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Abstract

Objective Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a potential novel 
strategy for treatment of CVD. Alirocumab is a fully human PCSK9 monoclonal antibody in 
phase III clinical development. We evaluated the anti-atherogenic potential of alirocumab 
in APOE*3Leiden.CETP mice.

Methods Mice received a Western-type diet and were treated with alirocumab (3 or 10 mg/
kg, weekly subcutaneous dosing) alone and in combination with atorvastatin (3.6 mg/kg/d) 
for 18 weeks.

Results Alirocumab alone dose-dependently decreased total cholesterol (-37%; -46%, 
P<0.001) and triglycerides (-36%; -39%, P<0.001) and further decreased cholesterol in 
combination with atorvastatin (-48%; -58%, P<0.001). Alirocumab increased hepatic LDL 
receptor protein levels, but did not affect hepatic cholesterol and triglyceride content. Fecal 
output of bile acids and neutral sterols was not changed. Alirocumab dose-dependently 
decreased atherosclerotic lesion size (-71%; -88%, P<0.001) and severity and enhanced these 
effects when added to atorvastatin (-89%; -98%, P<0.001). Alirocumab reduced monocyte 
recruitment and improved the lesion composition by increasing the smooth muscle cell and 
collagen content and decreasing the macrophage and necrotic core content.

Conclusion Alirocumab dose-dependently decreases plasma lipids and, as a result, 
atherosclerosis development, and enhances the beneficial effects of atorvastatin in 
APOE*3Leiden.CETP mice. In addition, alirocumab improves plaque morphology.

Keywords APOE*3Leiden.CETP mice, PCSK9, alirocumab, atorvastatin, atherosclerosis
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Introduction

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serine protease involved in LDL 
metabolism.1 PCSK9, previously known as neutral apoptosis regulated convertase, is mainly 
expressed in the liver, kidney, and intestines.2, 3

Besides familial hypercholesterolemia (FH) caused by ldlr mutations and familial defective 
apolipoprotein B100 caused by apob mutations,1 autosomal dominant hypercholesterolemia 
can be caused by gain-of-function mutations of the pcsk9 gene, now commonly referred to 
as FH3.3, 4 Conversely, loss-of-function mutations of the pcsk9 gene were associated with 
a reduction in LDL-cholesterol (LDL-C) and protection against coronary heart disease.5, 6 In 
addition, familial hypobetalipoproteinemia related to loss-of-function mutations of pcsk9 
resulted in very low plasma levels of LDL-C, attributed to an increased clearance rate of LDL.7

Several studies have confirmed that PCSK9 is responsible for targeting the LDL receptor 
(LDLR) for lysosomal degradation in the liver by preventing recycling of the receptor to the 
cell membrane after internalization of the LDL-bound LDLR.4 PCSK9 interacts with the LDLR on 
the cell membrane, after which the LDLR-PCSK9 complex is internalized and travels through 
the endosome to the lysosome for degradation.8 In a study in mice, adenovirus-mediated 
expression of PCSK9 increased plasma LDL-C levels, which was associated with decreased 
hepatic LDLR protein, although LDLR mRNA levels were unaffected.9 On the contrary, mice 
lacking PCSK9 have decreased plasma LDL-C as a result of increased hepatic LDLR levels.10 A 
recent study in wild-type, APOE-/-, and LDLR-/- mice with or without expression of PCSK9 
revealed a direct relationship between PCSK9 and atherosclerosis development, mainly 
mediated via the LDLR, and suggests that PCSK9 inhibition will be beneficial in reducing 
atherosclerosis.11

Although statins remain the most effective treatment option for CVD, there remains a 
substantial persistent cardiovascular risk and, despite statin treatment, some patients cannot 
reach the recommended LDL-C target.12, 13 Recent outcome studies and post hoc analyses 
indicate that therapeutic regimens that further lower LDL-C lead to further reductions in 
cardiovascular events14-16 and, consequently, cholesterol management guidelines have 
evolved to more rigorous goals.17-19 The upregulation of the LDLR after statin treatment is 
accompanied by an upregulation of PCSK9, which in turn promotes LDLR degradation.20-22 In 
humans, the ~35% to 50% decrease in LDL-C after atorvastatin treatment (10 to 40 mg) was 
accompanied by a ~7% to 35% increase in circulating PCSK9 levels.21, 22 Inhibition of PCSK9 is, 
therefore, a potential novel strategy for treatment of CVD, specifically in combination with 
statin treatment. Several approaches to inhibit PCSK9, including monoclonal antibodies, 
gene silencing, and mimetic peptides, are currently being investigated.4 The anti-PCSK9 
monoclonal antibody, alirocumab is a lead compound in this class and is currently being 
tested in phase III clinical trials.
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Alirocumab, also known as SAR236553/REGN727, is a fully human, monoclonal antibody 
that lowers plasma LDL-C in normocholesterolemic volunteers23 and hypercholesterolemic 
patients on stable statin dose.24, 25 In patients with hypercholesterolemia, alirocumab in 
combination with low- and high-dose atorvastatin decreased LDL-C to a greater extent 
than titration to high-dose atorvastatin, and considerably more patients who received 
the combination treatments reached LDL-C goals of <100 mg/dL or <70 mg/dL compared 
with patients who received atorvastatin treatment alone.26 Phase II trials demonstrated 
reductions in LDL-C of 40% to 72% across a dose range of 50 to 150 mg administered every 2 
weeks, and of 32% to 48% with doses 200 to 300 mg administered every 4 weeks.23-25

The aim of this study was to investigate the effects of two dosages of alirocumab alone 
and in combination with atorvastatin on plasma lipids, atherosclerosis development and 
lesion composition in APOE*3Leiden.CETP mice.27 This is a well-established model for 
hyperlipidemia and atherosclerosis with all features of familial dysbetalipoproteinemia 
(FD) in humans, which is characterized by accumulation of remnant lipoproteins and an 
increased VLDL-cholesterol to LDL-C ratio.28 APOE*3Leiden mice have an impaired clearance 
of (V)LDL and increased triglycerides (TG) levels and are thereby mimicking the slow 
clearance observed in humans, in contrast to normal wild-type mice which have a very 
rapid clearance of apoB-containing lipoproteins.29 The lipoprotein profile in APOE*3Leiden.
CETP mice reflects that of FD patients with a similar response to lipid-modifying therapies,30 
including statins,31 fibrates,32 niacin,33 and cholesteryl ester transfer protein inhibitors.34 This 
is illustrated by a comparable reduction in cholesterol in all apoB-containing lipoprotein 
subfractions with statin treatment.35 We hypothesized that alirocumab alone could reduce 
progression of atherosclerosis and add to the atheroprotective effects of atorvastatin. 
Inhibition of atherosclerosis by atorvastatin in APOE*3Leiden.CETP mice has been observed 
previously.34, 36

Methods

Animals 
Ninety female APOE*3Leiden.CETP transgenic mice (9 to 13 weeks of age),27 expressing 
human cholesteryl ester transfer protein (CETP) under control of its natural flanking regions, 
were used. During the study, mice were housed under standard conditions with a 12 h light-
dark cycle and had free access to food and water. Animal experiments were approved by the 
Institutional Animal Care and Use Committee of The Netherlands Organization for Applied 
Research. 
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Experimental design 
Mice received a semi-synthetic cholesterol-rich diet, containing 15% (w/w) cacao butter and 
0.15% cholesterol (Western-type diet [WTD]; Hope Farms, Woerden, The Netherlands) for a 
run-in period of 3 weeks to increase plasma total cholesterol (TC) levels up to ~15 mmol/l. 
Body weight and food intake were monitored regularly during the study. After matching 
based on body weight, plasma TC, TG and age, mice (n=15 per group) received a WTD alone 
or were treated with two dosages of alirocumab (3 or 10 mg/kg) alone or in combination 
with atorvastatin (3.6 mg/kg/d) for 18 weeks, and an arm with atorvastatin alone was added. 
Alirocumab (provided by Regeneron) was administered via weekly subcutaneous injections 
and atorvastatin was added to the diet. We aimed for a reduction in TC of about 20% to 30% 
with the dose of atorvastatin. At the end of the treatment period all animals were sacrificed 
by CO2 inhalation. Livers and hearts were isolated to assess hepatic LDLR protein levels, lipid 
content, atherosclerosis development, and plaque composition.

Plasma lipids, lipoprotein analysis and measurement of alirocumab levels
Plasma was isolated from blood collected in EDTA-coated cups via tail vein bleeding after a 4-h 
fast every 2 to 4 weeks. Plasma TC and TG were determined using enzymatic kits according to 
the manufacturer’s protocols (cat. no. 1458216 and cat. no. 1488872, respectively; Roche/
Hitachi) and average plasma TC and TG levels were calculated by total exposure over number 
of weeks. Lipoprotein profiles for TC were measured after lipoprotein separation by fast 
protein liquid chromatography (FPLC) after 4, 12, and 18 weeks of treatment.27 Alirocumab 
levels were measured by a human Fc enzyme-linked immunosorbent assay.

Hepatic LDLR protein levels
Liver tissues were homogenized in lysis buffer (50 mM Tris-HCL [pH=7.4], 150 mM 
NaCl, 0.25% deoxycholic acid, 1% NP-40 [Igepal], 1mM EDTA, protease inhibitor cocktail 
[complete, Roche], 1 mM PMSF, 1 mM Na3VO4) and then centrifuged at 6500 rpm at 4˚C 
for 30 min. Protein concentration in cell lysates was determined by bicinchonic acid protein 
assay (Thermo Scientific) according to manufacturer’s instructions. 50 µg of protein lysates 
were separated by SDS-PAGE and then transferred to polyvinylidene fluoride membranes 
(Millipore). Blots were subjected to goat anti-mouse LDLR from R&D Systems and rabbit 
anti-goat horseradish peroxidase (HRP) from AbD Serotec or mouse anti-α-Tubulin from 
Sigma and horse anti-mouse HRP from Cell Signaling Technologies (according to the 
manufacturer’s instructions); blots were developed with West Femto Super Signal ECL 
(Thermo Scientific) and subjected to the Chemi-Doc-it imaging system. Intensities of protein 
bands were quantified using Image J software.
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Hepatic lipid analysis and fecal excretion of bile acids and neutral sterols
Liver tissue samples were homogenized in phosphate-buffered saline, and the protein 
content was measured. Lipids were extracted, separated by high-performance thin-layer 
chromatography on silica gel plates, and analyzed with TINA2.09 software (Raytest Isotopen 
Messgeräte Straubenhardt, Germany), as previously described.37

Mice were housed at five mice per cage, and feces were collected during two 
consecutive periods of 72 h and 48 h, respectively. Aliquots of lyophilized feces were used 
for determination of neutral and acidic sterol content by gas-liquid-chromatography, as 
previously described.38

Histological assessment of atherosclerosis
Hearts were isolated, fixed in formalin, and embedded in paraffin. They were then sectioned 
perpendicular to the axis of the aorta, starting within the heart and working in the direction 
of the aortic arch. Once the aortic root was identified by the appearance of aortic valve 
leaflets and smooth muscle cells (SMCs) instead of collagen-rich tissue, serial cross sections 
(5 µm thick with intervals of 50 µm) were taken and mounted on aminopropyl-triethoxy-
silane (APES)-coated slides. These sections were stained with hematoxylin-phloxine-saffron 
(HPS) for histological analysis. For each mouse, atherosclerosis was measured in four 
subsequent cross sections. Each section consisted of three segments. The average total 
lesion area per cross section was then calculated.36, 39 For determination of lesion severity 
the lesions were classified into five categories according to the American Heart Association 
classification40: 0) no lesion I) early fatty streak, II) regular fatty streak, III) mild plaque, IV) 
moderate plaque, and V) severe plaque. The percentage of each lesion type was calculated, 
and type I-III lesions were classified as mild lesions and type IV-V lesions were classified as 
severe lesions.36, 39 To determine the total plaque load in the thoracic aorta, perfusion-fixed 
aortas (from the aortic origin to the diaphragm) were cleaned of extravascular fat, opened 
longitudinally, pinned en face, and stained for lipids with oil red O as described previously.41 
Data were normalized for analyzed surface area and expressed as a percentage of the stained 
area. Photos/images were taken with the Olympus BX51 microscope and lesion areas were 
measured using Cell D imaging software (Olympus Soft Imaging Solutions). 

In the aortic root, lesion composition was determined for the severe lesions (type IV-
V) as a percentage of lesion area after immunostaining with anti-human α-actin (1:800; 
Monosan, Uden, The Netherlands) for SMCs, and anti-mouse Mac-3 (1:25; BD Pharmingen, 
the Netherlands) for macrophages followed by sirius red staining for collagen. Necrotic 
area and cholesterol clefts were measured in macrophage/collagen staining.36, 39, 42 In 
each segment used for lesion quantification, the number of monocytes adhering to the 
endothelium and the number of T cells in the total aortic root area were counted after 
immunostaining with AIA 31240 antibody (1:1000; Accurate Chemical and Scientific, New 
York, New York, USA) and CD3 (1:500; AbD Serotec, Oxford, UK), respectively. Rat anti-
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mouse CD54 antibody, GTX76543 (GeneTex, Inc., San Antonio, TX, USA) was used for 
immunostaining of intercellular adhesion molecule 1 (ICAM-1).43 Photos/images of the 
lesions were taken with the Olympus BX40 microscope with Nuance 2 multispectral imaging 
system, and stained areas were quantified using Image J software. 

Flow cytometric analysis 
After 8 weeks of treatment, peripheral blood mononuclear cells (PBMCs) were isolated 
from fresh blood samples and were sorted into GR-1+ (neutrophils/granulocytes), GR-
1- (lymphocytes/monocytes), CD3+ (T cells), CD19+ (B cells) and CD11b+/Ly6Clow and 
CD11b+/Ly6Chi (monocytes) cells using flow cytometric analysis. The following conjugated 
monoclonal antibodies were used from Becton Dickinson: GR-1 FITC, CD3 PerCpCy5-5, CD19 
V450, CD11b APC and Ly6C PE-Cy7.

Statistical analysis
Significance of differences between the groups was calculated non-parametrically using 
a Kruskal-Wallis test for independent samples, followed by a Mann-Whitney U-test for 
independent samples. Linear regression analyses were used to assess correlations between 
variables. Since the atherosclerotic lesion area showed a quadratic dependence on plasma 
cholesterol exposure, it was transformed using square root transformation. 

IBM SPSS Statistics 20 for Windows (SPSS, Chicago, USA) was used for statistical analysis. 
All groups were compared with the control group and with the atorvastatin group, and 
3 mg/kg alirocumab was compared with 10 mg/kg alirocumab either with or without 
atorvastatin. Values are presented as means ± SD. Bonferroni-Holm’s method was used to 
determine the level of significance in the case of multiple comparisons. P-values <0.05 were 
considered statistically significant. In figures, significant effects after correction for multiple 
comparisons are indicated by * to compare with the control group, † to compare with the 
atorvastatin group and ‡ to compare 3 mg/kg alirocumab with 10 mg/kg alirocumab. 

Results

Alirocumab and atorvastatin monotreatment and their combination decrease plasma TC 
and TG in APOE*3Leiden.CETP mice
Alirocumab binds both human and mouse PCSK9 with high affinity (Kd=0.58nM and 2.6nM, 
respectively, at pH 7.4 and 25°C) as determined by surface plasmon resonance. Circulating 
alirocumab levels were detected in all groups administered alirocumab and ranged between 
5 to 12 µg/ml (3 mg/kg dose) and 12 to 30 µg/ml (10 mg/kg dose) during the study. No 
immune response was observed as evidenced by stable efficacy throughout the study. After 
18 weeks of treatment, the APOE*3Leiden.CETP mice on a cholesterol-containing WTD 
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(control group) reached average plasma TC and TG levels of 16.2 ± 1.8 mmol/l and 2.9 ± 0.6 
mmol/l, respectively (Figure 1A and 1B). Compared with the control, alirocumab decreased 
average plasma TC (-37%, P<0.001; -46%, P<0.001) and TG (-36%, P<0.001; -39%, P<0.001) 
and further decreased TC in combination with atorvastatin (-48%, P<0.001; -58%, P<0.001). 
Compared with atorvastatin, both combination treatments decreased TC (-36%, P<0.001; 
-48%, P<0.001) and TG (-39%, P<0.001; -50%, P<0.001) to a greater extent than atorvastatin 
alone. The (higher) reductions in TC (at the higher dose) after alirocumab alone (-14%, 
P<0.01; 3 mg/kg alirocumab vs. 10 mg/kg alirocumab) and in combination with atorvastatin 
(-19%, P<0.001; 3 mg/kg alirocumab + atorvastatin vs. 10 mg/kg alirocumab + atorvastatin) 
were dose-dependent and sustained during the study. TC reductions after alirocumab 
(Figure 1C), atorvastatin and their combination (Figure 1D) were confined to non-HDLs.

30 

 

Figure 1 
 

 
  

Figure 1 Effect of alirocumab, atorvastatin, and their combination on average plasma TC (A) and 
TG (B) levels as measured throughout the 18-week study. Lipoprotein profiles for cholesterol were 
assessed by FPLC lipoprotein separation to study effects of alirocumab alone (C) and in combination 
with atorvastatin (D). 
*P<0.05, ***P<0.001 as compared with control; †††P<0.001 as compared with atorvastatin; ‡P<0.05, 
‡‡P<0.01, ‡‡‡P<0.001 for 3 mg/kg alirocumab compared with 10 mg/kg alirocumab (n=15 per group).
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Alirocumab without and with atorvastatin decreases plasma lipids by reducing LDLR 
degradation
Hepatic LDLR protein levels were measured to verify whether PCSK9 inhibition by alirocumab 
decreases plasma lipids by rescuing LDLR degradation (Figure 2). Hepatic LDLR protein 
levels were increased after alirocumab treatment alone (+80%, P<0.05; +133%, P<0.01) 
and together with atorvastatin (+98%, P<0.01; +178%, P<0.05). Compared with atorvastatin 
alone, both the combination treatments increased LDLR protein levels to a greater extent 
(+71%, P<0.01; +140%, P<0.05). An inverse correlation between LDLR protein levels and 
plasma TC confirms the involvement of the LDLR in lowering of TC by alirocumab (R2=0.50, 
P<0.001).

31 

 

Figure 2 
 

 
  

Figure 2 Effect of alirocumab, atorvastatin, and their combination on hepatic LDLR protein levels. 
*P<0.05, **P<0.01 as compared with control; †P<0.05, ††P<0.01 as compared with atorvastatin (n=8 
per group).

Alirocumab does not affect hepatic lipids and fecal bile acid and neutral sterol excretion
To evaluate the consequences of alirocumab-induced alterations in lipoprotein metabolism 
on hepatic lipid metabolism and excretion into feces, we determined liver lipids and fecal 
excretion of bile acids and neutral sterols. Alirocumab did not affect the hepatic content of 
cholesterol and TG, whereas atorvastatin and the combination treatments led to significant 
reductions in hepatic cholesteryl esters (-48%, P<0.05; -41%, P<0.05 and -44%, P=0.28, 
respectively) as compared with the control group, without a change in hepatic TG (Table 
1). Fecal output of bile acids and neutral sterols was not changed by the treatments (Table 
2). These data indicate that despite the greater influx of cholesterol from the plasma 
compartment hepatic cholesterol homeostasis is maintained during alirocumab and statin 
treatment in mice.



R1
R2
R3
R4
R5
R6
R7
R8
R9

R10
R11
R12
R13
R14
R15
R16
R17
R18
R19
R20
R21
R22
R23
R24
R25
R26
R27
R28
R29
R30
R31
R32
R33
R34
R35
R36
R37
R38
R39

Chapter 6

126

Table 1 Effect of alirocumab, atorvastatin and their combination on liver lipids.

Liver lipids (µg/mg protein)
FC CE TG

Control 11.6 ± 1.6 50.6 ± 14.0 119.2 ± 33.3
3 mg alirocumab 11.2 ± 1.4 48.2 ± 8.2 † 117.7 ± 21.6
10 mg alirocumab 11.4 ± 2.0 53.9 ± 10.4 ††† 142.1 ± 43.0
Atorvastatin 9.5 ± 0.9 26.2 ± 4.8 * 90.6 ± 28.5
3 mg alirocumab + atorvastatin 10.4 ± 1.8 29.6 ± 5.8 * 103.5 ± 36.8
10 mg alirocumab + atorvastatin 10.7 ± 1.2 28.3 ± 9.0 109.8 ± 28.8

FC, free cholesterol; CE, cholesterol esters. *P<0.05 as compared with control; †P<0.05, †††P<0.001 
as compared with atorvastatin

Table 2 Effect of alirocumab, atorvastatin and their combination on neutral sterol and bile acid 
excretion. 

Neutral sterol excretion
(µmol/100 g mouse/day)

Bile acid excretion
(µmol/100 g mouse/day)

Control 25.8 ± 5.5 13.5 ± 3.3
3 mg alirocumab 20.4 ± 6.2 14.3 ± 2.7
10 mg alirocumab 21.6 ± 5.6 12.4 ± 3.2
Atorvastatin 30.3 ± 6.5 10.7 ± 2.4
3 mg alirocumab + atorvastatin 28.6 ± 6.0 11.4 ± 2.2
10 mg alirocumab + atorvastatin 27.5 ± 4.4 12.7 ± 1.6

Alirocumab dose-dependently reduces atherosclerosis development and enhances the 
atheroprotective effects of atorvastatin
Effects of alirocumab on atherosclerosis development in the absence and presence of 
atorvastatin were assessed in the aortic root and arch after 18 weeks of treatment. 
Representative images of atherosclerotic lesions as illustrated in Figure 3 show that 
alirocumab, atorvastatin, and their combination reduced lesion progression. To confirm 
a reduction in atherosclerosis development, we determined lesion area per cross section 
(Figure 4A), and calculated lesion severity (Figure 4C). For the control group, total lesion 
area was 278 ± 89 x 103 µm2 per cross section. Alirocumab dose-dependently decreased 
atherosclerotic lesion size (-71%, P<0.001; -88%, P<0.001) and dose-dependently enhanced 
the effects of atorvastatin (-89%, P<0.001; -98%, P<0.001) as compared with the control. 
Mice treated with alirocumab alone and in combination with atorvastatin had more lesion-
free sections and fewer severe (type IV-V) lesions compared with the control. Atorvastatin 
alone decreased lesion size (-35%, P<0.05) and reduced severity to a lesser extent with 
no effect on the percentage undiseased segments. When compared with atorvastatin 
monotreatment, the combinations further decreased lesion size (-82%, P<0.001; -97%, 
P<0.001) and increased the percentage undiseased segments.
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To evaluate the effect of alirocumab treatment on lesion development at another spot 
along the aorta prone to development of atherosclerosis, plaque surface in the aortic arch 
was measured (Figure 4B). At this site, lesion development is delayed as compared with 
the aortic root.41 In line with the effects on atherogenesis in the aortic origin, both doses 
of alirocumab together with atorvastatin (-73%, P<0.05; -73%, P<0.05) reduced the total 
plaque area.

32 

 

Figure 3 
 

 
  

Figure 3 Effect of alirocumab, atorvastatin, and their combination on plaque morphology. 
Representative images of HPS-stained atherosclerotic lesions in a cross section of the aortic root 
area for the control (A), 3 mg/kg alirocumab (B), 10 mg/kg alirocumab (C), atorvastatin (D), 3 mg/kg 
alirocumab + atorvastatin (E) and 10 mg/kg alirocumab + atorvastatin (F) groups, respectively, after 18 
weeks of treatment.
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Figure 4 
 

 
  

Figure 4 Effect of alirocumab, atorvastatin, and their combination on atherosclerosis development in 
aortic root and arch. After 18 weeks of treatment, the total lesion area per cross section was assessed 
(A). The total plaque load in the aortic arch was analyzed after oil red O-staining (B). Lesion severity 
was assessed and categorized as no lesions, mild (type I-III) lesions and severe (type IV-V) lesions (C). 
Data are expressed as percentage of the stained area. 
*P<0.05, ***P<0.001 as compared with control; †P<0.05, ††P<0.01, †††P<0.001 as compared with 
atorvastatin; ‡P<0.05, ‡‡P<0.01 for 3 mg/kg alirocumab compared with 10 mg/kg alirocumab (n=15 
per group in the root area and n=6-7 in the arch).

We evaluated whether the anti-atherogenic effect of alirocumab and atorvastatin could 
be explained by the reduction in plasma TC. A strong correlation between plasma TC levels 
and atherosclerotic lesion area in the aortic root was observed (R2=0.84, P<0.001; Figure 5), 
indicating an important role of cholesterol in the development of atherosclerosis.
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Figure 5 
 

 
  

Figure 5 Correlation between average plasma TC and atherosclerotic lesion area. The square root of 
the lesion area was plotted against average TC. Linear regression analysis was performed.

Alirocumab improves plaque morphology
After investigating lesion morphology, we analyzed treatment effects on plaque composition 
in the severe lesions (type IV-V), as shown by representative images in Figure 6. To illustrate 
that a pro-inflammatory plaque phenotype is not always dependent on the size of the 
lesions, we included representative images of similar size lesions for the control group and 
the alirocumab group. Lesion macrophage area plus lesion necrotic core area (including 
cholesterol clefts), were quantified as pro-inflammatory factors (Figure 7A), whereas SMCs 
in the fibrotic cap and collagen area were quantified as fortifying factors (Figure 7B). All 
were expressed as a percentage of total lesion area. Lesions in the control group consisted 
of 10.3% macrophages, 4.8% necrotic core and cholesterol clefts, 3.1% SMCs in the cap and 
48.4% collagen. Alirocumab (10 mg/kg) alone and in combination with atorvastatin reduced 
the pro-inflammatory factors as compared with control (-37% P<0.001; -73% P<0.001) and 
with atorvastatin treatment (-35% P<0.001; -72% P<0.001). Fortifying factors were increased 
by 10 mg/kg alirocumab + atorvastatin as compared with control (+29% P<0.001) and dose-
dependently as compared with atorvastatin treatment (+29% P<0.05; +40% P<0.001).
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Figure 6 
 

 
  

Figure 6 Effect of alirocumab, atorvastatin, and their combination on lesion composition. Representative 
images of immunostaining with Mac-3 for macrophages followed by sirius red staining for collagen 
and α-actin for SMCs for the control and after 18 weeks of treatment with alirocumab alone and in 
combination with atorvastatin.
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Figure 7 
 

 
  

Figure 7 Effect of alirocumab, atorvastatin, and their combination on lesion composition. Macrophage 
and necrotic content, including cholesterol clefts as pro-inflammatory factors (A), and SMC and 
collagen content as fortifying factors (B), were determined in the severe (type IV-V) lesions after 
correcting for lesion size. 
**P<0.01, ***P<0.001 as compared with control; †P<0.05, ††P<0.01, †††P<0.001 as compared with 
atorvastatin (n=15 per group).

Alirocumab reduces monocyte and T cell recruitment
As a functional marker of vessel wall inflammation, the number of monocytes adhering to the 
activated endothelium (Figure 8A) and the number of T cells in the aortic root area (Figure 
8B) were counted and calculated per cross section. In the control group, 5.7 ± 4.2 adhering 
monocytes and 16.7 ± 7.7 T cells were present. When administered alone and together with 
atorvastatin, the higher dose of alirocumab (10 mg/kg) decreased the adhering monocytes 
(-57%, P<0.05; -82%, P<0.001) and the abundance of T cells (-37%, P<0.05; -62%, P<0.001). 
To further underline the mechanism by which alirocumab reduced monocyte adherence, 
we assessed endothelial ICAM-1 expression by immunohistochemistry (Figure 8C). For the 
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control, 39% of the endothelium was positive for ICAM-1 compared with 19% (P<0.001) 
after 10 mg/kg alirocumab monotreatment and 16% (P<0.001) when given in combination 
with atorvastatin. The reduction in monocyte adherence was, therefore, corroborated by a 
reduction in adhesion molecule expression in endothelial cells after alirocumab treatment 
alone and in combination with atorvastatin.
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Figure 8 
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Figure 8 
 

 

Figure 8 Effect of alirocumab, atorvastatin, and their combination on markers of vascular inflammation. 
The number of monocytes adhering to the endothelium (A) and the number of T cells in the aortic root 
area (B) were determined per cross section. In addition, ICAM-1 was determined as percentage of the 
stained area (C). Representative images are included. 
*P<0.05, ***P<0.001 as compared with control; †††P<0.001 as compared with atorvastatin (n=15 per 
group).
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Alirocumab reduces circulating monocytes
The effects of alirocumab alone and in combination with atorvastatin on white blood 
cell count was assessed by flow cytometry (Table 3). Interestingly, alirocumab alone and 
together with atorvastatin reduced granulocytes/neutrophils (-20%, P<0.05; -34%, P<0.01) 
and monocytes (-28%, P<0.05; -39%, P<0.01) when expressed as a percentage of the PBMC 
population. More specifically, alirocumab alone and in combination with atorvastatin 
tended to decrease pro-inflammatory Ly6Chi (-8%, N.S.; -19%, P<0.001) and increase anti-
inflammatory Ly6Clow (+12%, N.S.; +35%, P<0.001) monocytes. Therefore, the effect of 
alirocumab on vascular recruitment and adhesion of monocytes may be augmented by a 
reduction in circulating monocytes.

Table 3 Effect of alirocumab, atorvastatin, and their combination on white blood cell count as assessed 

by flow cytometric analysis after 8 weeks of treatment.

Control 10 mg/kg 
Alirocumab Atorvastatin

10 mg/kg 
Alirocumab +
Atorvastatin

Neutrophils/granulocytes 
(% of PBMC population) 8.9 ± 2.4 7.1 ± 2.0 * † 5.1 ± 1.6 *** 5.9 ± 2.0 **

Lymphocytes/monocytes 
(% of PBMC population) 91.1 ± 2.4 92.9 ± 2.0 * † 94.9 ± 1.6 *** 94.1 ± 2.0 **

	 T cells 
(% of PBMC population) 22.9 ± 4.6 21.4 ± 5.0 † 17.0 ± 4.8 ** 18.5 ± 4.5 P=0.054

	 B cells 
(% of PBMC population) 63.9 ± 8.5 66.3 ± 15.0 69.5 ± 17.4 ** 66.9 ± 2.0 **

	 Monocytes 
(% of PBMC population) 12.3 ± 5.0 8.9 ± 2.5 * ††† 5.3 ± 2.4 *** 7.5 ± 2.8 ** †

	 CD11b+ Ly6Chi

(% of monocytes) 62.2 ± 8.5 57.5 ± 8.4 51.2 ± 6.4 ** 50.2 ± 4.1 ***

	 CD11b+ Ly6Clow

(% of monocytes) 35.6 ± 7.7 40.0 ± 8.0 † 47.8 ± 6.3 *** 48.0 ± 3.5 ***

PBMC, peripheral blood mononuclear cells. *P<0.05, **P<0.01, ***P<0.001 as compared with control; 
†P<0.05, †††P<0.001 as compared with atorvastatin (n=15 per group)

Safety aspects of alirocumab
No effects on body weight (gain) and food intake were noted in any treatment group as 
compared with the control group (data not shown). The 10 mg/kg dose of alirocumab on 
top of atorvastatin treatment led to a reduction in liver weight as compared with the control 
group after 18 weeks of treatment ( -20%, P<0.05, respectively), whereas monotreatment did 
not have an effect on liver weight. Plasma aspartate transaminase and alanine transaminase 
were measured in all animals after 16 weeks of treatment (Table 4).
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Table 4 Safety aspects of alirocumab.

Safety aspects
Plasma ALT
 (U/L)

Plasma AST
(U/L)

Liver weight
(g)

Control 91.6 ± 75.6 223.0 ± 189.6 1.23 ± 0.25
3 mg alirocumab 67.1 ± 42.7 189.4 ± 108.7 1.18 ± 0.25
10 mg alirocumab 153.0 ± 122.6 426.3 ± 309.2 * 1.38 ± 0.43
Atorvastatin 59.8 ± 24.3 217.0 ± 76.5 1.05 ± 0.12
3 mg alirocumab + atorvastatin 54.5 ± 25.6 171.7 ± 66.1 1.02 ± 0.17
10 mg alirocumab + atorvastatin 51.0 ± 23.7 157.6 ± 29.2 † 0.99 ± 0.10 *

ALT, alanine transaminase; AST, aspartate transaminase. *P<0.05, as compared with control, †P<0.05 
as compared with atorvastatin

Discussion

The PCSK9 monoclonal antibody alirocumab has been shown to strongly lower LDLC and non-
HDL-cholesterol (HDL-C) alone and on top of statin treatment,23-26 and is currently in phase 
III clinical development, which includes a large CVD outcome trial in hypercholesterolemic 
patients with relatively recent acute coronary syndrome treated with high-dose statins.44 
It should be realized that the effectiveness of alirocumab on cardiovascular endpoints will 
only be assessed in patients who also receive statins. Therefore, the present study was 
designed to investigate the effects of alirocumab on atherosclerosis development, alone 
and in combination with atorvastatin. Taken together, we have shown that alirocumab dose-
dependently decreases plasma cholesterol and reduces progression of atherosclerosis. 
Moreover, alirocumab improves lesion morphology and composition, and enhances the 
beneficial effects of atorvastatin in APOE*3Leiden.CETP mice. This is the first study to show 
that a monoclonal antibody to PCSK9 reduces atherosclerosis development.

Rescue of LDLR from intracellular degradation was verified by an increase in hepatic 
LDLR protein levels after alirocumab treatment. Consequently, alirocumab decreased TC 
(-37% to -46%) and TG (-36% to -39%) by a reduction in non-HDLs. The dose-dependent 
reduction in TC after alirocumab treatment was enhanced in combination with atorvastatin 
(-48% to -58%). These results support an improvement in cholesterol management by 
adding alirocumab to statin treatment. The dose-dependent cholesterol-lowering effects 
in our study are in accordance with results from phase I and phase II clinical trials.23-26 In 
phase I trials, alirocumab administered as a single ascending dose (50 to 250 mg) in healthy 
subjects, and as multiple doses (50 to 150 mg) in statin-treated FH patients, decreased LDL-C 
by 33% to 46% and by 39% to 61%, respectively.23 Results from the latter study indicate an 
additive effect of alirocumab on statin treatment, since similar reductions were observed 
with alirocumab monotherapy and in statin-treated patients.
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In a phase II trial in patients with hypercholesterolemia, addition of 50 to 150  mg 
alirocumab every 2 weeks to 10 to 40 mg/d atorvastatin decreased LDL-C by 40% to 72% and 
TC by 23% to 45%.25 In a phase II trial in patients with FH, addition of 150 mg of alirocumab 
every 2 weeks to a stable dose of statin, with or without ezetimibe, decreased LDL-C by 
68% and TC by 44%.24 A multicenter phase II trial confirmed these findings with a 66% 
to 73% reduction in LDL-C and a 41% to 47% reduction in TC when adding alirocumab to 
either 10 or 80 mg/d atorvastatin in hypercholesterolemic patients.26 In the present study, a 
similar additive cholesterol-lowering effect on top of atorvastatin treatment (-36% to -48% 
reductions in TC as compared with atorvastatin alone) was found. The clinical trials also 
provide evidence for additional modest reductions in TGs and modest increases in HDL-C. 
However, baseline TG levels were low in the latter studies, which may explain the larger 
effect on TG found in our study.

A higher (V)LDL clearance increases liver cholesterol exposure and may result in changes 
in hepatic cholesterol content and/or fecal excretion of cholesterol or, after its conversion, 
bile acids. However, alirocumab did not lead to hepatic lipid accumulation, whereas 
atorvastatin and the combination treatments significantly reduced cholesteryl ester content 
without changes in hepatic TG. Intriguingly, fecal output of bile acids and neutral sterols 
remained unchanged by the treatments. In line with our data, full absence of PCSK9 was 
recently reported not to be associated with hepatic lipid accumulation or fecal excretion of 
cholesterol.45 However, contrasting data in PCSK9 -/- mice demonstrated increased LDL-C 
excretion via the transintestinal cholesterol excretion pathway and subsequently mildly 
increased fecal neutral sterol loss, with unfortunately no data on fecal bile acid loss.46 As 
opposed to PCSK9 inhibition by alirocumab in the present study, lack of PCSK9 was reported 
to increase fecal bile acid output.45 These data indicate that, despite the greater influx of 
cholesterol from the plasma compartment into the liver, hepatic cholesterol homeostasis is 
maintained, although the precise mechanism remains to be established.

The lipid-modifying effects of PCSK9 inhibition provide indications for an atheroprotective 
effect. This notion is supported by data from a study where mice expressing high levels of 
PCSK9 had significantly more aortic cholesterol ester accumulation, and developed severe 
aortic lesions, compared with wild-type and PCSK9 knockout mice when fed an atherogenic 
diet.11 In the same study, no differences were found in LDLR-deficient mice expressing no, 
normal, or high PCSK9 levels, suggesting that PCSK9 modulates atherosclerosis mainly via 
the LDLR. However, to date, the atheroprotective effect of pharmacological PCSK9 inhibition 
has not been investigated. Our study demonstrates for the first time that inhibition of serum 
PCSK9 with the monoclonal antibody, alirocumab decreases plasma lipid levels and as a 
result reduces atherosclerosis development, as evidenced by a reduction in atherosclerotic 
lesion size and severity in the aortic root area and arch. This dose-dependent inhibitory 
effect of alirocumab on lesion size was strongly enhanced in combination with atorvastatin, 
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where a considerable number of animals did not develop any severe lesions. Although 
pleiotropic effects of statin treatment may contribute to the reduction in CVD risk,47 results 
from our study emphasize the importance of cholesterol-lowering per se in treatment of 
CVD. In our study, the effects of alirocumab alone and in combination with atorvastatin on 
lesion area were mainly predicted by the reduction in plasma TC levels as illustrated by the 
strong association (R2 = 0.84) between TC levels and the lesion area.

In the present study, alirocumab, atorvastatin, and their combination reduced the 
circulating granulocytes/neutrophils and monocytes, in particular pro-inflammatory 
Ly6Chi monocytes. Ly6Chi monocytes are proposed to be precursors of pro-inflammatory 
M1 macrophages48 and studies in mice have shown that hypercholesterolemia induces 
Ly6Chi monocytosis.49 In addition, alirocumab decreased endothelial expression of 
ICAM-1 and consequently reduced monocyte adhesion to the vascular endothelium. In 
hypercholesterolemia, modified lipoproteins induce endothelium activation, thereby 
mediating the arrest and transmigration of circulating monocytes into the subendothelial 
space where they differentiate into macrophages.48

In addition to monocyte adhesion, alirocumab reduced other markers of vascular 
inflammation, including T cell abundance in the aortic root area, as well as macrophage 
and necrotic content and cholesterol clefts of the lesions. Cholesterol crystals have been 
shown to be particularly pro-inflammatory and to trigger local and systemic inflammatory 
responses.50, 51 Moreover, increased macrophage content and a large necrotic core, as well 
as a thin, collagen-poor fibrous cap and decreased SMCs, are important characteristics of 
a vulnerable lesion that is prone to rupture.47 Alirocumab alone and in combination with 
atorvastatin reduced vascular inflammation and strongly improved the plaque morphology.

The present study is a progression/prevention study which may pose as a potential 
limitation with respect to translation to the clinic where patients with existing lesions are 
often treated. Nonetheless, data from this study may also suggest beneficial effects on 
markers of atherosclerosis by reducing TC with alirocumab in the human situation where 
new lesions are formed alongside existing plaques.

PCSK9 has received a considerable amount of attention in the last decade as a possible 
target for treatment of CVD, and several approaches to inhibit the protein are currently 
being investigated.4 Efficacy and safety of alirocumab will be further investigated in large 
phase III clinical outcome trials, in patients with FH and in high cardiovascular risk patients 
with hypercholesterolemia on lipid-modifying therapy within the ODYSSEY program.44 These 
trials will reveal whether PCSK9 inhibition with alirocumab translates into clinical benefit.
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