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1. Aging: a Common Suspect in 
Common Disease
A steadily growing life expectancy of the 
general western population1 urges further 
research into age-associated mechanisms 
responsible for the gradual decline of health 
throughout the course of life. Calendar 
age is the major risk factor for the onset 
and progression of virtually all common 
disease affecting the general population 
of the western world today2, suggesting 
that processes of aging are involved in 
the etiology of many diseases. Indeed, 
aging is characterized by a progressive 
and systemic loss of function, which 
gradually leads to a state of senescence on 
the cellular, tissular and organismal level, 
thus affecting the general capacity for 
maintaining bodily homeostasis3. Though 
seemingly inevitable, aging does not occur 
at an equal pace across species4 or even 
within our own species. Whereas some 
experience an accelerated rate of aging, 
as exemplified by patients suffering from 
progeroid syndromes5, others seem capable 
of delaying or evading at least some of the 
detrimental aspects of aging, as observed 
in members of long-lived families6-8. Hence, 
by studying the factors affecting the rate of 
aging, we expect to identify determinants 
that modulate the capacity for maintaining 
the bodily homeostasis as the common 
denominator of age-associated disease.

2. Factors Affecting the Rate of 
Human Aging
Unlike other traits, aging itself is 
not driven by any specific molecular 
mechanism per se, but instead seems to be 
the integrated result of all corrective and 

compensatory mechanisms failing to deal 
with the stochastic damage accumulated 
over life9. Despite its stochastic 
origin, the accumulation of damage 
does converge into some consistently 
observed processes characterizing the 
aging phenotype. In a landmark paper 
titled “The Hallmarks of Aging”10 these 
processes of aging are comprehensively 
described and conceptualized around nine 
main processes co-occurring with aging 
(Figure 1). Though the causality of some 
of these nine hallmarks has yet not been 
irrefutably proven, each of them is likely 
to occur during aging and is thought to at 
least aggravate the consequences of aging 
by further contributing to the loss of the 
bodily homeostasis.
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Figure 1: Nine recurrently observed processes 

that occur with aging. Processes that are commonly 
observed during aging are: genomic instability, 
telomere attrition, epigenetic alterations, loss 
of proteostasis, deregulated nutrient sensing, 
mitochondrial dysfunction, cellular senescence, stem 
cell exhaustion and perturbed signalling. Figure 
adapted from López-Otín et al.10.

Thus far, human aging and its relation 
to health have predominantly been 
studied in the context of two parallel 
though complementary lines of research: 
biomarkers and genetics. Another source 
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of information comes from systems 
approaches mainly performed in cell 
systems and model organisms in which 
physiological processes related to 
aging can be perturbed, measured from 
numerous biological perspectives and 
integrated to understand the response of 
the system to the challenge. Here we will 
focus on biomarker and genetic research 
into human aging.

2.1  Biomarkers of human aging 

Biomarker research is aimed at discovering 
quantitative parameters that mark 
biological age. Levels of such biomarkers 
do not only correspond with the absolute 
quantity of time that has passed (calendar 
age), but also mark the mechanisms 
responsible for the deteriorating health 
and increasing frailty that occurs with 
advancing age. Hence, as outlined by Deelen 
et al.11, ideal biomarkers for biological 
aging should correlate with calendar age in 
cross-sectional or in longitudinal studies 
with repeated measurements, while also 
displaying correlations with established 
physiological parameters of health such 
as systolic blood pressure or insulin 
resistance. Furthermore, ideal biomarkers 
of aging are able to discriminate individuals 
with either accelerated (e.g. progeroid 
syndromes) or decelerated (e.g. familial 
longevity) aging phenotypes from those 
derived of the general population, and are 
prospective of future clinical endpoints 
such as morbidity and mortality. Hence the 
identification of ideal biomarkers of aging 
would enable us to objectively monitor 
the rate of biological aging of individuals 
and potentially allows us to differentiate 

and understand different mechanisms 
promoting aging.

2.1.1  Existing biomarkers of human 

aging: A compelling example of the use 
of biomarkers associated with health 
and aging employed in epidemiological 
research is the Framingham risk score 
(FRS), which is the estimated individual 
risk for development of a cardiovascular 
event within 10 years12. The FRS is a 
composite score taking into account 
blood pressure, total cholesterol level, 
HDL cholesterol level and smoking status. 
Future composite scores for aging should 
not only incorporate biomarkers indicative 
for cardiovascular health, but also for 
many other pathophysiological processes 
such as aging of the neuromuscular system. 
By studying aging populations or by 
comparing members of long-lived families 
with population controls, potential 
additional and independent biomarkers 
of aging are currently being investigated. 
Biomarkers that distinguish healthy from 
unhealthy aging groups are for example 
cortisol13, free triiodothyronine14 and 
fasting glucose serum levels15,16. However, 
risk prediction at the individual level 
on the basis of these biomarkers is not 
possible yet. Though each of these traits 
can be used to objectively assess particular 
aspects of the aging human system, it is not 
immediately apparent how they are caused 
by the hypothesized aging mechanisms 
listed earlier (Figure 1). Therefore, a 
challenge remains in translating the 
molecular events that occur during aging 
to the age-associated deterioration that 
only becomes apparent on the whole body 
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level and which is marked by the existing 
biomarkers for biological aging.

2.1.2  Omics-derived biomarkers of 

human aging: In contrast to the existing 
biochemical and physical parameters, 
use of genomic, metabolic or proteomic 
data sources may have the benefit that 
they directly probe at the molecular level 
with an unbiased approach. However, 
the construction of age-associated 
signatures that are both consistent as 
interpretable has proven to be challenging 
with these types of data sources. For 
instance, limited mutual overlap has been 
reported thus far for studies probing 
the aging transcriptome17,18. Possible 
reasons for this could lie in the variable 
technical circumstances under which 
these studies have been performed, but 
also the limited study sizes, low expected 
signal-to-noise ratios and the high tissue 
specificity are likely to contribute to the 
observed inconsistency. Some compelling 
similarities have been observed on the 
pathway level across tissues and even 
across species19,20 incriminating amongst 
others electron transport chain and 
ribogenesis as potential aging promoting 
mechanisms. Hence, studies into the 
aging transcriptome have provided some 
interesting insights into the mechanisms 
promoting aging. However, significant 
progress in this field, let alone future 
translation to the clinic, is severely 
hampered by the large inconsistencies 
generally observed between studies.

Another popular omics platform for 
discovery of biomarkers of biological aging 
is Illumina’s HumanMethylation450k 
BeadChip array, designed for probing the 

human methylome. Using this platform, 
highly robust and tissue independent 
methylation markers for chronological 
age have been identified21,22. However, 
whereas gene expression arrays provide 
interpretable though noisy age-associated 
signatures, methylation arrays provide 
highly predictive though poorly understood 
signatures of aging. Quite unexpectedly, 
loci coming from large-scale meta-analyses 
on age-associated changes of methylation 
levels hardly shed any insights in the age-
associated changes in gene regulation, 
be it either by affecting the expression of 
nearby genes directly21 or by targeting 
hub-genes in regulatory networks23. This 
remarkable absence of any relation with 
regulatory mechanisms thus questions the 
importance of DNA methylation changes 
in the biology of aging. Hence, it has been 
shown that methylation signatures are 
highly predictive of calendar age though 
as of yet are highly uninformative on the 
processes driving biological aging.

To conclude, many challenges still lie 
in the field of omics-based biomarkers 
for aging as the current combination of 
platforms and methods provide signatures 
that either lack the robustness or have as of 
yet a highly disputable role in the etiology 
of aging. Therefore, additional efforts 
should go into increasing our capacity to 
comprehend the results coming from such 
sources before aging processes observed 
at the molecular level can be translated to 
effects for health on the whole body level.

2.2  Genetics of human aging

Since lifespan regulation has a heritable 
component of approximately 25%24,25 in the 
general population, the second branch of 
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aging research focuses on the identification 
of genetic determinants that specifically 
characterize cases exhibiting either 
accelerated (e.g. progeroid syndromes) 
or decelerated (e.g. human longevity) 
phenotypes of aging. Genetic studies into 
human longevity are mostly inspired by the 
findings of lifespan regulating genes using 
a systems approach in animal studies, 
such as the insulin-like receptor daf-16, 
initially discovered to modulate life span 
regulation in C. elegans26. Interestingly, 
many more genes in C. elegans and D. 

melanogaster that are functionally related 
to this homologue of human FOXO3A have 
been found to consistently modulate life 
span across multiple species27. Hence, such 
systems genetics approaches into aging 
provide valuable starting points for the 
search of genetic loci modulating the rate 
of human aging and life span regulation.

Novel loci for human aging and longevity 
may be identified by comparing the 
frequencies of common variants between 
long-lived cases and younger population 
controls in an association analysis. Such 
association analyses performed using 
either a candidate approach, or on a 
genome-wide scale (GWAS) has yielded 
thus far three robust and independently 
confirmed longevity loci: FOXO3A28-31, 
APOE32-36 and an intergenic locus on 
chromosome 5q33.337. 

A relatively unexplored second 
option for obtaining longevity loci is to 
sequence the genome of extremely long-
lived individuals for rare variants with 
a large predicted impact. Though very 
promising, this approach has thus far only 
been applied on a candidate gene basis 
in a cohort of long-lived individuals38 or 

on a whole genome scale in very limited 
numbers of individuals39-43, which makes 
its use for research into human aging at 
this point hard to assess.

A third source of potential human 
longevity loci might come from family-
based studies (linkage analysis) with a 
history of extended survival6,44. Thus far, 
several linkage studies into longevity 
have been performed45-48, however, 
none of the reported loci display any 
mutual consistency, nor have they been 
independently confirmed36. Hence, genetic 
studies into aging and life span regulation 
have known a very limited number of 
successes judged by the standards set in 
the genetics field and have been far less 
successful as compared to other commonly 
studied multifactorial traits.

2.3  Challenges and opportunities in 

aging research

Thus far many of the available genetic, 
transcriptomic, methylome and 
metabolome data sources on human aging 
have been analysed in isolation. Whereas 
this approach has lead to the identification 
of some biochemical biomarkers for aging, 
considerably less progress is made with 
the analysis of genomic data sources on 
aging. As a result, little is known how aging 
mechanisms on the molecular and cellular 
level affect health and aging on the whole 
body level. Reasons for the lagging insights 
derived from genomic data sources surpass 
the relative novelty of these data types, 
since similar tools for genomic research 
have been very successfully applied in 
studying other complex traits. For instance 
the era of GWAS has brought many novel 
loci for age-associated traits and diseases49, 
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but not in human longevity research. 
In effect, the analysis of genomics 

data on aging is hampered for two main 
reasons affecting either the discovery of 
molecular biomarkers or genetic markers. 
First, the stochastic nature of aging makes 
biomarker research into this field very 
distinct from studying other traits, as it 
is an intrinsically passive mechanism that 
acts on many processes in parallel and on 
all systemic levels simultaneously. Hence, 
much signal is expected to correlate in the 
analysis for aging biomarkers, though few 
molecular entities are actually independent 
or causal for the studied aging phenotype.

Secondly, investigation of the genetic 
determinants modulating health, the rate 
of aging and ultimately life span regulation 
is hampered by the extreme heterogeneity 
of the studied traits. This poses the 
possibility that the non-consistent results 
of genetic screens for life span regulation 
each constitute actual independent 
mechanisms for modulating the rate of 
biological aging. 

Interestingly, both the issues of 
stochasticity and heterogeneity refer 
to a lack of power that can be solved by 
analysing data sources on aging jointly 
instead of analysing each of them in 
isolation, as is currently the standard. 
Hence, a huge opportunity lies in the 
application and development of methods 
for the integrated analysis of genomic 
aging data resources.

3. Approaches for Data 
Integration
Analyses of genomic data sources 
directed to investigating aging and life 
span regulation are especially prone to 
overfitting and therefore deserve special 
attention from a methodological point of 
view. An analysis is said to overfit when 
features are extracted from the data that 
do not reflect the general characteristics 
of the studied phenotype, but instead 
focus on irrelevant features that happen 
to coincide with the studied phenotype 
in that particular experimental setting 
only. Approaches with a reduced chance 
of fitting noise are indicated as robust 
and can generally be achieved by applying 
either two of the following concepts for 
data integration: the joint analysis of 
genomic data sources, or the incorporation 
of prior knowledge. 

A very commonly used example of a joint 
analysis of genomic data sources is a so-
called eQTL analysis, which is sometimes 
performed in addition to a normal GWAS 
or a whole genome expression analysis 
(Figure 2A). The aim of such an analysis is 
to determine whether SNPs influence the 
expression of (nearby) genes, hence the 
term expression Quantitative Trait Loci 
or eQTLs. Besides inferring clues for the 
mechanistic causality of an observed trait 
association, the rational for this approach 
was exemplified by a study of Nicolae et 

al.50 showing that eQTLs, as a subset of all 
SNPs, are enriched for trait-associations. 
Incorporation of eQTL analyses is thus 
likely to reduce false positive findings, 
next to providing additional mechanistic 
insights.
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Another example of a joint analysis on 
omics data sources is a so-called genomic 
convergence approach51 in which the 
relatively low-resolution results coming 
from genome wide linkage analysis are fine 
mapped using a differential gene expression 
analysis (Figure 2B). The original paper 
coining this term successfully used Serial 
Analysis of Gene Expression (SAGE) data, 
to prioritize the thousands of candidate 
genes that were identified with a linkage 

analysis on families suffering from 
Parkinson’s disease51. Later the concept 
of genomic convergence was extended 
to the sequential use and intersection of 
significant results of any combination 
of omics data sources that also included 
whole genome gene expression profiling, 
as exemplified by Wheeler et al.52. Here, 
loci influencing kidney aging where found 
by a sequential use of a differential gene 
expression profiling on age, followed by 

Figure 2: Examples of approaches for data integration. A) False positive findings are reduced by enforcing 
significant correlations between trait-SNP (GWAS), SNP-expression (eQTL) and trait-expression. B) Genomic 
Convergence as originally applied by Hauser et al.51. Loci displaying significant linkage are scrutinized using a 
differential gene expression analysis. Note that in this example only three out of seven genes are expressed in 
the studied tissue (A, E and G) of which gene E seems to exhibit the largest differences between cases (red) and 
controls (blue). C) Hits coming from GWASs (ASSOC) are interpreted in their genomic context in HaploReg, which 
integrates various publically available resources. The top associated SNV (red) is in strong Linkage Disequilibrium 
(LD) with other nearby SNVs (red, yellow and white indicate respectively high, mediocre and low R2). Histone 
marks for enhancers have been found (REG: grey) in the studied tissue and an eQTL for the upstream region has 
been reported (REG: purple). Together, these results link the top SNV (red) to the upstream gene. D) DAPPLE58 maps 
GWAS hits to Protein-Protein Interaction to identify functionally coherent clusters of genes involved in the studied 
trait. These modules serve several purposes, for instance, candidate loci 1 and 2 (ASSOC) can be prioritized using 
their proximity to other significantly associated genes (red) in the Protein-Protein Interaction Network. In this 
example, gene 1 seems to be a more plausible candidate as compared to gene 2, due to their network neighbourhood.
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an eQTL analysis for the significantly age-
associated genes, which delivered the final 
101 prioritized loci to be tested with the 
actual phenotype of interest. The aim of 
such an approach is again to control the 
statistical power, while gaining additional 
mechanistic insights. Many more examples 
exist for the joint interpretation of multiple 
genomic data sources, but in general all 
these approaches are aimed at improving 
the power by including data on additional 
measurements, and not additional samples 
per se. Hence, whenever the number of 
available samples is limited, as is often the 
case when studying human aging and life 
span regulation, additional power can be 
gained by applying approaches for the joint 
analysis of data sources.

Multiple genomic data sources assayed 
on an overlapping group of individuals are 
not always available, but fortunately, much 
can also be gained from results created 
in previously performed independent 
experiments. The number and types of such 
annotations stored by online databases is 
rapidly expanding, as are the number of 
algorithms employing this information that 
can be readily applied for improving one’s 
own analysis. The incorporation of such 
prior knowledge is in general performed to 
aid in the interpretation or prioritization 
of results or for introducing additional 
constraints in the analysis of genomics data 
(regularization) to prevent overfitting. A 
very straightforward example is that of 
databases integrating results of genomic 
approaches to aid in the interpretation of 
GWAS results. For instance, HaploReg53 
not only contains results of eQTL studies54, 
but also employs genetic data from the 
1000 Genomes Project55 for inferring 

correlations with nearby genetic markers 
and epigenetic data from the ENCODE56 
and Roadmap Epigenomics57 projects 
for inferring overlaps with regulatory 
domains (Figure 2C). Other well-known 
examples of algorithms incorporating 
prior knowledge is DAPPLE58, an algorithm 
developed to test for functional coherence 
between hits derived from GWAS studies 
using previously measured networks of 
Protein-Protein Interaction data59 (Figure 
2D). Using this algorithm, it was shown 
that genes in loci associated to height and 
lipid levels assemble into significantly 
interconnected modules. Hence, both these 
examples for GWAS result interpretation 
imply that false positive rates can be 
reduced using measures derived from 
prior knowledge. 

Many algorithms exist for prioritising 
variants obtained from sequencing 
experiments using prior information. 
Besides predicting the putative impact of 
coding variants using established gene 
models (e.g. SIFT60 or PolyPhen61) or cross-
species conservation (e.g. GERP62), more 
recent algorithms are also able to prioritise 
variants residing in non-coding regions by 
exploiting public genetic data resources 
for inferring the relative sensitivity of 
genomic regions to perturbations63,64. The 
latter concept was elegantly exploited 
for prioritizing candidate cancer driver 
mutations by revisiting previously assayed 
sequencing data and assessing which 
motifs where under strong negative 
selection in the general population, but 
recurrently disrupted in tumour samples63. 
To conclude, a positive side effect of many 
of the methods for data integration is that 
often also additional biological insights are 
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gained, by revealing some of the molecular 
interactions. Therefore, approaches for 
data integration are not only useful in 
aging research for the purpose of dealing 
with statistical issues related to power, but 
for probing the essence of molecular aging 
mechanisms as well.

4. Aim and Outline of this 
Thesis
The aim of this thesis was to develop 
state-of-the-art integrative algorithms for 
the comprehensive and robust analysis 
of omics data sets, and to apply them to 
elucidate molecular pathways driving the 
rate of human aging.

To develop methodology for a 
comprehensive and robust analysis of 
gene expression data in Chapter 2, we 
explored employing Protein-Protein 
Interaction (PPI) data for grouping gene-
expression data into comprehensive 
modules of functionally related genes 
(Figure 2D). We investigated whether the 
expression of such gene modules jointly 
could serve as robust biomarkers. In this 
chapter we revisited six expression data 
sets previously assayed for investigating 
indicators of prospective outcome of 
patients undergoing breast cancer 
surgery. Like the aging phenotype, breast 
cancer outcome is a very heterogeneous 
and complex phenotype that demands 
advanced methodology for the robust 
analysis and comprehensive interpretation 
of assayed omics data. Novel methodology 
for calling co-expressed PPI modules from 
gene expression data was introduced and 
cross-study reproducibility, cross-study 
prediction accuracy and comprehensibility 

of the thus obtained biomarkers was 
investigated.

In Chapter 3 the methodology for 
calling co-expressed PPI modules was 
further developed adopting a meta-
analysis framework for both the module 
inference and following associations 
with phenotypes of interest. Aim was to 
investigate the benefits for studying the 
aging transcriptome with aid of the newly 
developed methodology for a module based 
meta-analysis as opposed to the traditional 
individual gene meta-analysis. For this 
purpose, we revisited four transcriptomic 
datasets previously measured in blood 
(~2.500 samples) and employed an 
additional independent dataset (~3.500 
samples) for replicating the obtained 
associations with chronological age. The 
potential application of the thus obtained 
age-associated co-expressed PPI modules 
as biomarkers for healthy aging was 
further studied in a small independent set 
of nonagenarians (~50 samples) derived 
from the Leiden Longevity Study (LLS).

To dive deeper into the genetics 
underlying the rate of aging and longevity, 
the whole genome sequence of 218 long-
lived cases of the Leiden Longevity 
Study (LLS) was compared with that 
of 98 population controls provided by 
the BBMRI-NL biobanking initiative65 in 
Chapter 4. The analysis of whole genome 
sequencing data in the current study, but 
also in general for other studies, is heavily 
underdetermined and the objective was 
to investigate strategies for including 
prior knowledge to appropriately deal 
with this statistical issue. In this chapter 
prediction tools, similarly as discussed in 
Figure 2C, were employed that incorporate 
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prior knowledge to limit the initial 
analysis to those variants with the highest 
prior probability of disrupting a gene’s 
functioning. Moreover, variant frequencies 
from a large-scale sequencing project, 
the Exome Sequencing Project66 were 
incorporated to assess the significance 
of the joint presence, or burden, of these 
disruptive variants in long-lived cases.

Long-lived families are characterized 
by an attenuated thyroid function14,67, 
suggesting a shared genetic basis for 
attenuation of the thyroid function and 
the longevity phenotype. In Chapter 5 
we set out to elucidate this pleiotropic 
genetic mechanism by investigating the 
239 nonagenarian sibships from the LLS 
displaying the most profound family 
history of excess survival (FH(+)), a trait 
previously associated with attenuation 
of the thyroid function67. For the analysis, 
we pursued a variation on the two-step 
genomic convergence approach (Figure 
2B). First, genome-wide linkage analyses 
for familial longevity in the whole LLS (415 
sibships) identified suggestive linkage 
at chr13q34, that was highly specific to 
the FH(+) subset and almost absent in 
the remaining 176 sibships without such 
a marked family history (FH(-)). For the 
second fine-mapping step of the variants 
under the linkage peak, we investigated 
which of the thyroid parameters was 
most characteristic to the FH(+) subset. 
The FH(+) subset exhibited a significantly 
lower serum free triiodothyronine 
level, the active thyroid hormone itself 
(fT3), as compared to the FH(-)) subset. 
Therefore we hypothesized that variants 
at chr13q34 might explain the observed 
pleiotropic interaction between longevity 

and an attenuated thyroid signalling, by 
lowering serum fT3 levels. Hence, the 
second fine-mapping step was performed 
by Quantitative Trait Loci (QTL) analyses, 
correlating free triiodothyronine (fT3) 
serum levels to NGS variants, to probe 
for causal variants underlying both the 
attenuated fT3 signalling as human 
longevity in this locus.

Finally, during this thesis we have 
encountered several bioinformatics tasks 
that are routinely performed during 
projects for genomic data integration. To 
generalize and standardize the execution 
of such highly similar though demanding 
tasks over different types of omics data 
sets, we implemented the R package 
SATORi (Standardized Access To Omics in 
R). In Chapter 6 we exemplify its use with 
publically available omics data sets and 
comment on some of the considerations 
made in the design of this package. 
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