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Vers twee

Bij herlezing klinkt het als
een postcoı̈taal gevoel van droefenis
tohoe wa bohoe, tohoe wa bohoe

Als je het hardop herhaalt
zie je landschappen zich ontvouwen
een novemberse zandplaat in de Waddenzee
de desolate vlaktes ten zuidoosten van Glen Coe
en ga je turf ruiken, leisteen
twee adelende hazen in de schuur

Vijf loeizware lettergrepen
met meer gewicht dan alle elementen tezamen
tohoe wa bohoe, de aarde woest en ledig
in de Hebreeuwse tekst van Genesis een vers twee

Wat ze moeten aanduiden is onvoorstelbaar
het begin voor het begin, een toestand zo oer
dat mijn buitenwijkverbeelding slechts
tekortschietende vergelijkingen voorhanden heeft

Ook Hollywoodiaanse aardbevingen
vloedgolven, orkanen en vulkaanuitbarstingen
moeten peanuts zijn vergeleken met de horror van toen

Misschien is de plotse stuiptrekking die
vlak voor je in slaap valt door je lichaam schrikt
een verre naschok van dat oorspronkelijke geweld

Een stuip die zegt:
er is slaap, er zijn dromen
loom drijvende, onder water wiegende
maar gedragen worden wij door geen grond

K. Michel
uit: Waterstudies
uitgeverij Augustus, 2003
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CHAPTER 1

Introduction

In 1899, the first Fabry-Perot interferometer (or resonator) was built by Fabry and Perot [1] by
placing two planar mirrors parallel to each other. Be it more than 100 years old, it nevertheless
presents a challenging topic in the optics course, comprising a number of interesting facets,
like the theory of multiple interferences (first analyzed by Airy in 1831) and the presence of
circular fringes (first observed by Haidinger in 1855). The high spectral resolution that can
be achieved with a Fabry-Perot makes it essential for many (modern) applications; like lasers,
laser gyroscopes (more than two mirrors needed), and cavity ring-down spectroscopy [2, 3].
The Fabry-Perot also forms the heart of many state-of-the-art experiments; in cavity QED [4],
in experiments with micro-resonators [5, 6], in gravitational wave detectors [7–9], and in
even more exotic experiments aimed at superimposing two quantum states of a macroscopic
mirror [10]. The first Fabry-Perot interferometers were composed of two planar mirrors; later
designs often use two spherical mirrors.

A Fabry-Perot interferometer can be operated in both the angular and spectral domain.
In the angular domain, a pattern of “fringes of equal inclination”, or so-called Haidinger-
fringes, is observed behind a planar Fabry-Perot that is illuminated with a wide-angle beam
at a fixed wavelength; fringes formed by illumination with a slightly different wavelength are
observed under a slightly different angle. In the spectral domain, different wavelengths show
resonances in the spectrum at different cavity lengths, while scanning the cavity length over
at least half a wavelength.

The width of a fringe dictates the resolution of a Fabry-Perot and is determined by the
cavity finesse F = ∆νFSR/∆ν , where ∆νFSR is the free spectral range or separation of adjacent
maxima and ∆ν the width (FWHM) of the individual fringes. Ignoring diffraction, the finesse
of a resonator, comprising ideal and lossless mirrors is determined by the reflectivity of the
mirrors only. The finesse of practical planar Fabry-Perot resonators, however, is often limited
by the losses introduced by both diffraction [11, 12] and mirror imperfections, e.g., surface
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1. Introduction

roughness and aberrations. Diffraction losses in a planar Fabry-Perot can be neglected for
short cavities or wide-beam illumination. In planar cavities with wide-beam illumination,
imperfections that introduce a height variation of λ/m over the full mirror aperture, limit
the finesse to F ∼ m/2 [1, 11, 13, 14]. In practice, this means that even for state-of-the-art
substrates with a 0.1 nm (RMS) roughness, the finesse of a planar Fabry-Perot is limited to
only F = 5400 for a wavelength of λ = 1064 nm [15] and even less for visible wavelengths.
This is a real drawback in many applications.

Stable resonators with spherical mirrors (first proposed in 1956) are much less affected
by these limitations and can achieve a much higher finesse, up to F = 1×106 [16]. For com-
pleteness we note that unstable resonators, which also comprise spherical mirrors, are lossy
by their geometry and can never achieve a high finesse. The spherical shape of the mirrors (in
a stable resonator) compensates for diffraction [17] and the resonator is less sensitive to spa-
tially extended imperfections as the modes on the mirrors are more compact. For resonators
with state-of-the-art spherical mirrors, the finesse is eventually limited (if not by transmission
of the mirrors) by the power loss per round-trip due to the area-integrated roughness-induced
scatter. This so-called total integrated scatter (TIS) of the resonator scales inversely with
m2 [18], so that the finesse scales as m2. This is obviously a significantly more relaxed re-
quirement than that for a planar cavity, where the finesse scales linearly with m. Another
advantage that favors spherical resonators over planar ones is that spherical mirrors can be
manufactured more precisely than planar ones.

Just as their planar counterpart, resonators comprising spherical mirrors can be operated
in both the angular and the spectral domain. Again, fringes appear for illumination with a
wide beam, addressing many transverse modes in the cavity. Spherical aberration of the mir-
rors makes a description of the fringes more complicated than for a planar resonator [19] and
reduces the finesse for the higher-order fringes [20]. The “quadratic” influence of imperfec-
tions is also observed for a resonator with spherical mirrors operated in the spectral domain.

The initial goal of this Thesis was to demonstrate chaos in an open two-mirror resonator.
Two requirements have to be fulfilled to obtain chaos within the context of geometrical (i.e.
ray) optics. Firstly, exponential sensitivity of the evolution of the intra-cavity ray to the initial
conditions is required, and, secondly, the ray has to remain confined inside the resonator for
a sufficient time to produce mixing. We have designed a bifocal mirror that, in combination
with a conventional concave mirror, forms a resonator with an unstable inner and a stable
outer part (“inner” and “outer” refer here to the transverse coordinate). The unstable part
provides for the exponential sensitivity, whereas the stable part provides for the mixing. We
note that although the resonator comprises an unstable part, the resonator is stable in an
overall sense. In order to achieve chaos in this overall stable cavity, we need, as mentioned
above, a long residence time of the light in the cavity. This implies that the finesse must be
as large as possible and thus requires a solid understanding of the imperfections of a Fabry-
Perot. In fact, this has become the main theme of this thesis.

Another motivation for a thorough understanding of imperfections is that the unstable part
of the bifocal resonator acts as a sort of “macro”-imperfection and produces, in combination
with the stable part, a challenging and complex physical system. For full appreciation and
understanding of this system, it is necessary to be able to distinguish phenomena unique
for this configuration from effects also present in conventional resonators, comprising two
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1. Introduction

standard spherical mirrors. We decided to investigate first the effect of imperfect mirrors, i.e.,
roughness-induced scattering and aberrations, on the performance of a conventional stable
resonator. By aberrations, we mean the deviation of the actual wavefront from the spherical
reference wavefront; these deviations may be caused by a combination of the spherical shape
of the mirror and the nonparaxial transverse excursion of the ray through the resonator.

A central and important theme in our analysis is the concept of frequency-degeneracy
(first introduced by Herriot [21] in 1964), where the ray and wave description of light in a
resonator are intimately linked. In the ray picture, frequency-degeneracy means that a ray
retraces itself after an integer number of N round-trips through the cavity. In the wave pic-
ture, frequency-degeneracy imposes that resonances in the spectrum overlap in N clumps of
modes within a free spectral range.

The contents of this Thesis is organized as follows:
In Chapter 2, we characterize the roughness-induced scattering of a single mirror by means of
its angular distribution (BRDF) and total scattered power (TIS). We also describe the effect
of scattering on the performance of a conventional resonator, comprising two mirrors. We
demonstrate and discuss how the losses affect the cavity finesse, measured in both time and
spectral domain, as well as the average power throughput.

In Chapter 3, scattering is shown to produce mode coupling close to frequency-degenerate
points. This effect has drastic consequences which are analyzed in the spatial, spectral, and
time domain. A numerical simulation helps us to quantify the number of coupled modes. The
effect of mode beating on cavity ring-down is pointed out as well.

In Chapter 4, a scanning cavity is injected on-axis with a compact (“pencil”) beam. Al-
though we inject locally, fringes appear over the concave mirror aperture, at least close to
frequency-degenerate points. We claim that these fringe are caused by light scattered out of
the on-axis beam into resonant orbits. In our resonator, spectral and spatial properties are
intimately linked and cannot be separated. We demonstrate how an analysis of the observed
fringe pattern yields a method to accurately determine aberrations.

In Chapter 5, we measure the deviations from paraxiality in a folded 3-mirror resonator, a
result from earlier attempts to show chaos in an open resonator. We quantify this by accurately
measuring the Gouy phase of subsequent higher-order modes around frequency-degeneracy.
The experimental results are supported by a ray-tracing simulation.

In Chapter 6, a connection is established between a wave and ray description of aberra-
tions, used in Chapter 4 and 5. The connection is based on Fermat’s principle in a frequency-
degenerate resonator. We derive and compare the cavity length reductions needed to main-
tain frequency-degeneracy for higher-order modes or, equivalently, larger transverse displace-
ments.

In Chapter 7, we report on mirrors that are not fabricated by traditional grinding and
polishing, but by diamond-machining. The diamond chisel makes circular grooves on the
substrate, and causes a different type of scatter than the more random defects introduced in
traditionally produced mirrors. We investigate the influence of this production method on the
multiple interferences in the resonator and show that a reasonable finesse can still be obtained.

In Chapter 8, the eigenmodes of a resonator with one diamond-machined bifocal mirror
are discussed. The central convex part of the bifocal mirror breaks the full quadratic profile of
the mirror and imposes Laguerre-Gaussian eigenmodes on the resonator. The observed mode

3



1. Introduction

profiles are compared with analytically calculated eigenmodes and a numerical simulation is
performed to model the bifocal mirror.

In Chapter 9, we investigate the behavior of a bifocal cavity, consisting out of a stable
outer and an unstable inner resonator, which is expected to show the onset of chaos. We
demonstrate the coupling of two resonators based on transmission spectra and patterns, and
report on the ability of the configuration to fulfill the basic requirements to obtain chaos.

4



CHAPTER 2

Characterization of scattering in an optical resonator

Roughness-induced scattering affects the performance of a resonator. We study the scat-
tering of a single mirror first, and compare this result with the losses of a resonator,
comprising two mirrors. Besides some standard tools to characterize the losses, a new
method based on the spectrally averaged transmission is introduced.
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2. Characterization of scattering in an optical resonator

2.1 Introduction

Fabry-Perot resonators in textbooks are assumed to have ideal, lossless and perfectly smooth
mirrors; however, those used in experiments are often far from ideal and have deformations
on various length scales. In Bennett et al. [18], three regimes of deformations are defined
based on the size of the roughness features (denoted between brackets): surface roughness
(< 0.1 mm), producing light scattering, waviness (0.1− 10 mm) contributing to the small
angle scattering, and surface figure (> 10 mm) or deviations from the ideal geometrical shape,
deforming the modes in the resonator. All three types of roughness can drastically affect the
behavior of the resonator dynamics as will be pointed out in the following Chapters of this
thesis. In this Chapter, we will focus on scatter. In Chapter 4, 5, and 6 we will consider
surface figure.

The surface quality of mirrors is of crucial importance in a field like cavity QED [4] and
applications such as ring-laser gyroscopes and gravitational wave detectors, like LIGO [7],
VIRGO [8] and TAMA [9]. For all these fields and applications, the roughness-induced
scatter limits the ultimate performance. Specifically, in cavity QED-experiments the coupling
between field and atom gets worse [22], whereas for ring-laser gyroscopes the scatter couples
the propagating and counter-propagating modes and thus lowers the sensitivity [23]. Light
scattered out of the lowest order mode of a gravitational wave detector reduces the fringe
contrast and thus the performance [24–27]. State-of-the-art mirrors with ditto coatings have a
loss (both absorption and scatter) in the order of 10−6 per reflection and a surface roughness
(RMS) of 0.1 nm [22, 26, 28].

In this Chapter, we will visualize and demonstrate the amount and distribution of the
scatter in a resonator. The mirrors used in these experiments have a diameter of 5 cm, and a
radius of curvature R = 50 cm. The measured transmittance of the mirror is T = 4.1×10−4 at
the central reflecting wavelength of 532 nm. The substrate and multilayer coating have a very
small absorption loss as compared to the scatter loss; this absorption loss will be neglected
(see e.g., [22]). The mirrors described in this Chapter are typical for those used in most
experiments of this thesis.

In Section 2.2, the losses of a single mirror are characterized, while Section 2.3 and
Section 2.4 discuss the effect of loss in a two-mirror Fabry-Perot cavity. Whereas most loss-
measurements performed on a Fabry-Perot are based on the observed resonance linewidth,
we will show that similar information can be obtained from a new method that is based on a
measurement of the spectrally-averaged transmission. This method turns out to be simple and
accurate. Conceptually, the most logical way to measure the spectrally averaged transmission
is to use incoherent illumination, e.g., by using a LED: this measurement has been performed
first. Then we demonstrate that the average transmission 〈T (φ)〉 (φ is round-trip phase) of a
coherently illuminated resonator gives identical results. Section 2.4 describes the resonator
losses as found from the, widely used, finesse and cavity ring-down. We conclude with a
comparison and discussion of the various methods in Section 2.5.

6



2.2 Single-mirror scattering

2.2 Single-mirror scattering

The amount and distribution of the roughness-induced scatter of a single mirror can be visu-
alized and quantified with a setup as shown in Fig. 2.1. A CW-single-frequency-laser (IN-

M

P

B

CCD

q
s

Figure 2.1: Overview of the setup for measuring the scatter of a single mirror, M. The
mirror is illuminated by light diffracted on a pinhole P. The dotted arrows indicate
light scattered at the mirror under an angle θs. The distances between pinhole and
mirror (PM) and mirror and image of the pinhole (MB) are 36 cm and 81 cm, respec-
tively. The angle between both arms ∠PMB is 12◦. The image is blocked, B, to prevent
overexposure of the CCD.

NOLIGHT Prometheus) at a wavelength λ = 532 nm illuminates a pinhole P with a diameter
of 200 µm. The pinhole is imaged by the concave mirror under study. In the image plane of
the pinhole, the image is blocked to prevent the linear CCD-camera (Apogee Alta U1) from
overexposure by the on-axis beam. As the sensitive area of the CCD is only 6.9×4.1 mm2,
we use a patchwork of images on several lateral positions, to obtain the scattering profile over
a larger angular range. This results in an image as shown in Fig. 2.2. The center shows the
obscuration blocking the on-axis beam; the speckles in the picture result from light scattered
out of the on-axis beam due to roughness on the mirror surface. The effect of scatter is clearly
visible although the intensity in the central spot and the scattered light differ by 7−8 orders
of magnitude. The speckles in Fig. 2.2 result from interferences of the spatially-coherent
contributions from different parts of the mirror. Taking a closer look at the speckles, we see
the rotational symmetry of the scatter pattern. Furthermore, it turns out that all speckles have
roughly the same size, but what determines this size? To answer this question we have to
consider that the speckle is Fourier-related to the illuminated area on the mirror and that this
area is again (inversely) Fourier related to the pinhole. This means that the speckles are in a
way just scaled and randomly displaced images of the pinhole. Statistics on the size of the
speckles do indeed show that the speckles have approximately the size of the pinhole scaled
by the imaging-magnification.
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-0.85
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Figure 2.2: Figure consisting out of 25 CCD images of the scatter from a single mirror.
In the center an obscuration blocks the direct beam. The speckles are formed by scatter
due to surface roughness of the mirror.

The speckle pattern is not caused or influenced by edge-diffraction of the mirror as the
diameter of the spot (Airy-disk) on the mirror (at L1 = 36 cm away from the pinhole) is small
(1.22λL1/D ≈ 2 mm) as compared to the size of the mirror. Furthermore, the spot on the
mirror is also small as compared to the relevant dimensions of Fig. 2.2, so we can neglect the
finite size of the illuminated area and treat it approximately as a point scatterer in our analysis
of the angle dependence of the scatter.

The standard way to quantify the distribution and the total amount of scatter of a mirror is
expressed by the so-called Bidirectional Reflectance Distribution Function (BRDF) and the
Total Integrated Scatter (TIS) [18, 29], respectively. The BRDF is defined as

BRDF =
1
P0

dP
dΩcosθs

, (2.1)

where dP is the optical power scattered into a projected solid angle dΩcosθs, θs is the scat-
tering angle, and P0 is the incident energy from the surface. The cosθs-term is a correction
to adjust the illuminated area on the mirror to its apparent size when viewed from the scat-
ter direction. When the BRDF is integrated over the solid angle, where θs ranges from 0 to
π/2 and φ from 0 to 2π , the TIS is found. A correction for the cosθ -term is made in this
integration. The connection between the TIS and the RMS surface roughness σ , is given
by [29]

TIS =
(4πσ

λ

)2
, (2.2)

assuming that the light is normally incident on the surface. As the scatter was observed to be
nicely rotational symmetric, we can use data from one radial direction only. To calculate the
BRDF over a larger angular range than found in Fig. 2.2 some additional images were made.
To limit the fluctuations in the offset (to ∼ 10 units on the 216 scale of the 16 bit camera)
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2.2 Single-mirror scattering

we average on every position over 10 images. Furthermore, to get rid of the speckles, the
image is averaged over many vertical pixel lines. The resulting BRDF is shown in Fig. 2.3,
where θs ranges from 0.14◦ to 7.6◦. The black line fits the calculated data with BRDF=
0.036× θ−1.33

s . Mirror surfaces which can be described by such a simple power law are
named fractal surfaces [29, 30]. Now that we know the distribution of the scatter, we can
also calculate the TIS, by integration of the BRDF as found from the fit. The resulting TIS
is 1.6× 10−3, half of which lies within the θs-range of 0− 20◦. So, for every bounce on
the mirrors, a fraction 1.6× 10−3 of the light is scattered out of the specular direction. This
estimate is of course not very accurate as it is found via extrapolation outside the measured
θs-range.
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Figure 2.3: The BRDF for θs from 0.14◦ to 7.6◦. The black dots are the BRDF points
calculated from similar measurements as shown in Fig. 2.2 and the black line is a fit of
the data.

A ratio that describes which part of the total light escapes the resonator via transmittance
of the mirror is the resonator efficiency,

η = T/(A+T ) , (2.3)

where A is scatter (absorption can be neglected) and T the transmission. The mirror under
study has A = TIS = 1.6×10−3 and T = 4.1×10−4, which results in η = 20 %. The rest of
the light, roughly 80 %, leaves the resonator via scattering.

Substituting the thus calculated TIS in Eq. 2.2, results in a surface roughness σ = 1.7 nm.
Measurements performed with a (WYKO RST-500) interferometer [31], however, gave a
roughness of only σ = 0.4 nm. This huge difference might result from the wavelength de-
pendence of the multi-layer coating, which comprises 14 pairs of alternating high and low
refractive-index λ/4-layers (at λ = 532 nm). While our scattering measurement is performed
at the design wavelength of 532 nm, the WYKO beam profiler, however, works at a wave-
length of 633 nm. At this wavelength, the light penetrates the stack of layers much deeper
than at 532 nm. It is not completely understood how this affects the comparison.

Similar experiments to determine the surface roughness have been done by Jakobs [32],
Bruno [33], and Elson [34]. They measure the surface roughness of the top-layer with an

9



2. Characterization of scattering in an optical resonator

AFM and a stylus, out of which the scattering of the multi-layer system is calculated. As the
phase relations between individual layers are unknown the calculations can only be performed
for two extreme regimes, one where the roughnesses of the consecutive interfaces are fully
correlated and the other where they are fully uncorrelated. The mentioned papers perform
both calculations.

2.3 Resonator losses
The performance of a Fabry-Perot is generally described in terms of its resonance linewidth
(in relation to the free spectral range). Not many people study the peak transmission and
hardly anyone looks at the spectrally-integrated or averaged transmission. We will show that
the resonator efficiency η can also be determined both from the average transmission under
incoherent illumination, as well as from the average transmission of a coherently illuminated
resonator 〈T (φ)〉 when scanning the length of the Fabry-Perot.

The transmission of a resonator as a function of the single pass phase is [1]

T (φ) =
IT (φ)

Ii
=
( T

T +A

)2 1

1+
( 2F

π
)2 sinφ 2

, (2.4)

where F is the cavity finesse. The maximum peak transmission of the resonator is found for
φ = 0

T (0) =
IT (0)

Ii
=
( T

T +A

)2
= η2 . (2.5)

The spectrally-averaged transmission, on which we will elaborate, is given by

〈T (φ)〉= 〈IT (φ)〉
Ii

=
T 2

2(T +A)
= 1

2 T η , (2.6)

where the relation 〈[1 +( 2F
π )2 sinφ 2]−1〉 = π/2F = (A + T )/2 is used (F2 À 1). The effi-

ciency η defines how much of the light inside the resonator, leaves via transmission of the
mirrors, the rest being scattered and absorbed. Taking into account that T Ii (see Fig. 2.4)
defines how much light enters the resonator via the first mirror, Eq. 2.6 can also be rewritten
as 〈IT (φ)〉= T

2(T+A)T Ii = 1
2 ηT Ii.

2.3.1 Spectrally incoherent input beam
A LED, with a central wavelength λ = 525 nm and a spectral width of 36 nm (FWHM), is
used for incoherent illumination of the Fabry-Perot. The mirrors of the resonator are identical
to those used in Section 2.2. The cavity length is approximately 10 cm and the cavity is
operated far from (lower-order) frequency-degenerate points (see Chapter 5). To operate the
resonator at the same wavelength as with a coherent light source (λ = 532.0 nm), a spectral
filter (λ = 532.0 nm, ∆λFWHM = 3.5 nm) is placed in front of the LED.

For a proper performance of the experiment, it is important to convert the highly-diverging
light coming out of the LED into a more or less parallel beam. We want the light to remain
paraxial inside the resonator even after multiple round-trips. This is done in two steps, where
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A A

T

Ti
i

T

Figure 2.4: Conservation of energy for an optical resonator requires that of the trapped
light a fraction T/(2T + 2A) = 1

2 η is transmitted (coupled out) through each of the
mirrors.

first an enlarged image of the LED is made on a diaphragm (5 mm diameter) and a ho-
mogeneous part of this image is cut out. To improve the parallelism of the beam a second
diaphragm (5 mm diameter) is placed 50 cm behind the first one, just in front of the resonator.
The diameter of the diaphragms is chosen such that the diameter of the beam is smaller than
of the detector (8 mm).

The power of the LED is roughly 1 mW, whereas the irradiance behind the mirrors falling
onto the detector is sub-nW. To measure reliably at these low output powers, a photomultiplier
(HAMAMATSU 5783-01) is used in combination with a chopper and a lock-in amplifier.
The transmittance of the front mirror of the resonator, which we have measured first, is T =
(4.0±0.1)×10−4. This transmission is in nice agreement with the coherent measurement to
be discussed in Section 2.3.2. Next, the transmittance behind the resonator (two mirrors) is
measured, resulting in an efficiency of η = (23.6±0.1)%. This means that roughly 75 % of
the light inside the resonator is lost by scattering or absorption.

Finally, we also wanted to check whether the scatter losses (A-channel in Fig. 2.4) are
as strong as would be expected from the (single mirror) BRDF-measurement, described in
Section 2.2. For this purpose, the detector is moved from behind the resonator to the side of
the resonator where it looks under an angle of 50◦ inside the resonator to the end mirror. The
ratio of the integrated scatter (IS), measured by the detector at this position, divided by the
measured scatter losses deduced from the area-integrated spectra (A-channel) is 5.9×10−3.
We can calculate a similar ratio from the single mirror BRDF in Section 2.2, as follows. The
detector subtends a solid angle of ∆Ω = 6×10−2 sr at θs = 50◦. The integrated scatter (IS) is
found from extrapolation of the measured BRDF to 50◦ and integration over the mentioned
solid angle ∆Ω, which results in the ratio IS/TIS= 6.8×10−3. This ratio is in nice agreement
with the measurement and confirms that the scatter strength as deduced from a two-mirror
resonator is identical to that measured on a single mirror.
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2. Characterization of scattering in an optical resonator

2.3.2 Spectrally coherent input beam
In the next experiment, the resonator is illuminated coherently by a laser (INNOLIGHT
Prometheus) at 532 nm, where the beam is mode-matched to the resonator. The length of
the resonator is scanned over a few λ with a piezo (PI P-753.1) to obtain the transmission
spectrum. The resonances in the transmission (and reflection) spectrum depend on the phase
φ , determined by λ ,L and R. To be able to use the power arguments made in the beginning of
this Section, the transmitted power is spectrally averaged over one free spectral range. Doing
so, the phase is averaged out.

We know from the previous experiments that scattering losses are approximately 3− 5
times as strong as the transmission of the mirrors. A natural hypothesis is that the scattered
light might be “trapped” inside the resonator in the form of (very) high-order modes and thus
found in the “floor” of the Fabry-Perot spectrum, i.e., between the resonances. Assuming
a finesse of 1000 and a resonance voltage of 1 V on the detector, requires that a floor in
the spectrum of 1 mV or less needs to be resolved. To do so, we used a 14-bit digitizer
(National Instruments PCI-5911). To resolve the resonances also in the horizontal direction,
the digitizer is operated at 5×106 samples/s. Fig. 2.5 shows the spectrum measured on two
vertical scales (two detector amplifications); one to measure the dominant resonances in the
spectrum and the other to measure the less prominent resonances and the floor properly. A
lens is placed behind the resonator to catch all the light transmitted through the end mirror.

The first result of our measurement is that the floor, if it exists, is smaller than the noise
level 0.02 mV, Tfloor/Tpeak < 2× 10−5, which demonstrates that the scattered light is not
found in the spectrum and is thus apparently not trapped inside the resonator. Furthermore,
we found that the summed transmission on both measurement scales yields an efficiency of
η = (20± 2) %. We thus find again that only 20 % of the light is transmitted through the
mirror, while 80 % escapes via scatter. Of the transmitted intensity roughly 60 % is found in
the single prominent resonance (peak ∼ 0.3 V) and 40 % is found in the smaller resonances
(< 0.05 V).

One might wonder firstly, whether the measured scattering around the reflected beam
is sufficient to explain all power loss in a Fabry-Perot resonator in operation and secondly,
whether the reflection and the transmission channel affect each other by scattering. To an-
swer the first question, it is important to note that the power ratio of the scatter around the
transmitted and reflected beam equals the ratio of the totally transmitted and reflected power.
To appreciate this argument, we mention that the angular distributions in both channels are
similar as they are Fourier related to the spatial distribution of the same surface. To answer
the second question, we mention that our system produces predominantly small-angle scatter.
Light scattered out of the beam transmitted by the mirror will therefore not affect light in the
reflected beam (and vice versa) because of the angular difference of almost 180◦.

2.4 Connection between cavity finesse and cavity ring-down
In this Section, the performance of a Fabry-Perot is described in terms of the finesse F , which
depends on the losses of the resonator via

F =
π

1−R
=

π
A+T

. (2.7)
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Figure 2.5: (a) Transmission spectrum of the resonator for one free spectral range. The
dashed line indicates the zoomed-in area shown in (b).

So, if we are able to measure the cavity finesse, the losses can be determined with this relation.
Two methods are introduced here, a spectral method and a temporal one.

The spectral method determines the finesse via the ratio of the free spectral range ∆νFSR
and the (FWHM) spectral linewidth ∆ν

F =
∆νFSR

∆ν
. (2.8)

The temporal method is based on the measurement of the 1/e decay time τ of the intracavity
intensity after the optical injection has been switched off. This is a so-called “cavity ring-
down” experiment [2]. Substitution of the relations ∆ν = 1/(2πτ) and ∆νFSR = c/(2L) into
Eq. 2.8 shows how the finesse can also be determined from τ

F = τπc/L , (2.9)

where c is the speed of light and L is the cavity length.
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2. Characterization of scattering in an optical resonator

Performing the spectral measurement, we found that the mirror mounts show a pro-
nounced mechanical resonance at 75 Hz with an acoustic Q-factor of approximately 50. To
avoid this resonance, and also its higher harmonics, the scan frequency of the piezo is cho-
sen at 4.6 Hz. At this frequency, the resonator scans in 3.8 ms and 2.8 µs through a FSR
and a resonance, respectively. The measured resonance width has a statistical error of 2 %;
the line shape is nicely Lorenzian, which shows that the scanning of the resonator is not too
fast to perturb the intra cavity field and produce ringing [35]. From this method, we found
F = 1380±40. Substituting F in Eq. 2.7 results in A+T = 2.3×10−3 which combines with
the transmission of a single mirror T = 4.1×10−4 to η = (18.0±0.5) %.

Performing the temporal measurement, we start by slowly scanning the resonator length.
On the peak of a resonance, a trigger switches off the laser light with an acousto-optic mod-
ulator (AOM ISOMET 1205-2). The injection beam switches off in 35 ns and we detect the
decaying signal with a 20 MHz-bandwidth detector. The measured decay signal gives a nice
exponential decay over two orders of magnitude as shown in Fig. 2.6. The 1/e decay time
found is τ = 0.18 µs which, in combination with Eq. 2.9, results in F = 1700±40. Further-
more, A+T = 1.84×10−3, found from Eq. 2.7, combined with the transmission of a single
mirror T = 4.1×10−4, gives a cavity efficiency η = (22.2±0.5)%.
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Figure 2.6: Ring-down curve of a resonator with a cavity length L = 0.1 m. The light is
switched off at t = 0 µs. The fitted ring-down time τ = 0.18 µs corresponds to a finesse
of F = 1700.

The difference between the finesse measured with the spectral method and cavity ring-
down may be surprising, but has been observed before. A possible explanation has been given
by Rempe et al. [16]. They state that for a proper spectral measurement spatial coherence
of the injected field should be retained after repeated reflections. A temporal ring-down
experiment, however, only requires energy confinement within the cavity, which imposes
only a restriction on the “incoherent” field. This is less critical to perturbations by, e.g.,
scatter, than the restriction on the coherence of the field. Loosely speaking, one might say (in
solid-state terminology) that spectral measurements yield something like a T2-time, whereas
temporal measurements yield a T1-time.

The ring-down method offers an independent method to reject the “trapped-light hypoth-
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2.5 Concluding discussion

esis” introduced above. Light recycled in other transverse modes would effectively enlarge
the ring-down time. Experimentally, the trapping of scattered light in lower-order modes can
be excluded by inserting an intracavity pinhole, absorbing the scattered light. The diameter is
chosen such that the lowest order mode is left unaffected. Doing so, the ring-down time of the
resonator with intra-cavity pinhole should be shorter than for the situation without. However,
the ring-down times were found to be independent of the presence of the intracavity pinhole,
consistent with our results in the spectral domain. Apparently, the proper argument is that
only a single mode is resonant and scatter cannot be trapped in other modes as they are not
resonant. The difference between both methods thus remains unsolved.

2.5 Concluding discussion
The roughness-induced scatter limits the performance of a Fabry-Perot. The scatter of a
single mirror is visualized and described by the BRDF and TIS and compared with the losses
of a resonator, comprising two mirrors. We show that the finesse and the peak throughput
are lower than expected from the mirror’s transmission. We have quantified the resonator

Method Efficiency (η)
TIS 20 %
incoherent illumination (23.6±0.1) %
coherent illumination (20±2) %
Fspectral (18.0±0.5) %
Fring−down (22.2±0.5) %

Table 2.1: An overview of the resonator efficiency η determined by the various meth-
ods in this Chapter: Via angular-resolved scatter of a single mirror (TIS), via average
power measurements for incoherent and coherent illumination of a resonator, and via
the spectral width and cavity ring-down.

efficiency η = T/(A+T ) by various methods as shown in Tab. 2.1. It shows that all methods
give roughly (within statistical errors) identical results; the efficiency of the resonator under
study being η ≈ 20 %. Thus 80 % of the light escapes via roughness-induced scattering of
both mirrors. Furthermore both the “floor” of a spectrum and the comparison of a spectral
and temporal method demonstrate that the scattered light is not resonantly trapped inside the
resonator.
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CHAPTER 3

Transverse mode coupling in an optical resonator

Small-angle scattering due to mirror surface roughness is shown to couple the optical
modes and deform the transmission spectra in a frequency-degenerate optical cavity. A
simple model based on a random scattering matrix clearly visualizes the mixing and
avoided crossings between multiple transverse modes. These effects are only visible in
the frequency-domain spectra; cavity ring-down experiments are unaffected by changes
in the spatial coherence as they just probe the intra-cavity photon lifetime.

T. Klaassen, J. de Jong, M. P. van Exter, and J. P. Woerdman, Opt. Lett. 30, 1959-1961
(2005).
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3. Transverse mode coupling in an optical resonator

3.1 Introduction

Optical resonators are used in many experiments; they provide for high resolution in opti-
cal interferometry and for field enhancement in QED experiments [4]. At specific “magic”
resonator lengths many transverse modes of the resonator have the same eigenfrequencies
[12, 21]. Such frequency-degenerate resonators have been suggested as a tool to enhance
the efficiency of removing entropy from atoms (cooling) in a resonator [36] and to observe
cavity-enhanced spontaneous emission at optical wavelengths [37].

Although loss due to scattering by mirrors is well-known for optical cavities [16, 22],
the special role of frequency-degeneracy in scattering is only touched upon in the litera-
ture [38] and no systematic study has been performed. In this Chapter, we demonstrate that
at frequency-degeneracy it is the amplitude scattering instead of the intensity scattering that
matters and show that the observed difference between time and frequency-domain measure-
ments around frequency-degeneracy is caused by mode-mixing of many transverse modes.
The coupling (due to surface roughness of the mirrors) changes the eigenmodes and eigen-
frequencies, which no longer coincide at frequency-degeneracy. This results in an inhomo-
geneous broadening of the measured resonances.

3.2 The experiment

In our experiment, a laser beam at fixed wavelength (λ = 532 nm) is injected into a sym-
metric stable (Fabry-Perot) cavity to match its TEM00 mode. The cavity is constructed
with two nominally identical highly reflective mirrors (specified reflectivity > 99.8%), hav-
ing a radius of curvature of R = 50 cm and a diameter of D = 5 cm. We operate the
cavity close to a frequency-degenerate point, where the eigenfrequencies of the Hermite-
Gaussian (HG) eigenmodes separate into N groups of almost frequency-degenerate modes.
At frequency-degeneracy, the Gouy phase θ0, being the round-trip phase delay between the
fundamental HG mode as compared to a reference plane wave, is by definition a rational
fraction of 2π: θ0 = 2π/N, the paraxial phase delay of higher-order modes (TEMmn) be-
ing (m + n + 1)θ0 [12]. In a ray picture of a frequency-degenerate resonator, the ray path
closes itself after N (equal to the number of hit points on each mirror) round-trips inside
the resonator [21]. For stability reasons, we avoided the popular confocal (N = 2) configu-
ration [12]. By way of example, we restrict the discussion to N = 4, this corresponds to a
cavity length L = 14.6 cm at R = 50 cm.

We measure transmission spectra by scanning the cavity length L over a few wavelengths
with a piezo element. From these spectra we deduce the cavity finesse F as the ratio between
the free spectral range c/(2L) = 1.03 GHz and the (FWHM) width of the dominant trans-
mission resonance. Fig. 3.1 shows the finesse as a function of the cavity length, which can
be accurately adjusted with a translation stage. Note, how the finesse drops from 1300 to
600 around frequency-degeneracy over a range (FWHM) of δ = ∆L/R = 4.3× 10−4. This
range corresponds to a frequency difference ∆ν = 0.78 MHz between consecutive classes of
transverse modes (∆(m + n) = N = 4). The inset shows that the resonance width more than
doubles and that the corresponding peak transmission is reduced to below 50% for spectra at
δ = 0 as compared to δ =−1×10−3.
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Figure 3.1: Relative spectral width of cavity resonances, expressed as the finesse F,
measured as a function of the normalized cavity length δ , for a resonator with (dashed)
and without (solid) a centered intra-cavity pinhole. The inset shows two typical spectra
measured at δ = 0 (solid) and δ =−1×10−3 (dashed).

We attribute the observed drop in finesse to mode coupling induced by scattering at the
(imperfect) mirrors. A proof of this statement is given by the dashed curve in Fig. 3.1, which
shows the measured finesse for the same cavity with a pinhole centered in the middle of
the cavity; this finesse is constant over the full range. The intra-cavity pinhole (diameter
1 mm; waist of TEM00 mode 0.17 mm) basically converts our multi-transverse-mode system
into a single-mode system, by increasing the losses of the higher-order transverse modes and
reducing the mode coupling. It thereby removes the mode mixing that caused the finesse
reduction and makes the system essentially single transverse mode.

The cavity finesse can also be determined with a cavity ring-down experiment, which
measures the intra-cavity photon lifetime after switching-off the optical injection [39, 40].
We have performed this experiment (without intra-cavity pinhole) with a sufficiently large
detector over the same detuning range and found absolutely no differences at or away from
degeneracy. From the measured lifetime of τ ≈ 0.35 µs, we obtained a constant value of
F ≈ 2200 over the full range (we do not have an explanation why this value is different from
the value F = 1300 mentioned above).

Cavity ring-down experiments are insensitive to the power distribution over the transverse
modes unless one uses an (extra-cavity) pinhole in front of the optical detector [39, 40]. By
passing only a fraction of the amplitude mode profiles, the transmitted power can then reveal
beatings between transverse modes that are only orthogonal over their full profile. Using this
configuration at the degenerate cavity length (N = 4), we experimentally observed that the
decay becomes nonexponential and, depending on the position of the detector pinhole, can
be either faster or slower than the decay observed without pinhole. The obvious conclusion
is that we observe the decay and beating of several (nondegenerate) transverse modes that are
simultaneously excited by an injection profile that was matched to just a single TEM00 mode.

Theoretically, the optical field at any plane in the resonator can be described by separating
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3. Transverse mode coupling in an optical resonator

it in transverse spatial eigenmodes j and amplitudes that change in time

E(x, t) = ∑
j

a j(t)u j(x) . (3.1)

This evolution is trivial if we assume that all modes have equal loss rates Γ, as should be the
case for low-order transverse modes and large mirrors. In a cavity ring-down experiment the
spatially integrated intensity decays then with a rate 2Γ. In a spectral measurement, where
one scans either the laser frequency or the precise cavity length, a large-area detector will
measure

Pout(ω) ∝ ∑
j
|a j(ω)|2 ∝ ∑

j

∣

∣

∣

∫

Ein(x) ·u∗j(x)dx
∣

∣

∣

2

(ω−ω j)2 +Γ2 , (3.2)

where the numerator quantifies the spatial overlap between the injected field Ein(x) and the
eigenmodes and the denominator quantifies the corresponding spectral overlap.

The key argument we want to make is that the shape of the eigenmodes u j(x) can be quite
different from the usual (HG) shape in a cavity that operates close to frequency-degeneracy.
The reason is that even a small amount of scattering at the mirrors can lead to dramatic
changes in the modal profile if it can resonantly perturb the mode profile over and over again
on consecutive round-trips. A similar phenomenon is known in quantum mechanics, where
energy-degenerate perturbation theory is quite different from nondegenerate perturbation the-
ory, which gives second-order expressions that explode at degeneracy as they are inversely
proportional to the energy differences between the unperturbed modes.

3.3 Simulations
To find the true eigenmodes in a perturbed cavity we use the observation that the optical
field inside a cavity can be described by a Schrödinger-type equation [41]. We take the
simplest form of coupling, which is found in many physical systems, and model it with a
random matrix c of the GOE class [42]. In the basis of the unperturbed HG-modes, the
matrix equation for the eigenfrequencies ω j and eigenmodes u j of the coupled system is thus

ω ju j = Mu j =











c00 c01 c02 . . .
c10 ε + c11 c12 . . .
c20 c21 2ε + c22 . . .
...

...
...

. . .











u j , (3.3)

where ε is the frequency detuning away from degeneracy. The coupling matrix c is random
but fixed for each realization of the system, with coefficients that are normalized via their
statistical variance 〈c2

i j〉 = 1. Energy conservation is assured via ci j = c†
ji and is physically

motivated by the observation that the scattering due to mild surface roughness produces so-
called conservative coupling [41]. The amplitudes of the HG modes evolve via the same
matrix M as in Eq. 3.3.

For simplicity, we have reduced the transverse dimensionality from 2 to 1, by group-
ing HGnm-modes with the same n + m value and unperturbed eigenfrequency into families
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j = (n + m)/N, and assume equal coupling between these families. On the one hand, the
coupling amplitudes between the individual modes will decrease with increasing mode num-
ber difference, as small-angle scattering due to gradual variations of the mirror height profile
generally dominates over large-angle scattering [29]. On the other hand, the coupling be-
tween mode families will increase with mode number as the number of modes per family
also increases. For simplicity again, these counter-acting phenomena are assumed to balance.

The white curves in Fig. 3.2a show the calculated eigenfrequencies as a function of the
detuning ε for 10 eigenmodes. Far from degeneracy, the on-diagonal elements of M dom-
inate the dynamics, the eigenmodes closely resemble the HG-modes with equally-spaced
eigenfrequencies jε . Around degeneracy, mode mixing occurs and the eigenvalues exhibit
a “10-mode” avoided crossing, with “level repulsion driven chaos” [42] as central at ε = 0.
Whereas the white curves show the eigenfrequencies of all modes, the underlying picture is
sensitive to the overlap with the injection mode, making some (lower-order) modes visible
around degeneracy, whereas others are barely excited. Fig. 3.2a has been obtained by assum-
ing a damping rate Γ = 1 to produce finite spectral widths and a realistic injection profile
Ein(x) that is matched to the fundamental HG mode. Note how the almost single-mode exci-
tation away from degeneracy unavoidably decomposes into many (modified) eigenmodes at
degeneracy.

Fig. 3.2b shows a composite plot of the measured transmission curves as a function of
the normalized cavity length δ , which can be transformed into a frequency detuning via
dε/dδ ≈ Nc/[2πLsin(θ0/2)] = 1.84 GHz. We dominantly excite the TEM00; the intensity
ratio of the TEM04 and TEM00 is only 5%. Note that close to frequency-degeneracy δ = 0
the peak transmission reduces and the resonance broadens due to mode-mixing, as shown
previously in Fig. 3.1. The results of our model are in nice agreement with the measurements.

For a qualitative comparison between the mirror surface roughness and the mode cou-
pling, we note that the amplitude of the roughness is directly proportional to the coupling
amplitude ci j between modes. The spatial frequency of the roughness determines the scat-
tering angle or equivalently the TEMmn-mode to which the scatter couples; the system is
particularly sensitive to spatial frequencies in the order of the inverse beam size (0.17 mm).
A rough estimate of the scatter amplitude ci j is given by the ratio of the locking range over
the free spectral range, being 8× 10−4 (roughly equal to the scaling between Fig. 3.2a and
b). Away from frequency-degeneracy the system feels only the scatter intensity which is less
than 10−6 per mode.

From a general perspective, the time and frequency domain measurements of the cavity fi-
nesse provide information that is similar to the T1 (population decay) and T2 (dephasing) time
measured in coherent spectroscopy, respectively. The time-domain ring-down experiment
only measures intensity decay rates and is thus equivalent to a T1-measurement. The mea-
surement in the frequency domain is phase sensitive and thus equivalent to a T2-measurement.

The level repulsion phenomena described in this Chapter, which we also observed for
several sets of other mirrors, give our system the flavor of a chaotic system [42]. This is not
really surprising when we think of the (imperfect) mirror as a deterministic random scatterer.
Although the experiments show level repulsion qualitatively, we cannot prove chaos to its full
extent.

In conclusion, we have demonstrated mode coupling in a passive resonator. The cou-
pling changes the eigenmodes and eigenfrequencies, which no longer coincide at frequency-
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Figure 3.2: False color (white=high and black=low) plot of the cavity transmission as
a function of the normalized frequency detuning (horizontally) and frequency (vertical);
vertical cuts represent transmission spectra at fixed cavity length. Both (a) simulations
and (b) experimental data show how mode coupling leads to a spectral broadening and
a reduction in peak transmission around the frequency-degenerate point ε = δ = 0.
Both effects result from level repulsion and mode mixing.
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3.A Shape of the eigenmodes

degeneracy. This results in an inhomogeneous broadening of the measured resonance and
explains the difference between the finesse measured in the time and frequency domain. A
coupled-mode model correctly describes the observed behavior. These effects cannot be ob-
served by cavity ring-down experiments; this should serve as a warning to experimentalists.

We gratefully acknowledge R. Sapienza for early work on this topic. This work is part of
the research program of the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM).

Appendix (unpublished material)
In this appendix, we discuss in more detail a number of topics, that were only touched upon
in the previous Sections. First, we visualize how the shape of the mode changes due to mode
coupling. Then, we estimate the number of modes involved in the coupling. As the “coupled”
basis is unknown, we project it onto the standard eigenmodes in the “uncoupled” basis, i.e.,
the Hermite-Gaussian (HG) modes. Finally, the nonexponential decay observed in certain
cavity ring-down experiments is highlighted.

3.A Shape of the eigenmodes
We have mentioned that mode coupling also changes the shape of the eigenmodes. To quan-
tify this statement, we have measured intensity profiles of modes behind the scanning res-
onator with an intensified CCD-camera (ICCD). The frequency-degenerate resonator (N = 4)
is injected again with a beam mode-matched to the fundamental mode. When the resonator
scans through a resonance in the spectrum, the ICCD-camera is triggered to image the inten-
sity profiles. The advantage of the ICCD-camera is that the gatewidth (∼shuttertime) is only
30 ns, very small as compared to the resonance width (FWHM) of ∼ 10 µs. This means that
we can visualize the mode profiles for a fixed cavity length.

The intensity profiles are measured at frequency-degeneracy (δ = 0) and away from
frequency-degeneracy (δ = 0.6× 10−3) in a symmetric cavity with R = 50 cm. Fig. 3.3a
shows the profile away from frequency-degeneracy. We observe a nice HG00 intensity pro-
file that we expect as only the lowest-order mode is excited and no higher-order modes are
available. Fig. 3.3b shows the mode profile at frequency-degeneracy. There is still strong
intensity in the center, but the mode profile is now highly distorted and shows a honeycomb-
like or speckled structure. Also outside the region, shown in Fig. 3.3b, the intensity profile
is different from Fig. 3.3a. At frequency-degeneracy, scattered light is present much fur-
ther outside the on-axis region even up to 10 times the waist. This shows that light is also
weakly coupled to many, many higher-order modes up to a mode number m ∼ 102 = 100.
We conclude that the light dominantly couples to the lower-order modes, but also somewhat
to higher-order modes as long intensity tales are present far away from the intensity center.

3.B The number of modes involved
Now that we have demonstrated the change of the shape of the eigenmodes, and roughly know
the distribution of the scattered light over the (coupled) modes, the question remains how
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3. Transverse mode coupling in an optical resonator

Figure 3.3: Intensity profiles on the mirror of a resonator tuned (a) away from degen-
eracy and (b) at degeneracy. In both situations the cavity is injected with an (identical)
input beam that is mode-matched to the fundamental mode. Away from degeneracy,
we observe the fundamental Hermite-Gaussian eigenmode, whereas at degeneracy the
modeprofile is totally different as the mode coupling has defined a new set of resonator
eigenmodes. The dimensions of both images are 0.45×0.45 mm2.

many modes are involved in the coupling process. An answer to this question can be found
in both the spatial and spectral domain. Measurements in the spatial domain reveal the mode
number of the highest-order mode involved in the coupling process. Spectral measurements,
on the other hand, help us to find the effective number of modes involved. The effective
number of modes is a good measure for the number of lower-order modes involved, as light
is dominantly scattered to these lower-order modes.

3.B.1 Spatial domain

In the spatial domain, the highest HG-mode that participates in the coupling can be found
in two ways. First of all, it can be deduced from the spatial structure in the mode profile
shown in Fig. 3.3b. The highest spatial frequency can be attributed to the highest-order mode
involved. Siegman [12] states that the spatial period Λm of mode number m and the mode
number m are related via Λm ≈ 4w/

√
m, with w the waist of the fundamental mode. An

intersection of the intensity profile shows that the lowest spatial period is Λ≈ 31 µm, which
corresponds to a mode number of m = 480 for a waist of w = 170 µm. Taking into account
the 4-fold frequency-degeneracy, which means that at resonance only one out of four modes
is excited, we estimate for the total number of coupled modes ∼ 480/4 = 120.

As an alternative method to determine the highest-order coupled mode, we insert an on-
axis diaphragm inside the resonator. The opening of the diaphragm is increased until the
intensity profile on the mirror does not change anymore. For this setting, all modes pass
apparently the diaphragm. The diameter of the diaphragm 2a is a direct measure for the mode
size. The corresponding mode m number is found from m ≈ (a/w)2 [12]. Experimentally,
we find that for a diameter of the diaphragm of 6 mm (and higher) the spatial period remains
constant. Combined with w = 170× 10−4

µm, the highest-order mode has a mode number
m∼ 310. This is roughly in agreement with the measurement based on the spatial period.

24



3.C Cavity ring-down and mode beating

3.B.2 Spectral domain

The number of modes involved in the coupling process can also be estimated from the exper-
imental cavity transmission shown in Fig. 3.2. More specifically, we use the width of the dip
in frequency detuning ∆δ (horizontal scale) in combination with the broadening of the nor-
malized spectral difference ∆ν/1.84 GHz (vertical scale). This estimate from the experiment
is based on, and validated by, the numerical simulation. For clarity, we note that in the ex-
perimental spectra ∆δ and ∆ν/1.84 GHz indicate the frequency detuning and the normalized
spectral difference, whereas in the numerical simulation ∆ε and ∆ω are used.

The theoretical description centered around Eq. 3.3 is based on the assumption that all
modes contribute equally to the mode coupling at ε = 0. For increasing ε , higher-order
modes will contribute less, and modes no longer contribute if Nε À c. For small c values,
only the two lowest-order modes (TEM4 and TEM0) couple. The width of the dip in fre-
quency detuning ∆ε thus scales linearly with the scatter amplitude c. The broadening of the
normalized spectra at ε = 0 is determined by the eigenvalue of a N×N-matrix. Assuming
equal scatter amplitudes c, ∆ω scales with

√
Nc instead of c.

The number of modes involved can thus be found experimentally from the ratio of ∆ν/1.84
GHz and ∆δ squared

(

∆ν/1.84 GHz
∆δ

)2

=

(
√

Nc
c

)2

= N . (3.4)

From Fig. 3.2b we deduce that ∆ν/1.84 GHz= 8.8×10−4 and ∆δ = 3.1×10−4, which results
in N = 8. The assumption that all modes contribute equally shows that light is scattered
effectively to 8 lower-order resonant modes.

We conclude from the measurements in the spatial domain that the light is coupled to
75−120 modes, and that the highest-order mode involved has a mode number m = 310−480.
The coupling to the higher-order modes is, however, very weak. Spectral measurement show
that light is dominantly coupled to the 8 lowest-order modes present.

3.C Cavity ring-down and mode beating

To further clarify the nonexponential decay and the mode beating in cavity ring-down at
frequency-degeneracy, mentioned in Section 3.2, we demonstrate additional experimental
results and introduce some theory [12]. The total field of two modes with eigenfrequencies
ω1 and ω2 is obviously given by

E(x, t) = u1(x)e−iω1t +u2(x)e−iω2t , (3.5)

where u1(x) and u2(x) are the spatial transverse patterns of the modes. The intensity signal
that this field will produce at the detector with transverse dimension A is

I(t) =
∫

A
|E(x, t)|2dx = I1 + I2 + I12 cos[(ω1−ω2)t] , (3.6)
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3. Transverse mode coupling in an optical resonator

where I1 and I2 are just dc-currents and I12 is the beat frequency term, ω1−ω2 being the beat
frequency between the modes. The beat frequency term I12 equals

I12 =
∫

A
u∗1(x) ·u2(x)dx

{

= 0 if A > mode size
6= 0 if A < mode size .

This integral cancels out to zero if the detector area A is bigger than the area spanned by the
two modes, which have orthogonal modeprofiles. If the detector area A is smaller than the size
of the modes, the modal overlap does not integrate to zero and beating occurs. The value (and
sign) of I12 depends strongly on the size and position of the aperture in the output. Next, we
will show this experimentally, for a ring-down experiment observed with a “bucket”-detector
(A > mode size) and a “point”-detector (A < mode size) .

Away from frequency-degeneracy (δ = 0.6× 10−3), the ring-down curves in Fig. 3.4a
are observed to be independent of the size of the detector. In the absence of coupling only
a single mode is excited. At frequency-degeneracy, however, multiple modes will be excited
with slightly different ω’s. Observation of the ring-down signal with a “bucket”-detector still
shows that the beating term cancels. For a “point”-detector, either on- or off-axis, the beating
causes a nonexponential decay due to the level-repulsion caused by the mode coupling; this
is shown in Fig. 3.4b. The decay can be faster or slower than the exponential decay, and
depends on both position and size of the aperture. The reason that we observe less than one
full oscillation must be that the frequency difference ν1− ν2 is substantially smaller than
1/τ ≈ 3 MHz.

26
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Figure 3.4: (a) Ring-down curves of a resonator tuned δ = 0.6× 10−3 away from
the (K/N = 1/4) frequency-degeneracy, as observed with a detector with an effective
diameter of 8 mm (black) and 1 mm (grey). The ring-down curves for the “bucket”- and
the “point”-detector are identical. The fitted decay time τ = 3.1×10−7 s corresponds
to a finesse F= 1970± 50. (b) Ring-down curves at exact degeneracy (K/N = 1/4)
for a “bucket”-detector (solid black), an on-axis “point”-detector (grey) and an off-
axis “point”-detector (at x = 0.75 mm) (wiggly dotted). The ring-down curve for the
“bucket”-detector shows an exponential decay, whereas the curves for the “point”-
detectors show a nonexponential decay, indicating mode beating. The measurement of
the off-axis “point”-detector is very noisy because of the low power.
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CHAPTER 4

Resonant trapping of scattered light in a degenerate
resonator

We demonstrate and discuss the formation of an intriguing interference fringe pattern
that is visible in stable resonators at resonator lengths corresponding to a higher-order
frequency-degeneracy. The optical trajectories that form these fringes are described for
arbitrary degeneracy; the fringes can be used to visualize and quantify imaging aberra-
tions of the cavity relative to a cavity consisting of ideal mirrors.

T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, Opt. Comm. 260,
365-371 (2006).
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4. Resonant trapping of scattered light in a degenerate resonator

4.1 Introduction

In textbooks [43, 44], two main types of interference rings are presented: rings of equal
inclination, visible in, e.g., a planar Fabry-Perot, and rings of equal thickness, often called
Newton rings. It is also known that under certain conditions a third type of interference rings
can be observed in the transmission pattern of a multi-transverse-mode Fabry-Perot cavity
with spherical mirrors [19,45,46]. For cavity lengths close to frequency-degeneracy rings are
observed that are formed by interference in closed optical paths and are resonantly trapped;
we dub these “rings of equal (multiple) round-trip path length”.

Such interferograms of Fabry-Perot cavities have already been demonstrated in the six-
ties [19, 45, 46], but only for special cases and generally only for plane-wave illumination.
Concentric cavities, which reproduce the optical field on a single round-trip, are discussed by
Arnaud [47]. Confocal cavities, which reproduce the field after two round-trips, are discussed
by, a.o., Hercher [19] and Bradley and Mitchell [45]. Cavities with other, more general, de-
generacies have, however, not been studied to our knowledge.

In this Chapter, we generalize the description of the interferograms for the confocal res-
onator to resonators, which reproduce the optical field after an arbitrary integer number of
round-trips (arbitrary degeneracy), including the effect of spherical aberration. We explain
the observed interference fringes with a similar approach as Bohr used to explain the discrete
levels in atomic systems [48]: we use a ray description to find the optical path (Fermat’s
principle) and impose the wave criterium that the N-fold round-trip path length should equal
a multiple wavelengths.

As an example, we have chosen (arbitrarily) a 6-fold degeneracy cavity. As compared
to the earlier work [19, 45, 46], where plane wave, i.e., wide-beam, illumination is used, we
use localized illumination with a narrow beam. Although we dominantly excite the TEM00-
mode, we still observe, surprisingly, weak interference fringes spread over the full mirror
aperture. This is due to scattering at the mirrors. This indirect illumination offers a crucial
advantage over wide-beam illumination as the resulting fringe pattern is stationary and hardly
sensitive to variations in the cavity length. We demonstrate how the fringe pattern can be used
to visualize and quantify the imaging aberrations of the cavity. In particular, we demonstrate
how the use of higher-order degeneracies allows one to increase the sensitivity for global
deformations, like astigmatism, up to accuracies of λ/1000.

In Section 4.2, we introduce the experiment and describe the formation of the fringe
pattern. A generalization of the ray description to arbitrary degeneracy is discussed in Sec-
tion 4.3. In Section 4.4, we present an application of the interference patterns for very accu-
rate measurement of cavity aberrations. We also give a quantitative description of the rela-
tion between the observed interference patterns and mirror deviations from the ideal spherical
form. In Section 4.5, we propose a potential application. We summarize our work in Sec-
tion 4.6.

4.2 Experimental setup and fringe formation

Our optical resonator (see Fig. 4.1) consists of two highly reflective mirrors (nominal specifi-
cation R > 99.8% and measured finesse F ≈ 1500) with a radius of curvature of 50 cm and a
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4.2 Experimental setup and fringe formation

diameter of 5 cm. We probe the resonator with a weakly focussed beam of 1.7 mm diameter
at a wavelength of 532 nm, produced by a frequency-doubled single-mode Nd:YAG laser,
which dominantly excites the TEM00-mode. We use a piezo element to scan (1 s period) the
cavity length over a few wavelengths and average over the cavity resonances. One mirror is
placed on a high-resolution mechanical translation stage to set the overall cavity length.

L

M1 M2

LASER
(532 nm)

CCD

y

x

Figure 4.1: A laserbeam is injected into a symmetric resonator of length L, comprising
mirrors M1 and M2 of equal radius R. The fringe pattern formed inside the resonator
is imaged by a lens onto a CCD-camera. The central ray is obscured to prevent over-
exposure of the CCD-camera.

As frequency-degeneracy plays a crucial role in our experiment, we will first explain
this concept on the basis of the Gouy phase. In a wave-optical description, the Gouy phase
θ0 is the round-trip phase delay between the fundamental Hermite Gaussian (HG)-mode as
compared to a reference plane wave; higher-order modes (TEMmn) experience a phase delay
of (m + n + 1)θ0 [12]. At frequency-degeneracy the Gouy phase is by definition a ratio-
nal fraction of 2π , θ0 = 2πK/N, with as extreme cases the planar (K = 0) and concentric
(K = N) cavities that operate at the edge of stability. In the ray-optical description, N is
the number of longitudinal round-trips that is needed before the ray returns on itself [49],
while K represents the number of transverse “oscillations” an orbit makes before closing.
For a symmetric cavity, the cavity length L, for which these degenerate points occur, follows
from L = R[1− cos(θ0/2)], where R is the radius of curvature of the mirrors. In this Chap-
ter, we (arbitrarily) chose the degeneracy K/N = 1/6, which corresponds to a cavity length
L = 6.7 cm at R = 50 cm. Contrary to the confocal and concentric cavities studied previ-
ously [19, 45, 46], our cavity is not at the border of the stability region but well inside [12].

The weak interference fringes, alluded to in Section 4.1, are only observed around fre-
quency-degenerate cavity lengths, where the eigenfrequencies of several eigenmodes overlap.
After blocking the on-axis injection beam with a thin obscuration behind the cavity this fringe
pattern is imaged by a lens onto a CCD-camera. A typical interference pattern, as observed
for a cavity length slightly longer than this cavity length, is shown in Fig. 4.2a. The fringes
are (almost) circular and the aperture of the mirror is clearly visible. Another pattern, typical
for cavities slightly shorter than exact degeneracy, is shown in Fig. 4.2b. We attribute the
fringes in both these patterns to light that is scattered at the (imperfect) mirror surface out of
the injected fundamental mode [50] and resonantly trapped inside the cavity for some specific
scattering angles, but not for others.

The advantage of the use of localized over wide-beam illumination is that the fringe pat-
tern is very robust against vibrations; large amounts of scattered light are generated only
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4. Resonant trapping of scattered light in a degenerate resonator

a. b.

Figure 4.2: (a) Interference pattern for a cavity tuned slightly longer (ε = 50 µm)
than an exact degeneracy of K/N = 1/6. The imaged mirror aperture is 5 cm. (b)
Interference pattern for a cavity tuned slightly shorter (ε = −80 µm) than an exact
degeneracy of K/N = 1/6.

when the cavity length corresponds exactly to a resonance of the fundamental mode. Piezo-
scanning of the cavity length leads then to a stroboscopic effect and offers a stationary time-
averaged interference pattern. This is contrary to the case of wide-beam illumination which
is much more sensitive to vibrations. In that case, there is resonant light present in the cavity
for every cavity length: sub-wavelength variations in the cavity length readily wash out the
interference pattern, as they lead to shifts of the interference pattern over full fringe distances.

Fig. 4.3 gives a clear demonstration of the buildup of the interference fringes in Fig. 4.2a
and b. For clarity, we injected at degeneracy slightly off-axis, which is indicated in Fig. 4.3
by the six bright spots. The piezo, which drives one mirror, is scanned very slowly (100 s
period), whereas Fig. 4.2a and b are the result of fast scanning through many resonances.
The slow scanning allows us to capture the interference patterns for a specific (almost fixed)
cavity length and helps us to visualize the build up of the interference fringes around a single
resonance.

Part of the light in the six hit points is scattered into elliptical periodic 2D-orbits (see
Fig. 4.3) for which only one scatter event is needed. The turning points or vertices of these
elliptical orbits form the interference fringes such as shown in Fig. 4.2a and b. The position
of the turning points, or equivalently the length of the long axis of the ellipses, is determined
by the condition for constructive interference. The total path length of a scatter orbit through
the resonator (see Fig. 4.4), of which the hit points on the mirrors are visible as elliptical
segments on the mirrors, then has to be a multiple of λ . The ellipses that form the next
interference fringe have a total path length which is one λ longer (outside Fig. 4.3). The
short axis of the ellipses is determined by the distance between the injection spots out of
which the light is scattered.

In the rest of this Chapter, we assume on-axis injection, which means that the six injection
spots, which were assumed before, now overlap and the scatter ellipses squeeze thus into
lines. The fringes are then formed by series of the vertices of in plane 1D-orbits. The number
of ellipses and the orientation of the ellipses is determined by the precise spatial distribution
of the scatter.
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Figure 4.3: (a) Observation and (b) schematic representation of the buildup of one
fringe (m = 1) on the mirror under slow-scan imaging. The 6 bright spots (numbered)
are a result of off-axis injection into a N = 6 degenerate cavity. The ellipses are formed
by light that is scattered out of the six hit points into periodic orbits. Only the ellipses
that interfere constructively after one round-trip (total path length equals λ ) are visible.
The turning points of the scatter ellipses are observed as the fringe (dotted circle), which
has a diameter of 1 cm.

Figure 4.4: Ray-trace of one periodic orbit through a two-mirror resonator with a
degeneracy of N = 6 forming a 2D-ellipse on the mirrors. The hit points of the slightly
off-axis injected beam on the mirrors are represented by crosses and the rays in the back
are dotted for clarity. The turning points of many of these ellipsis form a fringe in the
interference pattern.
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4. Resonant trapping of scattered light in a degenerate resonator

The buildup of the fringes out of elliptical orbits is confirmed by another experiment,
where we inserted from one side of the resonator a thin obscuration into the cavity. As shown
in Fig. 4.5, we observe not one but two shadows in the fringe pattern, one directly behind
the obscuration and the other symmetrically around the optical axis. The obscuration blocks
the light scattered out of the injection beam, and obscures a number of ellipses formed out of
scattered light. As an ellipse is mirror symmetric around the optical axis, the obscuration of
these ellipses appears in the interference fringe patters as two shadows.

Figure 4.5: Interference patterns at ε = +50 µm. The vertical shadow is the obscura-
tion outside the resonator blocking the injection beam. The two horizontal shadows are
due to a single obscuration inside the resonator.

4.3 Calculation of “average round-trip path length”
A description of the total round-trip path length in a cavity operating close to an arbitrary
frequency-degeneracy (including the spherical aberration), other than for the confocal and
concentric case, is missing in the literature. In this Section, we will present such expression.
We will use a perturbative approach, where we start with the well-known “ABCD-matrix”
formalism [12] and add the spherical aberration in a perturbative way by calculating the
length of a closed round-trip beyond the second-order expression. We will present a 1D
analysis, which properly describes the interference fringes, formed out of the 1D orbits.

For a symmetric two-mirror resonator, we assume that the hit points on the (ideal spher-
ical) mirrors are given by the paraxial form xn = ρ cos(nθ0 +φ0) [49], where θ0 = 2πK/N
is the Gouy phase, ρ is the maximum transverse displacement, and φ0 determines the phase
of the first hit point (the φ0 values on the two mirrors differ by θ0/2). We then calculate the
single transit path length Ln,n+1 between the mirror hit points xn and xn+1 up to fourth order
in these transverse displacement. Finally, we average over all xn values to obtain the average
path length

1
2N

Ltot(ρ) = (Lres + ε)−Bε
ρ2

R2 −A
ρ4

R3 , (4.1)
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4.3 Calculation of “average round-trip path length”

where ε = L−Lres is the length detuning away from exact 1/N-degeneracy and Lres = R[1−
cos(θ0/2)]. Note that by Fermat’s principle the round-trip path length of the physical ray
is approximately equal to the length of a nearby closed ray for which the hit points on the
mirrors are given by equation mentioned above. The detuning coefficient B and the spherical
aberration coefficient A are simple functions of the Gouy phase

A =
1+ cos(θ0/2)

32[1− cos(θ0/2)]
=

2R−Lres

32Lres
and (4.2)

B =
1
2

[

1
1− cos(θ0/2)

]

=
R

2Lres
. (4.3)

Both coefficients are always positive as Lres < 2R for stable resonators and the off-axis path
length Ltot(ρ) is thus always smaller than the on-axis path length Ltot(0). The term containing
B is the paraxial term (second order in ρ) and the term containing A is the nonparaxial term
(fourth order in ρ), which makes Ltot a nonparaxial expression.

The above expressions for A and B are only valid for degeneracies with N ≥ 3, for which
the cycle phase φ0 drops out of the averaging 〈Ln,n+1〉. For the confocal case (N = 2), the
round-trip path length does depend on the cycle phase φ0 [19, 46]. As a result, the “V-type”-
orbit has no ρ4-term whereas the “bowtie”-orbit has an A-coefficient that is twice the value of
Eq. 4.2, i.e., A = 1/16. For N = 2, our general result, Eq. 4.1, thus reduces to the N = 2 result
of Hercher [19] and Ramsay and Degnan [46], after substitution of the extreme transverse
displacements xm = ρ cos(π/4) = ρ/

√
2.

Fringes appear on the mirrors when the scattered light rays interfere constructively, i.e.,
when the round-trip path length Ltot equals a multiple of a wavelength nλ (n is an integer).
For ρ = 0, we find from Eq. 4.1 the on-axis interference condition: 2N(Lres + ε) = n0λ ,
which gives us for ρ 6= 0

−2N
(

Bε
ρ2

R2 +A
ρ4

R3

)

= (n−n0)λ . (4.4)

Using m = n0−n, the fringe radii for various ε can be calculated by rewriting Eq. 4.4

ρ2
m = R

B
2A

(

−ε±
√

ε2 +mλ2R
A
B2

)

. (4.5)

For ε > 0, ρm has only one solution and only for m > 0. For ε < 0, Eq. 4.5 has one solution
for every m > 0 and maximally two solutions for m < 0. In the regime where ρ has two
solutions, two fringes in the interference pattern fulfill the same interference condition and
have the same total path length.

For our specific N = 6-configuration, we have calculated the fringe radii for m ∈ [−6,10]
on the interval ε ∈ [−0.15,0.17] mm using Eq. 4.5, indicated by the solid lines in Fig. 4.6.
For ε > 0, it is obvious that every m has only one solution and for ε < 0, m can have two
solutions. We also determined the fringe radii as a function of ε experimentally from inter-
ference patterns such as shown in Figs. 4.2a and 4.2b, represented by the dots in Fig. 4.6. The
excellent agreement of the calculations and measurements confirms our model.
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Figure 4.6: The fringe radius ρ as a function of the distance ε from exact 1/6-
degeneracy. The solid lines are the calculated fringe radii and the dots are the measured
fringe radii. There is no adjustable parameter except from a small scaling (1.14×) of the
vertical axis to correct for the sharp imaging outside the resonator due to defocussing
of the resonator. The numbers in the figure indicate the fringe numbers.

We noticed that the experimental fringes are imaged sharply in a plane behind the cavity
and not on the mirror where the theoretical fringe radii are calculated. The sharp imaging
outside the resonator occurs as the rays (of the physical path) do not fully coincide, due to
intrinsic defocussing of the resonator as described in Eq. 4.1; the fringes are localized where
the rays intersect, in our case outside the resonator. That a sharp image of the fringes is not
found in the center of the resonator but away from this point has already been mentioned by
Bradley et al. [45]. We corrected the fringe radii for the diffraction over this distance for a
proper comparison (see discussion around Fig. 4.7).

4.4 Aberrations

The transmission interferogram of a cavity composed of two nonspherical mirrors will ob-
viously deviate from that observed or calculated for a cavity with two spherical mirrors.
The difference between these interferograms is a sensitive measure for the differences be-
tween their mirror height profiles as all mirrors are hit N times, where N can be very large.
By comparing the observed interferogram with that expected for ideal spherical mirrors
(Eq. 4.1), one can easily deduce the position-dependent change in N-fold round-trip path
length ∆Ltot[ρ cos(θ0/2),ρ sin(θ0/2)] via the criterium that for every extra fringe the total
path length changes by λ . The relation between this ∆Ltot-profile and the actual height pro-
files hi(~r), by which the two mirrors deviate from their ideal spherical reference, is more
complicated due to the zigzag nature of the round-trip path. It involves a summation over all
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N hit points on each mirror and can be written as

∆Ltot(ρ cosϕ ,ρ sinϕ) = 2
N

∑
n=1

h1(xn,yn)+h2(x′n,y
′
n)

≈ 2N
π

∫ ρ

−ρ

h(r cosϕ,r sinϕ)
√

ρ2− r2
dr . (4.6)

The integration in Eq. 4.6 remains 1-dimensional as the hit points of the ellipses on each
mirror lie on a straight line segment through the origin. This holds for excitation with the
fundamental HG-mode only.

The transition from a summation to an integration is valid when the degeneracy N, the
cavity finesse F , and the off-axis distance ρ are all sufficiently large to wash out the depen-
dence on the phase θ0/2 within the transverse oscillations; equivalent to the washing out of
the intermediate hit points on the ellipses. This is already the case for the ellipses forming
the first fringe (m = 1) at exact degeneracy (ε = 0) as shown in Fig. 4.3.

Eq. 4.6 gives the formal link between the combined mirror height profile h(~r) = h1(~r)+
h2(~r) and the deviation ∆Ltot(~ρ), deduced by comparing the observed interferogram with that
expected for ideal spherical mirrors. The inversion of this equation is simple in a Taylor
expansion (see below). The integral form already provides for a few basic rules: (i) Only
the symmetric part of the function h(~r) survives the (symmetric) integration from r = −ρ
to ρ . Any local bump or dip positioned at ρ0 will show up both at r = ρ0 and at r = −ρ0
as the function Ltot(~ρ) is symmetric in ρ . (ii) The closed round-trip path length Ltot(ρ)
is sensitive only to height variations h(r) at |r| < ρ . The denominator shows that height
variations around |r| ≈ ρ have a large weighting factor, as these are the turning points of the
transverse oscillation. (iii) The sensitivity of Ltot(ρ) to local height variations h(r), depends
on the exact topography of these variations. This sensitivity is better than λ/2 as each mirror
is hit N times during a closed orbit. It is, however, generally smaller than λ/2N as the
integration corresponds to averaging over the full mirror. The λ/2N accuracy is reached only
for global mirror deformation that are noticeable all over the mirror surface. The effects of
global deformations are best evaluated through a Taylor expansion in position coordinates.

As a check on the validity of Eq. 4.6, we will compare two symmetric cavities, one with
spherical mirrors of radii R and the other with mirrors of radii R+∆R. For this check, we note
that the difference ∆Ltot in a N-fold round-trip length can be described by both the total path
length (Eq. 4.1) and the difference in height profile (Eq. 4.6). The mentioned deformation
from mirrors with a radius of curvature of R to R + ∆R is equivalent to a combined mirror
height profile h[r cos(φ),r sin(φ)] =−2× ∆R

2R2 r2. Substitution of Eq. 4.6 yields a path length
change 1

2N ∆Ltot(ρ) = − ∆R
2R2 ρ2. Alternatively, we can interpret the difference in radii as an

extra detuning from the (now different) resonance length ε =−∆R[1−cos(θ0/2)] =−∆R
R Lres.

Substitution into Eq. 4.1 gives the same path length change as before, which concludes our
check.

The center and the outer region of Fig. 4.2b display almost circular fringes. In the inter-
mediate region (ρ ≈ 1.04 cm) the two patches below and above the injection beam originate
from the birth of a “fourth” fringe, counting from the center. The appearance on only the ver-
tical axis clearly demonstrates the presence of mirror astigmatism. The advantage of ε < 0 is
that the path length of the N-fold round-trip first increases and then decreases as a function
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4. Resonant trapping of scattered light in a degenerate resonator

of the radial distance ρ (see Fig. 4.5), which creates a pattern with a relatively large radial
fringe spacing.

To quantify the relation between the interference pattern and the astigmatism of the mir-
rors, we take a closer look at the labelling of the fringes. The radial dependence of the
round-trip path length makes the labelling of the fringes in the vertical direction of Fig. 4.2b,
for increasing radial distance: n = −1,−2,−3,−4,−4,−3,−2,−1,0,1, . . .. The patches of
light labelled with n =−4 are thus clamped between the two fringes n =−3.

The occurrence of these patches shows that, for a radial distance ρ = 1.70 cm off-axis,
the difference in the corresponding total round-trip path length is definitely less than two
fringes ( 1

2N (Ltot,x− Ltot,y) < 2λ/12). This results in a first estimate of the astigmatism of
∆R/R < 6.1×10−4.

We can also determine the astigmatism of the mirrors from the closed inner fringes. The
ellipticity of the fringes indicates that the same Ltot is found for slightly different off-axis
distances ρ . In Fig. 4.2b the ellipticity of fringe n = −2 is demonstrated by the tangent
inner dotted circle. As the radii of the tangent inner and outer circles differ (6±2)% and the
radii of the fringes n = −2 and n = −3 differ by 30% we conclude that the astigmatism at
ρ ≈ 0.91 cm corresponds to a average height difference of [(6± 2)/30]λ/2N = (9± 3) nm
or a relative difference in radii of ∆R/R = (2.0±0.7)×10−4.

The best estimate for the astigmatism is found from a fit of the experimental fringe
positions in Fig. 4.7 by m = aρ4− bρ2 similar to Eq. 4.1, where a = 2NA/λR3 and b =
2NBε/λR2. By taking the spherical aberration rotationally symmetric over the mirror we ob-
tain identical fit values ax = ay = 4.80×107. The fitted b is 2.61×104 and 2.87×104 in the x-
and the y-direction, respectively. From these fits we find that ∆R/R = (2.30±0.08)×10−4,
so that the radii of curvature differ by Rx−Ry = (115± 4) µm for R = 50 cm. This corre-
sponds to a height difference at ρ = 1.7 cm of (67±2) nm or an average height difference of
0.75×λ/12 fringe spacings.
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Figure 4.7: The fringe number as a function of the fringe radius. The upper and lower
curve correspond to cuts along the “long” and “short” symmetry axes of Fig. 4.2b.

It is easy to increase the number of fringes even further by going to a higher-order de-
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generacy. A relatively small change in the cavity length (6.70 to 6.28 cm) in fact suffices to
go from the K/N = 1/6 degeneracy to the mK/(mN + 1) = 5/31 and thereby increase the
number of fringes by roughly an integer factor m = 5. The resulting fringe pattern is shown
in Fig. 4.8, where the cavity is tuned ε ≈ −93 µm away from the degenerate point. The
number of fringes in Fig. 4.8 is indeed roughly 5 times as large as in Fig. 4.2 and immedi-
ately shows the enhanced sensitivity to average height variations, i.e., ∆L/N = λ/62 (an extra
fringe appears for every ∼ 9 nm average height variation!).

Figure 4.8: The interference pattern for a degeneracy of K/N = 5/31. Due to the
higher degeneracy more interference fringes are visible, with spacings corresponding
to λ/62 height variations.

For proper comparison of the simulated and measured fringe radii, as shown in Fig. 4.6,
we have to correct for the diffraction over the distance between the second mirror, where
the fringe radii are calculated, and the image-plane of the fringes (6 cm behind the cavity).
The comparison of the theoretical and experimental a fitted in Fig. 4.9 can be used for this
scaling. As a scales with 1/ρ4 (see Eq. 4.1), the magnification of the experimental fringe radii
as compared to the theoretical fringe radii (ρmeas/ρth) scales with (ath/ameas)

1/4 = (7.97×
10−4/4.8× 10−4)1/4 = 1.14×. The spatial evolution of the fringe radii due to diffraction
inside and outside the resonator (Fig. 4.9) provides us with the same scaling: 1.15×.

Finally, we compared the results obtained with our new fringe method with an aberration
analysis with a commercially available standard phase-stepped Fizeau interferometer [51–53]
(Wyko 400) on which we tested two identical mirrors. The interferograms showed no sep-
arated fringes apart from the ones produced by defocus. The phase-stepping technique al-
lowed us to quantify the peak-to-peak height deviation of the individual mirrors, as compared
to the spherical reference mirror, to be less than 90 nm within the central aperture of radius
ρ = 1.5 cm. The astigmatism of each mirror was less than 40 nm peak value in this aperture.
Although the values for the astigmatism we found with our fringe method depend on the
mutual orientation of the mirrors, the order is comparable with values found with the Fizeau
interferometer [51–53].
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Figure 4.9: The measured and fitted radii of two fringes for various positions inside and
outside the resonator. The dashed-dotted lines represent the mirrors of the resonator.

4.5 Applications

The described multi-beam resonator method may be useful for the accurate inspection of the
global aberrations of single mode resonators. This may sound surprising, since the cavity
length and mirror radii of a single-transverse resonator are such that higher-order transverse
modes experience sizeable losses. To study the aberrations in these cavities, we propose to
greatly reduce the cavity length, so as to use them in the multi-transverse-mode regime. When
we then operate the cavity around a higher-order degenerate point with on-axis injection,
resonant trapping of scattered light should again produce interferograms like Fig. 4.2. In
essence, by greatly shortening the cavity length L and thus increasing the Fresnel number,
NF = a2/λL [12], where a is the mirror radius and λ the wavelength, we may visualize the
resonator aberrations.

An example of a single-mode resonator, where aberrations are a key issue, is the LIGO
interferometric gravitational wave detector. The mirrors used in these resonators have to meet
very stringent requirements (order λ/2000 for R = 7 km mirrors [7]). Currently, a null wave-
front interferometer is used to measure the aberrations of the mirrors. The disadvantage of
this method is the required stability for full aperture testing, and the limited aperture capabil-
ity, where the evolution of LIGO is toward mirrors with even larger radii [54]. Fabrication
of such surfaces is a difficult process and our multi-pass method could provide a rapid, full
surface scanning of such mirrors, although the limited Finesse of the LIGO interferometer
(F ∼ 210) is still a practical limitation of our method.

4.6 Concluding remarks

We have demonstrated and discussed the formation of fringes in the interference patterns ob-
servable around frequency-degenerate cavity lengths. These fringes are the vertices of light
that is scattered into closed orbits and resonantly trapped inside the resonator. From this
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mechanism we have generalized the total round-trip path length for arbitrary 1/N degenerate
points. Finally, we have shown how the observed interference pattern can be used for visu-
alization and quantification of cavity aberrations, and possibly applied for testing the mirrors
used in gravitational wave detectors.

Appendix (unpublished material)

4.A Calculation of the total path length
In this Section, the derivation of the total path length in an arbitrary frequency-degenerate
cavity (N > 2) will be discussed in more detail. We start out calculating the length L of a
single pass ray, connecting the hit points on the mirrors P1 and P2, as shown in Fig. 4.10. We
normalize all (positions and) distances by the identical mirror radii R. The normalized on-

d
2

L

x
2

x
1

d
1

L
0

P
1

P
2

Figure 4.10: Schematic representation of a ray with a length L connecting the hit points
P1 and P2 in a frequency-degenerate two-mirror resonator with a cavity length L0.

axis cavity length of the frequency-degenerate cavity is L0 = Lres/R = 1− cos(θ0/2), where
θ0 = 2πK/N is the round-trip Gouy phase. The (horizontal) distance between the hit points
on the mirror and the reference plane is denoted δ .

The length of the ray connecting P1 and P2 is given by

L =
√

(L0−δ1−δ2)2 +(x2− x1)2 = (L0−δ1−δ2)

√

1+

(

x2− x1

L0−δ1−δ2

)2

. (4.7)

In the paraxial limit (x1,x2¿ L0), Eq. 4.7 becomes

L≈ (L0−δ1−δ2)+
(x2− x1)

2

2(L0−δ1−δ2)
− (x2− x1)

4

8(L0−δ1−δ2)3 . (4.8)

Using a Taylor expansion of δ1 and δ2 up to the fourth order, i.e.,

δ1,2 = 1−
√

1− x2
1,2 ≈

x2
1,2

2
+

x4
1,2

8
, (4.9)
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we find for Eq. 4.8

L≈ L0 +
(x2− x1)

2

2L0
− x2

1 + x2
2

2
− x4

1 + x4
2

8
+

(x2− x1)
2(x2

1 + x2
2)

4L2
0

− (x2− x1)
4

8L3
0

. (4.10)

We will use this expression to calculate the total path length Ltot of a closed orbit in a
frequency-degenerate cavity. To do so, we decompose this orbit in 2N single passes via
Ltot = ∑2N−1

n=0 Ln,n+1 = 2N〈Ln,n+1〉. Using Eq. 4.10, the average path length 〈Ln,n+1〉 for a ray
connecting two hit points xn and xn+1 can be written as

〈Ln,n+1〉 ≈ L0 +
〈(xn+1− xn)

2〉
2L0

− 〈x
2
n + x2

n+1〉
2

− 〈x
4
n + x4

n+1〉
8

+
〈(xn+1− xn)

2(x2
n + x2

n+1)〉
4L2

0
− 〈(xn+1− xn)

4〉
8L3

0
. (4.11)

For xn, the unaberrated positions of the hit points are used, found from xn = ρ sin(nθ0/2+φ0).
The eventual extra phase factor φ0 determines the type of orbit, e.g., V-shaped or bow-tie. The
relation xn = ρ sin(nθ0/2+φ0) = ρ{exp [i(nθ0/2+φ0)]−exp [−i(nθ0/2+φ0)]}/2i helps us
to simplify Eq. 4.11. Furthermore we use the relation 〈exp[i(nθ0/2+φ0)]〉= 0, which holds
in the case of frequency-degeneracy, where the values nθ0/2 are equally distributed over the
“unit circle” [0,2π〉. Cycle averages of other powers of xn and xn+1 are calculated by reex-
pressing products of exponents into sums of exponents with combined arguments followed
by a similar cycle average, e.g., 〈x2

n〉= ρ2〈 1
2 + 1

2 exp[i(nθ0 +2φ0)]〉= ρ2/2. We note that the
phase factor φ0 drops out of all these averages. This means that the total path length for an
arbitrary degeneracy (N > 2) is independent of the type of orbit. Application of both ideas on
the individual terms of Eq. 4.11 results in

〈(xn+1− xn)
2〉 = ρ2[1− cos(θ0/2)] , (4.12)

〈x2
n + x2

n+1〉 = ρ2 , (4.13)

〈x4
n + x4

n+1〉 = 3
4 ρ4 , (4.14)

〈(xn+1− xn)
2(x2

n + x2
n+1)〉 = ρ4{ 1

2 [cos(θ0/2)− 3
2 ]

2− 1
8} , (4.15)

〈(xn+1− xn)
4〉 = 3

2 cos(θ0/2)2−3cos(θ0/2)+ 3
2 . (4.16)

Substitution of Eqs. 4.12–4.16 into Eq. 4.11 finally results in Eq. 4.1, which reads

1
2N

Ltot(ρ) = (Lres + ε)−Bε
ρ2

R2 −A
ρ4

R3 , (4.17)

where

A =
1+ cos(θ0/2)

32 [1− cos(θ0/2)]
=

2R−Lres

32Lres
and (4.18)

B =
1
2

[

1
1− cos(θ0/2)

]

=
R

2Lres
. (4.19)
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4.B Evolution of fringes around frequency-degeneracy
For a better understanding of Eq. 4.5, as depicted graphically for N = 6 in Fig. 4.6, we dis-
cuss here a number of corresponding fringe patterns on the mirror. The intensity profiles
for various distances ε away from the exact frequency-degenerate point N = 7 are shown in
Fig. 4.12. The cavity detuning ε is increased stepwise by 5 µm from ε = −55 to 20 µm.
To prevent redundancy, not all pictures out of this series are shown in Fig. 4.12. The astig-
matic axis are prominently visible in, a.o., images 1 and 4. The disappearance of the fringes
m = −2,−1, and 0 can be observed between the images 1− 2, 4− 5, and in the series of
9− 12, respectively. At these points, the transmitted power is redistributed over the mirror.
This is shown in Fig. 4.11, where we obscured the on-axis transmitted power and measured
the off-axis power as a function of ε . We observe increased transmission exactly at these
points, denoted 1,4, and 9. The radii of the disappearing fringes correspond to ∂Ltot/∂ρ = 0
found from Fermat’s principle (see Chapter 6). For those trajectories, the interference of the
scattered light is maximally constructive, and the light is “resonantly trapped”.

I 
[a

.u
.]

-60 -40 -20 0 20

0

e [m ]m

1 4

9

Figure 4.11: The transmitted power outside the on-axis beam as a function of the cavity
detuning. The labelling corresponds to Fig. 4.12. Images 1, 4, and 9 show an increase
of the transmitted power (outside the optical axis), corresponding to the “birth” of the
fringes m = −2,−1 and 0, respectively. The length detuning from image 1 to 4 nicely
corresponds to the difference found in the simulations and measurements.
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Figure 4.12: Intensity profiles over the full mirror aperture (diameter 5 cm) around the
7-fold frequency-degeneracy point (N = 7) from ε =−55 (Image 1) to 20 µm (Image 12)
in steps of 5 µm (Images at ε =−45,−25,−15 µm and −15 µm are left out). Image 9
represents the fringe pattern at exact frequency-degeneracy (ε = 0) and shows the birth
of the m = 0-fringe. To prevent the pictures from overexposure the on-axis beam is
blocked.
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CHAPTER 5

Gouy phase of nonparaxial eigenmodes in a folded resonator

We study the effect of nonparaxiality in a folded resonator by accurate measurements of
the Gouy phase, as function of the mode number for mode numbers up to 1500. Our exper-
imental method is based upon tuning the resonator close to a frequency-degenerate point.
The Gouy phase shows a nonparaxial behavior that is much stronger in the folding-plane
than in the perpendicular plane. Agreement with ray-tracing simulations is established
and a link with aberration theory is made.

T. Klaassen, A. Hoogeboom, M. P. van Exter, and J. P. Woerdman, J. Opt. Soc. Am. A 21,
1689-1693 (2004).
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5.1 Introduction
Our interest is in the spectrum of a folded (3-mirror) optical resonator; this is stimulated by
the fact that Dingjan et al. [55] have recently found a signature of wave chaos in such a res-
onator. Generally, to obtain wave chaos, a minimum requirement is that the wave equation
describing the system is nonseparable. This can be achieved by making the numerical aper-
ture of the resonator relatively large, i.e., going beyond the paraxial regime. Since in this
regime aberrations occur, it is natural to look for a connection between the basic concept of a
paraxial resonator, namely its Gouy phase, and optical aberration theory. In the present Chap-
ter, we make this connection by extending the concept of the Gouy phase, which is essentially
a paraxial concept, into the nonparaxial domain where optical aberrations form the more nat-
ural concept. Our approach is mainly experimental; it is based on accurate measurements of
the Gouy phase, being the diffraction-induced phase delay of a finite-diameter focused beam
as compared to a plane wave. By measuring this phase difference for transverse modes up
to very high mode numbers (beyond paraxiality), we can obtain quantitative information on
the optical aberrations in the cavity. In principle, a connection with standard lens aberration
theory can be made by realizing that the optical cavity (a folded one in our case) is equivalent
to a periodic lens guide [12]. However, this comparison is hampered by the fact that we deal
with a highly unusual series of lenses as shown in Fig. 5.8b below (periodic; relatively large
separations; strongly astigmatic elements), which does not appear in the literature on lens
aberrations.

In Section 5.2, we introduce the theory of the Gouy phase. The experiment is described
in Section 5.3 and the experimental results are discussed in Section 5.4. In Section 5.5,
we present ray-tracing calculations and compare them with the experimental results. The
results are explained using aberration theory in Section 5.6 and we summarize our work in
Section 5.7.

5.2 Gouy phase theory
The Gouy phase is an essential ray- and wave-property of optical resonators [12, 21, 46]; it
plays an important role in determining the position and slope of the intra-cavity rays and the
spectral properties of the modes. These modes can be chosen as Hermite-Gaussian eigen-
modes with eigenfrequencies

νq,nm =
c

2L

[

q+(m+n+1)
θ0

2π

]

, (5.1)

where θ0 is the Gouy phase, L the length of the cavity and q,n and m are the longitudinal and
transversal mode numbers, respectively. Throughout this Chapter, we choose n = 0 as we
excite in the experiment discussed below only a set of 1-dimensional modes. The longitudinal
mode spacing is called the free spectral range: ∆νFSR = c/2L. Frequency-degeneracy occurs
when the Gouy phase is equal to a rational fraction of 2π , θ0 = 2πK/N. In the ray picture,
N longitudinal round-trips are then needed before the ray returns on itself [21], and K is the
number of transverse “round-trips” an orbit makes before closing; in all our experiments, we
use a resonator configuration that yields K = 1. The frequency-degenerate eigenfrequencies
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Figure 5.1: The folded 3-mirror resonator and its orientation.

in the spectrum are thus
νq,m0 =

c
2LN

[Nq+(m+1)] , (5.2)

which implies that when we raise m by N and at the same time lower q by 1 that νq,m and
νq−1,m+N are the same. The spectrum collapses into N “clumps” of modes.

For the fundamental Gaussian mode, the Gouy phase θ0 is defined as the round-trip phase
delay ψ0 between this mode and a plane wave. Higher-order TEMm0 modes experience a
larger phase delay ψm as compared to the reference plane wave; in the paraxial regime, we
have simply ψm ≡ (m + 1)θ0 [12]. In the nonparaxial regime, we can similarly define an m-
dependent Gouy phase θm via θm = (ψm−ψ0)/m. Any m-dependence of θm, i.e., any change
in Gouy phase as a function of the mode number, is equivalent to the presence of aberrations
with respect to paraxiality.

Next, we consider a folded 3-mirror resonator, with a folding angle of, e.g., 90◦, and a
spherical folding mirror (Fig. 5.1); note that when using a planar folding mirror, the folded 3-
mirror cavity is trivially equivalent with a two-mirror cavity. Already in the paraxial regime,
the effective power of the folding mirror in the xz-principal plane is different from the ef-
fective power in the y-principal plane. This trivial form of astigmatism causes that two Gouy
phases are needed to describe the resonator. The same degeneracy N requires different lengths
of the resonator in the xz-principal plane and the y-principal plane.

In the nonparaxial regime, the folding mirror affects the magnitude of the aberrations in
both planes of the folded resonator. The modes in the y-principal plane will hardly feel the
aberrations of the folding mirror. In contrast, the modes in the xz-principal plane, will undergo
the full effect of the aberrations introduced by the folding mirror; these will be stronger than
in the case of a two-mirror resonator.

Since we operate close to frequency-degeneracy, the Gouy phase θm for an arbitrary mode
m (integer multiple of N) can be written as

θm =
2π
N

+∆θm , (5.3)

where θm is the Gouy phase and ∆θm parametrizes how close the spectrum is to degeneracy.
A generalization of Eq. 5.1, along the lines described above, using θm = (ψm−ψ0)/m, shows
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that ∆θm can experimentally be found from

∆θm =
2π

∆νFSR

∆νm

m
, (5.4)

where m is the transverse mode number, ∆νm is the frequency difference of the fundamental
mode and mode m, and ∆νFSR is the free spectral range.

5.3 Experiment
Our folded optical resonator (Fig. 5.1) consists of three highly reflective mirrors (nominal
specification R > 99.995%). The folding angle is 90◦, the radii of curvature of mirror M1 and
MF are 1 m, mirror M2 is planar, and all mirrors have a diameter of 2.5 cm. Fig. 5.2 shows the
complete experimental setup. The length of arm A2 is 1.2 cm, the length of arm A1 is variable.
We probe the transmission of the resonator with a beam at a wavelength of 532 nm, produced
by a frequency-doubled single-mode Nd:YAG laser. The beam is sent to the resonator via lens
L1, enters the cavity through mirror M1 (here the beam diameter is ∼ 0.5 mm) and excites
the Hermite-Gaussian modes of the cavity. The focal length of lens L1 equals distance A3,
so that the (dotted) beam is injected parallel to the optical axis, independent of the rotation-
angle of mirror M3. This allows us to vary ∆r, the off-axis position of injection on mirror M1,
independent of the angle of injection. We inject in the xz-principal plane or in the y-principal
plane in order to excite only 1-dimensional TEMm0 or TEM0m modes. Exciting a limited set
of modes makes labelling of the modes easier and allows us to measure closer to degeneracy.
The spectrum is obtained from the spatially integrated throughput as a function of the cavity
length, by scanning the position of mirror M1 with a piezo-element. Judging from these
spectra, we estimate the finesse of the cavity as ∼ 5600 for low-order modes and ∼ 5000 for
high-order modes. This is considerably smaller than the value of the finesse allowed by the
mirror reflectivities (> 99.995%). We attribute this discrepancy mainly to scattering due to
polishing errors of the mirrors.

The length L of the cavity is varied by changing the length of arm A1; this length is
chosen such that the spectrum is almost N-fold degenerate resulting in N “clumps” of modes
(see Fig. 5.3). Fig. 5.4 shows a detail of the modes within the “fundamental” clump. The
mode number difference of subsequent modes is N. The transverse mode numbers of the
modes within this clump are thus labelled m = lN, where l = 0,1,2,etc.

The closeness to degeneracy is illustrated by the typical distance between subsequent
peaks ∆νN/∆νFSR ≈ 1×10−3, where ∆νN is the distance between mode m = 0 and mode N
and ∆νFSR is a free spectral range. Higher-order modes are therefore still relatively close to
the m = 0 mode so that the effect of vibrations on the time scale of the piezo scan is limited
(we scan typically over ∆νFSR in∼ 22 ms). Specifically, for a frequency range ∆νFSR/16 (m≈
500)), the measured vibration-induced fluctuations in ∆ν/∆νFSR are of the order 3× 10−4.
This is acceptable as in our range of mode numbers (m up to 1500) the modes can still be
labelled uniquely, (3×10−4 < 1×10−3).

To find the Gouy phase as a function of mode number, a set of 15−25 spectra is measured
for increasing off-axis position of injection, ∆r. Every time the off-axis distance of the beam
is increased, a different clump of peaks containing higher-order Hermite-Gaussian modes is
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Figure 5.2: Overview of the setup, where the mirrors M1, MF and M2 form the folded
resonator. A1, A2: lengths of resonator arms, PM: photomultiplier, L1, L2: lenses, B1,
B2: beamsplitters, M3, M4: mirrors. The solid line indicates the fixed beam which
excites the fundamental mode. The position of the other (dotted) beam on mirror M1
can be increased by rotating M3 to excite higher-order modes.

excited. Starting from the on-axis position, the position of injection is increased stepwise
such that the spectra of successive measurements overlap. Finally, a second beam is always
injected into the resonator to excite only the fundamental (m = 0) mode. The presence of
this reference mode, in the set of overlapping spectra, allows for a unique labelling up to
transverse mode numbers m≈ 1500.

5.4 Experimental results
For every transverse mode m, the frequency difference ∆νm is measured and this is trans-
formed to a round-trip Gouy phase by using Eq. 5.4. For several degenerate configurations
(N = 7, 8, and 9), the change of the Gouy phase as a function of the mode number has thus

49



5. Gouy phase of nonparaxial eigenmodes in a folded resonator

FSR

N
o

rm
a

liz
e

d
 t

h
ro

u
g

h
p

u
t

0

0.5

1

0 0.5 1.0

/ [-]n DnFSR
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The almost 8-fold degeneracy makes the difference in mode number between two subse-
quent modes equal to 8. ∆νm is the distance between the fundamental mode m = 0 and
mode m.
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Figure 5.5: ∆θm vs. mode number m for various values of N. The upper three curves
are measured in the xz-principal plane, the lower ones in the y-principal plane. For easy
comparison all curves have been vertically shifted by an arbitrary amount to bring them
closer to each other; the N− indicates an originally negative valued ∆θm.

been determined. Fig. 5.5 shows the measured value of ∆θm/2π as a function of the trans-
verse mode number m. The three top curves show this dependence for displacements of the
injected beam in the xz-principal plane (for orientation see Fig. 5.1), at three different but
fixed cavity lengths, corresponding to degeneracy near N = 7, somewhat below 7 (denoted
7−) and near N = 8. The three bottom curves show this dependence for displacements in
the y-principal plane for N ' 8,9−and 9. As only the change of ∆θm with m is important, a
suitable vertical offset has been added to the various curves to allow better comparison.

The change of ∆θm with m is a nonparaxial effect that corresponds with the onset of
aberrations. For N = 8 in the xz-principal plane, ∆θm/2π increases with 0.7× 10−4 when
going from for low m-values to m≈ 1200. In this region, ∆θm/2π changes in the y-principal
plane with only 0.1×10−4. We thus find almost an order of magnitude stronger aberrations
in the xz-principal plane than in the y-principal plane. We attribute this key result to the fact
that modes in the y-principal plane will hardly feel the aberrations due to the folding mirror,
M2, in contrast to the modes in the xz-principal plane.

Varying the degree of degeneracy, N changes the position and angle of incidence at which
the rays hit the optical elements. On this basis, one could expect that the change of the Gouy
phase depends on N. More detailed inspection of Fig. 5.5 shows first of all that the Gouy
phase is practically independent of the odd/even nature of the number of hit points, N, on
the mirrors. Secondly, ∆θm shows a strange wiggling for the lower-order mode numbers,
m = 0 up to 150. A likely explanation for this phenomenon is in the surface polishing errors
of the mirrors [56]. These imperfections are expected to affect the lower-order modes much
stronger than the higher-order ones, as the latter have larger transverse mode sizes and should
thus smooth out local errors in the shape of the mirrors.

In order to enable a comparison of the experiment with ray-tracing simulations (see Sec-
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Figure 5.6: The square root of the mode number vs. the off-axis distance of injection
on mirror M1.

tion 5.5), we have measured the relation between the dominantly excited mode number and
the off-axis injection distance. The experimental result for N = 8 is shown in Fig. 5.6, where
the negative/positive square roots of the mode numbers refer to injection on the right/left
side of the marker mode on mirror M1. The linear fit was used to determine both the slope
and the ∆x = 0 point. Paraxial theory predicts that the mode number changes approximately
quadratically with the ratio of the off-axis distance and the waist of the fundamental Gaussian
mode w0: m ∼ (∆r/w0)

2 [12]. The fitted curve shows that this paraxial dependence is not
yet violated in our folded cavity; this is in accordance with the results of Laabs [57] for a
two-mirror cavity.

5.5 Comparison with ray tracing
Since the Gouy phase is also a ray-optical property, it can be calculated by means of a ray-
tracing program. We did this for a ray that is injected parallel to the optical axis from a
certain off-axis distance ∆r through the folded resonator, configured close to degeneracy N.
The positions of the ray on the first (injection) mirror are calculated exactly for n = 104

round-trips. As shown in Herriot et al. [21] the hit points xn on the mirror are given by

xn = ∆r cos[nθ(∆r)] , (5.5)

where ∆r is the off-axis distance of injection. This allows us to calculate the Gouy phase
θ(∆r) from the 104 points xn, with an accuracy of approximately 10−6 rad.

The results of calculations for an N = 8 and 9 three-mirror cavity are depicted in Fig. 5.7,
which displays ∆θ/2π as a function of the off-axis distance of injection, ∆r. The calculations
show that the Gouy phase is not a constant but increases with ∆r. Furthermore, the Gouy
phase changes much stronger for increasing displacements in the xz-principal plane than in
the y-principal plane; we compare this now with the experimental results.
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Figure 5.7: Ray-tracing calculations of ∆θ vs. the square of the off-axis distance (xz-
principal plane) of injection for N = 8 (triangles) and 9 (circles) and in the y-principal
plane for N = 9 (squares).

For injection in the xz-principal plane (∆r becomes ∆x) the calculated slope ∆θm/(∆x)2

for N = 8 is 1.97× 10−5 rad/mm2. To compare this to the experiment we take the linear
fit of the measured data for N = 8 (Fig. 5.5) which is converted from mode number to off-
axis distance of injection, using Fig. 5.6. This results in an experimental slope ∆θm/(∆x)2 =
2.00×10−5 rad/mm2. The excellent agreement between theory and experiment validates our
mapping from ray to wave dynamics.

To put these numbers in perspective, we consider the specific case of injection at ∆x =
5 mm, which excites a group of modes around mode number m = 1500. From the slope
given above, this produces a (nonparaxial) change of the Gouy phase ∆θm by ∼ 5×10−4 rad
as compared to the paraxial values θ0. Although this number is small, it can be measured
relatively easily in our system because the shift in resonance frequency of a mode is propor-
tional to m∆θm ≈ 0.75 rad≈ 0.12 ∆νFSR in the considered case. This is easily observable in
our high-finesse cavity.

For a better understanding of the strength of the aberrations in the folded resonator, we
have also studied a two-mirror cavity, both experimentally and theoretically. In this case, we
choose two mirror radii of 1 m and a cavity length L of∼ 8 cm, which corresponds to a degen-
eracy near N = 8. Due to the absence of astigmatism, we observed a strong coupling between
the horizontal and vertical modes, which made the measurement less accurate. Experimental
results show that the change in ∆θm/2π is less than 3×10−5 up to m≈ 1000. The calculation
of the Gouy phase, which, in the present case, is more accurate than its measurement, shows
a small increase of the Gouy phase for increasing mode numbers. The slope of the calculated
Gouy phase as a function of the off-axis distance on the first mirror is 1.3×10−6 rad/mm2,
which is equivalent to ∆θm/2π = 5×10−6 for m≈ 1000.
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5.6 Comparison with aberration theory

In a general optical system with a given object plane, the number of third-order aberrations
depends on the symmetry of the system and is at most 20 [58]. For a rotationally symmetric
system, like a cavity consisting of two spherical mirrors, the number of independent aberra-
tion coefficients is reduced to only 5, also known as the Seidel aberrations, being: spherical
aberration, coma, astigmatism, curvature of field and distortion (see a.o., [14]). An aberra-
tion can be expressed in two ways: as a deviation from a reference wave front in the exit
pupil (wave aberration) or as a displacement from the image point in the image plane (ray
aberration). A ray-aberration is the spatial derivative of the corresponding wave-aberration;
the wave aberrations are fourth-order and the ray-aberrations are third-order in the spatial
coordinates (see a.o. [59]). In the literature, an aberration is usually indicated by the order of
the ray-aberration.

The comparison of our experimental results with standard optical aberration theory is
hampered by the fact that aberrations in a round-trip cavity, or in the equivalent periodic lens
guide, are hardly discussed in the literature. Furthermore, our 3-mirror folded (not to be
confused with the terminology “folded/unfolded” in the context of equivalent periodic lens
guides [12]) resonator does not fall in the usual category of rotational symmetric systems, for
which the standard Seidel aberrations apply. In this largely unchartered territory, we will rely
on some general arguments, which are necessarily of a qualitative nature.

To link the observed nonparaxial behavior with aberration theory, we consider the two
principal planes of the equivalent lensguide, one that is orthogonal to the folded axis (Fig. 5.8a)
and one that contains the folded axis (Fig. 5.8b). In the former case (y-principal plane), the
mirror symmetry, demonstrated in Fig. 5.8a, makes that the lowest nonvanishing aberrations
are the usual third-order aberrations. In fact, we find the magnitude of the aberrations in the
y-principal plane of the folded resonator to be of the same order for the folded resonator as for
a regular two-mirror resonator. However, this symmetry is absent in the xz-principal plane.
Fig. 5.8b shows how the folding mirror can be represented in corresponding lens guide by
alternating forward- and backward-tilted lenses. The aberrations in the xz-principal plane are
therefore potentially much stronger as they also contain second-order terms [60, 61].

However, due to the periodic nature of our (round-trip) optical system, one can show,
that these second-order terms average out. To perform this averaging, we should add the
aberrations over consecutive round-trips, preferably by expressing them in special “scaled
variables” that are invariant under paraxial propagation [14]. For ray-aberrations, this rewrite
comprises a multiplication with oscillating terms of the form cos(nθ) and sin(nθ) (see Eq. 5.5).
This leads to the mentioned cancellation of second-order (ray-)aberrations. From the perspec-
tive of wave-aberrations, we have to add simply the folding-induced aberrations in the optical
wavefront. As the associated wave aberrations are third-order in the ray coordinates and as
these coordinates oscillate periodically, the odd-order wave aberrations are just as often pos-
itive as negative and will cancel as well. This leads us to the surprising conclusion that also
in the xz-principal plane we are left with the usual third-order (Seidel) aberrations. The mag-
nitude of these terms is observed to be about a factor 10 larger than in the y-principal plane
(cf. Fig. 5.7). This increased magnitude results from the lenses being tilted in the xz-principal
plane and is apparently caused by the off-axis aberrations of the individual lenses in Fig. 5.8b.

The observed linear dependence of Gouy phase on mode number, in the form θm ' a +
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Figure 5.8: The equivalent lens guide of a folded 3-mirror resonator in the xz-principal
plane and the y-principal plane for two round-trips.

bm, is consistent with this effectively third-order of the ray aberrations. To appreciate this
statement, one should realize that the phase acquired by a transverse mode m (in comparison
to mode m = 0) is mθm, and that m depends quadratically on the off-axis distance ∆r. This
means that the nonparaxial term bm corresponds to a phase change that scales with the fourth
power of ∆r. Fourth-order changes in path length of the wave aberrations correspond to the
Seidel aberrations.

The magnitude of the individual Seidel-aberrations of the lens guide in Fig. 5.8 can not
be derived from our measurements or calculations. Only the sum of all Seidel coefficients
is obtained, as they all exhibit the same scaling with ray coordinates after repetitive passage
through the cavity. The magnitude of the unit of the aberrations is expressed as the phase shift
divided by the off-axis distance of injection squared, being, e.g., 2×10−5 rad/mm2 for N = 8.
We note that the observed increase in Gouy phase with the fourth-order off-axis distance is
consistent with the sign and scaling found by Hercher [19].

5.7 Conclusions

We have demonstrated a very accurate method to measure the Gouy phase as a function of
the mode number. For the folded three-mirror cavity, we found that the Gouy phase for the
modes in the xz-principal plane changes is much stronger than its y-plane counterpart. A
connection between the Gouy phase and aberration theory has been established. Effectively,
the aberrations of a folded resonator behave as the Seidel aberrations, in spite of the lack of
rotational symmetry. These results are supported by ray-tracing calculations; all calculations
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are in very good agreement with the measurements.
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CHAPTER 6

Connection between wave and ray approach of cavity
aberrations

We connect the wave and ray description of spherical aberration in a cavity. The link we
use is Fermat’s principle in a frequency-degenerate cavity. In the ray picture, we consider
periodically closed orbits beyond the paraxial limit and calculate the reduction in cavity
length that is needed to compensate for the additional (nonparaxial) fourth-order terms.
In the wave picture, we derive and discuss explicit expressions for the nonparaxial contri-
bution to the Gouy phase. This Chapter combines and compares results from Chapter 4
and 5.
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6.1 Introduction

The first analysis of frequency-degenerate Fabry-Perot cavity was based on a ray description.
This analysis involved a calculation of the total path length Ltot(ρ) of a closed orbit as a func-
tion of transverse amplitude ρ of the ray. Pioneering work was done by Hercher [19], Bradley
and Mitchell [45], Arnaud [47], and Ramsay and Degnan [46]. We have generalized this anal-
ysis from the confocal resonator, K/N = 1/2, to an arbitrary K/N frequency-degeneracy, in
Chapter 4.

Only recently, Visser et al. used a different approach based on wave optics. In their
calculation, they benefited from the analogy between the paraxial wave-equation and the
Schrödinger equation, using a quantum mechanical operator description for the evolution of
the field profile [62]. Spherical aberration was included via a fourth-order term related to
the mirror height profile. In this Chapter, we will extend this wave approach by including
another term that was previously overlooked. In many cases this extra term, which is also
fourth-order and related to the transverse momentum of the ray, dominates.

The challenge to connect the above ray and wave description has not yet been accom-
plished. We will do so in this Chapter. The key to success is the application of Fermat’s
principle in a frequency-degenerate cavity. For rays, this principle states that the realized
closed orbit is the one that extremizes the total path length, making dLtot(ρ)/dρ = 0. To pre-
serve the closed orbit beyond paraxiality, the cavity length should be reduced for increased
transverse displacement. For waves, a similar requirement of “complete recovery after N
round-trips” imposes frequency-degeneracy of the cavity eigenmodes. More precisely, it re-
quires that the Gouy phase of the contributing modes differs by multiples of 2π/N. We will
derive an expression for the nonparaxial contribution to the Gouy phase and show that higher-
order modes (again) require a reduction in cavity length to maintain the phase relation of the
superposition after N round-trips. The comparison between the ray and wave result, finally
provides for the necessary link between both pictures.

In Section 6.2, we review the ray description of Chapter 4 and use it in order to calcu-
late the mentioned reduction in cavity length. In Section 6.3, we extend the standard wave
description beyond the paraxial regime. We briefly review the wave description introduced
in [62], and extend it by including the nonparaxial contribution of the transverse momen-
tum of the ray. In Section 6.4, we compare the results from the ray and wave description
by relating the transverse ray displacement to the mode number. We end with a concluding
discussion in Section 6.5.

6.2 Ray description of spherical aberration

The general idea of this Section is as follows. We assume a closed orbit inside a symmetric
two-mirror resonator with spherical aberration operated close to a 1/N frequency-degenerate
cavity length. We stretch the closed orbit without changing the position of the hit points on
the mirrors. Obviously, the angles of reflection on the mirror have to change to preserve
the closed orbit. The only physical trajectories, where the angle of incidence on the mirrors
equals the angle of reflection, are found by Fermat’s principal.

First, we review the ray description of the total path length of a closed orbit as presented
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in Chapter 4. The central concept in this ray description is the average path length of a
closed orbit, where the nth hit point at one mirror is given by xn = ρ sin(nθ0 +φ0) [49] with
ρ the transverse amplitude, θ0 the round-trip Gouy phase, and φ0 an additional phase that
determines the type of orbit (with extreme cases: the V-shaped and the bow-tie orbit). This
total path length is (see Eq. 4.1 in Chapter 4)

1
2N

Ltot(ρ) = L−B(L−Lres)
ρ2

R2 −A
ρ4

R3 , (6.1)

where L is the on-axis cavity length and Lres = R[1− cos(θ0/2)] is the paraxial resonance
length (at ρ ≈ 0) for exact 1/N-degeneracy. For (N ≥ 3) the spherical aberration coefficient
A and the detuning coefficient B are (see Eqs. 4.2 and 4.3 in Chapter 4)

A =
1+ cos(θ0/2)

32 [1− cos(θ0/2)]
=

2R−Lres

32Lres
and (6.2)

B =
1
2

[

1
1− cos(θ0/2)

]

=
R

2Lres
. (6.3)

Equation 6.1 describes the average length of a mathematically closed orbit, but this orbit does
not necessarily fulfill the physical requirements of reflection angles. Special orbits are the
ones that also fulfill the latter requirement, which is most compactly formulated via Fermat’s
principle dLtot(ρ)/dρ = 0. Taking the derivative of Eq. 6.1 and setting dLtot(ρ)/dρ = 0 we
obtain

∆L≡ L−Lres =−2A
B

ρ2

R
=− z2

0
2RL

ρ2

R
, (6.4)

where z0 = 1
2 k0w2

0 = k0γ2
0 = 1

2

√
2RL−L2 is the Rayleigh-range, k0 is the wavevector, and w0

and γ0 are two different measures for the fundamental beam waist. As both coefficients A and
B in Eq. 6.4 are positive for stable resonators (L < 2R), off-axis (nonparaxial) rays require a
cavity length reduction to satisfy Fermat’s principle.

For completeness, we note that the above expressions for A and B do not hold for N = 2.
For N = 2, the two extreme orbits, the V-shaped and a bow-tie orbit, have different coefficients
A and B. This can easily be understood as the maximum transverse deviations xn are ρ and
ρ/
√

2 for the V-shaped (φ0 = 0) and the bow-tie (φ0 = θ0/4) orbit, respectively. Furthermore,
the V-shaped orbit does not show spherical aberration, i.e., A = 0, as the incident ray at the
off-axis hit points is normal to the mirror surface. Hercher’s result for the bow-tie orbit is

1
2N

Ltot(xn) = L− (L−Lres)
x2

n

R2 −
x4

n

4R3 , (6.5)

where xn = ρ/
√

2 is the maximum transverse deviation and ρ being the transverse amplitude.
For N = 2 there is also an exact solution of the form [63]

Ltot(α) = 4R
[

2− 1
cos(α/2)

]

, (6.6)

where α is the angle of the diagonal ray in the bow-tie. The cavity length reduction, predicted
by this exact solution is ∆L =−Rα2/8. As α ≈ 2xn/R in a confocal resonator, this result is
consistent with the restriction dLtot(xn)/dxn = 0, which yields ∆L =−x2

n/(2R) when applied
to Eq. 6.5.
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6.3 Wave description of spherical aberration

The paraxial description of a symmetric two-mirror resonator of length L with mirror curva-
tures R (see Fig. 6.1) is centered around the concept of the round-trip Gouy phase

θ0(L) = 2arccos(1−L/R) . (6.7)

Changes in the cavity length will modify this (paraxial) Gouy phase via the derivative

dθ0(L)/dL =
2

√

L(2R−L)
=

1
z0

. (6.8)

In a 1D (planar) description of the cavity field, the phase delay of the m-th order Hermite-
Gauss mode as compared to a plane wave is

Ψm = (m+ 1
2 )θ0 . (6.9)

Dz

L

a
x

Figure 6.1: Sketch of a symmetric two-mirror cavity of length L comprising two mirrors
with radius of curvature R. The mirror curvature is characterized by the height profile
∆z. The closed orbit is threefold frequency-degenerate (N = 3). The slope of the rays is
characterized by the angle α .

For larger beam displacements, i.e., higher-order modes, an additional nonparaxial term
contributes to the Gouy phase. Roughly speaking, the phase delay of m-th order Hermite-
Gauss mode as compared to a plane wave can be separated in a linear and nonlinear contri-
bution of the form (see Chapter 5)

Ψm ≡Ψlin. +Ψnonlin. ≈ am+bm2 , (6.10)

where a = θ0(L) is the paraxial Gouy phase.
The nonparaxial term in Eq. 6.10 is a measure for the aberrations. It shows that a change

in cavity length is needed to maintain frequency-degeneracy for higher-order modes also in
the nonparaxial wave description. When the derivative (Ψm+1−Ψm−1)/2 = a+2bm is fixed
to a multiple of 2π/N, degeneracy is fulfilled. The derivative a + 2bm remains constant for
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a higher-order mode m by lowering a (b is a higher-order correction). Using a = θ0(L) =
θ0(L0)+ [dθ0(L)/dL]∆L, we thus obtain

∆L =
−2bm

dθ0(L)/dL
=−2bmz0 . (6.11)

We find again that the cavity length has to be reduced to maintain frequency-degeneracy
within a set of higher-order modes. In the next Subsections, we will derive an explicit ex-
pression for b > 0 in terms of R and L, to further quantify this length reduction.

6.3.1 Effect of mirror shape (x4-term)
Visser et al. [62] have given a wave description of two-mirror resonators, based on the mirror
profile ∆z(x) shown in Fig. 6.1. Their description is essentially based on the expansion of the
mirror profile ∆z(x) beyond the paraxial quadratic terms as

∆z = R−
√

R2− x2 ≈ x2

2R
+

x4

8R3 , (6.12)

where the fourth-order term acts as small perturbation. This term, describing the spherical
aberration of the mirror, acts as the following perturbation on the potential in a Schrödinger-
type equation

Veff(x) =
1

16kR
(1−g2)

x4

γ4 , (6.13)

where g ≡ 1− L/R (see Eq. (37) of Visser et al. [62]). For a fixed cavity length L, the
perturbation slightly shifts the frequency of a mode with mode number m.

The (in-plane) 1D-version of Eq. (50) in Visser et al. [62] predicts a round-trip phase
delay of

Ψm = Ψlin. +Ψnonlin. ≈ 2arccos
(

1− L
R

)

(m+ 1
2 )+

L
2kR(2R−L)

(

3
2 m2 + 3

2 m+ 3
4

)

, (6.14)

where the first terms combine Eqs. 6.7 and 6.9, and the second term quantifies the nonlinear
contribution to the round-trip phase delay via

Ψnonlin. ≈ bxm2 =
3L

4kR(2R−L)
m2 , (6.15)

assuming m2 À (m + 1
2 ). Note that we have included a subscript x to bx to distinguish this

mirror-based contribution from the momentum-based contribution bp discussed in the next
Subsection.

6.3.2 Effect of slope in rays (p4-term)
The above description was based on a Taylor-expansion of the mirror height profile only. A
more complete description is obtained if we also account for the higher-order terms in the
Taylor-expansion of the transverse momentum

kz = k0 cos(α) =
√

k2
0− p2 ≈ k0−

(

p2

2k0
+

p4

8k3
0

)

, (6.16)
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where p = k0 sin(α) is the transverse momentum of the ray at angle α . The quadratic term
in the expansion corresponds to the paraxial wavevector. The fourth-order term gives rise to
an additional nonparaxial contribution. The perturbation on the potential associated with this
contribution is [64]

Weff(p) =
1

4kL
1−g
1+g

γ4 p4 . (6.17)

Straightforward calculus shows that the bp coefficient derived for this momentum-based term
is larger than the bx coefficient derived above by a factor 2R/L, making

b = bx +bp =
3L

4kR(2R−L)

(

1+
2R
L

)

. (6.18)

The existence of a p4-term on top of a x4-term is also touched upon in Section 8.5, where
an analysis based on the effective index method gives exactly the same ratio (2R/L) between
these two terms. The importance of the fourth-order term in the Taylor-expansion of the
momentum has been discussed in several other papers that go beyond the paraxial regime [65,
66].

6.4 Comparison of wave and ray description

In the two previous Sections, we have used both the ray and wave description to calculate the
reduction in cavity length that is needed to retain frequency-degeneracy beyond the paraxial
regime, i.e., for large transverse amplitudes ρ , c.q., modes with large mode number m. In the
ray description, we obtained Eq. 6.4, which reads

∆L =−2A
B

ρ2

R
=− z2

0
2RL

ρ2

R
. (6.19)

In the wave description, we obtained Eq. 6.11, which reads

∆L =−2bmz0 =
−3L(2R+L)

8kRz0
m . (6.20)

In order to compare these calculated length reductions ∆L, we need to relate the squared
displacement amplitude ρ2 to the mode number m. This relation is ρ2 = 2mγ2 [12], where
the waist at the mirror is γ2 = γ2

0 [1+(z/z0)
2] = γ2

0 [LR/(2z2
0)]. Substitution of this relation in

Eq. 6.19 yields

∆L =− z2
0

2RL
ρ2

R
=− z0

2kR
m . (6.21)

A quantitative comparison of Eqs. 6.20 and 6.21 shows that the required length reductions
are different for the ray and wave description. For a general cavity length

∆Lray

∆Lwave
=

2R−L
3(2R+L)

. (6.22)
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Only in the short cavity limit L¿ R, Eq. 6.20 becomes comparable to Eq. 6.21. In this limit,
the ray result Eq. 6.20 yields

∆L =
−3z0

2kR
m . (6.23)

In the short cavity limit, the ray and wave description of spherical aberration are thus identical
except for a prefactor.

6.5 Concluding discussion
To shed light on the difference between the ray and the wave descriptions of cavity aberra-
tions, we have tried to determine their validity experimentally. Unfortunately, this attempt
failed for two reasons. First of all, the relation between the measured phase delay θm and
mode number m was not strictly linear, as was predicted by theory and demonstrated experi-
mentally for a folded three-mirror resonator (see Ch. 5). Secondly, and more important, the
relation depended strongly on the alignment of the cavity and the injection of the beam. Ap-
parently, the mirror surface is nonspherical and contributes additional aberrations on top of
the ones calculated in this Chapter.

In conclusion, we have presented an extension of the wave description of spherical aber-
ration, introducing a term that was previously overlooked. Furthermore, we have tried to
reconcile results from the ray model presented in Chapter 4 and wave models presented in
Chapter 5 and ref. [62]. We could link both models using the cavity length reduction needed
to preserve frequency-degeneracy beyond paraxiality. This attempt was successful only in
the short cavity limit. This somewhat surprising result is not yet fully understood.
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CHAPTER 7

Characterization of diamond-machined mirrors

Diamond-machining is used to fabricate the composite substrates elaborated on in Chap-
ter 8 and 9. This technique causes a different type of irregularities than traditional grind-
ing and polishing does. In this Chapter, the influence of the irregularities on the resonator
dynamics will be investigated for a two-mirror cavity, where either one or both mirrors
have been made by dielectric multi-layer coating of a diamond-machining produced sub-
strate. Besides the tools discussed earlier in this Thesis, we also introduce polarization
measurements to characterize the scattering.
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7. Characterization of diamond-machined mirrors

7.1 Introduction

Precision machining dates back to World War 2, but substrates more or less acceptable for op-
tical applications appeared only in the early 1970s [67]. State-of-the-art diamond-turned op-
tics have a λ/20 peak-to-valley surface figure error and 0.2−0.4 nm surface roughness [68].
Diamond-machining can be used to manufacture aspherical optics and offers the possibility
to produce bifocal substrates, i.e., substrates with a convex inner and a concave outer part, as
used in Chapter 8 and 9. The convex inner part will also be denoted as “dimple”. The surface
of diamond-machined substrates shows periodic (circular) grooves due to the periodic move-
ment of the diamond-chisel during machining. In this Chapter, we will investigate the effect
of these grooves on the resonator dynamics of two conventional resonators, i.e., without a
dimple. The concave mirrors in the half-symmetric (flat/concave) and symmetric resonator
(concave/concave) are, however, produced by diamond-machining, whereas the flat substrate
is traditionally polished. The configurations in Chapter 8 and 9, comprising a bifocal mirror,
are identical to the configurations investigated in this Chapter except for the central dimple
inside the concave section.

This Chapter is organized as follows. The mirrors and setup are introduced in Section 7.2
and the mirror surface is interferometrically studied in Section 7.3. The cavity finesse and the
losses deduced from the spectrum are discussed in Section 7.4. In Section 7.5, the influence
of scattering on the polarization of the transmitted light will be demonstrated. We will end
this Chapter with a conclusion.

7.2 Production of the mirrors

In an early stage of the project concerning the manufacturing of composite mirrors, we tried,
in collaboration with Philips [69], to make the mirror substrates out of the polymers PMMA
and Zeonex. The melting temperature, however, of both polymers is so low that the substrates
deformed during the coating-procedure. Later, in collaboration with TNO [31], we moved to
calcium fluoride (CaF2) as the material out of which the substrates of our flat and concave
mirrors have been made. Calcium fluoride is a crystal widely used for optical substrates,
e.g., in lithography systems, as it has a high transmission even at UV wavelengths as short
as 175 nm [70]. The prime advantage of this material for our experiment is that it chips very
fine during the diamond-machining procedure thus allowing for a low surface roughness.
Furthermore, its melting temperature is very much higher than the temperature reached during
the dielectric multi-layer coating process. This implies that the surface figure is maintained.
Last but not least, CaF2 is transparent at 800 nm. Drawbacks of CaF2 are the low hardness and
high coefficient of thermal expansion which make it less easy to work with than a standard
substrate material as fused quarz.

The concave mirror is machined with a diamond chisel and has a radius of curvature
R = 14 mm. The effective mirror diameter is D = 2 mm. For easy handling the substrates
have a total diameter of 6 mm (see Fig. 7.1), of which the outer part is machined conically to
prevent this part from scattering light back into the inner (concave) part via reflection by the
other mirror of the cavity. For protection of the substrate, it is mounted in a metal ring. All
substrates have been coated by LASEROPTIK [71] in the same coating run, with a stack of
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7.3 The mirror surface and scatter

24 layers of alternating Ta2O5 (refractive index 2.04) and SiO2 (refractive index 1.46). The
measured transmission of the coated flat substrate is T = 8.3×10−4 at 800 nm and assumed
to be identical to the transmittance of other substrates coated in the same coating run. For
accurate tuning of the cavity length, one mirror is placed on a translation stage (PI-M511).
The resonator is scanned with a piezo (P-753.11C) to obtain a transmission spectrum. A lens
( f = 10 cm) in front of the resonator mode-matches the input beam to the lowest-order mode
of the cavity.

6 mm

R=14 mm

2 mm

a. b.

Figure 7.1: (a) Sketch of the diamond-machined substrate, where the concave part is
the actual mirror. The conical outer part prevents this part from reflecting light back
into the inner part via reflection by the opposite mirror. (b) The half-symmetric and the
symmetric cavity configuration.

7.3 The mirror surface and scatter
The surface roughness of the bare substrate is measured with a WYKO interferometer at
TNO [31] and found to be σ ∼ 2 nm (RMS). We have to take into account that the roughness is
measured over a limited area (100×100 µm2), where the grooves are oriented predominantly
in one direction. The total integrated scatter (TIS) and the surface roughness are related
via TIS = (4πσ/λ )2 [18]. Although this equation assumes randomly and not directionally
distributed roughness, it gives a rough estimate of the TIS, being 1.0×10−3 in our case. Extra
roughness introduced by the coating layers is neglected. From the measured transmittance
and the calculated TIS we can calculate that the cavity finesse can be at most F = π/(T +
TIS) = 1500.

The measurements with the WYKO interferometer do not only give us the surface rough-
ness σ , but also the period of the grooves. The grooves formed by the diamond chisel resem-
ble a somewhat irregular grating, having a period ranging from 10 to 25 µm. At a wavelength
of 800 nm, such a period corresponds to scatter angles of αs = 80− 32 mrad. Light scat-
tered on the grooves will thus be displaced over ∆x = Lαs = 0.4−0.16 mm, per single-pass
through a cavity length of L = 5 mm. Light scattered out of the lower-order modes can couple
to higher-order modes with a 1D transverse mode number m = (2∆x/w0)

2 = 260− 50 [12],
at a waist of w0 ∼ 50 µm. An alternative but equivalent calculation of the number of higher-
order modes can be made in angular space. The beam angle of the fundamental mode in the
far-field is α0 = λ/(πw0) = 5 mrad [12]. Light scattered under an angle αs can thus couple
to modes with mode numbers m = (αs/α0)

2 ≈ 250−40.
A first signature of scattering in our cavity is the appearance of Hercher fringes in the

intensity profiles on the mirrors (Fig. 7.2a) close to frequency-degenerate points. Although
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7. Characterization of diamond-machined mirrors

Figure 7.2: (a) Image made with an imaging lens behind the cavity of Hercher fringes in
the symmetric configuration close to a 4-fold frequency-degenerate cavity length (∆L =
60 µm). The outer fringe (dashed circle) coincides with the radius (1 mm) of the mirror.
(b) Intensity profile of a distorted TEM00 observed at a fixed cavity length close to 4-fold
frequency-degenerate cavity length (∆L = 100 µm).

we inject only on-axis, fringes appear over the full mirror-aperture due to resonant trapping
of scattered light (also see Chapter 4). A second signature of scattering is the mode coupling
observed in the transmitted intensity profile of an injected TEM00-mode as shown in Fig. 7.2b.
The profile of the transmitted eigenmode is not a nice Gaussian TEM00, but also shows the
admixture of higher-order Gaussian modes (see Chapter 3). The cavity length is fixed to the
resonance of the TEM00-mode by manually tuning the piezo-voltage.

7.4 Spectra and imperfections
Typical transmission spectra of the symmetric and half-symmetric cavities are shown in
Fig. 7.3, where the TEM00-like mode is excited predominantly. Both spectra are stable over
time and look similar to spectra from resonators using mirrors based upon traditionally pol-
ished substrates.

0 1

0

1

I 
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.u
.]

n/DnFSR
0 1

b.a.

1

2

n/DnFSR

Figure 7.3: Transmission spectra slightly away from N = 4 of (a) a half-symmetric
(L≈ 7.0 mm) and (b) a symmetric resonator (L≈ 4.1 mm)
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7.4 Spectra and imperfections

We measured the finesse several times, after taking out one of the mirrors and realigning
the cavity every attempt. The highest measured finesse is F = 1280±50. This experimental
finesse is in the order of the finesse estimated from the surface roughness. Using F = π/(A+
T ) and T = 8.4×10−4 we calculate a loss A = 1.6×10−3, to be compared with the estimate
of TIS= 1.0×10−3 as given above. This means that only 8.4×10−4/2.44×10−3×100%∼
34 % of the light leaves the resonator via the mirrors, while the other 66 % is scattered
away. From these numbers, we expect a peak transmission for the lowest order mode of
η2 = [T/(A + T )]2 = 12 %, which agrees approximately with our experimental observation
of η2 = 9 %. This means that we are able to mode-match very well and inject most of the
light into the TEM00-mode.

An important experimental observation is that the resonance width and peak transmission
depend strongly on both the alignment and the length detuning. Tilting the back-mirror over
∼ 0.1◦ can change the peak transmission by as much as a factor 10, and a length detuning
of only ∆L ∼ 0.6 µm can already change the peak transmission η 2 by (relatively) 30 %.
Although the loss increases in both cases, we are always able to predominantly excite the
TEM00-mode. The sensitivity to angular alignment can be easily understood as the waist
of the fundamental mode on the mirror (w0 = 50 µm for L = 5 mm) is just a few times
bigger than the period of the grooves (10−25 µm) on the mirrors. The sensitivity to a length
detuning over only ∆L∼ 0.6 µm is very surprising, and not yet understood.

At degeneracy N = 4 and on-axis injection, the odd modes in the spectrum with ditto
summed transverse mode numbers m+n at ν/∆νFSR ∼ 0.25 and 0.75 are not excited due to
proper (inversion-symmetric) alignment. Some even modes, other than the TEM00 remain,
however, e.g., the two tiny modes (denoted 1 and 2) at ν/∆νFSR ∼ 0.5. From manual tuning
of the piezo-amplifier we can identify these modes with a camera behind the resonator as the
TEM02 and TEM20.

The lifted degeneracy of these modes allows us to quantify the astigmatism as one of the
aberrations of the cavity. The measured spectral spacing ∆ν/∆νFSR ∼ 2% can be converted
into the deviation of the mirror radius ∆R compared to the average radius of curvature R.
Substitution of 0.50 and 0.52 for n + m = 2 in (νnm− ν00)/∆νFSR = (n + m)θ0/2π = (n +
m)arccos(

√

1−L/R)/π results in ∆R/R ∼ 6 %. This large value is likely to represent the
relative difference in the “local curvature” on the probed mirror surface. A similar argument
has been given to explain the observed astigmatism in “super-cavities” [56].

The mode coupling, mentioned earlier in relation to the mode profile, appears also in the
spectra. Taking a closer look at the dominant resonances (not shown in detail here) we ob-
serve weakly excited higher-order modes that couple with the TEM00-mode. Consequently,
the lineshape of the resonances in the spectrum is not fully Lorentzian and the width and
height vary close to frequency-degeneracy. As the lineshape of the resonances is distorted
by mode coupling, it would have been better to determine the cavity finesse by a cavity ring-
down experiment. This is, however, not a trivial experiment as the 1/e-decay time is very
short; we expect roughly τ = FL/(πc)∼ 0.1 ns.
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7. Characterization of diamond-machined mirrors

7.5 Polarization and scattering
In this last Section, we study the polarization of the light transmitted through a cavity, com-
prising again a flat and a concave mirror, but now with a polarizer behind the resonator. We
inject vertically polarized light off-axis at an angle, as compared to the optical axis, in the 8-
fold frequency-degenerate cavity (L = 2 mm). For a transmission axis of the polarizer parallel
to the input polarization we clearly observe 8 hit points on the mirror as shown in Fig. 7.4a.
When we rotate the polarizer over 90◦, we still observe the hit points on the mirror as shown
in Fig. 7.4b. This is surprising as intuitively one would expect that the polarization should
be preserved inside the resonator, and the component perpendicular to the input polarization
would be zero. In practice, the light behind the cavity contains, however, a surprisingly large
component with a polarization perpendicular to the input polarization. More specifically, the
intensity in the hit points is only 75× weaker for polarization perpendicular to the input po-
larization than for the parallel component. This observation is not an artifact of our polarizer.
Our PolarcorTM polarizer (Newport 05P109AR.16) is well-suited for this experiment: it has
a specified acceptance angle as large as 15◦ (typical angles for our configuration are 2◦) and
the combination of the laser and the polarizer has a measured extinction ratio of 35000 : 1 for
normal incidence.

a. b.

Figure 7.4: Intensity profiles of a corkscrew-like ring mode on the mirror of a cavity
comprising a flat and a concave mirror. The 8 hit points on the mirror show the 8-
fold frequency-degeneracy of the resonator at a cavity length of L = 2 mm. The circle
described by the hit points has a diameter of 0.46 mm. The transmission axis of the po-
larizer behind the cavity is (a) parallel and (b) perpendicular to the input polarization.
The shutter time of the camera is much bigger than the scan duration through a free
spectral range: 0.5 s > 0.05 s.

The observation discussed above might be related to other physics than scattering. The
measured depolarization could result from a geometrical (or Berry) phase [72,73], that quan-
tifies the polarization rotation experienced by orbits that do not propagate in a single plane.

Taking a closer look at the intensity profiles, we observe furthermore that the intensity
profile for perpendicular polarization has a relatively brighter “circular background”. The
origin of the light inbetween the hit points lies in the fact that light is scattered out of the
hit points by surface roughness of the mirrors. This scattering-induced depolarization of
the light has a different origin than the geometrical depolarization mentioned before and is
reflected in the different ratios for the intensities in the hit points and the average throughput.
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7.6 Conclusion

Cross-sections of the intensity profiles, show that the maximum intensity of the background
normalized to the intensity in the hit points is 0.25 and 0.10 for perpendicular and parallel
polarization, respectively. This means that for parallel polarization the light is more confined
in the hit points, whereas for perpendicular polarization the light is spread more equally over
the mirror.

7.6 Conclusion
We have demonstrated that a cavity comprising diamond-machined mirrors can achieve a
finesse of F = 1300, comparable to the finesse (F = 1×103−1×104) achieved in standard
Fabry-Perot resonators (dimensions ∼ 1 cm and standard coating procedure). The alignment
of a diamond-machined cavity is, however, more subtle due to the periodic grooves in the
substrates made by the diamond chisel.
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CHAPTER 8

Laguerre-Gaussian modes in a bifocal resonator

We investigate the eigenmodes of a cavity, composed of two mirrors, one of which is a
bifocal mirror. As the bifocal mirror is rotationally symmetric, it favors a different mode
family than traditional stable cavities based upon two monofocal mirrors. A numerical
simulation based on an effective index is presented for a better understanding of the opti-
cal properties of this system.
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8. Laguerre-Gaussian modes in a bifocal resonator

8.1 Introduction

In ideal cavities with a rotationally-symmetric quadratic index (or gain) profile, there is con-
siderable degeneracy and the eigenmodes combine to frequency-degenerate classes. Within
each of these classes one is free to choose as basis either all Hermite-Gaussian (HGmn) modes
with fixed n + m or all Laguerre-Gaussian (LGl p) modes with fixed 2p + |l| [12, 74]. Here,
m and n indicate the two transverse mode numbers, whereas l and p are the azimuthal and
radial mode numbers, respectively. In practical resonators, any small deviation will lead to a
preference of one basis over the other. The HG-modes are preferred if the rotational symme-
try is broken, and x- and y-axes can be distinguished [12]. The LG-modes are preferred if the
rotational symmetry is maintained, but the index profile is nonquadratic [75].

As an interesting example, a Vertical Cavity Surface Emitting Laser (VCSEL) [76,77] can
show both cylindrical (LG) and rectangular (HG) modes in one system. The preferred mode-
family is now determined by both the physical shape of the cavity and the gain profile in the
amplifying medium. The tuning parameter to alter this profile is the injection current; the
mode profiles are generally rectangular for low injection currents, but become cylindrical for
high injection currents, where thermal lensing and carrier distribution play a more prominent
role.

However, in almost any passive resonator the observable eigenmodes are the HG rather
than the LG-modes as the rotational symmetry is apparently broken more strongly, by, e.g.,
astigmatism, than the effective quadratic guiding corresponding to the focussing action of the
mirrors [78]. In this Chapter, we will report on a stable cavity in which LG-modes are pre-
ferred. Our system is a composite cavity comprising mirrors that are rotationally symmetric,
but the height profile consists of two piecewise quadratic parts and is thus nonquadratic as
a whole. The system, described in this Chapter, is a first trial in a series of experiments to
demonstrate chaos in a open optical resonator; it is equivalent to the geometry discussed by
Aiello et al. [79] and in Chapter 9 of this thesis.

This Chapter is organized as follows: After introducing the setup, we will report and dis-
cuss the measured mode profiles. These profiles will be compared with standard (analytic)
LG-modes that exist in paraxial resonators based upon mirrors with a single radius of curva-
ture. A model, based on the concept of an effective index, will be introduced to investigate
numerically the effect of the composite height profile. We will finish this Chapter with a
concluding discussion.

8.2 Setup

The resonator contains a flat and a composite mirror, as shown in Fig. 8.1. Both substrates
have been made out of calcium fluoride (CaF2) and have been coated in the same run. The
measured transmission of the mirrors used in this experiment is T = 5×10−5 at a wavelength
of λ = 800 nm. The composite substrate has been diamond-machined. As the composite mir-
ror comprises a convex center (also denoted as “dimple”) and a concave annulus, it creates
two resonators: a (radially) outer part, which is stable for cavity lengths L < R = 14 mm, and
a (radially) inner part, which is always unstable. The dimple, in combination with the flat
mirror, forms an unstable resonator and acts, in analogy with quantum mechanics, as a rota-
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8.3 Experimental results

tionally symmetric potential barrier, surrounded by a ditto potential well. This rotational sym-
metry combined with the nonquadratic (composite) mirror profile imposes LG-eigenmodes.

R b

a r

L

a. b.

Figure 8.1: (a) Our cavity configuration, operated at L = 13.88 mm, comprises a flat
mirror and a bifocal mirror. The dimensions of the bifocal mirror are R = 14 mm,
r = −3 mm, a = 100 µm, and b = 1 mm. (b) Sketch of the bifocal mirror, where
the concave and convex inner part form the mirror. The conical outer part makes the
handling of the mirror easier and prevents light to be scattered back into the cavity.

In order to measure the profiles of the cavity eigenmodes, we use a f = 10 cm lens to
inject a beam with a waist that is similar to the lowest-order mode of the outer cavity, off-
axis under an angle with respect to the optical axis. This is to excite efficiently modes in
the stable outer cavity. In order to measure the mode profiles on the bifocal mirror, a lens
images the intensity profiles on a CCD-camera with linear intensity response (Apogee Alta
U1) behind the cavity. The sub-wavelength control of the cavity length, which is needed to
observe individual mode profiles, is obtained with a piezo-element. The cavity is typically
operated at cavity lengths L = 13.5−13.9 mm, close to the instability point L = R = 14 mm.
The absolute cavity length is calibrated with respect to the 3-fold frequency-degeneracy point
(L = 10.50 mm). Such a frequency-degenerate point is easy to recognize spectrally and helps
to pinpoint the cavity length accurately (few µm).

8.3 Experimental results
As discussed above, in ordinary resonators HG-modes are observed due to the almost un-
avoidable breaking of the rotational symmetry. We have checked this with a cavity identical
to that described above, but without the central convex part. For operation under identical
conditions this cavity favors indeed HG-modes. In contrast, the resonator of Fig. 8.1 shows
a strong preference for the bifocal-mirror LG-modes. The preference for this mode-family
originates apparently from the presence of the rotationally symmetric dimple on the compos-
ite mirror.

If we tune the cavity length to L = 13.88 mm, i.e., close to instability of the outer cavity,
we observe individual modes on the bifocal mirror with a clear rotational symmetry (see
Fig. 8.2). The angle and position of injection in this experiment are fixed, and the cavity
length is only changed within a free spectral range using the piezo-element. For each radial
mode number p, ranging from 1 to 7, we observe LG-modes with various l-numbers. Note
the intriguing smaller copies of the outer patterns, which will be discussed below.
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8. Laguerre-Gaussian modes in a bifocal resonator

The mode profiles, as shown in Fig. 8.2, can be resolved individually and are dominantly
observed in a whole range of cavity lengths L = 13.5− 13.9 mm close to the instability of
the outer cavity. For shorter cavity lengths, e.g., L = 7.5 mm, the rotational symmetry is still
present in the intensity profiles; at this length, we do, however, no longer observe individual
modes, as many modes are excited at the same time. The reason seems to be that for shorter
cavity lengths, the number of available modes is much higher than for larger cavity lengths
close to instability. This is related to the size of the waist of the fundamental mode on the outer
part of the bifocal mirror, which is w0 = 177 µm for L = 13.8 mm, but only w0 = 62 µm for
L = 7.5 mm. This means that the number of modes that fits inside the aperture of the mirror
(2b = 2 mm in Fig. 8.1) is (177/62)2 = 8 times lower close to instability than for the shorter
cavity length.

a. b.

c. d.

Figure 8.2: Measured intensity profiles of modes on the bifocal mirror for “fixed cavity
length” within a free spectral range. The half-symmetric resonator (R = 14 mm) is
operated close to instability at a cavity length of L = 13.88 mm. The modes shown are
(a) LG7,0, (b) LG7,1, (c) LG9,2, and (d) LG12,3. The area shown is 1.7×1.7 mm2 on the
bifocal mirror. Note the smaller copy of the intensity profile inside.

An interesting feature of all experimental mode patterns is that inside the outer mode
profile an identical but smaller copy of itself is observed. This inner pattern turns out to
be a ghost-image. It results from a combined reflection on the concave side of the imaging
lens behind the cavity (typical reflection R = 1−4 %) and the flat back-mirror of the cavity
(R≈ 100 %). Imaging with a CCD directly behind the back-mirror of the cavity, i.e., without
imaging lens, did not show this copy. The rotationally-averaged intensity profiles shown in
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Fig. 8.3 confirm this explanation. At first sight, it might seem strange that the inner image is
roughly as intense (50−100 %) as the main image, whereas the expected power reflection is
only 1−4 %. The radius of the inner patterns is, however, about five times smaller than the
original patterns, which means that the reflected power is concentrated in a 25 times smaller
area. Combined with the intensity as compared to the main image, this corresponds to a
power reflection of 2−4 %, as expected.

8.4 Analytic LG-modes and comparison with experiment
For comparison of the experimental mode profiles with theory, we will now formally in-
troduce the LG-modes [74]. These are solutions of the paraxial wave equation for a stable
resonator comprising mirrors with a single radius of curvature (the central dimple will be
taken into account in the next Section). The LG-mode profiles in radial coordinates are

El p(r,φ) = E0ρ lLl p(ρ2)e−ρ2/2eilφ , (8.1)

where l and p are the azimuthal and radial mode numbers, and ρ ≡
√

2r/w0 is the dimen-
sionless transverse position. For the fundamental mode we have E00(ρ) = E0 exp(−ρ2/2) =
E0 exp(−r2/w2

0), where w0 is the waist of the fundamental mode. The Laguerre polynomials
Ll p are simple expressions, for p = 0 to 2 they yield

Ll0(ρ2) = 1 , (8.2)
Ll1(ρ2) = l +1−ρ2 , (8.3)
Ll2(ρ2) = 1

2 (l +1)(l +2)− (l +2)ρ2 + 1
2 ρ4 . (8.4)

Higher-order Laguerre polynomials can be found in mathematical handbooks [80].
The LG7,1 and LG12,3 modes derived from Eq. 8.1 are shown in Fig. 8.3a and c. The

images of the calculated modes agree nicely with the measured intensity profiles shown in
Fig. 8.2b and d. A more quantitative description and comparison can be made using a rota-
tionally averaged intensity distribution, which is shown in Fig. 8.3b and d for both measured
and calculated intensity profiles.

The measured intensity profiles are scaled such that the position of the minimum after the
first lobe coincides with the corresponding zero in the calculated intensity profile. This scal-
ing can also be used to pinpoint the waist of the fundamental mode and the exact cavity length.
More specifically, the point ρ = 1 in the calculated profile corresponds to a radial distance
r = 125 µm in the measured intensity profile, which results in the waist of the fundamental
mode w0 =

√
2r/ρ = 177 µm. This waist corresponds to a cavity length of L = 13.8 mm [12],

which is in nice agreement with the cavity length determined previously.

8.5 Numerical calculation of modes in a bifocal resonator
Although the description of the standard LG-modes seems to be sufficient to qualitatively
describe the experimental mode profiles, we still want to introduce here a model that can also
take into account the presence of the dimple. This allows us to describe the influence of the
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Figure 8.3: Calculated intensity profiles of the (a) LG7,1 and (c) LG12,3 modes. The
accompanying calculated (dot-dashed lines) and measured (solid lines) rotationally-
averaged intensity profiles are shown in (b) and (d). Note the inner copy of the measured
intensity profiles. The vertical dotted lines indicate the classical turning points of the
modal ray. ρ is the dimensionless transverse position.

dimple more quantitatively and offers more insight. Additionally, this model allows us to
investigate the influence of spherical aberration on the mode profiles; by spherical aberration
we mean the deviation of the actual wavefront from a spherical reference wavefront that
solely depends on the position of a hit point on the mirror [14].

The transverse modes of the field in the resonator are dictated by the rotational symmetry
of the cavity. This restricts the forward propagating electric field to cylindrical coordinates

El p(ρ ,φ ,z, t) = ψl p(ρ ,z)ei(kzz−ωt)eilφ , (8.5)

where ψ(ρ,z) is the slowly varying amplitude of the electric field, kz the component of the
wave vector in the propagation direction, ω the optical frequency, l the angular mode number,
and ρ =

√
2r/w0 is again the dimensionless transverse position.

The so-called effective-index model [81–83] assumes that the (transverse) waveguiding,
by either a transverse variation of the electric permittivity ε or, effectively, by a mirror curva-
ture, can be distributed over the length of the cavity and averaged over the axial coordinate.
Although this model is strictly valid only if the transverse profile of the field does not change
significantly during a full round-trip, we are confident that it will retain its essential features
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8.5 Numerical calculation of modes in a bifocal resonator

also beyond this limitation by a simple rescaling in terms of an effective cavity length and an
average field.

In the most simple version of the effective index model, the electric permittivity ε is
assumed to have the form ε = ε(ρ) = n(ρ)2 and consequently the amplitude of the field
becomes independent of z and yields ψl p(ρ ,z) ∼ hl p(ρ). Application of the effective-index
model to a plano-concave resonator means (in more physical terms) that the resonator is
reduced to a planar cavity with a built-in radially varying effective index of the form

n(ρ) = n0

(

1− ρ2w2
0

4RL

)

, (8.6)

with R the radius of curvature of the mirror. As stated by Hadley [82]; “the effective-index
profile is determined by local changes in the Fabry-Perot resonance frequency (for rays that
simply travel parallel to, but displaced from, the (z-)symmetry axis)”.

Based on Eqs. 8.5 and 8.6, we can rewrite the scalar wave equation for a (slowly varying)
amplitude of the field into a Schrödinger-type equation

(∇2
ρ −ρ2)hl p(ρ) =−2ω̃hl p(ρ) , (8.7)

where

O2
ρ =

∂ 2

∂ρ2 +
1
ρ

∂
∂ρ

+
1

ρ2
∂ 2

∂φ 2 , (8.8)

is the rescaled transverse Laplacian, ω̃ = ∆ω/ωG = l + 2p + 1 a dimensionless eigenfre-
quency, ∆ω is the detuning as compared to an on-axis plane wave and ωG = (c/2L)θ0 is the
natural frequency spacing, where θ0 is the Gouy phase. The term 1

ρ2
∂ 2

∂φ2 =−l2/ρ2 in Eq. 8.8
acts as a centrifugal potential, which forces the radial profile hl p(ρ) outwards for higher l.

We solve Eq. 8.7 with the so-called shooting method [84], where the integration proceeds
from ρ = ρ1 = 0.8, being the transition from the convex to the concave part of our bifocal
mirror, to ρ = ρ2, a position beyond the spatial extent of the mode. We start from h = 0
and ∂h(ρ)/∂ρ = 1 and proceed stepwise to the edge using ∂ 2h(ρ)/∂ρ2 from Eq. 8.7. This
iterative process is performed for 2000 consecutive transverse positions ρ . Doing so for
various values of ω̃ for a given l, we find ω̃ that minimizes the field h at ρ2 best.

For a more quantitative study of the influence of the dimple on the modes, we have in-
cluded the dimple (radius ρ = 0.8) in our model, replacing ρ2 in Eq. 8.7 by R/rρ2 =−4ρ2,
for ρ < 0.8. After including the dimple in our model, we can start the integration closer to
the center on the dimple. We did so for modes with small l-values, like l = 2, as these rel-
atively compact modes have the larger spatial extent that overlaps with the dimple and will
be affected most. The effect of the dimple is, however, small; the eigenvalue ω̃ and the po-
sition of the maximum change roughly 1 %, and the rising flank of the lobe in the intensity
profile shows only a tiny bending point (not shown). The standard analytic LG-modes are
thus sufficient to describe our measurements, as the centrifugal term (Eq. 8.8) in Eq. 8.7 still
dominates over the potential arising from the dimple structure.

A first remark we want to make is the textbook [85] result that the classical turning points
of the mode profiles can be found from Eq. 8.7 by solving ρ2 + l2/ρ2−2ω̃ = 0, which results
in ρ2 = ω̃±

√
ω̃2− l2. These points are indicated in Fig. 8.3 for both LG7,1 and LG12,3, and
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8. Laguerre-Gaussian modes in a bifocal resonator

coincide with the bending points on the flanks of the first and the last lobes in the intensity
profiles.

The second remark is that the model offers the possibility to investigate the effect of
aberrations on the mode profiles. As an example, we study spherical aberration, expanding
the mirror height profile ∆z beyond the quadratic term. Consequently, a fourth order term
−αρ4 has to be added to Eq. 8.7, where α indicates the strength of the aberration and equals
α = 1/(8kR)

√

L/R (see Chapter 4). On second thought, not only the mirror height profile
∆z, but also the intra cavity angles, i.e., the transverse momentum of the ray kz, should be
expanded (see Chapter 6). The extra term in Eq. 8.7 is −β∇4

ρ . The operator formalism of
Visser et al. [62], discussed in Chapter 6, shows that β = (2R/L)α and 〈∇4

ρ〉 = 〈ρ4〉. As
a consequence, the second (momentum related) contribution to the spherical aberration is
2R/L larger than the one originating from the mirror height profile. The importance of the
fourth-order term in the Taylor expansion has been discussed in several other papers that go
beyond the paraxial regime [65, 66].

As a quantitative example, we study the strength of spherical aberration for our config-
uration, i.e., α = 1.1× 10−6. Taking into account the momentum related contribution, the
strength of the spherical aberration becomes α +β = α(1+2R/L)≈ 3α = 3.3×10−6. This
number is so small that even far off-axis, close to the edge of the mirror (ρ = 8), Eq. 8.7 is
still dominated by the quadratic term ρ2. The influence of spherical aberration on the mode
profiles can thus be neglected.

8.6 Concluding discussion
In our system, the profile of the mirror is nonquadratic due to the presence of the central
dimple. The dimple is needed to break the quadratic profile of the mirror, but is hardly visible
in the mode profile. If we would have destroyed the quadratic profile in any other way, e.g., by
drilling a hole in the mirror, we probably would have observed almost identical LG-modes.
The latter situation is roughly similar to a potential barrier of infinite height. The approximate
mode profiles can be found from the effective-index model starting the integration just outside
the dimple.

The discussed preference for a rectangular or cylindrical mode family is not limited to
cavities but holds for waveguides [86] as well. To motivate this statement we mention that
fibers with an elliptical core prefer a mode family similar to the Hermite-Gaussian (HG)
modes in optical resonators [87], whereas fibers with a circular core favor a rotationally sym-
metric mode family [88]. The stepped (refractive) index of a circular core breaks in fact the
quadratic guiding profile so strongly that the mode-profiles are influenced correspondingly
and are quite different from the LG-modes. These modes are called LP-modes [89, 90].

In conclusion, we have demonstrated a passive resonator in which LG-modes are pre-
ferred, due to the rotational symmetric and nonquadratic profile of the mirror. The inten-
sity profiles on the mirror nicely agree with standard (analytic) LG-modes, showing that the
dimple does not yet influence the mode profiles noticeably. This we have checked with an
effective-index model, which is also used to demonstrate that the effect of spherical aberration
on the mode profiles is still negligible under our operating conditions.

80



CHAPTER 9

Combining a stable and an unstable resonator

We investigate a two-mirror resonator comprising two multi-mode cavities that are in-
trinsically coupled. The key element of this system is a mirror with a combined convex
inner part and a concave shell. Tuning of the cavity length allows us to study the coupling
inside a stable-unstable cavity combination as well as inside a stable-stable combination.
The former configuration is expected to show the onset of chaos.
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9. Combining a stable and an unstable resonator

9.1 Introduction

In this Chapter, we present a preliminary experimental investigation of a novel type of open
optical resonator that may show chaos. Wave chaos has been demonstrated in the microwave
regime in closed billiards in 1990 [91]. In the optical regime, wave chaos is very hard to
obtain with closed resonators since omnidirectional perfectly reflective coatings (as metals
are in the microwave domain) do not exist. Furthermore, such closed resonators would be
hard to access and adjust. On the contrary, a standard open resonator consisting of two high-
reflectivity laser mirrors does not suffer from these problems, but such a configuration does
not normally lead to chaos.

Two requirements have to be fulfilled for chaotic behavior in a resonator, be it closed
or open. First, optical paths in a resonator have to be exponentially sensitive to the initial
conditions and, secondly, the light has to be confined inside the cavity for a sufficiently long
time, to produce mixing. A two-mirror unstable resonator offers the exponential sensitivity,
but the rays escape the cavity after only a few round-trips so that mixing does not occur. A
two-mirror stable resonator can confine the light, but is an imaging systems that does not
possess the exponential sensitivity. To combine the “best of both worlds”, we have designed
the composite mirror shown on the right-hand sides of the two cavities shown in Fig. 9.2,
below. This special composite mirror has a convex center and a concave outer part; it will
also be denoted as a “bifocal” mirror as it contains two radii of curvature and thus two foci.
While the unstable inner cavity provides the exponential sensitivity, the outer cavity collects
the light leaving the unstable cavity and injects it back into the inner cavity, thus fulfilling the
mixing requirement.

Numerical simulations help us to determine the proper configuration which might show
chaos. Wave chaos for our configuration can, however, not be shown numerically, as in prac-
tice the wave equation can only be solved for small systems with a typical dimension a and
wavenumber k, where ka < 150 [92, 93]. The experimental cavity, presented in this Chapter,
corresponds to ka∼ 8000. Although our experiment deals with waves, the demonstration of
ray chaos is important as ray chaos is a requirement for wave chaos, i.e., when a resonator
does not exhibit ray chaos, wave chaos will not occur either [42]. The presence of ray chaos
in an open optical 2D-resonator has been predicted by Aiello et al. [79] based on calculations
of the Lyapunov exponent. The Lyapunov exponent [94] is a measure for the exponential
sensitivity to the initial conditions; it characterizes the mean rate of exponential divergence
between two nearby orbits. The strip-resonator proposed by Aiello et al., shown in Fig. 9.1,
is a stable symmetrical two-mirror cavity in which a third two-side convex mirror is placed
in the middle. For practical reasons this configuration has been slightly modified; the convex
part has been combined with the concave outer mirror.

The most promising configuration to observe chaos does not only show a high Lyapunov
exponent, but also a sufficient confinement of the rays inside the resonator. To allow suffi-
cient time for chaos to develop, the ray should stay inside the resonator longer than the time
associated with the Lyapunov exponent; τLyapunov < τescape. Numerical simulations of the
2D cavity have been performed [95] for various cavity lengths and radii of curvature of the
bifocal mirror. The most promising configuration, which will be introduced in Section 9.2,
shows that it takes on average 1.5 round-trips [95] to show exponential divergence. The time
a ray stays inside the resonator τescape is determined by the transmission loss due to the finite
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Figure 9.1: Two-mirror cavity in which a third two-side convex mirror is placed in the
middle. The inner mirror in combination with one of the outer mirrors forms an unstable
resonator, whereas the combination of both outer mirrors forms a stable resonator.

reflectivity of the mirrors and the escape or diffraction loss due to the finite transverse dimen-
sions of the mirrors. The former is simply determined by the quality of the mirror coating,
and will be discussed below. The latter is primarily determined by the aspect ratio of the
resonator. Numerical simulations show that a square configuration (L ∼ 2b) minimizes the
escape of rays caused by the open nature of our cavity. Due to the ray character of the sim-
ulations only relative dimensions L/b are important. In contrast, when the wave character of
light is taken into account, the absolute dimensions become important via the Fresnel number
b2/λL, where b is the radius of the mirror, λ the wavelength, and L the cavity length.

The key characteristic of wave chaos is the repulsion between eigenfrequencies. To
demonstrate this experimentally, it is necessary that resonances in the spectrum can be re-
solved, i.e., the spectral width of a resonance should be small as compared to the average
mode spacing, being the free spectral range divided by the number of modes. For confined
modes, the spectral width is expressed by the cavity finesse F = π/(1−R), which is fully
determined by the reflectivity of the mirrors R. The number of “confined” modes in a stable
resonator scales with the cavity dimensions and approximately equals the Fresnel number
NF = b2/λL. The eigenmodes can thus only be resolved when the Fresnel number is smaller
than the finesse, which is realistically about 1000. This means that for a square cavity con-
figuration and λ = 800 nm, the typical dimensions of the cavity should be in the order of
2b≈ L≈ 1 mm.

The simulations provide only a simplified picture of reality. First of all, a realistic res-
onator is 3D and not 2D, as is assumed in the numerical simulations. In our experimental
3D-system, for instance, many (corkscrew-like) orbits exist that do not hit the dimple, i.e.,
the convex central part of the bifocal mirror, at all. This means that in 3D the average num-
ber of round-trips needed to develop chaos will increase, as compared to the 2D-simulations.
Furthermore, the experiment deals with waves, whereas interference effects are not taken
into account in the numerical simulation. Therefore, although ray-simulations give us some
insight, only an experiment can be conclusive on the existence of chaos.

To place our experiment in a broader historical perspective, we mention here some other
experiments. One of the first experiments to describe the coupling of two resonators, is the
coupling of two maritime clocks by Christian Huygens in 1662 [96]. He found that two
nearby pendulum clocks swung with exactly the same frequency and 180 degrees out of
phase. When he disturbed one pendulum the anti-phase state was restored within half an
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hour. This simple experiment shows the essence of coupled systems. Examples are also
found in the optical domain, e.g., in ring-laser gyroscopes. In an ideal ring-laser, the two
oppositely travelling waves are supposed to be uncoupled. Rotation of the resonator lets both
waves experience a different path length and consequently different resonance frequency.
This effect is known as the Sagnac-effect. If the intra-cavity light, however, experiences
some backscattering (due to surface roughness and/or Fresnel reflection), coupling of the
oppositely propagating waves is introduced [97] and the standing waves dominate at small
rotation velocities. Also in optical systems with an active medium coupling can play a role.
In dual VCSELs, two monolithic cavities are grown on top of each other and share a common
mirror [98]. The degree of coupling is now determined by the quality of the transmission of
the common mirror. Dual wavelength emission is generally observed.

In the system presented in this Chapter, both cavities are passive. Another difference as
compared to other systems is the instability of the inner cavity. This accounts for the large
coupling strength of both cavities. An uncoupled unstable resonator normally favors the
lowest order modes, which is the least lossy, and operates (effectively) as a “single” mode-
resonator. In our system the unstable resonator is, however, coupled to a stable resonator,
which also supports the higher-order modes in the unstable cavity. Our system is thus a
coupled multi-mode system, which makes it a very rich and intriguing system.

The general structure of this Chapter is as follows. In Section 9.2, the production method
of the mirrors is discussed and both cavity configurations are introduced. A simple ray-
tracing simulation of the cavity configurations, as presented in Section 9.3, pinpoints the
most promising regimes. The experimental setup is discussed in Section 9.4. The rest of the
Chapter is devoted to a study of the minimum requirements needed for chaos to be fulfilled.
Questions that we will address experimentally are:

“Can we couple the inner and outer cavity?”,
“How long does the light stay inside the cavity?”,
“How often is the dimple hit?” and,
“Can the spectral resonances be resolved?”.

These questions are answered on the basis of the two main methods at our disposal; spec-
tral and spatial analysis. In Section 9.5, the experiments based on spectral information are
introduced, while Section 9.6 presents and discusses the spatial intensity distributions on the
mirror. All results are discussed in Section 9.7 and recommendations are made.

9.2 Substrates, mirrors and cavity configurations

The substrate for the composite mirror, with its concave outer part and convex inner part,
can not be manufactured by traditional (polishing) methods. Diamond machining [67] does
offer the possibility to produce such bifocal substrates, though. The substrates for the mir-
rors used in the experiment are made out of calcium fluoride (CaF2). Calcium fluoride is a
crystal widely used for optical substrates, e.g., for lenses in lithography systems, as it has a
high transmission at UV-wavelength, even below 175 nm [70]. The prime advantage of this
material is that it chips very fine during the fabrication procedure so a low surface roughness
(σRMS ∼ 2 nm) can be achieved. Its melting temperature (1630 K) is much higher than the
temperature reached during the high reflectivity coating process (∼ 400 K); this implies that
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9.2 Substrates, mirrors and cavity configurations

the surface figure is maintained. Finally, it is transparent at 800 nm, which is the wavelength
used in our experiment.

Two different pieces have been produced by TNO [31] according to our design; a concave
and a bifocal one. The mirror substrates have been diamond machined with a chisel and the
grooves on the substrate have a period ranging from 10− 25 µm. The concave mirror sub-
strate has radii of curvature R = 14 mm and a nominal mirror radius b = 1 mm (see Fig. 9.2).
The bifocal substrate has a radius of curvature R = 14 and r = −3 mm and a nominal mir-
ror radius b = 1 mm and a = 100 µm, for the outer and inner part, respectively. Inspection
of the composite mirror by an interferometer (WYKO-400) shows that the transition zone
from the inner to the outer part is smaller than 15 µm and that the transition is smooth (step
height< λ/20). We note that the inner and outer part of the composite mirror are automat-
ically aligned and do not show tilt, as spheres always have a radius in common. For easy
handling, the substrates have an outer radius of 3 mm, where the outer part with a radius
r ranging from 1 to 3 mm, is machined conically to prevent this part from scattering light
back into the resonator. Each diamond machined substrate, bifocal and simply concave, is
mounted in a metal ring with an outer radius of 0.5 and 1 inch, respectively. We also possess a
flat CaF2-substrate with a diameter of 1 inch, which is not diamond machined but traditionally
polished. All substrates are coated in the same coating run, with a stack of 12×2 = 24 layers
of alternating Ta2O5 (refractive index 2.04) and SiO2 (refractive index 1.46). The measured
transmission of the mirrors after coating is 8×10−4.

I. II.

R b

a r

L

R

Figure 9.2: Two cavity configurations, with an identical composite mirror on the right-
hand side. The dimensions of the composite mirror are R = 14 mm, r = −3 mm, a =
100 µm, and b=1 mm. The left-hand mirror is either (I) concave with a radius of
curvature R = 14 mm or (II) flat.

Fig. 9.2 shows the two different cavity configurations that we have used; the dimple
mirror in combination with the concave mirror (denoted in this Chapter as configuration I)
and the dimple mirror in combination with the flat mirror (denoted as configuration II). The
(radially) outer part of configuration I forms a resonator which is stable for all cavity lengths
L < 2R = 28 mm. The stability of the inner cavity depends on the cavity length in a more
complicated way and can be found from 0 ≤ g1g2 ≤ 1 [12], where gi = 1−L/Ri. Solving
this equation for configuration I, where R1 = R = 14 mm and R2 = r =−3 mm, we find that
the inner cavity is only stable for 11 < L < 14 mm and thus unstable for L < 11 mm and
L > 14 mm. This configuration has the advantage that we can explore the transition from a
stable to an unstable inner resonator. Furthermore, we note that the magnification (equivalent
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to the transverse mode stretching per round-trip) is limited to M = 4.7 for cavity lengths
L < 11 mm (see Tab. 9.1).

When we replace the concave mirror by the flat one, we obtain configuration II which is
equivalent to the geometry discussed by Aiello et al. [79]. It combines an outer part, which is
stable for cavity lengths L < R = 14 mm, and an inner part, which is always unstable. Note
that the magnification is already M = 3 for a cavity length of only L = 1 mm and increases
with the cavity length, as shown in Tab. 9.2.

9.3 Ray-tracing the bifocal resonator
Extensive ray tracing simulations in ref. [95] have shown that ray-chaos is most likely found
for L ∼ 2b. In combination with the extra requirements for wave chaos, this condition be-
comes L ∼ 2b . 1 mm [95]. In this Thesis a much simpler simulation is used to show how
long the ray stays inside the resonator and how often the dimple is hit. The ray-tracing sim-
ulation, based on ABCD-matrix multiplication, calculates the path through the cavity for a
given input position and injection angle on the bifocal mirror. A ray which hits the outer part
of the mirror (R = 14 mm) experiences another ABCD-matrix than a ray that hits the inner
part of the mirror (r =−3 mm).

To be able to perform some statistics, the path through the resonator is calculated for 51
input positions, equally spaced over the dimple (thus ranging from 0 to 100 µm), and 41
different angles (ranging from -0.01 to 0.01 rad) for every input position. These numbers are
close to typical experimental values. The total number of injected rays is thus 2091. The
number of round-trips is limited to 8000 (which would be equivalent to the unrealistically
large cavity finesse F = 2π×8000≈ 50000). From these data we calculate, for both config-
uration I and II, the probability distribution of the number of round-trips before escape from
the resonator and of the number of dimple hits.

9.3.1 Configuration I
An overview of the simulations performed on a cavity I-configuration is shown in Tab. 9.1. It
shows that outside the stable regime of the inner cavity, we hardly find stable orbits, except
for the shorter cavity lengths. Only for very short cavity lengths, e.g., L = 1 mm, most
orbits stay inside the resonator for the maximized number of 8000 round-trips. This is also
shown in more detail in Fig. 9.3a, where a probability distribution shows the number of rays
vs. the number of round-trips before escape. The rays escaping earlier (less than 8000 round-
trips) produce a (roughly) flat probability distribution. For the same cavity length, the average
number of dimple hits is also substantial, 1548 out of 6694. The broad probability distribution
shown in Fig. 9.3b indicates a variety of different orbits.

For L = 12 mm, the inner cavity of configuration I is stable and a ray remains on average
inside the resonator for 4903 round-trips. We have to be careful with this number as rays can
remain in the stable inner cavity without coupling to the outer cavity. Taking a closer look at
the distribution of the number of round-trips a ray remains inside the cavity, we find that 60 %
of the rays stay inside the resonator for all 8000 round-trips and that the other 40 % leave the
cavity only after a few hits. The same division holds for the average number of dimple hits;

86



9.3 Ray-tracing the bifocal resonator

L [mm] average # of round-trips average # of dimple hits N M
1 6694 1548 8.3 2.6
2 1571 241 5.8 3.4
6 390 81 3.3 4.6

10 112 30 2.5 2.6
12 4903 4898 2.2 stable
15 80 12 1.9 -3.4

Table 9.1: For six different lengths of a configuration I cavity, we have calculated
both the average number of round-trips per ray before escape and the average number
of dimple hits per ray. A total of 41× 51 = 2091 different rays are traced through
a configuration I-resonator, each over 8000 round-trips or less if the ray escapes at
earlier time. The inner cavity is stable for 11 < L < 14 mm. The numbers N and
M are the degeneracy (= 2π/Gouy phase) and the magnification of the inner cavity,
respectively.

60 % of the rays hit the dimple every round-trip, whereas 40 % hit the dimple only a few
times. This confirms our statement that most rays stay inside the stable inner cavity and that
most other rays are lost. The stable inner cavity will not show chaos as a stable resonator is
not exponentially sensitive to the initial conditions.
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Figure 9.3: Ray-tracing statistics for a configuration I resonator at a length of L =
1 mm with two concave mirrors (R = 14 mm), of which one has a central dimple (r =
−3 mm). The two probability distributions show the number of rays (out of 2091) vs.
(a) the number of round-trips before escaping and (b) the number of dimple hits.

9.3.2 Configuration II

The statistics performed on configuration II is shown in Tab. 9.2. We again find that only
for a very short cavity length a typical ray remains inside the cavity for a long time as well
as a substantial number of dimple hits. Fig. 9.4 shows that for L = 1 mm only a fraction of
the injected rays remain in the cavity for the full 8000 round-trips. Only for shorter cavity
lengths, e.g., L = 0.5 mm, almost all rays remain inside the cavity.
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L [mm] average # of round-trips average # of dimple hits N M
0.5 7163 1477 16.5 2.2

1 2946 625 11.6 3.0
2 152 47 8.1 4.4
6 31 13 4.4 9.9

Table 9.2: For four different cavity lengths of configuration II, we calculated both the
average number of round-trips per ray before escape and the number of dimple hits per
ray. A total of 41× 51 = 2091 rays are traced through a configuration II-resonator,
each over 8000 round-trips or less if the ray escapes at earlier time. The numbers N
and M are the degeneracy (=2π/Gouy phase) and the magnifications of the inner cavity,
respectively.
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Figure 9.4: Ray-tracing statistics for a configuration II-resonator at the cavity lengths
L = 1 mm (upper figures) and L = 0.5 mm (lower figures). The probability distributions
show the number of rays (out of 2091) vs. the number of round-trips before escaping
(a) and (c) and vs. the number of dimple hits (b) and (d).
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9.4 The experimental setup
The two mirrors forming the cavity are mounted in stable top-actuated mounts (New Focus
9774 and 9775). A tunable Titanium Sapphire ring laser (Coherent 899-01), which is driven
by a diode-pumped laser (Coherent Verdi) and operates at a wavelength of λ = 800 nm,
is used to inject our cavity. A lens ( f = 10 cm) in front of the cavity mode-matches the
input beam to the lowest-order mode of the cavity. The cavity length is scanned with a
piezo-element to obtain the transmission spectrum. Besides the spectral information also the
intensity profile on the back-mirror is monitored with a CCD-camera behind the cavity.

For accurate tuning of the relative cavity length one mirror is placed on a translation stage
(PI M-521). The absolute cavity length is found by using frequency-degenerate points of the
stable cavity (see Chapter 5). These special points can be recognized easily, both spectrally
and in the intensity profile on the mirror, as follows. At these N-fold frequency-degenerate
points, spectral resonances overlap and form N clumps of modes, each spaced at ∆νFSR/N,
where ∆νFSR is the free spectral range. Furthermore, for off-axis injection at an angle N spots
appear in the intensity profile on the mirror. As every N-fold frequency-degenerate point
belongs to a unique cavity length (for the given radii of curvature of the mirrors), the absolute
cavity length can be determined very accurately, up to a few µm.

9.5 Fabry-Perot spectra

9.5.1 Coupling the inner and outer cavity
Coupling of the inner and the outer cavity is needed to reinject light into the unstable inner
cavity, where chaos can develop. To check if coupling is feasible, we operate a configuration
I-cavity in the transition from a stable to an unstable inner cavity and measure its transmission
spectra. We operate the cavity around a length of L = 14 mm, where both inner and outer
cavity are close to 2-fold frequency-degeneracy (N ∼ 2). The injected beam is mode-matched
to and injected in the fundamental mode of the inner cavity.

We start out with a cavity length slightly shorter than L = 14 mm, where the inner cavity
is thus still dominantly stable. The spectrum at this position, shown in Fig. 9.5a, contains a
small bias and some sharp resonances. The sharp resonances represent stable modes living
in the inner cavity. This is confirmed by the intensity profile on the mirror where the power
is dominantly localized on the dimple. The bias in the spectrum indicates the onset of the
unstable regime.

Figures 9.5b-d show how the spectrum changes if we increase the cavity length such that
the inner cavity becomes unstable. Let us discuss this sequence.

The first remark is that the closer we get to instability of the inner cavity the lower be-
comes the number of sharp resonances in the spectrum. We can explain this as higher order
modes become unstable first and only the lower order modes remain.

A second remark concerns the two broad “clumps” per free spectral range, which become
more pronounced the closer we come to instability. This is a clear demonstration of the
increased coupling to the outer cavity. The two clumps actually consist out of many modes
in the almost frequency-degenerate (N = 2) outer cavity; the even (n+m)-modes are located
in one clump and the odd modes in the other.
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Figure 9.5: Spectra in the transition from a stable to an unstable inner configuration II-
cavity. In figure (a) the cavity is operated at L = 14 mm. The cavity length is increased
stepwise in consecutive figures to: (b) ∆L = 0.11 mm, (c) ∆L = 0.24 mm and (d) ∆L =
0.4 mm.

As a third remark, we want to stress that the bias becomes more dominant for a more
unstable inner cavity. The bias indicates the presence of many spectrally broad modes, which
can no longer be resolved. The origin of this spectral broadening could lie in the fact that
these modes presumably encounter more losses, possibly due to the physical transition from
the convex to the concave part of the mirror. On the other hand, this does not seem very
likely as interferograms indicate that the transition is smooth. Another reason might be that
the phases acquired by light in the inner and outer cavity are different so that they interfere
destructively when they recombine.

At L = 14.4 mm, we are clearly in the regime where we inject in the inner cavity and
couple to the outer cavity, since we dominantly excite modes in the outer cavity. This is
confirmed by the intensity distribution on the mirror, which is now no longer localized on the
dimple but also spread over the outer cavity. We conclude that we are able to couple the inner
with the outer cavity, but are unable to spectrally resolve the excited modes.

9.5.2 Cavity finesse, average throughput and the number of hit points
It takes time for chaos to develop and a sufficient number of hits on the mirror, especially
on the dimple, is needed. The number of hit points on the mirror can be deduced from
the cavity finesse. However, as shown in the previous Section, for some configurations the
resonances in the spectrum cannot be resolved and the number of hit points still remains
unknown. Especially for this regime, we introduce here a new method to derive the average
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number of hit points from the “spectrally-averaged” throughput. To test this method, we will
first determine the number of hit points of an uncoupled inner resonator. Next, we will study
an uncoupled outer cavity of which the spectral resonances can be resolved. Finally, the new
method will be applied to a resonator of which the inner and outer cavity are coupled and the
resonances cannot be resolved. The first experiment is performed on a configuration I-cavity,
whereas the second and third experiment are performed on a configuration II-cavity.

In the first experiment, we inject a stable inner resonator with a beam mode-matched to the
lowest order mode. The configuration I-cavity is operated at a cavity length L = 13 mm. The
intensity profiles of the modes on the dimple are nice Hermite-Gaussian-modes, as expected
for a stable resonator. During alignment of the cavity, the finesse was found to be very
sensitive to the exact injection on and alignment of the mirrors. This we also observed in
Chapter 7 and is possibly caused by the periodic structure of the roughness on the surface of
the substrate. After optimizing the injection, a cavity finesse F = 670 is found. This makes
the number of hit points on each mirror F/2π = 107.

In the second experiment, we consider an uncoupled stable outer cavity. We operate a
configuration II-cavity at a cavity length L = 6.6 mm, which is close to the 4-fold frequency-
degenerate point (N ∼ 4). Off-axis injection at a proper angle excites a corkscrew-like ring-
mode, which does not hit the dimple, but retraces its path in the outer cavity. These ring-
modes (in the outer cavity) have a finesse of F = 650, making the number of hit points on
each mirror F/2π = 105. All resonances can be resolved and have the same spectral width,
which indicates that the modes experience identical losses.

We use this second spectrum to demonstrate the validity of our alternative method (see
also Section 2.3) to determine the number of hit points. The measured average spectral
throughput through one mirror (= average power in a FSR divided by the transmitted power
behind first mirror) is 9.4 %. The rest of the light is transmitted by the opposite mirror
(∼ 10 %) or scattered out of the resonator (∼ 80 %). We also know that for every hit
on a mirror only 8× 10−4 of the incident power is transmitted. It thus takes on average
9.4× 10−2/8× 10−4 = 120 hits per mirror before the light has leaked out. As this is com-
parable to the value F/2π = 105 obtained earlier, we conclude that the spectrally-averaged
throughput provides us with the correct number of hit points and forms an alternative method
for the number of hit points deduced from the cavity finesse.

To demonstrate that this new method can be of great benefit in situations where not all
spectral resonances can be resolved, we perform a third experiment. We now inject light
in a resonator with an unstable inner cavity, for which we chose a configuration II-cavity
operated at a cavity length L = 6.6 mm. The unstable inner cavity magnifies the input beam
and spreads the light over the outer cavity. The inner and outer cavity are now coupled but
not all trajectories experience identical losses. This is reflected in the spectrum, which shows
an offset, where the resonances cannot be resolved, and on top of that some sharp resolvable
resonances. The highest measured cavity finesse of a sharp resonance is F = 400, suggesting
that the number of hit points on each mirror is F/2π = 65 (for these modes). Application of
our alternative method also reveals information about the modes in the spectral offset, which
cannot be resolved in the spectrum. From the measured average spectral throughput of 1.1 %,
we deduce an average number of hit points on a single mirror of only 1.1×10−2/8×10−4 =
14. The “average” mode thus hits the mirror a factor 4−5 times less than the modes of which
we can measure the cavity finesse directly. This shows once more that the various modes
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experience different losses in a coupled resonator.
In the light of chaos, not only the number of hit points on the outer mirror but also the

number of hits on the dimple is important. The ratio between the two is linked to the Gouy
phase θ0 of the outer cavity. The relation between the (integer) number of round-trips N
(equivalent to the number of hit points on one mirror before the ray retraces its tracks) and
the Gouy phase is given by N = 2π/θ0. For the above configuration the Gouy phase is
θ0 = 1.14, and thus not a true fraction of 2π , but, naively speaking, the number of hit points
on one mirror before the ray comes close to its initial position is 2π/θ0 ≈ 5−6. So if a ray is
bounced out of the inner cavity into the outer cavity it takes roughly 5−6 mirror hits before
the ray is again injected into the inner cavity. For a total number of hit points of typically 14,
the dimple will be hit only 2−3 times.

We conclude by stating that our new method, based on a measurement of the average
spectral throughput, reveals important information about the number of hit points for modes
that cannot be spectrally resolved. We find that the average number of hit points on the mirror
in the regime where the inner and outer cavity are coupled is typically only 14. The number
of hit points on the dimple is even smaller (2−3 hits), and is very likely too small for chaos
to develop.

9.5.3 Position of the injection beam

To check the influence of the position of the injection beam on the cavity dynamics we inject
on various (off-axis) positions in one transverse plane. We did so for both a stable and an
unstable inner cavity, and monitored both the spectrum and the intensity distribution on the
back mirror.

Unstable inner cavity

We operate the configuration II-cavity at a cavity length L = 2 mm, for which the outer cavity
is close to an 8-fold frequency-degenerate point (N = 8) and the inner cavity is unstable.
For injection in the outer cavity at ∆x = 0.56 mm relative to the mirror center, 8 clumps of
modes are observed in the spectrum shown in Fig. 9.6a. The origin of these clumps lies in
the fact that the spectrum is dominated by the frequency-degenerate outer cavity (N = 8). On
the mirror, we indeed observe an ellipse of bright hit points in the outer cavity, bypassing
the convex inner part. As the modes are degenerate, individual modes within each clump
cannot be spectrally resolved and the cavity finesse cannot be determined. However, from
the average spectral throughput we can deduce that the average number of hit points on one
mirror for a typical mode is 70.

When we inject closer to the dimple, at ∆x = 0.38 mm, we observe an elliptic ring-
structure around the dimple. Fig. 9.6b shows the spectrum in which we still observe 8 clumps
of modes, but the clumps are now broader and contain more structure. In each clump there is
one sharp dominant resonance on the right side and many more modes with roughly identical
peak transmission. The dimple clearly influences the modes in the outer cavity and partly
breaks the degeneracy of the modes. The finesse of the sharp resonances is still F = 670,
and the number of hit points on the mirror for this mode is thus F/2π = 107. The number of
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Figure 9.6: Spectra for various positions of injection into a configuration II-cavity. The
resonator is operated at a cavity length of L = 2 mm, where the inner cavity is unstable.
The outer cavity is close to 8-fold frequency-degeneracy. The outer cavity is injected
(a) ∆x = 0.56 mm from the center of the mirror, (b) ∆x = 0.38 mm, (c) ∆x = 0.30 mm,
and (d) ∆x = 0 mm, respectively.

mirror hits found from the average spectral throughput is 60. The discrepancy between these
two numbers shows that some modes are more lossy than others.

Injection at ∆x = 0.30 mm from the center of the mirror shows again a ring-structure
around the dimple. Groups of modes are still observed in the spectrum Fig. 9.6c. In each
clump we can now easily distinguish 4− 6 equally spaced modes. Taking a closer look at
some of these resonances we observe a splitting of the modes. This might indicate that also
other resonances are still degenerate and consists out of more modes. The finesse of such
sharp resonances is F = 620, and the number of hit points on the mirror for these modes is
thus F/2π = 100. The average number of hits on the mirror derived from the spectrally-
average throughput is 50.

For on-axis injection of the inner cavity, at ∆x = 0, the intensity distribution on the mirror
shows that light is spread over both the inner and outer resonator, with a darker fringe in
between. We observe an offset in the spectrum (Fig. 9.6d) with some finer structure on top of
it. Most excited modes can not be resolved. The few sharp resonances in the spectrum that
can be resolve yield F/2π ≈ 50. The average number of hit points, found from the average
transmitted power in the spectrum, is 28. As we are close to an 8-fold frequency-degeneracy,
the number of hit points N in the outer cavity needed before a ray is reinjected into the inner
cavity is N = 8. For a total number of hit points on the mirror of 28, the dimple is hit only
3−4 times.

In summary, we have observed that already for injection at ∆x = 0.38 mm away from
the center of the cavity the influence of the inner cavity is felt; the losses increase and the
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frequency-degeneracy in the spectrum is broken. As soon as a dominant part of the injected
light hits the unstable inner cavity, resonances in the spectra are hard to resolve, which makes
it difficult to deduce information from the spectrum. The number of dimple hits is again 3−4.

Stable inner cavity

Next, the influence of the position of injection on the cavity dynamics is investigated for a
cavity with both a stable inner and outer cavity. The configuration I-cavity is operated at a
cavity length of L = 12 mm, where the inner cavity is close to a 4-fold frequency-degeneracy
(N = 4).

First, we inject just outside the dimple and observe two bright spots on the left and right
side of the dimple and a vague background. The spectrum for this position of injection
(Fig. 9.7a) shows an offset and on top of that a quasi-periodic structure (∼ 20-fold). When
we inject on the dimple (Fig. 9.7b), the offset in the spectrum has disappeared and instead
we observe 4 clumps of resonances in the spectrum, which indicate the 4-fold frequency-
degeneracy of the inner cavity. The intensity profile on the mirror is indeed localized on the
dimple and the light is thus confined to the stable inner resonator.

Injection on the other side of the dimple results in a spectrum with an offset and on top
of that a 7-fold periodic structure, see Fig. 9.7c. On the mirror, we now observe 12 hit points
on the concave part of the mirror and some hit points on the convex part, which cannot be
pinpointed exactly, due to a limited imaging resolution. This intensity information (> 12 hit
points) combined with the 7-fold structure in the spectrum indicates that the number of lon-
gitudinal round-trips that are needed before the ray returns on itself equals N = 14 [21]. This
means that there must be (14−12) = 2 hits on the convex part of the mirror. The number of
transverse “round-trips” K the orbit makes before closing cannot be deduced directly from our
experimental observations. We know, however, that K should be an even integer to comply
with the 7-fold spectral structure. A calculation of the overall Gouy phase θoverall = 2πK/N
sheds more light on this problem.

The overall Gouy phase depends on the number of hits on the inner and outer part of
the bifocal mirror and is the weighted sum of the Gouy phase of the inner and outer cavity,
which is in our case θoverall = θin/7 + (6θout)/7. The Gouy phase of the inner cavity is
roughly θin = 2π/4 = 1.57, whereas the Gouy phase of the outer cavity θout = 2.95 for
the corresponding cavity length. This results in an overall Gouy phase θoverall = 2.75. The
calculated overall Gouy phase should thus be equal to 2πK/14, which means that K = 6.

The existence of this K/N = 6/14-point is surprising. For a cavity without dimple and
a specific cavity length, one Gouy phase determines all cavity dynamics and K/N = 6/14
and K/N = 3/7 describe identical physics. The description of frequency-degenerate points
in a bifocal cavity is, however, more complicated. For one specific Gouy phase (e.g., θ0 =
2π3/7), the sequence of hit points on both cavities can be different, which is expressed by
K/N = 6/14 and K/N = 3/7. It is important to note that the orbit described by K/N = 6/14
cannot be described by two K/N = 3/7-orbits.

We conclude that for a coupled stable inner and outer cavity, an offset appears in the spec-
trum filled with modes that cannot be resolved. Also for coupled stable cavities, frequency-
degenerate points exist, but the Gouy phase does not uniquely define the trajectory.
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Figure 9.7: Spectra for various positions of injection of a configuration I-cavity. The
cavity is operated at a cavity length of L = 12 mm, where the stable inner cavity is
close to 4-fold frequency-degeneracy. The position of injection as compared to the
mirror center ∆x is for (a) ∆x = −0.12 mm, (b) ∆x = 0 mm, and (c) ∆L = 0.17 mm,
respectively. Note the (quasi-periodic) structure in both (a) and (c), where the rays hit
both the inner and outer cavity.

9.6 Transmission patterns

9.6.1 Speckle patterns

Important information can also be obtained from the transmission profiles. When we inject
the unstable inner cavity, the light spreads out over the convex and concave part of the bifocal
mirror. Close to frequency-degeneracy of the outer cavity, circular structures dominate the
speckled pattern as shown in Fig. 9.8a. These circular structures are the Hercher fringes
introduced in Chapter 4. We will concentrate, however, on the nondegenerate case as shown
in Fig. 9.8b. The patterns can be observed best for fixed cavity length, i.e., when the scanning
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of the cavity length is stopped.

Figure 9.8: Intensity profiles on the mirror of a configuration I-cavity for a fixed cavity
length (no scanning) (a) operated at L = 14.3 mm, where the outer cavity is close to
2-fold frequency-degeneracy (N ≈ 2) and (b) away from a frequency-degenerate point
at L = 17.3 mm. Close to frequency-degeneracy Hercher-fringes dominate the speckle
pattern.

We encounter the speckled patterns not only for short cavity lengths, but also for the
longer ones. On first sight, the patterns appear to be random, but a closer look shows rota-
tional symmetry. Such intensity profiles with a rotational symmetry were also observed for
a similar, but uncoupled system, introduced in Chapter 8. We have demonstrated there that
Laguerre-Gaussian (LG) eigenmodes form the natural basis of the uncoupled system. Sim-
ilar speckled patterns were observed and associated with a (coupled) superposition of many
excited LG-modes. The patterns in the coupled system, presented in this Chapter, have the
same flavor.

The randomness and structure of the speckles in the patterns imply that many unperturbed
LG-modes are involved. The speckle size or, equivalently, the spatial period can be attributed
to the highest-order mode m involved. The connection between mode number m involved and
the size of the speckles Λm is m = (4w/Λm)2 [12] with w the waist of the fundamental mode.
The typical size (FWHM) or correlation length of a speckle in the pattern is measured to be
20− 50 µm. For w = 40 µm we thus find that the highest-order mode involved has a mode
number m = 10 to 60.

A polarizer behind the resonator gives more insight into the speckle patterns. The trans-
mission axis parallel to the input polarization results in a typical speckle pattern as shown in
Fig. 9.9a. We observe again some rotational symmetry in the patterns. Rotation of the output
polarizer over 90◦ (transmission axis perpendicular to the input polarization) shows, to our
surprise, that light is still transmitted through the polarizer. Obviously, the resonator changes
the polarization of the light and acts as a depolarizer. Fig. 9.9b, with crossed polarizers, is
different from Fig. 9.9a; the light is spread more homogeneously over the mirror and structure
of the speckles is more grainy.

The difference in intensity distributions for both polarizations can be analyzed more quan-
titatively by averaging over many intensity realizations in a free spectral range. The compar-
ison is then easier as we are less sensitive to vibrations that change the cavity length on a
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Figure 9.9: Intensity profiles on the mirror behind a polarizer with its transmission axis
(a) parallel and (b) perpendicular to the input polarization. The configuration II-cavity
is operated in between two frequency-degenerate points at a cavity length L = 1.8 mm.
The images correspond to an area of 1×1 mm2 on the composite mirror. The dimple is
overexposed.

sub-wavelength scale over time. Disadvantage of this method is that the speckles are aver-
aged out and that we loose intensity information on smaller length scales. We achieve the
averaging by scanning the resonator with a piezo over a few wavelengths. Cross-sections of
these averaged intensity patterns are shown in Fig. 9.10. The intensity is highest in the center
of the dimple, where we inject, and decreases closer to the edges of the mirror. This decrease
is strongest for the parallel case. The distribution for polarization perpendicular to the input
polarization is more uniform. The ratio of these two polarized intensities decreases from 200
in the center to ∼ 70 at ρ = 0.5 mm. 2D-images of the intensity distributions show that the
total (area-integrated) transmitted power is 75 times stronger for the polarization parallel to
the input polarization than for the perpendicular polarization. This ratio is also found from
the spectra of both polarizations.

9.7 Discussion and recommendations
In this Chapter, we have presented a preliminary experimental investigation of a novel type
of open optical resonator. This resonator has been shown to be able to couple the inner and
outer cavity. The number of hit points in the inner (unstable) cavity was found to be limited
to typically only 3−4. For chaos to develop in our 3D-cavity more hits are probably needed.

Rays that remain solely within either the stable inner or outer cavity were observed to do
so during about 60−110 round-trips. This number is large enough to distinguish individual
modes in the optical spectrum. In the coupled regime, where chaos might develop, the number
of hit points, however, decreases drastically and resonances in the spectrum become hard to
resolve. This makes it difficult to perform the statistics that is needed to show the presence of
chaos in our experiment. The reason for the observed broadening might be that light in the
inner and outer cavity acquire a different phase and interferes destructively.

Our first recommendation concerns the coupling of the inner and the outer cavity, which
is up to now relatively modest. For coupled systems, it is obvious that the phase plays a
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Figure 9.10: Cross-sections of intensity profiles averaged over many realizations in a
free spectral range. The upper and lower curve represent the intensity distributions ob-
served behind a polarizer oriented parallel and perpendicular to the input polarization,
respectively. The configuration II-cavity is operated at a length of L = 1.8 mm. The two
dotted-dashed lines indicate the position of the dimple, ρ ranging from -0.1 to 0.1 mm.

crucial role [12]. As our system is a coupled transverse multi-mode system, many phases are
involved. To adapt the phase of the inner cavity to the outer cavity, we propose a bifocal mir-
ror of which the dimple can be axially displaced on a sub-wavelength scale. Proper matching
of the optical phases in the inner and outer cavity might increase the coupling between the
two cavities.

Our second recommendation concerns the presence of corkscrew-like (ring)modes that
live solely in the outer cavity. Although these modes do not contribute to chaos, they are still
present in the spectrum and make it harder to resolve individual resonances. An azimuthal
obscuration inside the outer cavity will block these ring-modes much more than the wanted
2D-modes that hit the dimple and contribute to chaos. With such an obscuration, the spectrum
should contain less resonances but relatively more resonances that might demonstrate chaotic
behavior. The proposed obscuration will also break the rotation symmetry of our cavity; a
symmetry that could frustrate some types of chaos.
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Samenvatting

In deze samenvatting wordt het idee van dit proefschrift uitgelegd zodanig dat het ook te be-
grijpen is voor mensen die minder ingevoerd zijn in de Natuurkunde. De titel van dit proef-
schrift luidt ‘Imperfecte Fabry-Perot resonatoren’. Om het onderwerp van dit proefschrift
te kunnen begrijpen, zal de titel stapsgewijs ontleed en uitgelegd worden. In paragraaf S.1
wordt de werking van een resonator verklaard. Een resonator of trilholte is een ‘holte’ waarin
een golf kan ‘trillen’ en daarbij vanwege de opsluiting wordt versterkt. Om dit zo duidelijk
mogelijk uit te leggen, maken we een vergelijking met geluid, voordat we ons richten op
licht. In paragraaf S.2 zullen we ons beperken tot licht en de werking en de toepassing van
de optische Fabry-Perot resonator nader uit de doeken doen. De verschillende soorten opti-
sche resonatoren worden geı̈ntroduceerd in paragraaf S.3. Vervolgens maken we de stap van
ideale resonatoren, d.w.z. resonatoren met perfecte spiegels, naar niet-ideale resonatoren. In
paragraaf S.4 worden deze afwijkingen van de ideale spiegel en de consequenties voor een
resonator besproken. Deze afwijkingen vormen de rode draad door dit proefschrift. In para-
graaf S.5 wordt het begrip chaos verklaard en in paragraaf S.6 wordt de weerslag van mijn
onderzoek besproken.

S.1 De resonator

Het woord ‘resoneren’ komt uit het Latijn en is opgebouwd uit de woorden re en sonare. Het
betekent zoveel als ‘terug geluid geven’ of ‘herklinken’. Je zou het ook vrij kunnen vertalen
met ‘meetrillen’. Een glas gaat niet alleen meetrillen als je er tegen aan tikt, maar ook als
je luid genoeg op de juiste toonhoogte zingt. Het glas kan zelfs zo hard mee gaan trillen
dat het stuk gaat. Ook als soldaten in de pas lopen kunnen resonanties optreden. Dit is de
reden dat soldaten uit de pas gaan lopen als ze over een brug heen gaan. Anders kan de brug
zo erg mee gaan trillen (dus resoneren), dat ze het kan begeven. In contrast met deze wat
destructieve voorbeelden wordt resonantie ook in de praktijk gebruikt in sommige apparaten
en instrumenten. Deze bevatten dan een aparte ruimte, ook wel ‘resonator’ genoemd, om de
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resonanties te stimuleren en te controleren. Je kunt hierbij denken aan de klankkast van een
gitaar, een orgelpijp of de box van de luidspreker.

Voordat we de vraag kunnen beantwoorden wanneer iets resoneert, moeten we iets meer
weten over de eigenschappen van licht en geluid. Zowel licht als geluid zijn golven die zich
voortbewegen. Een belangrijke eigenschap van een golf is, zoals aangegeven in figuur. S.1, de
lengte van één periode, ook wel genaamd de golflengte. In de akoestiek bepaalt de golflengte
de toonhoogte; hoge tonen hebben een kortere golflengte dan lage tonen. Dit is de reden
dat een korte orgelpijp veel hogere tonen produceert dan een langere orgelpijp. In de optica
bepaalt de golflengte de kleur van het licht. Blauw licht heeft een kortere golflengte dan
rood licht. Behalve dat licht een trilling van een elektromagnetisch veld is, terwijl geluid
een trilling is van de lucht, is er ook een belangrijk verschil in de golflengtes. Geluid heeft
een golflengte in de orde van centimeters tot meters, terwijl licht een golflengte heeft van
een fractie van een micrometer, een miljoenste deel van een meter. De golflengte van licht is
hiermee ongeveer 100 keer kleiner dan de dikte van een mensenhaar!

golflengte

Figuur S.1: Licht en geluid bestaan uit golven die zich voortbewegen. Typerend voor
een golf is de lengte van één periode, ook wel genaamd de golflengte.

Met deze kennis kunnen we de vraag beantwoorden wanneer licht of geluid in een reso-
nator resoneert. Dit gebeurt als de halve golflengte, of een geheel aantal halve golflengtes,
precies past in de resonator en dus gelijk is aan de lengte van de resonator. In het geval van
een snaar is de halve golflengte dus gelijk aan de lengte van de snaar. Een golf beweegt zich
voort en reflecteert (draait om) aan het einde van de snaar. Als de gereflecteerde golf precies
hetzelfde is als de nieuwe golf aan het begin van de snaar (de golven ‘passen’ in de resonator)
noemen we dit ook wel constructieve interferentie. Alle golven met dezelfde golflengte ver-
sterken elkaar. Dit is schematisch weergegeven in figuur S.2a. Als de golflengte niet past
dan zullen meerdere golven elkaar uitdoven. Dit heet ook wel destructieve interferentie en is
weergegeven in figuur S.2b.

We laten de vergelijking met de akoestiek nu definitief achter ons en richten ons op de
resonantie van licht. Een optische resonator of Fabry-Perot resonator bestaat uit twee spiegels
die parallel tegenover elkaar staan. Een voorbeeld hiervan is te zien in figuur S.3. Licht tussen
de spiegels, aangegeven met een M, reflecteert elke keer als het één van de spiegels raakt en
loopt dus heen en weer. Het licht wordt een tijdje opgeslagen. Deze resonator is vernoemd
naar de heren Fabry en Perot, die deze resonator voor het eerst bouwden in 1899.

We weten ondertussen dat één bepaalde kleur licht resoneert, oftewel constructief interfe-
reert, als één halve golflengte (of een geheel aantal halve golflengtes) gelijk is aan de afstand
tussen de spiegels. Is dit niet het geval, dan treedt destructieve interferentie op en dooft het
licht in de trilholte uit. Als we nu wit licht, dat bestaat uit alle kleuren, een resonator insturen,
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a. b.

Figuur S.2: Schematische weergave van interferentie, waarbij golven elkaar kunnen
versterken of uitdoven. In figuur a zijn de twee golven niet verschoven ten opzichte
van elkaar. Als twee golven elkaar tegenkomen mogen we ze optellen. Het resultaat is
een golf met dezelfde golflengte maar met een twee keer zo grote uitwijking. De twee
golven versterken elkaar dus, dit heet ook wel constructieve interferentie. In figuur b
zijn de twee golven ten opzichte van elkaar geschoven zodat de pieken van de ene golf
samenvallen met de dalen van de ander. Als deze golven elkaar tegenkomen en we tellen
ze weer bij elkaar op dan doven ze elkaar uit. Dit heet ook wel destructieve interferentie.

L

M M

Figuur S.3: Schematische weergave van een Fabry-Perot resonator, bestaande uit twee
vlakke spiegels. De spiegels zijn aangeduid met een M en staan op een afstand L van
elkaar. Doordat de spiegels reflecteren loopt het licht rond door de resonator en wordt
het tijdelijk opgeslagen.
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zullen bepaalde kleuren (= specifieke golflengtes) precies passen in de resonator en andere
niet. De kleuren die passen, overleven terwijl de andere kleuren uitdoven. Een resonator
werkt dus als een filter voor de verschillende kleuren licht.

Bij resonantie van geluid kunnen we ons waarschijnlijk meer voorstellen, maar ook de
resonantie van licht kennen we van nabij. Denk bijvoorbeeld aan een dun olielaagje op een
plas water of anders een zeepbel. We zien in reflectie allerlei kleuren in de zeepbel of het
olielaagje. We zien alleen die kleuren waarvoor geldt dat de dikte van het olielaagje of het
zeepsop gelijk is aan een geheel aantal halve golflengtes. De andere kleuren passen niet
precies en doven wederom uit. Eigenlijk zijn zowel het olielaagje als de zeepbel simpele
voorbeelden van een optische resonator. Een belangrijk verschil met de resonatoren gebruikt
in dit onderzoek is dat onze spiegels veel beter reflecteren dan de laagjes olie of zeepsop. Het
laagje zeepsop reflecteert ongeveer 2 % van het invallende licht, terwijl een goede spiegel
meer dan 99 % van het licht reflecteert. Het licht wordt tussen onze twee spiegels dus veel
langer opgeslagen.

S.2 Werking van de optische resonator

De reden dat de optische resonator zoveel wordt gebruikt in experimenten en toepassingen
ligt in zijn vermogen om kleuren te scheiden. Twee verschillende kleuren, bijvoorbeeld geel
en oranje, die een golflengteverschil van 0.02 micrometer hebben, kun je makkelijk met het
blote oog onderscheiden. Een optische resonator met goed reflecterende spiegels kan veel
kleinere kleurverschillen zichtbaar maken, tot wel één miljoenste deel van een micrometer!

Hoe werkt dit precies? Een hoog kleurscheidend vermogen ontstaat doordat de resonator
één specifieke golflengte doorlaat, maar golflengtes die een klein beetje langer of korter
zijn niet. Hoe langer het licht rond loopt in de resonator, hoe kleiner het golflengtebereik
dat doorgelaten wordt en des te groter dus het kleurscheidend vermogen (kleinere kleurver-
schillen kunnen zichtbaar gemaakt worden).

Om dit goed te kunnen begrijpen doen we een experiment. We beschijnen een optische
resonator met twee verschillende kleuren licht, die bijna dezelfde golflengte hebben. Eén
van beide golflengtes past precies in de resonator en de andere golflengte is net een beetje
te lang om goed te passen. We kijken nu wat er gebeurt met beide golven na respectievelijk
één, vijf en twintig rondgangen ten opzichte van de golf net na injectie. De verschuiving van
de golf na een aantal rondgangen ten opzichte van de golf net na injectie, bepaalt of beide
golven constructief of destructief interfereren (zie figuur S.2). We beginnen met de golflengte
die precies past, zoals afgebeeld in figuur S.4a. We zien dat na één, vijf en twintig keer
rondgaan door de resonator, de golf niet verplaatst ten opzichte van de golf net na injectie.
We kunnen de golf net na injectie en de golf na twintig keer rondgaan dan ook optellen zoals
we dat gedaan hebben in figuur S.2a. Het licht zal zichzelf dus versterken en constructief
interfereren.

Nu bekijken we het licht dat een golflengte heeft dat net een beetje te lang is om te
passen in de resonator. Dit is getekend in figuur S.4b. We zien dat hoe langer het licht
rondloopt des te meer de golf verschuift ten opzichte van de golf vlak na injectie (de golf
net na injectie is gestippeld). Na vijf rondgangen is de golf een klein beetje verschoven ten
opzichte van de golf vlak na injectie. Het licht is echter zo weinig verschoven dat het nog
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a. b.

Na 1 rondgang

Na 5 rondgangen

Na 20 rondgangen

Net na injectieNet na injectie

Na 5 rondgangen

Na 20 rondgangen

Na 1 rondgang

Figuur S.4: Het kleurscheidend vermogen van een resonator is gebaseerd op het aantal
keren dat het licht rondloopt tussen de spiegels. In figuur a (linker kolom) bekijken we
licht dat precies past in de resonator. Ongeacht het aantal rondgangen blijft de golf op
de dezelfde plek terugkomen, zodat het licht altijd constructief interfereert met zichzelf.
In figuur b (rechter kolom) bekijken we licht met een golflengte die net niet past in de
resonator. Na vijf rondgangen is het licht een klein beetje verschoven (doorgetrokken
lijn) in vergelijking met het licht net na injectie (gestippelde lijn). Het licht zal echter
nog steeds constructief interfereren. Na twintig rondgangen is het licht echter wel zoveel
verschoven (doorgetrokken lijn) dat het destructief interfereert met zichzelf. Het licht zal
uitdoven.
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steeds behoorlijk goed constructief interfereert. Na twintig rondgangen is het licht echter wel
zo veel verschoven dat de pieken van de golf samenvallen met de dalen van de golf vlak na
injectie. Deze situatie is ook weergegeven in figuur S.2b. De twee golven zullen elkaar dus
uitdoven oftewel destructieve interferentie treedt op.

We hebben nu gezien dat licht dat precies past, constructief met zichzelf interfereert
ongeacht het aantal rondgangen. Licht dat echter net niet past, interfereert een aantal rond-
gangen nog constructief, maar naarmate het aantal rondgangen toeneemt interfereert het de-
structief. Hiermee hebben we laten zien dat het kleurscheidend vermogen toeneemt met het
aantal rondgangen. Het kleurscheidend vermogen wordt dus beter naarmate de reflectiviteit
van de spiegels in de optische resonator toeneemt en het aantal rondgangen tussen de spiegels
groter wordt. Dit is precies de reden dat het kleurscheidend vermogen van de resonator ge-
bruikt in dit onderzoek veel beter is dan die van zeepsop of een olielaagje.

S.3 Stabiele en instabiele resonatoren

Nu we weten hoe een resonator werkt gaan we ook kijken welke soorten resonatoren bestaan.
Je kunt ze indelen in twee groepen; de stabiele en de instabiele resonatoren. De stabiele
resonator, afgebeeld in figuur S.5a, bestaat uit twee holle spiegels. Een lichtstraal die naar
buiten loopt wordt door de vorm van de spiegel terug naar het midden geduwd. De instabiele
resonator, afgebeeld in figuur S.5b, bestaat uit twee bolle spiegels. Een lichtstraal die naar
buiten loopt wordt door de vorm van de spiegels alleen maar verder naar buiten geduwd.
Lichtstralen in een instabiele resonator zullen de spiegels maar een paar keer raken voordat
ze uit de resonator verdwijnen. Een instabiele resonator wordt dan ook gekenmerkt door zijn
hoge verliezen. We zullen verderop in dit hoofdstuk dieper ingaan op de toepassing van de
stabiele en instabiele resonator in dit onderzoek.

L L

a. b.

M M M M

Figuur S.5: Twee typen resonatoren: In figuur a zien we de stabiele resonator
bestaande uit twee holle spiegels. Licht dat naar buiten loopt wordt door de vorm van
de spiegels naar binnen geduwd. In figuur b zien we de instabiele resonator bestaande
uit twee bolle spiegels. Licht dat naar buiten loopt zal alleen maar verder naar buiten
worden geduwd. Dit type resonator vertoont dan ook veel verliezen.
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S.4 Spiegel imperfecties

Tot nu toe zijn we uitgegaan van ideale spiegels. Dit is in werkelijkheid niet het geval.
Spiegels vertonen imperfecties op verschillende lengteschalen. De eerste soort imperfectie
die we hier bespreken is ‘oppervlakte ruwheid’. Dit zijn kleine hobbeltjes en putjes aan het
oppervlak van de spiegel, die ontstaan tijdens het maken. De diameter van deze hobbeltjes en
putjes is voor een gemiddelde spiegel 1−10 micrometer en de hoogte is ca. 0.005 microme-
ter. Ook al is dit hoogteverschil zeer klein, het is toch een honderdste deel van een optische
golflengte. Dit betekent dat op de positie van zo’n hobbeltje de resonator een heel klein beetje
korter is. Als het licht vaak genoeg rondgaat, interfereert het licht niet meer constructief. Dit
betekent dat het kleurscheidend vermogen van de resonator vermindert. Verder wordt het licht
een beetje verstrooid als het een bolletje of een putje raakt. Dit veroorzaakt extra verliezen,
die het kleurscheidend vermogen eveneens verslechteren.

De tweede soort imperfecties zijn de zogeheten ‘aberraties’. Dit zijn afwijkingen van
de ideale ruwe vorm van een spiegel. Een spiegel met een ideale vorm laat alle lichtstralen
door één punt gaan, zoals te zien in figuur S.6a. Dit betekent dat een voorwerp scherp wordt
afgebeeld. Afwijkingen van de ideale vorm van een spiegel zorgen ervoor dat lichtstralen
die verder naar buiten toe op de spiegel vallen op een andere positie worden afgebeeld dan
lichtstralen die meer naar binnen op de spiegel vallen. Dit is weergegeven in figuur S.6b. Het
niet samenvallen van deze lichtstralen veroorzaakt bij afbeelding onscherpte. Afwijkingen
van de ideale vorm ontstaan doordat een spiegel in het productieproces een sferische vorm
krijgt, dus de vorm van een deel van een bol. Deze vorm wordt echter toch vaak gebruikt
omdat die makkelijk te vervaardigen is.

a. b.
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Figuur S.6: Demonstratie van het begrip aberratie. De spiegel in figuur a heeft een
ideale vorm. Deze vorm heet ook wel ‘parabolisch’. De parabolische spiegel zorgt
ervoor dat de verschillende evenwijdige lichtstralen netjes in het punt F samenkomen.
Dit betekent dat een voorwerp (buiten de tekening) scherp wordt afgebeeld. In figuur b
zien we een spiegel zoals die ook gebruikt wordt in optische resonatoren. De vorm van
zo’n spiegel heet ook wel ‘sferisch’. Lichtstralen die de spiegel meer aan de buitenkant
raken, komen na reflectie dichter bij de spiegel bij elkaar (punt F2) dan lichtstralen die
de spiegel meer in het midden raken. Deze komen samen in een punt verder van de
spiegel (punt F1). Dit heeft tot gevolg dat als je iets afbeeldt met een sferisch spiegel het
beeld een beetje uitgesmeerd wordt en daardoor onscherp is.
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S.5 Chaos
We hebben al een heleboel basiskennis, maar we moeten nog één ding weten voordat ver-
klaard kan worden wat het initiële doel van deze promotie was, namelijk: “Wat is chaos?”
Chaos associëren we vaak met een toestand van ongeordendheid, wanorde of zelfs orde-
loosheid. In de Natuurkunde is dit maar ten dele waar en spreken we liever over determi-
nistische chaos. Om dit begrip duidelijk te maken gaan we biljarten. Ons biljart lijkt op een
café-biljart. Het enige verschil is dat de bal veel vaker rond moeten kunnen gaan dan in een
café-biljart mogelijk is. We nemen daarom een laken waarop de ballen nauwelijks afremmen.

We beginnen ons experiment met een rechthoekige biljarttafel. Zo’n biljart is een voor-
beeld van een niet-chaotisch systeem. Het spel dat we spelen gaat als volgt: We stoten een
bal af in een bepaalde richting en houden bij hoe de bal over het biljart rolt. Als de eerste bal
is uitgerold, stoten we een tweede bal vanaf dezelfde startpositie, onder een net iets andere
hoek. Wederom houden we bij hoe de bal over de tafel loopt.

We herhalen deze stoot-experimenten met een ander (aangepast) biljart, waarbij we een
cirkelvormig stuk uit de hoek van eenzelfde rechthoekig biljart hebben gezaagd. De vorm
van dit aangepaste biljart is wel chaotisch en is te zien in figuur S.7b. Vervolgens vergelijken
we de resultaten in het niet-chaotische en het chaotische biljart. Het verschil tussen de twee
afgelegde paden in het niet-chaotisch biljart ontwikkelt zich maar langzaam. Na drie keer de
band raken is het verschil in paden nog erg beperkt, zoals te zien is een figuur S.7a. Als we
nu kijken naar het verschil van de paden in het chaotische biljart zien we dat de twee ballen,
zodra ze het bolle stuk hebben geraakt, een heel andere kant opgaan. Het kleine verschil bij
het aanstoten heeft al zeer drastische gevolgen na drie ketsen.

Deze gevoeligheid voor de begincondities is hét kenmerk van chaotische systemen. Iden-
tieke begincondities leveren weliswaar precies hetzelfde eindresultaat op, maar een kleine
afwijking aan het begin levert een totaal ander resultaat op.

a a

a. b.

Figuur S.7: Demonstratie van het verschil tussen een niet-chaotisch (figuur a) en een
chaotisch biljart (figuur b). In het biljart zijn twee paden afgebeeld van biljartballen
die met een klein verschil in hoek (hoek α) zijn afgestoten. Na een aantal keer de band
geraakt te hebben, zijn de twee paden in het niet-chaotische biljart nog bijna hetzelfde.
In het chaotische biljart daarentegen is dit niet het geval. De twee paden van de twee
gespeelde ballen gaan een heel andere kant op nadat het bolle stuk is geraakt. Het
kleine verschil bij het aanstoten in een chaotisch biljart heeft dus grote gevolgen voor
het verdere verloop van de ballen.

Om chaos experimenteel te kunnen laten zien, moet je aan twee voorwaarden voldoen.
Ten eerste heb je een systeem nodig dat exponentieel gevoelig is, oftewel een systeem waarin
een kleine verandering aan het begin sterk toeneemt. En ten tweede heeft chaos tijd nodig
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om zich te kunnen ontwikkelen en moet de verblijftijd in het systeem voldoende zijn.

S.6 Dit proefschrift
We gaan terug naar onze optische resonator en denken weer even aan de twee hoofdgroepen
van resonatoren; de stabiele en de instabiele resonator. De instabiele resonator zorgt ervoor
dat twee lichtstralen die op bijna dezelfde positie invallen op de spiegel een heel andere kant
op gaan. Een instabiele resonator is dus zeer gevoelig voor een kleine verandering aan het
begin. Nadeel is echter dat het licht maar heel kort opgeslagen blijft. Dit is niet het geval
in een stabiele resonator, waarin het licht heel lang opgeslagen kan blijven. Een combinatie
van een instabiele en een stabiele resonator lijkt dus een systeem op te leveren dat aan beide
voorwaarden voor chaos voldoet. Zo’n systeem is weergegeven in figuur S.8.

“                ” “                ”

“                  ”

Figuur S.8: Schematische weergave van een chaotische resonator opgebouwd uit een
stabiele resonator aan de buitenkant en een instabiele resonator in het midden. Het
instabiele deel zorgt voor de exponentiële gevoeligheid voor de begincondities en de
stabiele buitenkant zorgt ervoor dat chaos voldoende tijd krijgt om zich te ontwikkelen.

Het uitgangspunt van deze promotie was dan ook het systeem dat bestaat uit een combi-
natie van beide resonatoren. De benodigde spiegels hebben echter een vorm die niet makke-
lijk te maken is. Het heeft dan ook lang geduurd om het juiste materiaal en de juiste produc-
tiemethode te vinden, die niet enkel de juiste vorm van de spiegel opleverde, maar ook een
voldoende lage oppervlakte-ruwheid had.

De combinatie van een stabiele en een instabiele resonator is niet veel bestudeerd. Als je
gaat meten, kunnen er ten gevolge van spiegel imperfecties dus allerlei effecten optreden die
niets met chaos te maken hebben. We hebben er dan ook voor gekozen eerst het gedrag van
imperfecties in een stabiele resonator te bestuderen.

Het effect van ruwheid en aberraties op de resonanties van een optische resonator is
bestudeerd in de hoofdstukken 2-6. In deze hoofdstukken is ook gemeten hoe lang het licht
opgeslagen blijft in de resonator. Dit is vergeleken met het ideale geval, waarbij enkel de
reflectiviteit van de spiegels wordt meegenomen en de imperfecties van de spiegels worden
verwaarloosd. De gemeten verblijftijd van het licht in de experimentele resonator is natuur-
lijk korter dan in het ideale geval. Het verschil in de gemeten en de ideale tijd is een goede
maat om de imperfecties te kunnen karakteriseren.

Tijdens het doen van de metingen, zoals beschreven in de eerste vier hoofdstukken, zijn
we bezig geweest om, samen met een aantal bedrijven, de speciale hoogreflecterende spiegels
te maken uit figuur S.8. Dit bleek lastiger dan gedacht en het lukte eigenlijk pas een jaar gele-
den. Het onderzoek dat gedaan is aan resonatoren met deze speciale spiegels is beschreven
in de hoofdstukken 7-9. Chaos hebben we niet direct kunnen aantonen, maar wel een boel
spannende fysica.
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