θs from 0.14◦ to 7.6◦. The black dots are the BRDF points
calculated from similar measurements as shown in Fig. 2.2 and the black line is a fit of
the data.

A ratio that describes which part of the total light escapes the resonator via transmittance
of the mirror is the resonator efficiency,

η = T/(A+T ) , (2.3)

where A is scatter (absorption can be neglected) and T the transmission. The mirror under
study has A = TIS = 1.6×10−3 and T = 4.1×10−4, which results in η = 20 %. The rest of
the light, roughly 80 %, leaves the resonator via scattering.

Substituting the thus calculated TIS in Eq. 2.2, results in a surface roughness σ = 1.7 nm.
Measurements performed with a (WYKO RST-500) interferometer [31], however, gave a
roughness of only σ = 0.4 nm. This huge difference might result from the wavelength de-
pendence of the multi-layer coating, which comprises 14 pairs of alternating high and low
refractive-index λ/4-layers (at λ = 532 nm). While our scattering measurement is performed
at the design wavelength of 532 nm, the WYKO beam profiler, however, works at a wave-
length of 633 nm. At this wavelength, the light penetrates the stack of layers much deeper
than at 532 nm. It is not completely understood how this affects the comparison.

Similar experiments to determine the surface roughness have been done by Jakobs [32],
Bruno [33], and Elson [34]. They measure the surface roughness of the top-layer with an
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AFM and a stylus, out of which the scattering of the multi-layer system is calculated. As the
phase relations between individual layers are unknown the calculations can only be performed
for two extreme regimes, one where the roughnesses of the consecutive interfaces are fully
correlated and the other where they are fully uncorrelated. The mentioned papers perform
both calculations.

2.3 Resonator losses
The performance of a Fabry-Perot is generally described in terms of its resonance linewidth
(in relation to the free spectral range). Not many people study the peak transmission and
hardly anyone looks at the spectrally-integrated or averaged transmission. We will show that
the resonator efficiency η can also be determined both from the average transmission under
incoherent illumination, as well as from the average transmission of a coherently illuminated
resonator 〈T (φ)〉 when scanning the length of the Fabry-Perot.

The transmission of a resonator as a function of the single pass phase is [1]

T (φ) =
IT (φ)

Ii
=

( T
T +A

)2 1

1+
( 2F

π
)2

sinφ 2
, (2.4)

where F is the cavity finesse. The maximum peak transmission of the resonator is found for
φ = 0

T (0) =
IT (0)

Ii
=

( T
T +A

)2
= η2 . (2.5)

The spectrally-averaged transmission, on which we will elaborate, is given by

〈T (φ)〉 =
〈IT (φ)〉

Ii
=

T 2

2(T +A)
= 1

2 T η , (2.6)

where the relation 〈[1 +( 2F
π )2 sinφ 2]−1〉 = π/2F = (A + T )/2 is used (F2 � 1). The effi-

ciency η defines how much of the light inside the resonator, leaves via transmission of the
mirrors, the rest being scattered and absorbed. Taking into account that T Ii (see Fig. 2.4)
defines how much light enters the resonator via the first mirror, Eq. 2.6 can also be rewritten
as 〈IT (φ)〉 = T

2(T+A)T Ii = 1
2 ηT Ii.

2.3.1 Spectrally incoherent input beam
A LED, with a central wavelength λ = 525 nm and a spectral width of 36 nm (FWHM), is
used for incoherent illumination of the Fabry-Perot. The mirrors of the resonator are identical
to those used in Section 2.2. The cavity length is approximately 10 cm and the cavity is
operated far from (lower-order) frequency-degenerate points (see Chapter 5). To operate the
resonator at the same wavelength as with a coherent light source (λ = 532.0 nm), a spectral
filter (λ = 532.0 nm, ΔλFWHM = 3.5 nm) is placed in front of the LED.

For a proper performance of the experiment, it is important to convert the highly-diverging
light coming out of the LED into a more or less parallel beam. We want the light to remain
paraxial inside the resonator even after multiple round-trips. This is done in two steps, where
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Figure 2.4: Conservation of energy for an optical resonator requires that of the trapped
light a fraction T/(2T + 2A) = 1

2 η is transmitted (coupled out) through each of the
mirrors.

first an enlarged image of the LED is made on a diaphragm (5 mm diameter) and a ho-
mogeneous part of this image is cut out. To improve the parallelism of the beam a second
diaphragm (5 mm diameter) is placed 50 cm behind the first one, just in front of the resonator.
The diameter of the diaphragms is chosen such that the diameter of the beam is smaller than
of the detector (8 mm).

The power of the LED is roughly 1 mW, whereas the irradiance behind the mirrors falling
onto the detector is sub-nW. To measure reliably at these low output powers, a photomultiplier
(HAMAMATSU 5783-01) is used in combination with a chopper and a lock-in amplifier.
The transmittance of the front mirror of the resonator, which we have measured first, is T =
(4.0±0.1)×10−4. This transmission is in nice agreement with the coherent measurement to
be discussed in Section 2.3.2. Next, the transmittance behind the resonator (two mirrors) is
measured, resulting in an efficiency of η = (23.6±0.1)%. This means that roughly 75 % of
the light inside the resonator is lost by scattering or absorption.

Finally, we also wanted to check whether the scatter losses (A-channel in Fig. 2.4) are
as strong as would be expected from the (single mirror) BRDF-measurement, described in
Section 2.2. For this purpose, the detector is moved from behind the resonator to the side of
the resonator where it looks under an angle of 50◦ inside the resonator to the end mirror. The
ratio of the integrated scatter (IS), measured by the detector at this position, divided by the
measured scatter losses deduced from the area-integrated spectra (A-channel) is 5.9×10−3.
We can calculate a similar ratio from the single mirror BRDF in Section 2.2, as follows. The
detector subtends a solid angle of ΔΩ = 6×10−2 sr at θs = 50◦. The integrated scatter (IS) is
found from extrapolation of the measured BRDF to 50◦ and integration over the mentioned
solid angle ΔΩ, which results in the ratio IS/TIS= 6.8×10−3. This ratio is in nice agreement
with the measurement and confirms that the scatter strength as deduced from a two-mirror
resonator is identical to that measured on a single mirror.
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2. Characterization of scattering in an optical resonator

2.3.2 Spectrally coherent input beam
In the next experiment, the resonator is illuminated coherently by a laser (INNOLIGHT
Prometheus) at 532 nm, where the beam is mode-matched to the resonator. The length of
the resonator is scanned over a few λ with a piezo (PI P-753.1) to obtain the transmission
spectrum. The resonances in the transmission (and reflection) spectrum depend on the phase
φ , determined by λ ,L and R. To be able to use the power arguments made in the beginning of
this Section, the transmitted power is spectrally averaged over one free spectral range. Doing
so, the phase is averaged out.

We know from the previous experiments that scattering losses are approximately 3− 5
times as strong as the transmission of the mirrors. A natural hypothesis is that the scattered
light might be “trapped” inside the resonator in the form of (very) high-order modes and thus
found in the “floor” of the Fabry-Perot spectrum, i.e., between the resonances. Assuming
a finesse of 1000 and a resonance voltage of 1 V on the detector, requires that a floor in
the spectrum of 1 mV or less needs to be resolved. To do so, we used a 14-bit digitizer
(National Instruments PCI-5911). To resolve the resonances also in the horizontal direction,
the digitizer is operated at 5×106 samples/s. Fig. 2.5 shows the spectrum measured on two
vertical scales (two detector amplifications); one to measure the dominant resonances in the
spectrum and the other to measure the less prominent resonances and the floor properly. A
lens is placed behind the resonator to catch all the light transmitted through the end mirror.

The first result of our measurement is that the floor, if it exists, is smaller than the noise
level 0.02 mV, Tfloor/Tpeak < 2 × 10−5, which demonstrates that the scattered light is not
found in the spectrum and is thus apparently not trapped inside the resonator. Furthermore,
we found that the summed transmission on both measurement scales yields an efficiency of
η = (20± 2) %. We thus find again that only 20 % of the light is transmitted through the
mirror, while 80 % escapes via scatter. Of the transmitted intensity roughly 60 % is found in
the single prominent resonance (peak ∼ 0.3 V) and 40 % is found in the smaller resonances
(< 0.05 V).

One might wonder firstly, whether the measured scattering around the reflected beam
is sufficient to explain all power loss in a Fabry-Perot resonator in operation and secondly,
whether the reflection and the transmission channel affect each other by scattering. To an-
swer the first question, it is important to note that the power ratio of the scatter around the
transmitted and reflected beam equals the ratio of the totally transmitted and reflected power.
To appreciate this argument, we mention that the angular distributions in both channels are
similar as they are Fourier related to the spatial distribution of the same surface. To answer
the second question, we mention that our system produces predominantly small-angle scatter.
Light scattered out of the beam transmitted by the mirror will therefore not affect light in the
reflected beam (and vice versa) because of the angular difference of almost 180◦.

2.4 Connection between cavity finesse and cavity ring-down
In this Section, the performance of a Fabry-Perot is described in terms of the finesse F , which
depends on the losses of the resonator via

F =
π

1−R
=

π
A+T

. (2.7)
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Figure 2.5: (a) Transmission spectrum of the resonator for one free spectral range. The
dashed line indicates the zoomed-in area shown in (b).

So, if we are able to measure the cavity finesse, the losses can be determined with this relation.
Two methods are introduced here, a spectral method and a temporal one.

The spectral method determines the finesse via the ratio of the free spectral range ΔνFSR
and the (FWHM) spectral linewidth Δν

F =
ΔνFSR

Δν
. (2.8)

The temporal method is based on the measurement of the 1/e decay time τ of the intracavity
intensity after the optical injection has been switched off. This is a so-called “cavity ring-
down” experiment [2]. Substitution of the relations Δν = 1/(2πτ) and ΔνFSR = c/(2L) into
Eq. 2.8 shows how the finesse can also be determined from τ

F = τπc/L , (2.9)

where c is the speed of light and L is the cavity length.
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2. Characterization of scattering in an optical resonator

Performing the spectral measurement, we found that the mirror mounts show a pro-
nounced mechanical resonance at 75 Hz with an acoustic Q-factor of approximately 50. To
avoid this resonance, and also its higher harmonics, the scan frequency of the piezo is cho-
sen at 4.6 Hz. At this frequency, the resonator scans in 3.8 ms and 2.8 μs through a FSR
and a resonance, respectively. The measured resonance width has a statistical error of 2 %;
the line shape is nicely Lorenzian, which shows that the scanning of the resonator is not too
fast to perturb the intra cavity field and produce ringing [35]. From this method, we found
F = 1380±40. Substituting F in Eq. 2.7 results in A+T = 2.3×10−3 which combines with
the transmission of a single mirror T = 4.1×10−4 to η = (18.0±0.5) %.

Performing the temporal measurement, we start by slowly scanning the resonator length.
On the peak of a resonance, a trigger switches off the laser light with an acousto-optic mod-
ulator (AOM ISOMET 1205-2). The injection beam switches off in 35 ns and we detect the
decaying signal with a 20 MHz-bandwidth detector. The measured decay signal gives a nice
exponential decay over two orders of magnitude as shown in Fig. 2.6. The 1/e decay time
found is τ = 0.18 μs which, in combination with Eq. 2.9, results in F = 1700±40. Further-
more, A+T = 1.84×10−3, found from Eq. 2.7, combined with the transmission of a single
mirror T = 4.1×10−4, gives a cavity efficiency η = (22.2±0.5)%.
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Figure 2.6: Ring-down curve of a resonator with a cavity length L = 0.1 m. The light is
switched off at t = 0 μs. The fitted ring-down time τ = 0.18 μs corresponds to a finesse
of F = 1700.

The difference between the finesse measured with the spectral method and cavity ring-
down may be surprising, but has been observed before. A possible explanation has been given
by Rempe et al. [16]. They state that for a proper spectral measurement spatial coherence
of the injected field should be retained after repeated reflections. A temporal ring-down
experiment, however, only requires energy confinement within the cavity, which imposes
only a restriction on the “incoherent” field. This is less critical to perturbations by, e.g.,
scatter, than the restriction on the coherence of the field. Loosely speaking, one might say (in
solid-state terminology) that spectral measurements yield something like a T2-time, whereas
temporal measurements yield a T1-time.

The ring-down method offers an independent method to reject the “trapped-light hypoth-
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esis” introduced above. Light recycled in other transverse modes would effectively enlarge
the ring-down time. Experimentally, the trapping of scattered light in lower-order modes can
be excluded by inserting an intracavity pinhole, absorbing the scattered light. The diameter is
chosen such that the lowest order mode is left unaffected. Doing so, the ring-down time of the
resonator with intra-cavity pinhole should be shorter than for the situation without. However,
the ring-down times were found to be independent of the presence of the intracavity pinhole,
consistent with our results in the spectral domain. Apparently, the proper argument is that
only a single mode is resonant and scatter cannot be trapped in other modes as they are not
resonant. The difference between both methods thus remains unsolved.

2.5 Concluding discussion
The roughness-induced scatter limits the performance of a Fabry-Perot. The scatter of a
single mirror is visualized and described by the BRDF and TIS and compared with the losses
of a resonator, comprising two mirrors. We show that the finesse and the peak throughput
are lower than expected from the mirror’s transmission. We have quantified the resonator

Method Efficiency (η)
TIS 20 %
incoherent illumination (23.6±0.1) %
coherent illumination (20±2) %
Fspectral (18.0±0.5) %
Fring−down (22.2±0.5) %

Table 2.1: An overview of the resonator efficiency η determined by the various meth-
ods in this Chapter: Via angular-resolved scatter of a single mirror (TIS), via average
power measurements for incoherent and coherent illumination of a resonator, and via
the spectral width and cavity ring-down.

efficiency η = T/(A+T ) by various methods as shown in Tab. 2.1. It shows that all methods
give roughly (within statistical errors) identical results; the efficiency of the resonator under
study being η ≈ 20 %. Thus 80 % of the light escapes via roughness-induced scattering of
both mirrors. Furthermore both the “floor” of a spectrum and the comparison of a spectral
and temporal method demonstrate that the scattered light is not resonantly trapped inside the
resonator.
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