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Chapter 1

General introduction and outline of the thesis

Background
Premature birth and bronchopulmonary dysplasia (BPD) are significant global health 
problems. Premature birth occurs in 5-10 % of all pregnancies and one of the major 
complications with preterm birth is immaturity of the lung. In the Netherlands, each year 
BPD affects an estimated 500 very premature infants, with a gestational age less than 28 
weeks and a birth weight less than 1000 grams. The incidence of premature birth has risen 
over the past decades due to an increase in risk factors, including increased maternal age, 
more widespread application of fertility treatments and more multiple pregnancies. BPD 
is a chronic lung disease in very premature infants with underdeveloped and surfactant-
deficient lungs with small gas exchange volumes and soon after birth these infants develop 
respiratory problems, respiratory distress syndrome (RDS). Their lungs are extremely 
susceptible to barotrauma and oxidant injury during the mechanical ventilation for 
respiratory failure and need postnatal surfactant instillation to open up their lungs. Due 
to airway injury, lung development fails to progress leading to alveolar hypoplasia and 
disturbed vascularization and ultimately lead to chronic lung disease, i.e. BPD, and at later 
stages by pulmonary hypertension. Until recently, preterm infants with BPD were weaned 
from the ventilator using glucocorticoids, which accelerate lung development, but inhibit 
alveolarization, thereby resulting in a permanent reduction of the gas-exchange surface area 
and lung function. In addition, despite improvements in neonatal and perinatal medicine, 
the incidence of BPD has not been reduced and most interventions applied to prevent or 
treat BPD are still not evidence-based. This thesis explores the therapeutic potential of 
phosphodiesterase inhibitors and apelin in the treatment and/or prevention of BPD and 
investigates the therapeutic potential of mesenchymal stem cells in pulmonary arterial 
hypertension.

Lung development
Lung development can be subdivided into five distinct stages, embryonic, pseudoglandular, 
canalicular, saccular and alveolar (Figure 1) 2,3. The same stages are seen in other species 
but their duration varies, and the alveolar stage is entirely postnatal in some species (rat 
and mouse) 4. Lung development begins as an endodermal outgrowth of the ventral foregut 
around the fourth week of human development. During the next two weeks this endodermal 
outgrowth grows caudally to form the early tracheobronchial tree and then bifurcates  into 
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a right and a left primary lung bud. Around each lung bud is a capillary network which 
connects cranially to the aortic sac of the heart and caudally to the prospective left atrium. 
The left lung bud will give rise to two main stem bronchi, whereas the right lung bud gives 
rise to three mainstem bronchi. The primitive lung bud is lined with endodermally derived 
epithelium.
During the pseudo-glandular phase the conducting airways are formed, stimulated by the 
presence of the surrounding mesenchyme, by repeated dichotomous branching resulting 
in a tree of narrow, thick epithelial-lined tubules. The primitive airway epithelium starts 
to differentiate to form cartilage, connective tissue, blood vessels, lymphatics and smooth 
muscle cells 5. The epithelial-mesenchyme interactions play a determining role in regulating 
the growth and branching patterns 6. At the same time all pre-acinar pulmonary arteries and 
veins are formed. 
In the subsequent canalicular phase, the airway branching pattern is completed and 
vascularized and the prospective gas-exchange region starts to develop. Thinning of the 
epithelium by underlying capillaries leads to the formation of a blood gas barrier which 
is sufficient to sustain life in extremely premature infants. During this period respiratory 
bronchioli appear, delineating the acinus, the gas-exchaning portion of the tracheobronchial 
tree, composed of respiratory bronchioles, alveolar ducts, sacs and alveoli. The initial 
differentiation of the cuboidal epithelium into type I and type II pneumocytes, of which the 
type I pneumocytes are responsible for gas exchange and the type II pneumocytes produce 
surfactant 7. 
At the beginning of the saccular (terminal sac) phase airways terminate in large smooth-
walled cylindrical structures subdivided by ridges called crests. The crests protrude into 
saccules, pulling a capillary network in close contact with them and creating subsaccules, 
which will eventually become alveoli. During this stage the growth of the pulmonary 
parenchyma, the thinning of the connective tissue between the airspaces, and the further 
maturation of the surfactant system are the most important steps towards ex-utero life. 
At birth, although already functional, the lung is structurally still in an immature condition, 
because alveoli, the gas-exchange units of the adult lung, are practically missing. The 
airspaces present are smooth-walled transitory ducts and saccules with primitive septa 
that are thick and contain a double capillary network. During the alveolar stage, further 
thinning of the blood-gas barrier, increase in surfactant production and formation of alveoli 
through progressive branching of the respiratory airways greatly increases the gas exchange 
surface area. In addition, microvascular maturation takes place during the alveolarization 
stage between a few months to 3 years after birth. The double capillary network in the 
parenchymal septa is restructured to the mature aspect with a single capillary system. The 
phase of alveolarization is terminated at 2 weeks in the rat and at about 12–24 months in 
the human 8.
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Bronchopulmonary dysplasia

Clinical presentation

BPD is a disease that affects preterm newborns weighing less than 1000g who are born at 
24-26 weeks of gestation 9 and is a chronic lung disease of infancy that follows ventilator 
and oxygen therapy for acute respiratory failure after premature birth 10. BPD has been 
defined by the presence of persistent respiratory symptoms, the need for supplemental 
oxygen to treat hypoxemia, and an abnormal chest radiograph at 36 weeks corrected age. 
The pathology of infants with BPD has changed over the last four decades from socalled 
“classical” to “new” BPD, reflecting differences in the patients and the therapies used. The 
classical BPD, a more mature population responded to the risk factors for BPD with fibrosis 
and smooth muscle augmentation of medium-sized airways, resulting in airway obstruction 
10. Surviving infants with “classical” BPD were born at 34-weeks of gestation, weighing around 
2,200g and the mortality was around 67% 10. The present population of BPD infants are often 
born very prematurely and lung fibrosis is replaced by abnormalities of lung growth, with 
less smooth muscle encircling larger airways, but markedly decreased numbers of alveoli 
9, i.e. new BPD. The incidence of BPD is strongly correlated with birthweight, with 85% in 
neonates between 500-699g, 75% in neonates less than 1,000g and 5% in neonates with 
birthweights over 1,500g 11,12. The use of surfactant, together with the advances in critical 
care management leading to less volutrauma and oxygen injury, has resulted in the pattern 
of injury, which reflects an extremely immature lung with impaired alveolar and capillary 
growth and development, with subsequent abnormal reparative processes. The lung injury 
is more uniform and is milder with less inflammation and fibrosis 13. The new BPD is defined 
by inhibition of acinar and vascular growth during a vulnerable stage of lung development, 
whereas classis BPD was attributed primarily to oxygen injury and mechanical ventilation 
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in prematurity. As a result new diagnostic criteria of BPD were developed based on time of 
clinical assessment and severity and new BPD is now defined as the need for supplemental 
oxygen at 56 days postnatal age 11.
BPD infants have growth retardation and gastrointestinal problems due to decreased 
nutrient intake, hypoxia, concomitant dysfunction of other organ systems and increased 
requirements for energy 14. Malnutrition can delay somatic growth and the development of 
new alveoli, and impair the response to oxidant-induced lung injury. Moreover, infants with 
BPD are at increased risk for neurodevelopmental delay affecting both cognitive (speech 
development, performance, IQ and receptive language) and motor function compared with 
premature control children matched for gestational age 15,16. Preterm infants are also at risk 
for developing ophthalmological problems as they have incompletely vascularised retinas 
due to the fact that normal retinal vascular growth in utero ceases.
BPD is associated with long-term respiratory morbidity as long-term studies have 
demonstrated lung function abnormalities, airway obstruction, and airway hyperreactivity 
and hyperinflation persisting into adolescence 14,17. Moreover, these children are at increased 
risk for asthma, infection, increased sensitivity to second hand cigarette smoke and other 
respiratory diseases, and are often re-hospitalized following respiratory infection 18,19. In 
a mouse model of BPD, hyperoxia affected critical aspects of neonatal lung development, 
leading to longlasting changes in the innate response to respiratory viral infection 20, 
suggesting that neonatal hyperoxia disturbs key innate immunoregulatory pathways in lung 
contributing to the increased susceptibility to respiratory viral infections typically seen in 
people who had BPD.

Pathophysiology: Inflammation and coagulation

Lung inflammation is important in the pathogenesis of BPD and is defined by an increase in 
inflammatory cells in the airspaces and lung tissue producing pro-inflammatory mediators. 
Neutrophils and macrophages are central in mediating this inflammation and many pro-
inflammatory cytokines, such as interleukin (IL)-1b, IL-6 and the neutrophil chemotactic 
factor IL-8, are increased in infants who develop BPD 21,22. Preterm infants with BPD have 
much higher and persisting numbers of neutrophils and macrophages in the broncholaveolar 
lavage fluid compared to infants who have recovered from RDS 23. Neutrophils invade 
airspaces within hours after birth and persist during the first weeks of life in the airways 
of these infants 24. Activation of the inflammatory response in animal models of BPD 
shows increased pro-inflammatory cytokines and inflammatory cells, such as neutrophils, 
macrophages and monocytes, in lung tissue 25-27. Animal studies have demonstrated that 
neutrophil-induced airway inflammation promotes an arrest of alveolarization, and that 
inhibiting the neutrophil influx preserves alveolar development in hyperoxia-exposed 
newborn rats 28. In addition, antichemokine treatment with anti-MCP-1 attenuates alveolar 
macrophage accumulation in the lung and preserves alveolar development of neonatal 
hyperoxia-exposed rats 29. The contribution of inflammation seems to be of crucial 
importance in the arrest in alveolarization.
Pro-inflammatory cytokines are important mediators of activation of coagulation. Several 
studies have shown the importance of IL-6, tumor necrosis factor α (TNF- α) and IL-1 in 
the regulation of anticoagulation. Inhibition of IL-6 attenuated the activation of coagulation 
in a model of endotoxaemia in chimpanzees 30 and infusion of TNF- α in healthy human 
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volunteers induced a systemic inflammatory response and activation of coagulation 31. 
TNF- α and IL-1 reduce the levels of plasminogen activators and increase the antifibrinolytic 
mediator plasminogen activator inhibitor 1 (PAI-1) 32, resulting inadequate fibrin removal. 
This suggests that pro-inflammatory cytokines create a procougulant and antifibrinolytic 
state that may lead to fibrin deposition in the airspaces and microvasculature of the lungs.
Tissue factor (TF) plays a central role in the initiation of inflammation-induced coagulation. 
TF is the physiologic initiator of the coagulation pathway and activation of TF results in 
thrombin formation, which is converted into fibrin by fibrinogen. Fibrin is degraded by 
plasminogen activators, which are regulated by PAI-1. Blocking TF activity completely 
inhibits inflammation-induced thrombin generation in animal models of endotoxemia or 
bacteremia 33,34. Disordered coagulation and fibrinolysis in the lung lead to fibrin deposition 
in alveoli, interstitium and capillaries 35,36. Fibrin can increase the migration of inflammatory 
cells 37, disrupt the organization of endothelial cells and increase vascular permeability 
38. Thrombin increases pro-inflammatory cytokine expression, vascular permeability and 
chemotaxis of inflammatory cells 39. Anti-activated protein C (APC), a natural anticoagulant, 
inhibits coagulation and expression of TNF- α, IL-1 and IL-6 and inactivates PAI-1 40,41. These 
data suggests that intra-alveolar fibrin deposition may function as a marker for the severity 
of experimental BPD with respect to coagulation, fibrinolysis and inflammation.

Pathophysiology: Alveolarization and angiogenesis

An arrest in both the formation of the alveolar and vascular system of the lung is the key 
characteristic of BPD. Infants susceptible to develop BPD are born in the early saccular phase, 
or even in the canalicular phase of lung development for the most premature of them 42, 
so the formation of alveoli by secondary septation is effectively an essentially postnatal 
event. Perinatal lung injury in neonates show alveolar simplification, loss of small arteries 
and decreased capillairy density. Alveologenesis is coordinated by multiple interactions 
through paracrine mechanisms between fibroblastic, epithelial, and microvascular lung 
components, and with extracellular matrix. 
Elastogenesis is essential to alveolar septation, as elastin deposition in the tip of septa 
controls the budding and location of secondary septa via attracting myofibroblasts. 
Deletion of the elastin gene is associated with decreased alveolarization and emphysema 
43, whereas increased elastin deposition is found in BPD infants 44 and ventilated preterm 
lambs 45, relating to the fibrotic repair process prominent in “classical” BPD. Myofibroblasts 
are essential in the normal process of septa formation but are also involved in the fibrotic 
process that often occurs in the reparative phase of lung injury. Migration of myofibroblasts 
to the tips is controlled by platelet-derived growth factor A (PDGFA), which is produced by 
epithelial cells 46 and myofibroblasts produced fibroblast growth factors, which stimulate 
alveolar septation and myofibroblasts growth. Both PDGFA and FGFs expression is reduced 
in lung of neonatal rats exposed to hyperoxia 25,47. In addition, FGF7 is a potent proliferation 
stimulus of alveolar type II cells, which ensure adequate surfactant production and serve as 
stem cells of alveolar type I cells that line most of the alveolar surface and form air-blood 
barriers 48.
Interactions between airways and blood vessels are critical for normal lung development 
and contribute to maintenance of alveolar structures throughout life 49. Maturation of 
pulmonary vasculature is a complex process that involves endothelial cell proliferation, 
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differentiation, migration, tube formation and stabilization. Vascular endothelial growth 
factor (VEGF) is crucial for normal blood vessel formation 50, is expressed by epithelial cells 51 
and is a highly specific mitogen and survival factor for vascular endothelial cells. VEGF binds 
to transmembrane tyrosine kinase receptors, VEGFR1 and VEGFR2, which are expressed on 
the vascular endothelium 52. Hyperoxia decreases lung levels of VEGF and its receptors 25,53 
and is associated with alveolar enlargement and pulmonary vascular dysfunction 54,55. VEGF 
or VEGFR2 inhibition during alveolar development decreases alveolarization and pulmonary 
arterial density 56-58. In addition, increased VEGF expression enhances alveolarization and 
vessel growth and improves lung structure in hyperoxia-induced neonatal lung injury 50. 
These data suggests that VEGF is required for the formation of the pulmonary vasculature 
and alveolar structures and inhibition of vascular growth results in pulmonary hypertension 
and may directly impair alveolarization and thereby contribute to the development of BPD.

Pathophysiology: Neonatal pulmonary hypertension and right ventricular hypertrophy

Pulmonary hypertension complicates the course of approximately 10% of infants with 
respiratory failure and is a source of mortality and morbidity in this population. Pulmonary 
hypertension is a disease of the small pulmonary arteries characterized by vascular narrowing 
due to structural remodeling, pulmonary vasoconstriction, impaired vascular growth 
and in situ thrombosis. Without therapy, high pulmonary vascular resistance contributes 
to right ventricular hypertrophy, low cardiac output and high mortality 59. Pulmonary 
vasoconstriction is one of the earliest components of pulmonary hypertension, followed over 
time with vascular remodeling. Increased vasoconstriction is likely related to an imbalance 
between impaired production of endogenous vasodilators including nitric oxide (NO) and 
prostacyclin, and excessive production of vasoconstrictors, such as endothelin (Figure 2A). 
This imbalance reflects endothelial dysfunction, which results from injury due to several 
mechanisms including hyperoxia, inflammation and oxidative stress. Vascular remodeling of 
the pulmonary arteries involves all layers of the vessel wall and each cell type (endothelial, 
smooth muscle and fibroblast) and includes smooth muscle cells proliferation, abnormal 
matrix production and adventitial thickening 60. In addition, a hallmark of severe pulmonary 
hypertension is the formation of a layer of myofibroblasts and extracellular matrix between 
the endothelium and the internal elastic lamina, i.e. neointima 61. Finally, abnormalities of 
vascular growth, as related to impaired angiogenesis can cause pulmonary hypertension 
56,62,63 and could play a role in the progression and severity on the setting of developmental 
lung diseases in children. In a baboon model of BPD, disruption of lung vascular growth was 
associated by abnormalities in microvascular development, angiogenic growth factors and 
endothelial cell receptors, which resulted in dysmorphic capillaries 64. These abnormalities 
of lung vascular development, overgrowth of vascular smooth muscle and decreased 
number of small blood vessels, have been described in infants with severe BPD.
Drugs for managing pulmonary hypertension should influence vascular remodeling through 
actions of platelets, the coagulation cascade and smooth muscle and endothelial cell 
dysfunction, reverse vasoconstriction, prevent small vessel thrombosis and protect right 
ventricular function. Some of the drugs potentially affective in the treatment of pulmonary 
hypertension we shall discuss in the following sections, i.e. phosphodiesterase inhibitors 
(Figure 2B), apelin and endothelin receptor antagonists (Figure 2C).
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Animal models

Animal models have significantly improved the present understanding of the development 
and prevention of BPD, but positive effects in animal models do not necessarily translate 
into clinically meaningful outcomes in prematurely born infants. In rodents that present 
postnatal alveologenesis, neonatal exposure to hyperoxia that inhibits septal formation 
and affects alveologenesis 25,27,65 has been widely used for more than 20 years as a model 
to study associated cell and molecular alterations. The histological changes that occur 
during normal lung development are well described, but little is known about the signaling 
mechanisms that regulate saccular and alveolar development and understanding how aveoli 
and the underlying capillary network develop and how these mechanisms are disrupted 
in preterm infants with BPD is critical to develop efficient and effective therapies for lung 
diseases characterized by alveolar damage.

Intervention studies
BPD is characterized by an arrest in alveolar and vascular lung development, complicated 
by inflammation, abnormal coagulation and fibrinolysis, oxidative stress, and at later stages 
by pulmonary hypertension. Preventative strategies have been aimed at preventing or 
minimizing lung injury and, more recently, promoting lung growth. This suggests a potential 
therapeutic role for drugs with pro-angiogenic, anti-inflammatory, anticoagulant and 
vasodilative properties. 

PDE4 inhibition by rolipram and piclamilast

In total, 11 PDE families have been identified, which vary in substrate affinity, selectivity 
and regulatory mechanism 66. Among the 11 PDE enzymes, PDE4 is the major cAMP-
metabolizing enzymes in all immunocompetent cells (figure 3) 67,68, encoding four genes 
(A, B, C and D). In addition, PDE4 inhibitors target pulmonary fibroblasts, vascular smooth 
muscle cells, airway epithelial and endothelial cells 69,70. PDE4 inhibition prevents the 
release of pro-inflammatory mediators, inhibit adhesion molecule expression, chemotaxis, 
proliferation, migration and differentiation, and relax airway smooth muscle tone in vitro 71. 
Similarly, numerous in vivo studies have shown that PDE4 inhibitors suppress characteristic 
features of BPD, namely cell recruitment, activation of inflammatory cells, proliferation 
of vascular smooth muscle cells and epithelial cell remodeling. PDE4 inhibition reduces 
neutrophil recruitment to the airways, release of chemokines and emphysematous changes 
to the lung in smoking, endotoxin, and LPS induced lung inflammation models of asthma, 
pulmonary fibrosis, acute lung injury and chronic obstructive pulmonary disease (COPD) 
72-75. Furthermore, PDE4 inhibition reduces pulmonary vascular remodeling and pulmonary 
hypertension in monocrotaline-, hypoxia- and bleomycin-induced pulmonary hypertension 
models 76,77. Clinical investigation have shown that PDE4 inhibition improves lung function 
in COPD patients 78,79, an effect related in part to a reduction in the number of inflammatory 
cells and interleukin-8 and neutrophil elastase 80. 
PDE4 deficient mice demonstrate arrhythmia and cardiomyopathy as well as accelerated 
heart failure after myocardial infarction 81, suggesting a role of PDE4 in myocyte and 
ventricular contractility, and myocyte viability. Rolipram significantly reduces inflammation 
and infarct size in a model of ischemic reperfusion injury in canine myocardium 82. In addition, 
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preclinical data indicate that PDE4 inhibition could improve memory function, suggesting a 
potential use of PDE4 inhibitors in neurological disorders 83,84. The major disadvantage of 
PDE4 inhibitors are the mechanism-associated side effects, such as emesis, headache and 
nausea 79,85, which is linked to the gene PDE4D. Unlike the second generation PDE4 inhibitor 
piclamilast, the first generation PDE4 inhibitor rolipram shows some subtype selectivity for 
PDE4D. Taken together, these data indicate that PDE4 inhibition is a therapeutic target for 
the treatment of BPD.

PDE5 inhibition by sildenafil

Sildenafil is a selective PDE5 inhibitor and has been used clinically in the treatment of 
pulmonary hypertension 86. Of the 11 PDE enzymes, PDE5 is highly selective for cGMP and 
is widely expressed in human tissues, but is most abundant in the lung and in pulmonary 
vascular smooth muscle cells 87. PDE5 is mainly responsible for modulating intracellular 
cGMP levels and protein kinase-dependent signaling produced by NO. Cyclic GMP regulates 
the pulmonary vascular tone and influences pulmonary vascular structure directly, through 
effects on vascular smooth muscle proliferation and survival 86. Upregulation of PDE5 
expression is occurring during pulmonary hypertension, thereby contributing to increased 
lung vascular resistance 88. The vasodilative properties of sildenafil have been shown in 
monocrotaline-, bleomycin- and hyperoxia-induced pulmonary hypertension in rats 89-91. 
PDE5 is also expressed in the coronary vasculature and only in myocytes in the right ventricle 
under pressure overload 92. PDE5 inhibition enhances contractility of the myocardium in 
vitro, suggesting that PDE5 inhibition might directly improve right ventricular function in 
pulmonary hypertension 86. In addition, cGMP signaling enhances endothelial cell migration, 
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growth and organization into capillary-like structures in vitro and angiogenesis in vivo 93,94. 
Pyriochou and colleagues showed that sildenafil stimulates angiogenesis through the 
cGMP/protein kinase-dependent pathway 95. These findings suggest that PDE5 inhibition 
may represent potential therapeutic target in reducing the major issues concerning the 
development of BPD, namely the arrest in lung development and pulmonary hypertension.

Apelin

Apelin is an endogenous bioactive peptide for the 7-transmembrane G protein-coupled APJ 
receptor (figure 4). It is derived from a 77 amino acid prepropeptide that is cleaved into a 
12-36 amino acid fragments that are biologically active 96. APJ shares a 30% homology with 
the angiotensin II type I receptor, but angiotension II does not bind to APJ 97. APJ is also a 
coreceptor for the entry of HIV into host cells 98. Apelin is produced and secreted by mature 
human and murine adipocytes 99 and endothelial cells 100, and its expression is induced by 
hypoxia in endothelial cells 101. APJ and apelin mRNA have been detected in various human 
and rat tissues, including the lung, heart, artery, vein, skeletal muscle, kidney, brain and liver 
96,102-104. The presence of apelin receptors and apelin in the lungs, heart and blood vessels 
suggest that this peptide may have a cardiopulmonary role.
Apelin receptor activation leads to phosphorylation of ERK, Akt and phospholipase C (PLC) 
105,106, which constitute the basis for a dual function of apelin signaling at the endothelial 
level. Activation of Akt and PLC induces the activation of endothelial nitric oxide synthase 
(eNOS) and NO release, which relaxes the smooth muscle and lowers blood pressure 104,107. 
On the other hand, activation of the apelin receptor promotes phosphorylation of the ERKS 
and Akt proteins that can promote cell migration and proliferation of endothelial cells, 
leading to angiogenesis 106,108. Apelin knockout mice shows reduced vascular development 
109 and abrogated angiopoietin I-mediated vascular enlargement 110. Overexpression of 
the apelin-APJ pathway promotes blood vessel and neointima formation in animal models 
of ischemia 111,112. However, the molecular mechanisms by which the apelin/APJ pathway 
promotes angiogenesis is not clear. Inhibition of VEGF and FGF receptor activity failed to 
inhibit apelin-induced cell proliferation, suggesting that the effect of apelin on angiogenesis 
is independent of VEGF and FGF receptors 113. It is well known that NO is a mediator of 
angiogenic processes. Apelin induces phospholyration of eNOS and NO release from 
endothelial cells, and thus NO could mediate stimulation of angiogenesis by apelin.
In the heart, APJ is expressed by myocardial cells, endothelial cells and smooth muscle cells 
114. Activation of the apelin receptor at the surface of cardiomyocytes results in a potent 
inotropic effect of apelin both in normal and diseased hearts 114-116. Chronic treatment with 
apelin had cardioprotective effects by reducing cardiac loading without inducing ventricular 
hypertrophy 117,118 and reduced myocardial injury and improved right ventricular function 
in monocrotaline-induced pulmonary hypertension 119. Apelin knockout mice demonstrate 
enhanced cardiac dysfunction and myocardial remodeling in aging and in response to 
pressure overload 120, which is supported by in vitro data that loss of apelin would reduce 
beneficial positive inotropic apelin actions 115. Both apelin and APJ knockout mice have 
decreased basal cardiac contractility 121, normotensive baseline levels, but have increased 
vasopressor response to angiotensin II administration 122, suggesting a counter-measure 
against angiotension II-mediated pressor effects. Taken together, these data indicate 
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that the apelin/APJ system is a therapeutic target for the treatment of heart failure and 
ventricular overload.

Both murine monocytes and macrophages express APJ with highest expression in activated 
macrophages, suggesting a role for apelin during macrophage activation 123. Apelin was 
found to have an direct anti-inflammatory effect in cultured cells by downregulating TNF 
alpha and MCP-1 and a trend toward less IL6, M-CSF and MIP-1alpha. Recently, Leeper and 
co-workers showed an anti-inflammatory role for apelin in vivo, by blocking the macrophage 
burden and inflammatory chemokine and cytokine production in the aneurysmal aorta 123.
Apelin is also involved in fluid balance, hormone release, water and food intake and 
circadian rythms 116,124,125. In a study of both human and mouse adipocytes, and in models 
of obesity, apelin has been identified as a novel adipokine that is released from fat cells and 
is upregulated directly by insulin 99.
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Figure  4.  Schematic  overview  of  the  signalling  cascade  in  endothelial  cells  after  binding  of  apelin  to  its 

receptor APJ.  

Binding of apelin to APJ results in the activation of G protein, which will increase endothelial NOS production 

via activation of ERK and Akt pathways leading to increased transcription of the eNOS gene or via activation of 

phospholipase C. Increased eNOS will induced NO production that activates guanylate cyclase, which induces 

smooth muscle cell relaxation, angiogenesis and anti‐inflammation via increased cGMP levels. 
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Ambrisentan

Ambrisentan is a endothelin (ET) A receptor antagonist. Endothelins are a family of three 
21-amino acid peptides (ET-1, ET-2 and ET-3), each with distinct gene and tissue distributions, 
that are cleaved from preproproteins by ET converting enzyme (ECE) to form biological 
active ETs 126. Among these, ET-1 is the most predominant isoform synthesized in the 
human vasculature and the most potent vasoconstrictor 127, which is primarily produced by 
endothelial cells and to a lesser extent by vascular smooth muscle cells or macrophages. The 
biological effects of ET-1 are mediated by two G protein-coupled receptors, ET A receptor 
and ET B receptor, which activated distinct signaling pathways 128. The ET A receptors are 
expressed on pulmonary arterial smooth muscle cells, fibroblasts and cardiomyocytes, 
whereas ET B receptors are expressed by endothelial cells and to a lesser extent by 
pulmonary arterial smooth muscle cells and fibroblasts 129. ET-1 has opposite vascular effects 
mediated through the different receptors. Activation of ET receptors on pulmonary arterial 
smooth muscle cells mediate a potent vasoconstrictive response, whereas ET B receptors on 
endothelial cells mediate vasodilation via increased production of NO and prostacyclin 130,131. 
In addition, ET-1 is involved in several other processes, including endothelial dysfunction, 
extracellular matrix production, inflammation, cell proliferation and fibrosis 132.
Hyperoxia has been shown to elevate ET-1 levels in endothelial cells 133 and in experimental 
model of bronchopulmonary dysplasia 25 and circulating levels are raised in rats with 
hyperoxia-induced pulmonary hypertension 134.  Both selective ET A and mixed ET A/B have 
similar beneficial effects in in vivo models of pulmonary arterial hypertension 135,136, chronic 
heart failure 137,138, atherosclerosis 139,140 and hypertension 141,142. Although the discovery 
of ET receptor antagonists is a milestone in the treatment of pulmonary hypertension, its 
role in experimental bronchopulmonary dysplasia is still unknown.

Stem cells

Bone marrow stromal cells, also known as mesenchymal stem cells, marrow stromal cells 
and more recently mesenchymal stromal cells (MSC), have been the subject of intensive 
investigation over the past decade. These cells, critical to the support of hematopoiesis 
(), can differentiate in vitro along mesenchymal lineages, i.e. adipocytic, osteoblactic and 
chondrocytic lineages 143 and into parenchymal cells of various non-hematopoietic tissues 
including the lung 144 and can exhibit neuronal 145, hepatic 146, and cardiac 147 characteristics, 
suggesting a possible role in tissue repair. The International Society for Cellular Therapy 
(ISCT) have provided the following three criteria for defining multipotent MSCs 148 a) plastic-
adherent inder standard culture conditions, b) express CD105, CD73, CD90 and lack the 
expression of CD45, CD34, CD14, CD79 and HLA-DR and c) must be able to differentiate into 
osteoblasts, adipocytes and chondroblasts in vitro.  
MSC treatment can ameliorate bleomycin, monocrotaline, endotoxin, or hyperoxic-induced 
lung injury 149-153, by migrating and repairing tissue damage but also to deliver protection 
by secretion of specific growth, vasoprotective and immunoprotective factors. In addition, 
MSCs overexpressing the prosurvival protein Akt improved hemodynamic endpoints and 
cardiac function in rat models of experimental myocardial infarction 154,155, which is probably 
mediated by paracrine factors, including vascular endothelial growth factors, fibroblast 
growth factors and hepatocyte growth factor. These data indicate that stem cell treatment 
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of infants with bronchopulmonary dysplasia may be beneficial to improve alveologenesis 
and pulmonary hypertension.

Aim and outline of the thesis
The aim of the studies presented in this thesis is to test potential treatment options in an 
animal model of bronchopulmonary dysplasia. Chapter 1 contains a general introduction 
to lung development and bronchopulmonary dysplasia in respect to relevant topics further 
studied in this thesis. The inflammatory process is one of the major players in experimental 
BPD and inhibition of this process by phospohodiesterase type 4 inhibition is explored in 
chapter 2. In chapter 3 we investigated the effect of phophodiesterase type 4 inhibition on 
the cardiopulmonary aspect of experimental BPD, as hyperoxia exposure leads pulmonary 
hypertension and to right ventricular hypertrophy. BPD is characterized by arrest in alveolar 
development or loss of alveoli and currently lack effective therapy. In chapters 4 and 5 we 
explored the therapeutic potential on alveologenesis of apelin and phosphodiesterase type 
5 inhibitor sildenafil, both very potent pro-angiogenic and vasodilative agents. In chapter 
6 we investigated the therapeutic potential of stem cell therapy in an animal model of 
pulmonary hypertension by mimicking autologous MSC therapy. Chapter 7 contains general 
conclusions and a discussion regarding these results.
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