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1.	 Abstract

Multiple studies have illustrated that gene expression profiling of primary breast cancers 
throughout the final stages of tumor development can provide valuable markers for risk 
prediction of metastasis and disease sub typing. However, the identification of a biologically 
interpretable and universally shared set of markers proved to be difficult. Here, we propose 
a method for de novo grouping of genes by dissecting the protein-protein interaction 
network into disjoint sub networks using pair wise gene expression correlation measures. 
We show that the obtained sub networks are functionally coherent and are consistently 
identified when applied on a compendium composed of six different breast cancer studies. 
Application of the proposed method using different integration approaches underlines 
the robustness of the identified sub network related to cell cycle and identifies putative 
new sub network markers for metastasis related to cell-cell adhesion, the proteasome 
complex and JUN-FOS signaling. Although gene selection with the proposed method does 
not directly improve upon previously reported cross study classification performances, it 
shows great promises for applications in data integration and result interpretation.
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2.	 Introduction

A crucial step in breast cancer diagnosis 
and subsequent therapy is the assessment 
of the tumor’s capacity to metastasize. 
An erroneous diagnosis can either lead to 
overtreatment or could potentially allow 
already spread tumors to develop in distant 
tissues. Since the first leads to a significant 
amount of unnecessary burden for the 
patient, while the latter is the predominant 
cause of death in breast cancer patients1, a 
lot of effort has been invested to improve 
personalized risk profile predictions 
by employing gene expression assays. 
However, as whole genome assays 
are delivering an increasing list of 
transcriptomic disease markers, the low 
mutual overlap between different studies 
becomes apparent. More importantly, 
obtained sets of prognostic markers 
from one study show a significant drop in 
prediction performance when applied to 
another study2. Current methods for gene 
set grouping may be less successful when 
performed on a single gene basis, due to the 
underlying heterogeneity of the disease 
as well as the fact that due to secondary 
effects many genes seem to correlate with 
the phenotype2. Consequently, resulting 
gene sets purely selected on single gene 
ranking are often uninformative from a 
biological point of view.

In response, several types of analyses 
were developed, which incorporated 
prior biological knowledge to ensure the 
biological interpretability of the selected 
gene set3-5. Genes can for instance be 
grouped on similar function, localization 
or pathway membership. However, as 
many genes are still not assigned to 

relevant groupings and moreover, all 
relevant groupings themselves might still 
not be known, the effectiveness of such an 
approach might be severely compromised6. 

To deal with the low coverage of 
predefined functional groupings, several 
methods have been developed to create 
groupings de novo, by, for instance, 
exploiting data on physical interactions 
between proteins. Over the last few 
years, this type of data has consistently 
been gathered and integrated with other 
types of interactions7, like lethal-lethal8, 
co-citations, or cellular co-localization 
interactions to produce large interaction 
networks. These so called Protein-Protein 
Interaction (PPI) networks contain 
modules that can be linked to cellular 
functions9. The use of these networks for 
the simultaneous task of relevant gene set 
discovery and prediction optimization was 
popularized by the work of Chuang et al.6. 
In this method, sub networks are seeded 
once at every node in the network and 
are iteratively grown by greedily adding 
the best neighbor, until a certain gene set 
summary statistic no longer improves. 
Resulting sub networks have been used 
as input for classification showing an 
improvement in cross study classification 
compared to single gene based signatures 
as well as providing hypothetical biological 
mechanisms underlying the studied 
phenotype6.

Although this is clearly an improvement 
over previously published methods, we fear 
that the capacity to generalize over studies 
is compromised by the greedy aspect with 
which the seeded sub networks are grown. 
Given the fact that many genes seem to 
correlate with the studied phenotype, as 
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they are most probably co-expressed due 
to downstream effects, a considerable 
part of the data may be viewed as intrinsic 
biological replicates independently 
assessing the state of a select number of 
ongoing cellular processes. In view of this, 
we would rather like to use all informative 
genes involved in such a process to robustly 
characterize the cell’s transcriptomic state 
instead of using the genes from a local 
greedy search only.

A second drawback of greedy network 
approaches becomes apparent with 
the growing amount of protein-protein 
interactions that becomes available. New 
data predominantly interconnects genes 
within existing networks, rather than that 
it connects previously unlinked genes to 
existing networks. This contributes to the 
‘small-world’ phenomenon10, referring to 
a situation where almost every gene in a 
network is only a few connections away 
from any other gene. As a consequence, the 
informative property of localized network 
sub selection is lost to global and thus less 
interpretable sub network solutions. A 
proper biological interpretation is even 
further compromised if overlap between 
identified sub networks is allowed. Under 
these circumstances, numerous highly 
similar and equally likely solutions will be 
produced, biasing the selection towards 
a select set of predictive network hubs, 
thereby basically reducing the algorithm 
to a computationally inefficient global 
ranking method.

Anticipating the previously described 
problems in selecting genes, we here 
propose a non-greedy method for 
dissecting the interaction network in a 
set of disjoint sub networks. We expect 

that by incorporating both pair wise 
gene expression correlation measures, as 
protein-protein interactions functionally 
more coherent sub networks will be 
selected. We hypothesize that building 
such sub networks will not only generalize 
better across datasets in predicting the risk 
of metastasis as they exploit the available 
information maximally, but as well be more 
informative about the involved biological 
processes.

3.	 Experimental Procedures

3.1 	 Materials

In this study six publicly available 
microarray data sets of breast cancer 
samples measured on the HG U133A 
platform (Affymetrix) were employed 
to test our hypothesis. Raw expression 
data was downloaded at the NCBI’s ftp 
server11 under the accessions: GSE739012, 
GSE349413, GSE653214, GSE145615, 
GSE203416 and GSE1112117. Data was 
normalized, log2 transformed and 
summarized per probe set using the RMA 
procedure in the Affy package18 of R19,20 at 
default settings. Replicate and duplicate 
samples were removed. See Table 1 for an 
overview of the employed studies.

A recent annotation was downloaded 
from the Affymetrix website21 to map 
all “_at”, “_s_at” and “_x_at” probe sets 
to Ensembl Transcript IDs. Mappings 
to Ensembl gene IDs and protein IDs 
obtained from the Ensembl site22 and 
protein-protein interactions obtained 
from STRING23 were used to map probe 
sets to the protein-protein interaction 
network. Probe sets missing annotations 
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to genes, transcripts or proteins, as well 
as probe sets mapping to multiple genes 
or probe sets not associated with any 
interaction data were excluded for further 
analysis. When multiple probe sets were 
annotated to the same gene, “_at” probes 
were preferred over “_s_at” probes and 
“_s_at” probes over “_x_at” probes. When 
this did not enforce a decision the probe 
set with the highest standard deviation 
was selected. Preprocessing resulted in a 
mapping of 9,290 probe sets representing 
9,290 unique genes to a network of 169,566 
undirected interactions.

“POOR” and “GOOD” prognosis of 
samples was assessed using metadata 
obtained from the NCBI’s ftp server11 as 
well. “POOR” refers to the occurrence of 
a distant metastatic event or a relapse 
within five years after surgery. Subjects 
were selected for the “GOOD” prognosis 
subgroup when an event free survival of 
at least five years was reported. Whereas 
some studies contained information on 
distant metastatic events, others reported 
relapses of breast cancer. When both were 
available, the reports on distant metastatic 
events were used.

3.2 	 Methods

3.2.1 	Proposed method for dissecting 

the protein-protein interaction network 

in disjoint co-regulated sub networks: 

Sub networks are created through 
evidence-based filtering of edges between 
genes using two types of evidence: 
physical interaction data and expression 
correlations between any pair of genes. 
Let Eij be the gene expression matrix with 
probe set i and subject j, where i = 1 to M 

and j = 1 to N. An M × M correlation matrix C 

is computed, where Cpq is defined to be the 
correlation between gene p and gene q over 
all N samples. Threshold Tcor is applied on 
C to obtain a binary matrix CT, where CTpq = 
1 indicates sufficient and CTpq = 0 indicates 
insufficient correlation between genes p 

and q.
Based on a distance matrix equal to 

1-abs(C), the genes are hierarchically 
clustered (average linkage). The 
clustering dendogram is thresholded at 
1-Tcor, creating a grouping matrix G with 
dimensions M × M, where Gpg = 1 indicates 
co-membership of a gene cluster, and Gpg 

Study Accession # # Rep/Dup Missing “POOR” “GOOD”

Desmedt GSE7390 198 1741 24 31 119

Miller GSE3494 251 2322 37 37 158

Loi GSE6532 327 1863 47 32 107

Pawitan GSE1456 159 156 6 35 115

Wang GSE2034 286 286 11 95 180

Schmidt GSE11121 199 199 19 27 153
Table 1: Overview of studies. Statistics on the six studies employed. Accession, #, # Rep/Dup, Missing, “POOR” 
and “GOOD” refer to the accession code and the number of samples available at GEO, the number of samples after 
removal of replicates and duplicate samples, the number of samples with incomplete metadata or prematurely 
ended censoring, the number of “POOR” prognosis samples and the number of “GOOD” samples respectively. 1) 
Replicates (Desmedt/Loi) were removed from Desmedt. 2) Replicates (Desmedt/Miller) were removed from Miller. 
3) Duplicates (Miller/Loi) were removed from Loi.
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= 0 indicates an assignment to different 
clusters of gene p and q. 

Let matrix P contain the protein-
protein interactions, with Ppq ranging 
from 1 to 999 indicating the confidence 
level associated in case an interaction is 
reported and Ppq = 0 if no interactions 
are known. Threshold Tppi is applied to P 

to obtain a binary matrix PT, where PT = 1 
indicates a presence and PT = 0 indicates 
an absence of known interactions with 
a sufficient confidence level. The binary 
correlation matrix CT

 
is overlayed with the 

grouping matrix G and the binary protein-
protein interaction matrix PT

 
to yield sub 

network matrix S:

	                          (1)

where Spq = 1 indicates an absolute 
correlation equal to or exceeding Tcor 
between genes p and q, they are assigned to 
the same cluster and a physical interaction 
with a confidence level exceeding Tppi 
between the proteins of these genes has 
been reported. Spq = 0 indicates that at 
least one of these conditions is not met.

Correlations between the breast cancer 
outcome status and gene-expression data 
per sub network were evaluated using the 
global test as summary statistic5. This test 
uses ridge regression to model the relation 
between breast cancer outcome (response 
variable) and a set of gene expressions 
(input variables), while correcting for the 
mutual correlation structure between the 
input variables. Obtained sub networks 
were filtered on significance by applying 
threshold Ts. Genes within significant 
sub networks rendered the gene sets 
used to determine cross study prediction 

performances and similarities in feature 
selection.

Since the thresholded gene expression 
(GE) network (CT) is overlaid with the 
thresholded PPI network (PT), both 
thresholds, Tppi and Tcor are crucial 
in determining the connectivity of 
the resulting network. To balance the 
influence of both sources of information, 
Tppi and Tcor are chosen such that roughly 
equal amounts of interactions are obtained 
for the thresholded GE and PPI networks. 
As the overlay network rapidly becomes 
sparser at PPI quality scores exceeding 500 
(‘medium confidence score’ in STRING), 
Tppi was set to 500 and consequently Tcor 
was set to 0.6.

3.2.2 	Competing methods for gene 

selection: Forward filters were trained 
as described by van Vliet et al.24. In short, 
a double cross fold loop procedure25 was 
employed splitting the data in a validation 
and a training set (5 folds). The latter is 
split in an inner training set and an inner 
test set (10 folds). The additional cross fold 
setting within the training set implements 
a strict separation between data used 
for optimizing the predictor and its 
evaluation. The optimal number of genes is 
determined within the inner set by training 
and evaluating a classifier for up to 200 
top ranking genes. Gene ranking was done 
using absolute Welch’s t-statistic. Once 
the optimal signature size is determined 
a classifier is trained on the ranked outer 
training set, which in turn is evaluated in 
the left out validation set. This procedure is 
repeated 20 times, thus producing 20 × 10 × 
5 = 1000 unbiased estimates of the optimal 
signature size. A final predictive gene set 

𝑺𝑺!" = 𝑮𝑮!"𝑪𝑪!"!𝑷𝑷!"!  ∀  𝑝𝑝𝑝𝑝	
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was produced by thresholding the ranked 
gene list learned on the whole study with 
the mean over all optimal signature sizes.

Greedy network signatures were 
obtained by re-implementing the work by 
Chuang et al.6 in R20 using identical settings 
for all parameters, with the exception that 
sub network performances were evaluated 
using a Welch’s t-statistic instead of the 
Mutual Information. Gene sets were 
obtained by enlisting all unique genes 
within significant sub networks.

3.2.3 	Measures of gene set similarity: The 
Jaccard index26 and odds ratio27 were used 
to assess the similarity in gene selection 
between two different studies. The Jaccard 
index is used to assess the overlap in gene 
selection and equals the probability for 
a gene being implicated by both studies, 
given that it was implicated by at least one 
study. The odds ratio is used to indicate 
the consistency in gene selection and is 
a relative measure of risk representing 
the increase in likelihood for a gene to be 
selected, when also selected in another 
study, compared to a gene being selected, 
when not selected in another.

3.2.4 	Evaluation of Cross Study 

Prediction Performances: All prediction 
performances were determined by 
employing a Nearest Mean Classifier 
using the cosine-correlation as a distance 
measure and the Area Under the Curve 
(AUC) of the Receiver Operator Curve 
(ROC) as an evaluation measure. Cross 
study evaluation of the prediction 
performance was done using two different 
settings. In the first setting, denoted as 
“passing GeneSet”, a classifier was trained 

in a five cross fold setting on the gene 
set indicated by the first study while 
employing data of the second study. This 
procedure was repeated 100 times and 
the mean classification performance 
over 100 × 5 folds was reported as the 
final performance. In the second setting, 
denoted as “passing Classifier”, a classifier 
was trained on data of the first study and 
was evaluated using data of a second study. 
Prediction performances of integration 
approaches were determined by using five 
studies as input while evaluating on the 
sixth. In the “early” integration approach, 
data integration occurs at the beginning 
as five studies are jointly analyzed to 
select the genes. The “late” integration 
approach creates a consensus gene set by 
intersecting the results of selected genes 
per study.

3.2.5 	Sub network visualization: Sub 
networks were visualized using the 
RCytoscape28 package in R20 to connect 
to Cytoscape version 2.8.129. Nodes were 
colored according to the sign and magnitude 
of respectively the calculated Welch’s t-test 
statistic and the accompanying p-value 
(green: higher expressed in “POOR” 
outcome compared to “GOOD” and red vice 
versa).

4.	 Results

4.1 Data is dissected in functionally 

coherent sub networks

Using the proposed methodology, disjoint 
sub networks were created for six well 
studied publically available breast cancer 
studies12-17 using Tcor = 0.6, Tppi = 500 and 
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Ts = 0.05. Resulting sub networks were 
visualized using Cytoscape29 (Figure 1). 
Obtained sub networks varied in sizes 
ranging from 2 up to 192 genes and were 
either enriched (e.g. Figure 1: B) or depleted 
(e.g. Figure 1: A) of predictive markers. 
Furthermore, genes within resulting sub 
networks showed a preference to be either 
jointly down or up-regulated, leading to 
the observation that hardly any significant 
sub network (sub networks with a red 
bounding box in Figure 1) contained 
oppositely correlating gene expressions 
with respect to the studied phenotype.

In order to assess whether application of 
the method led to a biologically meaningful 
dissection of the data, DAVID30 was used 
to test for enrichments in functional gene 
annotations using GO FAT categories. 
GeneRIF descriptions were inspected 
for common denominators in case the 
enrichment analysis returned a-specific or 

no functional annotations. Sub networks 
that showed significant associations with 
respect to the studied phenotype often 
also showed significant GO enrichments 
for hallmark processes of breast cancer. 
For example, for the Desmedt study in 
Figure 1: B is enriched for cell cycle phase; I 
for response to estrogen stimulus; and J for 
DNA replication. When not related to breast 
cancer, sub networks could be attributed to 
processes in lymphocytes or fat tissue. Sub 
networks enriched for the terms cell cycle 
phase (GO:0022403), leukocyte activation 
(GO:0045321) and proteinaceous 
extracellular matrix (GO:0005578) 
were seen in all six studies (Figure 1 sub 
networks A, B and C respectively).

4.2 	 Eight sub networks are 

consistently identified

To get a more thorough view whether 
the observed dissection in functionally 

Figure 1: 	 An overview of sub networks identified in the Desmedt study. Disjoint sub networks of varying 
sizes were obtained from the Desmedt study of which the largest are depicted here. Genes are colored according to 
the p-value of the Welch’s-t-test on the expression between “POOR” and “GOOD” outcome subjects (green is higher 
expressed in “POOR”). A red bounding box around a sub network indicates a significant sub network score obtained 
with the global test on the gene set indicated by the sub network.

A B C D

E F G
H

I J
K
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coherent sub networks was consistent 
between studies, we extended our analyses 
beyond overlaps in Gene Ontology terms by 
employing pair wise similarity. For this 
analysis we calculated Jaccard indices26 
between sub networks extracted from 
the six studies and clustered the obtained 
similarity matrix. The analysis was limited 
to sub networks with a minimal size of 7 
genes yielding 9 to 16 sub networks per 
study and a total of 83 sub networks (Figure 
3). Cluster analysis shows groupings 
of six sub networks each derived in a 
different study implicating a high degree 
of consistency of detected sub networks 
between the studies (Figure 2). Besides 

the previously consistently identified 
functionalities: leukocyte activation, 
proteinaceous extracellular matrix and cell 
cycle phase (Figure 2, clusters VII, VI and 
V respectively), five other sub networks 
with a-specific or no GO enrichments 
were consistently identified. Common 
denominators extracted from GeneRIF 
indicated functionalities related to JUN 
/ FOS signaling for cluster I, interferon 
induced proteins including ubiquitins for 
cluster II, Adiponectin / lipid storage for 
cluster III, Chains of immunoglobulin for 
cluster IV and immune related genes for 
cluster VIII.

Loi A

Des

Wan

Mil

Sch

Paw

1-Similarity

V: Cell Cycle Phase

Figure 2: Pair wise similarities were calculated between sub networks obtained from the six
studies using Jaccard indices. The resulting similarity matrix was hierarchically clustered and
was depicted as a heat map in the upper left corner. The heatmap is symmetric along the
diagonal and each row or column represents a unique sub network identified in one of the
studies. The grouping belonging to cluster V (Cell Cycle Phase) is blown up to the right.
Numbers on the diagonal indicate the number of genes within the identified sub networks.
Extensive similarities are observed between sub networks from the six studies except for
comparisons involving Loi, caused by the low number of genes found in the Loi study. Icons of
sub networks at the bottom represent the sub networks for the different studies that were
clustered together in cluster V, which are all also enriched for Cell Cycle Phase. Note that
whereas for the Loi study two small sub networks were identified, others studies only returned a
single large sub network.

I
II

III
IV

V
VI

VII
VIII

64
69

79

80

27

81

Des Mil PawSchWanLoi

A

B

Loi B

Figure 2: 	 Overlap between breast cancer studies. Pair wise similarities were calculated between sub 
networks obtained from the six studies using Jaccard indices. The resulting similarity matrix was hierarchically 
clustered and was depicted as a heat map in the upper left corner. The heatmap is symmetric along the diagonal and 
each row or column represents a unique sub network identified in one of the studies. The grouping belonging to 
cluster V (Cell Cycle Phase) is blown up to the right. Numbers on the diagonal indicate the number of genes within 
the identified sub networks. Extensive similarities are observed between sub networks from the six studies except 
for comparisons involving Loi, caused by the low number of genes found in the Loi study. Icons of sub networks at 
the bottom represent the sub networks for the different studies that were clustered together in cluster V, which are 
all also enriched for Cell Cycle Phase. Note that whereas for the Loi study two small sub networks were identified, 
others studies only returned a single large sub network.
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Figure 3: 	 Schematic overview of the construction of a consensus network. Detected sub networks are 
depicted at the top from left to right for the Desmedt, Muller, Loi, Pawitan, Wang and Schmidt study respectively. A 
consensus sub network was constructed with genes present in significant sub networks (α = 0.05) in all six studies 
and is depicted at the bottom. Edges in the consensus sub network are drawn when confidence values of reported 
PPI interactions exceed Tppi.

4.3 	 A “late” integration approach 

reveals a functionally coherent set of 

consensus genes putatively involved in 

metastasis

A consensus gene set of 29 interconnected 
proteins was retrieved by selecting the 
genes that were part of a significant sub 
network throughout all six studies (“late” 
integration, Figure 3). Closer inspection 
revealed that the majority of these genes 
have already been implicated as potential 
therapeutic targets in the treatment of 
either breast cancer or other types of 
cancer. This consensus gene set appears to 
play a pivotal role in the regulation of the cell 
cycle as not only a considerable enrichment 
for terms involving the cell cycle (p = 2.6 

× 10-16), but as well an enrichment for 
proteins with known activating capacities 
was found (5 out of 29 are protein kinases, 
p = 0.0033). Interestingly, all genes are 
on average higher expressed within the 
“POOR” labeled samples compared to 
the “GOOD” labeled samples, fitting the 
cancer’s hallmark of a shortened cell 
cycle time. Moreover, all these genes are 
connected to each other by at least one 
(predicted) physical interaction exceeding 
Tppi = 500, thereby suggesting a plausible 
molecular mechanism how primary 
breast tumors acquire or maintain their 
metastatic capacities.



Module-based analysis of breast cancer data

31

2
4.4 	 An “early” integration approach 

reveals new sub network markers

We showed that application of the 
proposed method to six different data 
sets studying an identical phenotype led 
to a highly reproducible dissection of the 
data in at least eight distinct processes. 
Besides these eight broadly picked up 
processes, additional smaller clusters 
are visible along the diagonal in Figure 
2, suggesting that there might be more 
ongoing processes in primary breast 
tumor tissue that are harder to detect. 
By applying the proposed method to the 
data from the six studies concatenated 
(“early integration”), three new putative 
sub network markers for metastasis were 
identified in addition to the eight previously 
established sub network markers (Figure 
4). These three new putative sub network 
markers for metastasis (Figure 4: A to 
C) could be related to: unfolded protein 
binding (GO:0051082), cell-cell adhesion 
(GO:0016337) and proteasome complex 
(GO:0000502). All previously established 
sub network markers now dropped below 
the set significance threshold Ts <= 0.05 
and showed a significant enrichment 
for at least a single GO term. The newly 
established sub networks B (cell-cell 
adhesion) and C (proteasome complex) and 
the previously established sub network 
markers I (JUN & FOS signaling) and V (Cell 
Cycle Phase) remained significant even 
after a Bonferroni correction for multiple 
testing (sub networks with red bounding 
box in Figure 4). All genes identified by 
the “late” integration approach were again 
part of significant sub networks found in 
the “early” approach, predominantly sub 
network V (26 out of 29), except for the gene 

STMN1. We therefore can view cluster V in 
Figure 4 as an extension of the consensus 
sub network in Figure 3, containing 22 
more candidate genes.

4.5 	 A more consistent gene selection is 

performed compared to other methods

Consistency in gene selection by the 
proposed method was compared to a 
classical gene ranking approach known 
as forward filtering, as described by van 
Vliet et al.24 (Experimental Procedures 
3.2.2) and a greedy network approach, as 
described by Chuang et al.6. Forward filters 
were used to find optimal predicting gene 
sets using either all available probes on 
the array (Table 2: FWD, n = 22,283) or 
all genes mapped to the protein-protein 
interaction network (Table 2: FWDNetw, 
n = 9,290). When starting with a reduced 
set of initial genes (FWDNetw), only a 
few additional genes were required for 
obtaining predictors with very similar 
prediction performances than when 
started with the set of all genes (FWD). Both 
network approaches selected considerably 
more genes as compared to both settings 
in which the forward filter was employed. 
This observation was most extreme for 
the greedy network approach of Chuang et 

al. (Table 2: ChuangNetw) for which from 
11.6% to 23.0% of the genes mapped to 
the PPI network (n = 9,290) were selected 
in hundreds of overlapping sub networks. 
Application of the proposed method 
(Table 2: CoRegNetw) resulted in the 
identification of comprehensible numbers 
of disjoint co-regulated sub networks and 
implicating only 1.4% to 5.5% of the genes 
mapped to the PPI network.



Chapter 2

32

2

Figure 4: 	 Sub network markers identified with an early integration approach. Data of the six studies 
was concatenated prior to applying the procedure for sub network identification. Resulting sub networks marked 
with black roman numerals correspond to the reported eight consistently identified sub networks, also indicated 
in Figure 2. Sub networks A, B and C were newly identified and were enriched for the GO terms: unfolded protein 
binding (GO:0051082), cell-cell adhesion (GO:0016337) and proteasome complex (GO:0000502) respectively. 
Significant sub networks (Ts <= 0.05) showing a functional enrichment for at least one GO category were reported 
for this analysis only. Sub networks marked by red bounding boxes remained significant after correction for 
multiple testing.

III III

IV

V VIVII VIII

A

B C

FWD FWDNetw ChuangNetw CoRegNetw

# genes [%] # genes [%] # genes [%] # netw. [μ] # genes [%] # netw. [μ]

Des 49 (0.22) 51 (0.55) 1437 (15.5) 356 (14.4) 130 (1.4) 25 (5.2)

Mil 21 (0.09) 28 (0.30) 2137 (23.0) 662 (14.2) 240 (2.6) 35 (6.9)

Loi 59 (0.26) 75 (0.80) 1098 (11.8) 317 (13.0) 515 (5.5) 80 (6.4)

Paw 48 (0.22) 44 (0.47) 1237 (13.3) 293 (13.7) 290 (3.1) 52 (5.8)

Wan 55 (0.25) 60 (0.65) 1004 (10.8) 423 (11.6) 184 (2.0) 38 (4.8)

Sch 65 (0.29) 56 (0.60) 1696 (18.3) 331 (14.8) 172 (1.9) 22 (7.8)
Table 2: Results of selecting predictive genes using different methods on six breast cancer studies. 
Forward filters (following van Vliet et al.24) were used to extract the optimal number of predictive genes (columns 
# genes (%) refer to the number and percentage of selected genes) when initially starting with all genes on the 
array (FWD) or all genes mapped to the PPI network (FWDNetw). The method proposed in this article (CoRegNetw) 
was also compared to the network approach of Chuang et al.6 (ChuangNetw) and for methods the number of sub 
networks (# netw.) and average sub network sizes (μ) were reported also.
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Consistency of selected genes across 
different studies using the four previously 
introduced methods was assessed by 
calculating (1) Jaccard indices indicating 
gene set similarities and (2) odds 
ratios indicating the increase in risk for 
genes of being selected as a result of a 
previous selection in another study. The 
proposed network approach (CoRegNetw) 
considerably outperformed both ranking 
settings (FWD and FWDNetw) for all pair 
wise comparisons between studies for 
both criteria (Table 3). Whereas the mean 
Jaccard index was 2.5% and 2.7% for the 
ranking approaches, respectively, our 
method showed a mean Jaccard index of 
25.9%. Chuang’s greedy network approach 
was outperformed for all odds ratios 
(Table 3, panel C and D below diagonal), 
but not for all Jaccard indices (Table 3, 
panel C and D above diagonal). Although 
pair wise comparisons involving the Loi 
study showed lower similarities for our 
method compared to those observed when 
employing the method proposed by Chuang 
et al., the mean Jaccard index of our method 
still substantially outperformed the means 
calculated on all other methods (21.9% for 
CoRegNetw versus 2.7%, 2.5%, and 16.7% 
for respectively FWD, FWDNetw and 
ChuangNetw).

4.6 	 Network approaches do 

not outperform classical ranking 

approaches in a cross study prediction 

evaluation

We next were interested whether 
our method for a highly reproducible 
dissection in functionally coherent sub 
networks would improve the robustness 

of cross study prediction performances. 
We evaluated the prediction performances 
in two settings. In both settings a gene 
set is derived from a first study. In the 
first setting, denoted “passing GeneSet”, 
this gene set is than passed to a second 
study, where the actual prediction rule is 
build and evaluated using a proper cross 
validation. In the second setting, this gene 
set is used to train a prediction rule with 
the first study and is evaluated only on the 
second study. This setting is denoted as 
“passing Classifier” (Figure 5 and 6).

In the “passing GeneSet” setting (Figure 
5), network approaches either outperform 
or show comparable classification 
performances as compared to classical 
rankings. Notably, when evaluating on the 
Loi study Chuang’s approach, it shows a 
considerable improvement compared to 
the other methods and when evaluating on 
the Schmidt study our method considerably 
outperforms other methods. Prediction 
performances of the two integration 
approaches “early” and “late” were 
evaluated as well. Whereas the “early” 
integration approach (dark blue diamonds) 
improves or at least not significantly 
worsens the prediction performances upon 
the mean single study approaches (yellow 
diamonds), the “late” integration approach 
shows an adverse effect. Especially for the 
Loi study, the “late” integration approach 
seems to fail.

In the clinically more relevant “passing 

Classifier” setting (Figure 6), variations 
in prediction performances have 
increased, as expected, compared to the 
“passing GeneSet”. Now, classical ranking 
approaches consistently outperform 
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A: FWD

OR\JI Des Mil Loi Paw Wan Sch

Des 0.01 0.00 0.08 0.09 0.05

Mil 9.6 0.00 0.03 0.00 0.02

Loi 1.0 1.0 0.00 0.01 0.00

Paw 37.3 21.1 1.0 0.04 0.05

Wan 44.8 1.0 2.9 16.4 0.02

Sch 17.4 15.4 1.0 17.8 5.5

B: FWDNetw

OR\JI Des Mil Loi Paw Wan Sch

Des 0.04 0.00 0.09 0.09 0.02

Mil 23.0 0.00 0.01 0.00 0.04

Loi 1.0 1.0 0.01 0.01 0.00

Paw 47.4 7.9 2.9 0.03 0.02

Wan 38.5 1.0 2.1 11.8 0.02

Sch 6.9 20.8 1.0 8.1 5.9

C: ChuangNetw

OR\JI Des Mil Loi Paw Wan Sch

Des 0.21 0.16 0.20 0.15 0.19

Mil 3.3 0.16 0.19 0.17 0.22

Loi 3.0 2.6 0.14 0.12 0.15

Paw 3.9 3.2 2.6 0.13 0.18

Wan 3.0 3.1 2.5 2.5 0.14

Sch 3.0 2.9 2.5 3.0 2.4

D: CoRegNetw

OR\JI Des Mil Loi Paw Wan Sch

Des 0.25 0.07 0.25 0.32 0.33

Mil 71.3 0.07 0.42 0.20 0.38

Loi 8.8 4.7 0.08 0.08 0.05

Paw 76.2 123.1 4.7 0.22 0.35

Wan 117.6 32.2 6.9 39.3 0.22

Sch 126.7 139.1 5.6 120.6 44.3
Table 3: Gene set similarities. Gene set similarities calculated between gene sets obtained from significant 
gene lists (FWD and FWDNetw) or significant sub networks (the method of Chuang et al. ChuangNetw and the 
method proposed in this paper CoRegNetw) within each single study. Shown similarity measures are the Jaccard 
index (above diagonal, italic) or odds ratio (below diagonal, not italic) grouped per method (Panels A to D). Pair wise 
comparisons depicted in bold are outperforming all competing methods, the comparisons depicted not in bold are 
outperformed by at least one other method.
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Figure 5: 	 Cross study prediction performances of several methods grouped per evaluation study 

in the “passing GeneSet” setting. Circles indicate results of cross study prediction performances involving 
a single study for training, diamonds show results involving five studies for training. The latter can either be a 
summarization statistic (mean) or be the result of an integration approach (CoRegNetwEarly and CoRegNetwLate).

Figure 6: 	 Cross study prediction performances of several methods grouped per evaluation study 

in the “passing Classifier” setting. Circles indicate results of cross study prediction performances involving 
a single study for training, diamonds show results involving five studies for training. The latter can either be a 
summarization statistic (mean) or be the result of an integration approach (CoRegNetwEarly and CoRegNetwLate).
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network approaches. Notably, Chuang’s 
method applied to the Loi study now shows 
the worst overall performance. The “early” 
and “late” integration approaches now 
show a correlated behavior across data 
sets, improving upon mean single study 
performances (yellow diamond) in four 
out of six times and improving upon both 
ranking approaches in three out of six 
evaluations. The integration approaches 
especially seem to deteriorate prediction 
performances for the Loi and Wang Study.

5.	 Discussion

We proposed a method for de novo grouping 
of genes by dissecting the protein-protein 
interaction network into disjoint sub 
networks using pair wise gene expression 
correlation measures. By selecting sub 
networks significantly correlated with 
phenotypic outcome, we expected that 
this would result in a functionally more 
coherent gene selection as compared to 
competing risk profile predictors. We 
verified this by applying the proposed 
method and two competing methods to 
a breast cancer compendium composed 
of six different studies. Furthermore, 
we investigated whether the expected 
consistency in gene selection would have 
benefits for risk prediction of metastasis.

Experiments on the breast cancer 
compendium have shown that the proposed 
methodology leads to a functionally coherent 

dissection of genes into sub networks. 
Furthermore, similarity analyses showed 
that a considerable amount of these sub 
networks are picked up consistently 

across studies, suggesting that previously 

reported low overlaps in predictive gene 
sets can not be attributed to differences 
in ongoing basal processes picked up by 
the different studies. The observation that 
sub networks were consistently identified 
underlines the weaknesses of previous 
methods that purely rely on pre-defined 
functional groupings for their analyses and 
interpretation.

Quite contrary to classical gene ranking 
approaches, extensive overlap between 
predictive gene sets derived from different 
studies is observed when employing the 
proposed method. A consensus gene set 
that consisted of genes that were part of 
significant sub networks in all six studies 
was predominantly composed of genes 
previously implicated in a wide variety of 
cancers, and was heavily enriched for both 
the GO term “cell cycle phase” as for the 
presence of proteins with known regulatory 
capacities (kinases). This so called “late” 
integration approach improves robustness 
in gene selection but at the cost of power 
to detect potential candidate genes. This 
was clearly illustrated by the fact that the 
Loi study alone was most decisive for the 
gene composition of the consensus gene 
set, due to its relatively small significant 
sub network representing cell cycle phase.

A consistent overlap between studies 
also cleared the way for an “early” 
integration approach where the data of all 
studies is concatenated before detecting 
sub networks. This approach confirmed 
and extended the consensus sub network 
found by the late integration approach 
and identified potential new sub network 
markers involved in JUN & FOS signaling, 
cell-cell adhesion and the proteasome 
complex.



Module-based analysis of breast cancer data

37

2
When comparing consistency in gene 

set selection across studies over different 
methods, the proposed method always 
significantly outperforms classical 
ranking approaches. Chuang’s greedy 
network approach6 is outperformed as 
well except for comparisons involving the 
Loi study. However, on average Chuang’s 
method is outperformed using this metric. 
Moreover when odds ratios for the risk of 
reselection over the risk of no reselection 
were compared, our method substantially 
outperforms Chuang’s method for all pair 
wise comparisons. This suggests that once 
a gene is implicated by our method in one 
study, the chance that it will be implicated 
again in another study is much higher.

Despite the observed consistency in 
selection of gene sets, no improvements 
in classification performance were 
observed when compared to competing 
methods in the clinically most relevant 
evaluation setting (“passing Classifier”). 
Moreover, when no integration approach 
was employed to exploit the presence of 
multiple studies, all network approaches 
were outperformed by the classical gene 
ranking approaches, suggesting that 
the higher interpretability comes at the 
expense of predictive power. In the work 
of Chuang et al.6 an evaluation setting 
similar to the one denoted as “passing 

GeneSet” was used. Indeed we confirmed 
that in such a setting, network approaches 
either outperform or show comparable 
classification performances as compared 
to classical rankings. However, we would 
like to issue a word of caution when 
interpreting the classification results 
while employing the “passing GeneSet” 
setting. The results with the overall 

highest prediction performance in the 
“passing GeneSet” setting were created 
by applying Chuang’s feature selection on 
the Loi study. Meanwhile, these results 
also show the largest discrepancy with 
the setting denoted as “passing Classifier”, 
where it shows the overall lowest 
prediction performance. We hypothesize 
that other studies might be particularly 
uninformative about the Loi study, as this 
study is the only one in which the majority 
is treated with tamoxifen, thereby negating 
or possibly reversing previously observed 
relations between gene expressions and 
outcome.

When considering the “passing 

Classifier” setting, integration approaches 
seem to deteriorate prediction 
performances especially for two studies: 
Loi en Wang. In case of the Loi study, 
integration approaches are expected to 
be even more sensitive for the previously 
described disruptive effects of tamoxifen 
on relations between gene expressions 
and outcome. Due to the larger amounts 
of training data, more specific predictors 
are obtained, which are less capable to 
generalize when underlying processes 
are differing. The drop in prediction 
performance can be explained by the fact 
that the Wang study is the only one with a 
balanced number of “POOR” and “GOOD” 
outcomes. Other studies have a much lower 
incidence of “POOR” outcome class and 
therefore training on these studies will 
focus the classifier mainly on recognizing 
the more heterogeneous subset of “GOOD” 
outcome subjects.

Whereas integration approaches 
showed some adverse effects in the 
“passing GeneSet” evaluation setting, 
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correlated prediction performances were 
observed in the “passing Classifier” setting. 
When ignoring the Loi and Wang study, 
“early” integration approaches seem to 
only slightly outperform “late” integration 
approaches. This observation is especially 
relevant when considering integration of 
data measured on different platforms in 
which an “early” integration approach is 
not feasible.

Employing several analytic strategies, 
we consistently found a gene sub network 
involved in an established hallmark 
of cancer, cell cycle phase, which is 
persistent over-expressed in all six 
breast cancer studies in the “POOR” 
labeled samples compared to the “GOOD” 
labeled samples. Moreover, application 
of the proposed method in an “early” 
integration approach revealed new 
putative sub network markers, implicating 
molecular mechanisms involved in cell-
cell adhesion, proteasome complex 
and JUN & FOS signaling to be involved 
in metastasis. Although not directly 
improving previously reported cross study 
classification performances, knowledge-
based decomposition of measured gene 
expression data into co-regulated modules 
seems to result in a consistent and 
biologically relevant feature selection and 
might therefore have a general applicability 
beyond the field of breast cancer.
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