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CHAPTER 1

Introduction

In 1899, the first Fabry-Perot interferometer (or resonator) was built by Fabry and Perot [1] by
placing two planar mirrors parallel to each other. Be it more than 100 years old, it nevertheless
presents a challenging topic in the optics course, comprising a number of interesting facets,
like the theory of multiple interferences (first analyzed by Airy in 1831) and the presence of
circular fringes (first observed by Haidinger in 1855). The high spectral resolution that can
be achieved with a Fabry-Perot makes it essential for many (modern) applications; like lasers,
laser gyroscopes (more than two mirrors needed), and cavity ring-down spectroscopy [2, 3].
The Fabry-Perot also forms the heart of many state-of-the-art experiments; in cavity QED [4],
in experiments with micro-resonators [5, 6], in gravitational wave detectors [7–9], and in
even more exotic experiments aimed at superimposing two quantum states of a macroscopic
mirror [10]. The first Fabry-Perot interferometers were composed of two planar mirrors; later
designs often use two spherical mirrors.

A Fabry-Perot interferometer can be operated in both the angular and spectral domain.
In the angular domain, a pattern of “fringes of equal inclination”, or so-called Haidinger-
fringes, is observed behind a planar Fabry-Perot that is illuminated with a wide-angle beam
at a fixed wavelength; fringes formed by illumination with a slightly different wavelength are
observed under a slightly different angle. In the spectral domain, different wavelengths show
resonances in the spectrum at different cavity lengths, while scanning the cavity length over
at least half a wavelength.

The width of a fringe dictates the resolution of a Fabry-Perot and is determined by the
cavity finesse F = ΔνFSR/Δν , where ΔνFSR is the free spectral range or separation of adjacent
maxima and Δν the width (FWHM) of the individual fringes. Ignoring diffraction, the finesse
of a resonator, comprising ideal and lossless mirrors is determined by the reflectivity of the
mirrors only. The finesse of practical planar Fabry-Perot resonators, however, is often limited
by the losses introduced by both diffraction [11, 12] and mirror imperfections, e.g., surface
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roughness and aberrations. Diffraction losses in a planar Fabry-Perot can be neglected for
short cavities or wide-beam illumination. In planar cavities with wide-beam illumination,
imperfections that introduce a height variation of λ/m over the full mirror aperture, limit
the finesse to F ∼ m/2 [1, 11, 13, 14]. In practice, this means that even for state-of-the-art
substrates with a 0.1 nm (RMS) roughness, the finesse of a planar Fabry-Perot is limited to
only F = 5400 for a wavelength of λ = 1064 nm [15] and even less for visible wavelengths.
This is a real drawback in many applications.

Stable resonators with spherical mirrors (first proposed in 1956) are much less affected
by these limitations and can achieve a much higher finesse, up to F = 1×106 [16]. For com-
pleteness we note that unstable resonators, which also comprise spherical mirrors, are lossy
by their geometry and can never achieve a high finesse. The spherical shape of the mirrors (in
a stable resonator) compensates for diffraction [17] and the resonator is less sensitive to spa-
tially extended imperfections as the modes on the mirrors are more compact. For resonators
with state-of-the-art spherical mirrors, the finesse is eventually limited (if not by transmission
of the mirrors) by the power loss per round-trip due to the area-integrated roughness-induced
scatter. This so-called total integrated scatter (TIS) of the resonator scales inversely with
m2 [18], so that the finesse scales as m2. This is obviously a significantly more relaxed re-
quirement than that for a planar cavity, where the finesse scales linearly with m. Another
advantage that favors spherical resonators over planar ones is that spherical mirrors can be
manufactured more precisely than planar ones.

Just as their planar counterpart, resonators comprising spherical mirrors can be operated
in both the angular and the spectral domain. Again, fringes appear for illumination with a
wide beam, addressing many transverse modes in the cavity. Spherical aberration of the mir-
rors makes a description of the fringes more complicated than for a planar resonator [19] and
reduces the finesse for the higher-order fringes [20]. The “quadratic” influence of imperfec-
tions is also observed for a resonator with spherical mirrors operated in the spectral domain.

The initial goal of this Thesis was to demonstrate chaos in an open two-mirror resonator.
Two requirements have to be fulfilled to obtain chaos within the context of geometrical (i.e.
ray) optics. Firstly, exponential sensitivity of the evolution of the intra-cavity ray to the initial
conditions is required, and, secondly, the ray has to remain confined inside the resonator for
a sufficient time to produce mixing. We have designed a bifocal mirror that, in combination
with a conventional concave mirror, forms a resonator with an unstable inner and a stable
outer part (“inner” and “outer” refer here to the transverse coordinate). The unstable part
provides for the exponential sensitivity, whereas the stable part provides for the mixing. We
note that although the resonator comprises an unstable part, the resonator is stable in an
overall sense. In order to achieve chaos in this overall stable cavity, we need, as mentioned
above, a long residence time of the light in the cavity. This implies that the finesse must be
as large as possible and thus requires a solid understanding of the imperfections of a Fabry-
Perot. In fact, this has become the main theme of this thesis.

Another motivation for a thorough understanding of imperfections is that the unstable part
of the bifocal resonator acts as a sort of “macro”-imperfection and produces, in combination
with the stable part, a challenging and complex physical system. For full appreciation and
understanding of this system, it is necessary to be able to distinguish phenomena unique
for this configuration from effects also present in conventional resonators, comprising two
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standard spherical mirrors. We decided to investigate first the effect of imperfect mirrors, i.e.,
roughness-induced scattering and aberrations, on the performance of a conventional stable
resonator. By aberrations, we mean the deviation of the actual wavefront from the spherical
reference wavefront; these deviations may be caused by a combination of the spherical shape
of the mirror and the nonparaxial transverse excursion of the ray through the resonator.

A central and important theme in our analysis is the concept of frequency-degeneracy
(first introduced by Herriot [21] in 1964), where the ray and wave description of light in a
resonator are intimately linked. In the ray picture, frequency-degeneracy means that a ray
retraces itself after an integer number of N round-trips through the cavity. In the wave pic-
ture, frequency-degeneracy imposes that resonances in the spectrum overlap in N clumps of
modes within a free spectral range.

The contents of this Thesis is organized as follows:
In Chapter 2, we characterize the roughness-induced scattering of a single mirror by means of
its angular distribution (BRDF) and total scattered power (TIS). We also describe the effect
of scattering on the performance of a conventional resonator, comprising two mirrors. We
demonstrate and discuss how the losses affect the cavity finesse, measured in both time and
spectral domain, as well as the average power throughput.

In Chapter 3, scattering is shown to produce mode coupling close to frequency-degenerate
points. This effect has drastic consequences which are analyzed in the spatial, spectral, and
time domain. A numerical simulation helps us to quantify the number of coupled modes. The
effect of mode beating on cavity ring-down is pointed out as well.

In Chapter 4, a scanning cavity is injected on-axis with a compact (“pencil”) beam. Al-
though we inject locally, fringes appear over the concave mirror aperture, at least close to
frequency-degenerate points. We claim that these fringe are caused by light scattered out of
the on-axis beam into resonant orbits. In our resonator, spectral and spatial properties are
intimately linked and cannot be separated. We demonstrate how an analysis of the observed
fringe pattern yields a method to accurately determine aberrations.

In Chapter 5, we measure the deviations from paraxiality in a folded 3-mirror resonator, a
result from earlier attempts to show chaos in an open resonator. We quantify this by accurately
measuring the Gouy phase of subsequent higher-order modes around frequency-degeneracy.
The experimental results are supported by a ray-tracing simulation.

In Chapter 6, a connection is established between a wave and ray description of aberra-
tions, used in Chapter 4 and 5. The connection is based on Fermat’s principle in a frequency-
degenerate resonator. We derive and compare the cavity length reductions needed to main-
tain frequency-degeneracy for higher-order modes or, equivalently, larger transverse displace-
ments.

In Chapter 7, we report on mirrors that are not fabricated by traditional grinding and
polishing, but by diamond-machining. The diamond chisel makes circular grooves on the
substrate, and causes a different type of scatter than the more random defects introduced in
traditionally produced mirrors. We investigate the influence of this production method on the
multiple interferences in the resonator and show that a reasonable finesse can still be obtained.

In Chapter 8, the eigenmodes of a resonator with one diamond-machined bifocal mirror
are discussed. The central convex part of the bifocal mirror breaks the full quadratic profile of
the mirror and imposes Laguerre-Gaussian eigenmodes on the resonator. The observed mode
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profiles are compared with analytically calculated eigenmodes and a numerical simulation is
performed to model the bifocal mirror.

In Chapter 9, we investigate the behavior of a bifocal cavity, consisting out of a stable
outer and an unstable inner resonator, which is expected to show the onset of chaos. We
demonstrate the coupling of two resonators based on transmission spectra and patterns, and
report on the ability of the configuration to fulfill the basic requirements to obtain chaos.
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