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1. Abstract

The bodily decline that occurs with advancing age strongly impacts on the prospects for future 
health and life expectancy. Despite the profound role of age in disease etiology, knowledge 
about the molecular mechanisms driving the process of aging in humans is limited. Here, we 
used an integrative network-based approach for combining multiple large-scale expression 
studies in blood (2,539 individuals) with protein–protein Interaction (PPI) data for the 
detection of consistently co-expressed PPI modules that may reflect key processes that change 
throughout the course of normative aging. Module detection followed by a meta-analysis on 
chronological age identified fifteen consistently co-expressed PPI modules associated with 
chronological age, including a highly significant module (p = 3.5 × 10-38) enriched for ‘T-cell 
activation’ marking age-associated shifts in lymphocyte blood cell counts (R2 = 0.603; p = 1.9 
× 10-10). Adjusting the analysis in the compendium for the ‘T-cell activation’ module showed 
five consistently co-expressed PPI modules that robustly associated with chronological age 
and included modules enriched for ‘Translational elongation’, ‘Cytolysis’ and ‘DNA metabolic 
process’. In an independent study of 3,535 individuals, four of five modules consistently 
associated with chronological age, underpinning the robustness of the approach. We found 
three of five modules to be significantly enriched with aging-related genes, as defined by 
the GenAge database, and association with prospective survival at high ages for one of the 
modules including ASF1A. The hereby-detected age-associated and consistently co-expressed 
PPI modules therefore may provide a molecular basis for future research into mechanisms 
underlying human aging.
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2.  Introduction

A steadily growing life expectancy of the 
general western population throughout the 
past two centuries1 has imposed the urgency 
for understanding the adverse effects of 
aging for public health and its relation to 
the observed large variation in healthy 
lifespan2. Age-dependent detrimental 
processes strongly attenuate prospects for 
future health, with chronological age being 
the major risk factor for mortality and 
virtually all common diseases in the western 
world3. Aging is a systemic ailment marked 
by a gradual metabolic decline eventually 
leading to a state of senescence on both the 
cellular and organismal level that seems to 
be caused by the accumulation of damage 
over time4. Despite their profound role for 
disease etiology, the existing knowledge 
concerning the molecular mechanisms 
driving biological aging processes in humans 
is limited.

Construction of consistent age-
associated signatures has proven to be 
challenging as a multitude of gene expression 
studies have identified age-associated genes 
so far, though with limited mutual overlap5,6. 
This inconsistency is most likely due to 
variable technical circumstances, small 
study sizes, and low signal-to-noise ratios, 
typically observed when analyzing the aging 
transcriptome. More similarity was observed 
at the pathway level, across tissues and even 
species7,8 suggesting that the analysis of the 
aging transcriptome by functionally grouped 
gene sets is a promising alternative for the 
classical individual-gene analyses.

Rather than employing literature-
based sets of genes sharing similar 

biological functions, so-called network 
approaches are increasingly used, which 
infer functional clusters of genes from the 
expression data itself by exploiting gene 
co-expression patterns hidden within the 
data9. Alternatively, changes in these gene 
co-expression patterns that occur with age 
might be used for inferring a functional 
grouping from the data10. However, co-
expression patterns may contain spurious 
gene–gene correlations11, which makes the 
use of multiple data sources simultaneously 
or the integration with other additional 
information sources on functional 
relationships between genes desirable.

Established modulators of aging 
processes in model organisms were 
reported to spatially cluster within networks 
constructed of protein-protein interaction 
(PPI) data12,13. Hence, PPI networks can 
be exploited for prioritizing new aging-
associated genes14,15 or for refining modules 
of co-expressed genes that are correlated 
during the course of aging16. We previously 
demonstrated that the inference of these so-
called co-expressed PPI modules has a high 
reproducibility across multiple expression 
datasets in breast cancer17, and here we 
extend this algorithm to combine multiple 
gene expression datasets on aging.

Though many algorithms for network 
inference exist18, relatively little attention 
has gone to the problem of network 
inference and subsequent associations with 
a phenotype using multiple heterogeneous 
expression data sources simultaneously. 
Merging the expression data into a single 
set and using this for network inference 
clearly surpasses the differences in 
correlation structures present within each 
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dataset. Irrespective of the type of network 
inference chosen, we propose to handle 
such heterogeneity by integrating the gene-
gene similarity measures obtained across 
expression datasets using a suitable meta-
analysis setting. Thus, in the approach 
described in this paper, we employ a meta-
analysis for inferring a consistent gene-gene 
network that serves as a basis for identifying 
consistently co-expressed PPI modules, 
which are subsequently analyzed with 
respect to chronological age across datasets 
using again a meta-analysis.

To robustly characterize the changes 
of the blood transcriptome associated 
with chronological age, we have build 
a compendium using three large-scale 
transcriptomic studies19-21 generated in 
blood comprising 2,539 individuals on 
which we applied our integrative network 

approach. For comparison, two types 
of individual-gene meta-analyses were 
performed as well, which in combination 
with an enrichment analysis yielded only 
broad terms for age-associated cellular 
processes. Application of our integrative 
network-based approach, yielded five 
consistently co-expressed PPI modules 
showing robust age associations and 
functional enrichments for ‘Translational 
elongation’, ‘Cytolysis’ and ‘DNA metabolic 
process’, which seem to reflect downstream 
mTOR signaling events or cell-cycle 
checkpoints. Finally, we show that four of 
five modules replicate in an independent 
cohort, and that they are enriched for known 
longevity- and aging-related genes and that 
the expression of one module associates 
with prospective survival at old age.

Study Tissue Ethnicity # start

total††

# end

total†

# males 

(%)†

mean 

age†

min 

age†

max 

age†

SAFHS * Lymphocytes Mexican 
Americans 
(USA)

1240 1240 506 
(40.8%)

39.3 15 94

IFB_A Peripheral 
blood

Caucasian 
(Icelandic)

904A 411 198 
(48.2%)

48.8 19 84

IFB_B Peripheral 
blood

Caucasian 
(Icelandic)

904A 434 180 
(41.5%)

46.2 20 76

DILGOM Peripheral 
blood

Caucasian 
(Finnish)

518B 454 195 
(43.0%)

51.6 30 70

Table 1: Descriptives of the datasets composing the compendium.

(*) Expression and phenotypic data were obtained from ArrayExpress under accessions: E-TABM-305
(††) Number of individuals with matching phenotypic data per study when obtained.
(A) Data of IFB was measured in two batches. This figure indicates the total number of individuals before 
preprocessing or removal of duplicates across batches.
(B)  A small batch was detected and all samples belonging to it were removed. 
(†)  Statistics computed after preprocessing.



Module-Based Meta-Analysis of Human Aging Data

45

3

3.  Results

3.1 The largest transcriptome 

compendium for normative aging

To robustly characterize the changes of the 
blood transcriptome throughout the course 
of normative aging in the range of 15-94 years, 
we built a gene expression compendium 
using three large-scale transcriptomic 
studies performed in blood: the San Antonio 
Family Heart Study (SAFHS)19, the Icelandic 
Family Blood (IFB) cohort20 and the Dietary, 
Lifestyle, and Genetic determinants of 
Obesity and Metabolic syndrome (DILGOM) 
study21. Data of IFB were measured in two 
roughly equally sized batches, from this 
point on referred to as IFB_A and IFB_B, 
and was treated as two separate datasets 
in the downstream analysis. Data quality 
was critically reassessed and re-annotated 
yielding a compendium of 9,047 unique 
genes expressed in 2,539 individuals 
divided over four datasets (SAFHS: 1,240, 
IFB_A: 411, IFB_B: 435, DILGOM: 454; Table 
1 & Experimental Procedures).

3.2 Limited overlap of age-associated 

genes between studies within the 

compendium 

The most straightforward method for an 
integrative analysis across datasets is to 
first compute the age-association genes 
per dataset and subsequently inspect the 
overlap of significant results. A linear model 
adjusted for gender yielded between 111 
(1.2%) and 1,103 (12.2%) significantly age-
associated genes per dataset (Bonferroni 
correction, α ≤ 0.05), of which 26 genes 
were significantly associated with age in 
all four datasets (Figure 1 and Table S1, 
Supplemental Materials). These results 

confirmed the high discrepancy between 
lists of age-associated genes previously 
reported in literature, even though now 
observed in equal or similar tissues5,6.

Figure 1:  Significantly age-associated genes in 

studies of the blood compendium. A Venn analysis was 
performed for inspecting the overlap of the significantly 
age-associated genes found within different studies. The 
majority of the consistently detected age-associated 
genes (24 of 26) show a decreased expression with 
advancing age and include the following: ARH, BACH2, 
CCR7, ECRG4, EDAR, EPHA1, EPHX2, FAM102A, FAM134B, 
FBLN2, FCGBP, FLNB, IL24, LRRN3, NELL2, NMT2, NRCAM, 
OXNAD1, PDE9A, PHGDH, PIK3IP1, SIRPB2, SUSD3, and 
TSGA14. The remaining 2 consistently age-associated 
genes showing increased expressions are ARP10 and 
SYT11. See Table S1 (Supplemental Materials) for more 
details.

3.3 Rank-based integration of age-

associated genes improves consistency 

between studies

As repeatedly applied cutoffs across 
multiple heterogeneous datasets may 
lead to high false exclusion rates of age-
associated genes, we investigated whether 
age-association rankings were consistently 
high across datasets by applying a rank 
integration approach6,22. From the 9,047 
genes present in the compendium, 247 
consistently showed highly ranked 
differential expressions with age across 
the four datasets, of which 195 remained 
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significant after permutation tests (both at 
FDR <= 0.05) (Experimental Procedures). 
Of these 195 genes, 128 (65.6%) showed 
decreased and 67 (34.4%) showed increased 
expression levels with age. The top 25 genes 
with increased and decreased expression 
are displayed in Tables 2 and 3, respectively, 
and include many of the age-associated 
genes previously identified, like LRNN3, 
LEF1, and SYT1123-25. Results for all 9,047 
genes in the compendium are provided in 
Table S2 (Supplemental Materials).

3.4 Functional enrichments of 

individual-gene analysis are not 

informative for normative aging

We next identified enriched functional 
groupings among genes significantly 
associated with normative aging using 
DAVID focusing on GO_FAT terms. Whereas 
the 26 genes from the overlap did not 
yield any significantly enriched terms, 
the 195 significant genes obtained with 
the rank integration approach yielded 
11 significant enriched groupings when 
run at default settings (Tables S3 and S4, 
Supplemental Materials respectively). 
Interestingly, enriched terms include 
‘Glycosylation site: N-linked’ (p = 6.1 × 
10-5, Benjamini corrected), previously linked 
to the inflamm-aging theory26. However, as 
most of the 11 identified terms are rather 
broadly defined, like ‘disulfide bond’ or 
‘signal peptide’, little detailed knowledge is 
gained on potential molecular mechanisms 
underlying normative aging following the 
individual-gene analysis approach.

3.5 A novel integrative network 

approach for detecting consistent co-

expressed PPI modules

To improve robustness against noise and 
increase power, we used a novel integrative 
network-based approach to explore 
functional age-associated groupings of 
genes. The proposed approach detects 
consistently co-expressed PPI modules 
across multiple datasets (for details see 
Experimental Procedures and Data S1, 
Supplemental Materials). Using the four 
transcriptomic datasets mapped onto the 
PPI network, we detected a total of 162 
consistently co-expressed PPI modules 
ranging in size from 2 to 37 genes (see 
Figure S1, Supplemental Materials for a 
complete overview). The following steps 
in our analysis were limited to the subset 
of 27 co-expressed PPI modules counting 
at least five genes. Application of DAVID 
yielded significant functional enrichments 
for 19 of the 27 identified co-expressed PPI 
modules (Table S5, Supplemental Materials), 
suggesting that the applied approach 
grouped genes according to plausible 
biological functions.

3.6 Age-associated co-expressed PPI 

modules point toward T-cell activation

To test whether transcriptional changes 
of the 27 identified modules associate 
with chronological age, an expression 
profile for each module was constructed 
by determining the mean expression of 
the genes within a detected co-expressed 
PPI module per individual. As with the 
individual-gene analysis, we proceeded by 
computing the associations of the module 
expressions with age while adjusting for 
gender for each dataset separately. Only 
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Symbol GeneID p-value1 q-value1 p-value2 q-value2

GPR56 9289 5.3 × 10-09 4.8 × 10-05 1.0 × 10-06 0.0018

HF1 3075 2.3 × 10-08 8.1 × 10-05 1.0 × 10-06 0.0018

SYT11 23208 2.7 × 10-08 8.1 × 10-05 ≤ 5.0 × 10-7 0.0018

ARP10 164668 7.3 × 10-08 1.7 × 10-04 1.0 × 10-06 0.0018

B3GAT1 (CD57) 27087 1.1 × 10-07 2.0 × 10-04 3.0 × 10-06 0.0021

SLC1A7 6512 1.8 × 10-07 2.6 × 10-04 3.2 × 10-05 0.0110

IFNG 3458 5.0 × 10-07 6.4 × 10-04 1.1 × 10-05 0.0065

DSCR1L1 10231 6.1 × 10-07 6.8 × 10-04 2.0 × 10-06 0.0021

ARK5 9891 7.9 × 10-07 7.9 × 10-04 3.0 × 10-06 0.0021

PIG13 81563 9.3 × 10-07 8.8 × 10-04 1.0 × 10-06 0.0018

SPUVE 11098 1.1 × 10-06 8.8 × 10-04 1.2 × 10-05 0.0067

PDGFRB 5159 1.2 × 10-06 8.8 × 10-04 1.5 × 10-06 0.0021

EDG8 53637 1.4 × 10-06 9.4 × 10-04 7.8 × 10-05 0.015

MARLIN1 152789 1.5 × 10-06 9.4 × 10-04 5.0 × 10-06 0.0032

TGFBR3 7049 2.0 × 10-06 0.0012 2.8 × 10-05 0.011

GZMB 3002 2.4 × 10-06 0.0013 5.0 × 10-04 0.050

CX3CR1 1524 2.9 × 10-06 0.0014 2.9 × 10-05 0.011

STYK1 55359 3.3 × 10-06 0.0015 4.8 × 10-05 0.013

ADRB2 154 3.7 × 10-06 0.0016 3.0 × 10-06 0.0021

GAF1 26056 7.1 × 10-06 0.0029 7.2 × 10-05 0.015

CTSL 1514 7.7 × 10-06 0.0030 3.2 × 10-04 0.040

GFI1 2672 1.1 × 10-05 0.0040 3.0 × 10-06 0.0021

TTC38 55020 1.1 × 10-05 0.0040 7.6 × 10-05 0.015

AGPAT4 56895 1.2 × 10-05 0.0041 2.5 × 10-06 0.0021

GZMA 3001 1.4 × 10-05 0.0045 3.3 × 10-04 0.040

Table 2: Top 25 genes according to the gene statistic (Ui) having increased expression with age.

(1) p- and q-values determined using the gamma-distribution of the gene statistic, Ui 
(2) p- and q-values determined using permutation of the gene statistic, Ui 

one module (Figure 2A), enriched for ‘T-cell 
activation’, was significantly associated 
with age in each of the four datasets of 
the compendium. This module A contains 
genes commonly employed as markers for 
assessing the differentiation status of T-cell 
lineages, such as CCR7, CD28, and TNFRSF7 
(CD27). A fixed-effect meta-analysis on the 
expression of the different modules across 

the datasets showed again that the ‘T-cell 
activation’ module was most significantly 
associated with age (Bonferroni corrected 
p = 3.5 × 10-38) (see also Experimental 
Procedures). The consistent age association 
of the ‘T-cell activation’ module, however, 
raises the concern that the identified 
modules reflect age-related changes in the 
proportions of cell populations in blood, as 
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Symbol GeneID p-value1 q-value1 p-value2 q-value2

LRRN3 54674 1.3 × 10-12 1.2 × 10-8 ≤ 5.0 × 10-7 3.2 × 10-4

FCGBP 8857 3.2 × 10-10 1.5 × 10-6 ≤ 5.0 × 10-7 3.2 × 10-4

CCR7 1236 1.1 × 10-9 3.2 × 10-6 ≤ 5.0 × 10-7 3.2 × 10-4

NELL2 4753 2.0 × 10-8 4.5 × 10-5 1.0 × 10-6 3.8 × 10-4

NRCAM 4897 3.1 × 10-8 5.6 × 10-5 ≤ 5.0 × 10-7 3.2 × 10-4

IGJ 3512 1.5 × 10-7 2.3 × 10-4 2.6 × 10-4 0.019

LEF1 51176 1.9 × 10-7 2.5 × 10-4 ≤ 5.0 × 10-7 3.2 × 10-4

FAM134B 54463 2.2 × 10-7 2.5 × 10-4 ≤ 5.0 × 10-7 3.2 × 10-4

PACAP 51237 2.5 × 10-7 2.5 × 10-4 1.5 × 10-6 4.8 × 10-4

ITM2C 81618 2.8 × 10-7 2.5 × 10-4 3.5 × 10-6 8.1 × 10-4

PIK3IP1 113791 3.0 × 10-7 2.5 × 10-4 1.0 × 10-6 3.8 × 10-4

PDE9A 5152 5.1 × 10-7 3.8 × 10-4 1.0 × 10-6 3.8 × 10-4

BACH2 60468 6.9 × 10-7 4.8 × 10-4 1.0 × 10-6 3.8 × 10-4

FLJ12895 65982 9.5 × 10-7 6.0 × 10-4 1.5 × 10-6 4.8 × 10-4

FAM102A 399665 1.1 × 10-6 6.0 × 10-4 ≤ 5.0 × 10-7 3.2 × 10-4

FBLN2 2199 1.1 × 10-6 6.0 × 10-4 ≤ 5.0 × 10-7 3.2 × 10-4

FLNB 2317 1.2 × 10-6 6.0 × 10-4 ≤ 5.0 × 10-7 3.2 × 10-4

APEG1 10290 1.2 × 10-6 6.0 × 10-4 1.0 × 10-6 3.8 × 10-4

EPHX2 2053 1.3 × 10-6 6.0 × 10-4 1.5 × 10-6 4.8 × 10-4

TNFRSF17 608 1.3 × 10-6 6.1 × 10-4 1.2 × 10-4 0.011

MYC 4609 1.6 × 10-6 6.6 × 10-4 3.5 × 10-6 8.1 × 10-4

NT5E 4907 1.7 × 10-6 6.6 × 10-4 1.0 × 10-6 3.8 × 10-4

TOSO 9214 1.7 × 10-6 6.6 × 10-4 1.0 × 10-6 3.8 × 10-4

ARH 26119 3.2 × 10-6 0.0012 2.0 × 10-6 6.2 × 10-4

OXNAD1 92106 3.3 × 10-6 0.0012 ≤ 5.0 × 10-7 3.2 × 10-4

Table 3: Top 25 genes according to the gene statistic (Ui) having decreased expression with age.

(1) p- and q-values determined using the gamma-distribution of the gene statistic, Ui 
(2) p- and q-values determined using permutation of the gene statistic, Ui 

previously reported27, rather than changes 
in gene expression.

3.7 T-cell activation module expression 

marks blood lymphocyte counts

To investigate the relation between 
the expression of the ‘T-cell activation’ 
module and the proportions of blood 

cell populations, for which we have no 
data in the compendium, we revisited a 
transcriptomic dataset on peripheral blood 
measured in the Leiden Longevity Study 
(LLS)25 (Data S1, Supplemental Materials). 
Using the expression data of 50 middle-
aged and 50, 90-year-old individuals, we 
first confirmed the association with age 
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of the expression of the ‘T-cell activation’ 
module (p = 3.7 × 10-5), and subsequently 
observed a significant correlation between 
the expression of the ‘T-cell activation’ 
module and lymphocyte counts (R2 = 0.603, 
p = 1.9 × 10-10). These findings suggest that 
the previously observed age associations in 
the blood compendium are most probably 
confounded by the age-associated decline 
in lymphocyte counts. We also conclude 
that the expression of the ‘T-cell activation’ 
module could serve as a proxy for the age-
associated decline in lymphocyte counts in 
the compendium.

3.8 Five co-expressed PPI modules 

associate with age independent of T-cell 

activation

Based on these findings, we adapted the 
fixed-effect meta-analysis to reanalyze the 27 
modules in the compendium while adjusting 
for gender as well as the expression of the 
‘T-cell activation’ module. This revealed 
nine modules significantly associated with 
chronological age, of which five also showed 
a significant association without adjusting 
for ‘T-cell activation’ (Figure 2B–F). These 
five modules thus exhibit the most robust 
expression changes with age and include 
(i) a large consistently down-regulated 
ribosomal module (p = 9.4 × 10-19), enriched 

Figure 2: Overview main results of the integrative network-based approach. Panel 1: Overlap of the PPI 
network and cluster analysis of the transcriptomic data reveals 27 modules, 15 are significantly associated with 
age, 9 are significantly associated with age when corrected for the ‘T-cell activation’ module expression, and the 
5 most robust findings are found in the overlap. Panel 2: Legend: Genes are represented by nodes, whose shape 
and color reflect the results of the individual-gene statistic (Ui). The red and green colors denote a correlating or 
anti-correlating relationship of gene expression with age, respectively. The intensity of the coloring indicates the 
significance of the gamma-distributed transformed rank product statistics. Nodes marked by a thick bordering or 
a hexagon shaped bordering represent genes with FDR adjusted p-values ≤ 0.05 for respectively the analytical and 
permutation-based approach. Panel 3: The co-expressed PPI module that is enriched for ‘T-cell activation’. Panel 4: 
B-F: 5 co-expressed PPI modules with expressions robustly associated with age. B, C and D: modules enriched for 
‘Translational elongation’, ‘Cytolysis’, and ‘DNA metabolic process’, respectively. Node’s shape and color reflect the 
results of the individual-gene statistic (Ui).
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for ‘Translational elongation’ (p = 4.5 × 10-

46); (ii) an up-regulated module containing 
among others several granzymes and the 
perforin gene (p = 2.9 × 10-24), enriched for 
‘Cytolysis’ (p = 9.4 × 10-05); and (iii) a down-
regulated module containing the PARP1 
(ADPRT) gene (p = 3.1 × 10-39) enriched for 
‘DNA metabolic process’ (p = 0.0036). The 
two remaining modules were both down-
regulated with advancing age and lacked 
any significant functional enrichments 
(Figure 2E,F; p = 3.9 × 10-11 and p = 2.5 × 10-

18, respectively).

3.9 Replication of co-expressed PPI 

modules as robust markers for aging

We conducted an independent replication 
study of the identified network modules 
as robust markers for chronological age 
using gene expression data from the 
Netherlands Twin Register and Netherlands 
Study of Depression and Anxiety (NTR & 
NESDA) consortium (N = 3535)28 assayed 
on individuals within age range 17-79 
years (Data S1, Supplemental Materials). 
An association analysis between the mean 
expression of a module and chronological 
age, adjusted for sex and the mean 
expression of the ‘T-cell activation’ module, 
yielded significant results for four of the 
five identified modules, all with directions 
corresponding to those found in the 
compendium (Table S6, Supplemental 
Materials). These results emphasize the 
robustness of the findings produced by our 
approach and confirm that the mean module 
expression in whole blood of module B, C, E, 
and F may be considered as robust markers 
of chronological age.

3.10 Co-expressed PPI modules are 

enriched for GenAge longevity and aging 

genes

As a validation of the identified modules, 
we computed whether aging-related genes 
stored by GenAge12, a database providing a 
comprehensive overview of aging-related 
genes in humans and model systems, were 
enriched within modules A–F (Figure 
2) (Data S1, Supplemental Materials). 
Whereas module A was supported by 
human derived annotations only (OR = 
12.1, 95% CI 2.88-39.2, p = 6.95 × 10-4), 
module B was solely based on knowledge 
derived from model organisms (OR = 16.9, 
95% CI 7.26–39.1, p = 2.52 × 10-10) (Table 
S7, Supplemental Materials). Modules D, E, 
and F had annotations balanced over both 
sources, and therefore, the significance 
of the joint enrichment was assessed by 
using a resampling approach (Data S1, 
Supplemental Materials), which yielded 
significant enrichments for modules E (p = 
0.016) and F (p = 0.0029). These findings 
provide additional evidence that the joint 
expression of these modules may play a 
relevant role in human aging.

3.11 Module F associates with 

prospective survival at old age

To investigate whether the identified 
modules could potentially serve as 
biomarkers, we studied the microarray data 
assayed on 50 nonagenarian individuals 
from the Leiden Longevity Study25. A left 
truncated Cox proportional hazard model 
adjusted for sex and cell counts indicates 
that the mean expression of module F 
associates with prospective survival beyond 
the age of 90 years (N = 50, N

death = 45, HR 
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= 0.265, 95% CI 0.12-0.57, p = 0.001). By 
showing that module F associates with 
prospective survival at old age, we illustrate 
its potential biological relevance.

Interestingly, the ASF1A gene is part 
of module F and has previously been 
identified by our group as one of the genes 
that was differentially expressed in blood of 
members of long-lived families as compared 
to similarly aged controls at middle age25. To 
confirm that the expression of the ASF1A gene 
in module F also associates with prospective 
survival at old age, we analyzed the gene 
expression of ASF1A measured with RT-
qPCR in 74 nonagenarians from the Leiden 
Longevity Study (of which 24 overlapped 
with the micro-array experiment) for 
association with prospective survival. 
Because we observe a similar association 
(N

death = 64, HR = 0.54, 95% CI 0.34-0.85, p = 
0.008) (Figure 3), these results indicate that 
modules, of which the expression in blood is 
consistently associated with chronological 
age across various datasets, may associate 
with variation in lifespan, and therefore 
provide valid gene targets for studying 
relevant biological endpoints in human 
aging.

4.  Discussion

Age-associated changes in gene expression 
may provide meaningful leads to pathways 
affected by and involved in aging, 
though are generally difficult to detect 
consistently6. Therefore, we constructed a 
large compendium of human whole blood 
expression studies19-21 comprising 2,539 
individuals on which we performed a novel 
integrative network-based analysis. This 
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Figure 3:  Expression of ASF1A associates with 

prospective survival in nonagenarians. High 
expression of ASF1A confers a prospective survival 
benefit at old age.

yielded fifteen consistently age-associated 
co-expressed PPI modules. Because the most 
significant age-associated module appeared 
to correlate with lymphocyte cell counts in 
an independent gene expression dataset, 
the expression of this module, enriched for 
‘T-cell activation’, was subsequently used 
as a proxy for possible confounding shifts 
in the distribution of lymphocyte subsets. 
This enabled the identification of five age-
associated modules (Figure 2 Panel I and 
IV), including three modules enriched for 
‘Translational elongation’, ‘Cytolysis’ and 
‘DNA metabolic process’ (Figure 2B–D). 
Replication in an independent cohort 
confirmed these findings for four of five 
modules (Figure 2B, C, E and F), underpinning 
the robustness of the proposed approach. 
The enrichments against a database for 
aging-related genes (Figure 2B, E and F) 
emphasize the relevance of these biological 
findings for aging research, which is even 
further substantiated by the fact that the 
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mean expression of module F associates 
with prospective survival at old age.

4.1 Mitochondrion-related aging

Two of the identified modules are down-
regulated with age and seem to be related 
to the mitochondrion, though lacking 
any significant functional enrichment 
(Figure 2E and F). Despite the absence of 
functional enrichments, both modules were 
significantly enriched for aging-related 
genes, as defined by GenAge, implying that 
known age-related single genes can be put 
into a novel biological perspective by our 
network approach.

Module F (Figure 2F) contains several 
mitochondrial factors and enzymes, like, for 
instance, the mitochondrial transcription 
termination factor MTERF, the ACADM 
enzyme used for fatty acid metabolism, or 
the mitochondrial tRNA synthetase IARS2, 
whose homolog was shown to increase 
lifespan upon disruption in worms29. 
This module also includes several genes 
previously associated with age or age-
associated diseases such as the mitotic 
checkpoint protein BUB3, previously 
associated with accelerated aging in mice30, 
and the cell-cycle checkpoint protein APPBP1 
found in increased quantities in the brain 
affected by Alzheimer’s disease31. This broad 
range of gene characteristics composing 
the module could be explained by the fact 
that the functionality of mitochondria is 
not confined to cellular energy metabolism 
alone, but also seems to make up an integral 
part of multiple cell signaling cascades 
including cell-cycle control and cell death32.

Interestingly, module F also includes 
the ASF1A histone chaperone of which we 

previously have shown that its expression 
associates with familial longevity in the 
Leiden Longevity Study25. We revisited the 
RT-qPCR data assayed on 74 nonagenarians 
and now show that the expression of ASF1A 
also associates with prospective survival. 
This result illustrates that modules, of which 
the expression in blood is consistently 
associated with chronological age across 
various datasets, may associate with 
variation in lifespan, and therefore provide 
valid gene targets for studying relevant 
biological endpoints in human aging.

The other mitochondrion-related module 
(Figure 2E) contains the heat shock protein 
HSPCA (HSP90) and the mitochondrial 
receptor TOMM20, which jointly play a 
central role in translocating pre-proteins 
into the mitochondria33. They seem to be 
consistently co-expressed in blood with 
EIF4A2, a eukaryotic translation initiation 
factor and DDX18, an ATP-dependent RNA 
helicase, of which the worm homologs were 
shown to extent lifespan upon disruption29,34. 
To summarize, this module seems to relate 
to aging by influencing protein translation 
and mitochondrial translocation efficiency.

4.2 Age-associated limitation of 

protein synthesis

One of the identified modules predominantly 
consisted of ribosomal proteins and 
translation elongation factors comprising 
part of the ribosomal complex (Figure 2B). 
The module was significantly enriched for 
‘Translational elongation’ and for previous 
findings in model organisms with respect to 
aging and longevity. In addition, the module 
was down-regulated with advancing age 
fitting previous observations of the aging 
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blood transcriptome23-25, which could be 
interpreted as an attempt of the cell to limit 
global protein synthesis in response to 
stress arising from damage accumulating 
throughout lifespan35. Whether caused 
by response to stress or other factors, the 
change in protein translation may be ascribed 
to the mTORC1 complex36. This complex 
modulates cellular growth and metabolisms 
by determining the balance between protein 
synthesis and degradation in response to 
nutrient availability. Inhibition of mTOR 
signaling through the mTORC1 complex not 
only inhibits protein synthesis, but also has 
been shown to positively affect the lifespan 
in various invertebrates and mammals37. 
Moreover, human blood transcriptome 
studies showed that the gene expression 
of mTOR pathway is down-regulated with 
chronological age24,38 and is even associated 
with human familial longevity25. Hence, a 
consistently down-regulated ribosomal 
module with advancing age corresponds 
with the age-associated demise of mTOR 
signaling. Although it is well established 
that mTOR signaling links to both lifespan 
regulation and ‘Translational elongation’, it 
remains to be determined whether down-
regulation of ‘Translational elongation’ is 
causal for human aging.

4.3 WRN-related cell-cycle checkpoint 

on DNA integrity

A module down-regulated with age and 
enriched for ‘DNA metabolic process’ 
identified in the compendium could not be 
replicated in the NTR & NESDA cohort (Figure 
2D). Interestingly, this module contains the 
PARP1 (ADPRT) gene, which directly binds 
to WRN to induce apoptosis upon oxidative 

stress induced DNA damage and is as such 
a prime suspect for Werner syndrome39, a 
premature aging disease. Furthermore, the 
activity of the Parp1 protein in mononuclear 
cells has previously been shown to 
positively correlate with the species-specific 
lifespan across 13 mammalian species40. 
Taken together, findings in the compendium 
suggest that the lowered transcription rate 
of PARP1 negatively affects DNA integrity 
and thus lifespan, though more experiments 
are required to investigate this hypothesis.

4.4 Age-associated shifts in T-cell 

composition

Another identified module is up-regulated 
with age and enriched for ‘Cytolysis’ (Figure 
2C). It contains several genes used to 
dispatch virus-infected cells and may reflect 
the decreased competence for fighting 
infections in an early stage, caused by an 
age-related deterioration of the immune 
system, known as immuno-senescence41. 
We can, however, not rule out that the age-
associated expression of GZMA, GZMB, and 
PRF1 that are part of this module point to an 
age-associated shift in T-cytotoxic cells27.

Though identified co-expressed PPI 
modules may show extensive correlation 
with confounding factors, we should be 
careful to dismiss modules as such only. 
For instance, the ‘T-cell activation’ module 
(Figure. 2A), which is down-regulated with 
age, also contained BNIP3, an inhibitor of 
the mTORC1 complex shown to modulate 
lifespan in worms, flies, and mice37; and 
FOXO1, also displaying an intricate interplay 
with both complexes of mTOR36, and shown 
to extent lifespan in various invertebrates42. 
Additionally, human mTOR signaling may 
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play a central role in orchestrating T-cell 
maturation and T-cell fate decisions43, 
and could thereby also explain the age-
associated decline in lymphocytes as marked 
by the ‘T-cell activation’ module. Taken 
together, these examples illustrate that what 
is confounding the analysis of the blood 
transcriptome for molecular mechanisms 
associated with aging is subjective to debate 
and might even not be possible to determine 
given the complex interplay between the 
different biological levels on which aging 
acts.

4.5 The proposed network approach 

into perspective

Network analyses have clear advantages 
over individual-gene analyses, as they 
enable the incorporation of useful prior 
knowledge, which can be exploited for 
improving the robustness of the analysis 
and the subsequent interpretation of the 
results. The improved robustness of the 
network approach over the individual-
gene analyses was reflected by the low 
mutual overlap between the individual-gene 
results (Figure 1) as opposed to the high 
concordance between the results obtained 
in the compendium and replication cohort. 
The advantages for the interpretation were 
clearly illustrated by the modest insights 
gained from the two different strategies for 
individual-gene analysis (‘Glycosylation site: 
N-linked’), as opposed to the detailed gene 
modules produced by our approach that can 
serve as a novel basis for further investigation 
into the molecular mechanisms underlying 
normative aging. Moreover, our approach 
is capable of inferring biological coherence 
from the data, without the explicit need of 
predefined functional groupings, as was 

shown by the enrichments of the identified 
modules found for genes within the GenAge 
database.

Though the analysis benefits from 
incorporating protein–protein interaction 
data, the type, and source clearly affect 
the results. To be as inclusive as possible 
for types and sources of PPI data, we have 
chosen to employ data obtained from the 
STRING database, which systematically 
collects and integrates interaction data 
derived from various sources for predicting 
functional relations between gene pairs. This 
choice results in a vast and comprehensive 
source of data. However, STRING data are 
not confined to physical interactions, as is 
the case with for instance IntAct (http://
www.ebi.ac.uk/intact/) and unlike KEGG 
(http://www.genome.jp/kegg/), STRING 
data are not manually curated. For network 
inference, a trade-off exists between the 
sparsity and the quality of the employed 
gene–gene interactions. We made use of 
a threshold on the quality of reported 
interactions that are created by STRING by 
benchmarking the different interaction data 
sources to KEGG. Varying this threshold 
would affect the size and nature of the 
obtained co-expressed PPI modules. As 
the threshold determines the scale of the 
analysis, an interesting observation is that 
the results can be confounded to parts of 
the global network that do not necessarily 
overlap with the predefined known 
biological pathways. The latter is illustrated 
by the fact that some of our modules are not 
enriched for biological pathways and could 
basically be valued as a strong point of our 
data-driven approach.
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4.6 Conclusion

By applying a network approach to multiple 
blood transcriptomics datasets, we have 
identified five co-expression PPI modules 
that associate with chronological age 
in humans. The confirmation of most of 
our findings in an independent dataset 
underpins the robustness of our approach. 
The modules are significantly enriched 
for aging-related genes as curated by the 
GenAge database. This implies that these 
age-related single genes, in the absence 
of a clear understanding of their joint 
functioning belong to a network that finds 
its basis in protein–protein interactions and 
will serve as novel input for aging research. 
We reinforced the biological relevance of one 
of the modules by showing that it associates 
with prospective survival beyond 90 years 
in humans as was observed also for a single 
known age-related gene in this module 
(ASF1A). These findings collectively warrant 
further investigations into the biological 
function of module F and its potential as a 
biomarker for healthy aging and human 
longevity.

5. Experimental Procedures

5.1 Creating the blood expression 

compendium
Analyses were based on gene expression data 
derived from individuals enrolled in three large 
cohort studies for which details on sample 
inclusion and employed expression protocols are 
provided in depth in the original publications19-21. 
Gene expression and accompanying phenotypic 
data was obtained from either the original authors 
or from the public data repository ArrayExpress. 
Data quality was stringently reexamined per 
dataset for the presence of outlier samples 

or outlier measurements and annotated to a 
common annotation standard (EntrezGeneID). A 
detailed description of the data processing and 
an overview on the resulting sample statistics is 
given in the Data S1 (Supplemental Materials) and 
Table 1, respectively.

5.2 Rank integration approach
A rank integration approach6,22 was used to identify 
genes consistently up- or down-regulated with 
age across multiple heterogeneous datasets. This 
type of meta-analysis integrates individual-gene 
statistics across datasets, by ranking the statistics 
per dataset and assessing the significance of 
the observed combined ranking using a Gamma 
distribution44 or through permutation. Gender 
adjusted linear fits between expression and age 
were used as gene statistics that were obtained by 
fitting the following multivariate linear regression 
model:

                                                                                    (1)

where E
ijk is the gene expression of gene i 

for individual j in the kth dataset, with 1 ≤ i ≤ M, 
1 ≤ j ≤ N and 1 ≤ k ≤ K, where G

jk and A
jk are the 

gender and age of individual j in the kth dataset, 
respectively, and where ε

ijk is the residual error of 
gene i for individual j in the kth dataset. Genes were 
ranked on the regression coefficients between 
age and expression, β

2ik
. The rank position of gene 

i in dataset k is denoted by R
ik

. Ranks across the 
datasets were integrated per gene by computing 
rank product statistics as previously defined by 
Koziol44:

                                                          (2)

The significance of the observed rank 
products was assessed in two ways. Following 
Koziol, rank products RPi were transformed using:

                                                                            (3)

The significance of the U-statistics could be 
assessed by employing the gamma distribution44 
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or through permutation as described in the Data 
S1.

5.3 Extracting co-expressed PPI 

modules
Genes were mapped to the protein–protein 
interaction network (STRING v9.0, http://string-
db.org/), which yielded a compendium of about 
81.3% of the initial set of genes (N = 7,353) in 
the compendium. Ranked co-expression matrices 
were computed for each dataset separately 
by computing a correlation matrix composed 
of first-order partial correlations between all 
pairs of genes adjusted for sex and subsequently 
assigned a rank to each of them. A higher positive 
correlation resulted in a higher ranking. The 
ranked co-expression matrices were integrated 
by computing rank products as in the section 
on individual-gene analysis. The resulting gene–
gene rank product matrix together with the PPI 
network matrix was subsequently used as input 
for the method that identifies co-expressed PPI 
sub networks as described in Van den Akker et 

al.17, see also Data S1 (Supplemental Materials). 
In short, a cluster analysis on the gene-gene rank 
product matrix yielded co-expressed modules 
of genes. High confidence co-expressed genes 
were obtained by applying a threshold on the 
gene-gene rank product matrix. We obtained 
co-expressed PPI modules by intersecting 
the co-expressed gene modules with the PPI 
network matrix. Co-expressed PPI modules were 
subsequently visualized using Cytoscape (Data 
S1, Supplemental Materials).

5.4 Fixed-effect meta-analysis on 

module expressions across the blood 

compendium
Gene expression data were summarized per co-
expressed PPI module for each dataset separately 
by taking the mean expression per individual over 
all genes in the module, resulting in a module 
expression for each dataset. Associations with age 
were tested for each co-expressed PPI module, by 
performing a fixed-effect meta-analysis across the 
four datasets using a first-order partial correlation 
between age and the module expression, 

computed with the controlling variable gender to 
adjust for sex differences. Per dataset k, we thus 
computed:

  

                                                                                    (4)

where 

	  
ρakmk  is the correlation between 

age and the expression of the nth module across 
individuals of the kth dataset; 

	  
ρakgk  is the 

correlation between age and gender across 
individuals of the kth dataset and 

	  
ρmkgk  is 

the correlation between expression of the mth 
module and gender of individuals in the kth 
dataset. To correct for multiple controlling 
variables, higher order partial correlations were 
computed by repeatedly computing first order 
partial correlations as described above. The 
function metacor of R package meta was used 
for integrating and testing the meta correlation 
statistic between age and module expression 
across the four datasets using default settings. 
Modules with significant correlations (bonferroni 
corrected p-value ≤ 0.05) were considered age 
dependent.
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